Subdivision curves and surfaces

Subdivision curves

Idea:
- repeatedly refine the control polygon
 \[P^1 \rightarrow P^2 \rightarrow P^3 \rightarrow \ldots \]
- curve is the limit of an infinite process
 \[Q = \lim_{j \to \infty} P^j \]

Chaikin’s algorithm

Chaikin introduced the following “corner-cutting” scheme in 1974:
- Start with a piecewise linear curve
- Insert new vertices at the midpoints (the splitting step)
- Average each vertex with the “next” (clockwise) neighbor (the averaging step)
- Go to the splitting step

Reading

Recommended:

Note: there is an error in Stollnitz, et al., section A.5. Equation A.3 should read:

\[MV = V \Lambda \]
Averaging masks

The limit curve is a quadratic B-spline!

Instead of averaging with the nearest neighbor, we can generalize by applying an **averaging mask** during the averaging step:

\[r = (\ldots, r_{-1}, r_0, r_1, \ldots) \]

In the case of Chaikin’s algorithm:

\[r = \]

Lane-Riesenfeld algorithm (1980)

Use averaging masks from Pascal’s triangle:

\[r = \frac{1}{2^n} \binom{n}{0}, \binom{n}{1}, \ldots, \binom{n}{n} \]

Gives B-splines of degree \(n+1 \).

\[n=0: \]

\[n=1: \]

\[n=2: \]

Subdivide ad nauseum?

After each split-average step, we are closer to the **limit curve**.

How many steps until we reach the final (limit) position?

Can we push a vertex to its limit position without infinite subdivision? Yes!

Recipe for subdivision curves

After subdividing and averaging a few times, we can push each vertex to its limit position by applying an **evaluation mask**.

Each subdivision scheme has its own evaluation mask, mathematically determined by analyzing the subdivision and averaging rules.

For Lane-Riesenfeld cubic B-spline subdivision, we get:

\[\frac{1}{6}(1 \quad 4 \quad 1) \]

Now we can cook up a simple procedure for creating subdivision curves:

- Subdivide (split+average) the control polygon a few times. Use the averaging mask.
- Push the resulting points to the limit positions. Use the evaluation mask.
DLG interpolating scheme (1987)

Slight modification to subdivision algorithm:
- splitting step introduces midpoints
- averaging step *only changes midpoints*

For DLG (Dyn-Levin-Gregory), use:

\[r = \frac{1}{16} (-2, 5, 10, 5, -2) \]

Since we are only changing the midpoints, the points after the averaging step do not move.

Building complex models

We can extend the idea of subdivision from curves to surfaces…

Subdivision surfaces

Chaikin’s use of subdivision for curves inspired similar techniques for subdivision surfaces.

Iteratively refine a control polyhedron (or control mesh) to produce the limit surface

\[\sigma = \lim_{j \to \infty} M^j \]

using splitting and averaging steps.

Triangular subdivision

There are a variety of ways to subdivide a polygon mesh.

A common choice for triangle meshes is 4:1 subdivision – each triangular face is split into four subfaces:
Loop averaging step

Once again we can use masks for the averaging step:

\[
Q \leftarrow \frac{\alpha(n)Q + Q_1 + \cdots + Q_n}{\alpha(n) + n}
\]

where

\[
\alpha(n) = \frac{n(1 - \beta(n))}{\beta(n)} \quad \beta(n) = \frac{5}{4} \frac{(3 + 2\cos(2\pi/n))^2}{32}
\]

These values, due to Charles Loop, are carefully chosen to ensure smoothness – namely, tangent plane or normal continuity.

Note: tangent plane continuity is also known as \(G^1\) continuity for surfaces.

Recipe for subdivision surfaces

As with subdivision curves, we can now describe a recipe for creating and rendering subdivision surfaces:

- Subdivide (split + average) the control polyhedron a few times. Use the averaging mask.
- Compute two tangent vectors using the tangent masks.
- Compute the normal from the tangent vectors.
- Push the resulting points to the limit positions. Use the evaluation mask.
- Render!

Adding creases without trim curves

In some cases, we want a particular feature such as a crease to be preserved. With NURBS surfaces, this required the use of trim curves.

For subdivision surfaces, we can just modify the subdivision mask:

This gives rise to \(G^0\) continuous surfaces (i.e., having positional but not tangent plane continuity)
Catmull-Clark subdivision

4:1 subdivision of triangles is sometimes called a face scheme for subdivision, as each face begets more faces.

An alternative face scheme starts with arbitrary polygon meshes and inserts vertices along edges and at face centroids:

Catmull-Clark subdivision:

[Diagram showing original and after splitting]

Note: after the first subdivision, all polygons are quadiilaterals in this scheme.

Interpolating subdivision surfaces

Interpolating schemes are defined by

- splitting
- averaging only new vertices

The following averaging mask is used in butterfly subdivision:

[Diagram of averaging mask]

Setting \(t=0 \) gives the original polyhedron, and increasing small values of \(t \) makes the surface smoother, until \(t=1/8 \) when the surface is provably \(G^1 \).

Creases without trim curves, cont.

Here’s an example using Catmull-Clark surfaces (based on subdividing quadrilateral meshes):

Summary

What to take home:

- The meanings of all the boldfaced terms.
- How to perform the splitting and averaging steps on subdivision curves.
- How to perform mesh splitting steps for subdivision surfaces, especially Loop.
- How to construct and render subdivision surfaces from their averaging masks, evaluation masks, and tangent masks.