Hidden Surface Algorithms

Introduction

In the previous lecture, we figured out how to transform the geometry so that the relative sizes will be correct if we drop the z component.

But, how do we decide which geometry actually gets drawn to a pixel?

Known as the hidden surface elimination problem or the visible surface determination problem.

There are dozens of hidden surface algorithms.

They can be characterized in at least three ways:

- Object-precision vs. image-precision (a.k.a., object-space vs. image-space)
- Object order vs. image order
- Sort first vs. sort last

Object-precision algorithms

Basic idea:

- Operate on the geometric primitives themselves. (We’ll use “object” and “primitive” interchangeably.)
- Objects typically intersected against each other
- Tests performed to high precision
- Finished list of visible objects can be drawn at any resolution

Complexity:

- For n objects, can take $O(n^2)$ time to compute visibility.
- For an mxm display, have to fill in colors for m^2 pixels.
- Overall complexity can be $O(k_{obj}n^2 + k_{disp}m^2)$.

Implementation:

- Difficult to implement
- Can get numerical problems

Reading

Reading:

- Angel 5.6, 9.10.3

Optional reading:

- Foley, van Dam, Feiner, Hughes, Chapter 15
Image-precision algorithm

Basic idea:
- Find the closest point as seen through each pixel
- Calculations performed at display resolution
- Does not require high precision

Complexity:
- Naive approach checks all \(n \) objects at every pixel. Then, \(O(n \ m^2) \).
- Better approaches check only the objects that could be visible at each pixel. Let's say, on average, \(d \) objects project to each pixel (a.k.a., depth complexity). Then, \(O(d \ m^2) \).

Implementation:
- Very simple to implement.
 - Used a lot in practice.

Object order vs. image order

Object order:
- Consider each object only once, draw its pixels, and move on to the next object.
- Might draw to the same pixel multiple times.

Image order:
- Consider each pixel only once, find nearest object, and move on to the next pixel.
- Might compute relationships between objects multiple times.

Sort first vs. sort last

Sort first:
- Find some depth-based ordering of the objects relative to the camera, then draw back to front.
- Build an ordered data structure to avoid duplicating work.

Sort last:
- Determine depth observed at each pixel and draw the color corresponding to the closest depth
- Can be done by considering all depths together or by “lazily” keeping track of depths as they arrive.

Three hidden surface algorithms

- Z-buffer
- Ray casting
- Binary space partitioning (BSP) trees
Z-buffer

The Z-buffer or depth buffer algorithm [Catmull, 1974] is probably the simplest and most widely used.

Here is pseudocode for the Z-buffer hidden surface algorithm:

```plaintext
for each pixel (i,j) do
    Z-buffer[i,j] ← FAR
   Framebuffer[i,j] ← <background color>
end for
for each polygon A do
    for each pixel in A do
        Compute depth z and shade s of A at (i,j)
        if z > Z-buffer[i,j] then
            Z-buffer[i,j] ← z
           Framebuffer[i,j] ← s
        end if
    end for
end for
```

Q: What should FAR be set to?

Rasterization

The process of filling in the pixels inside of a polygon is called rasterization.

During rasterization, the z value and shade s can be computed incrementally (fast!).

Curious fact:
- Described as the “brute-force image space algorithm” by [SSS]
- Mentioned only in Appendix B of [SSS] as a point of comparison for huge memories, but written off as totally impractical.

Today, Z-buffers are commonly implemented in hardware.

Z-buffer: Analysis

- Classification?
- Easy to implement?
- Easy to implement in hardware?
- Incremental drawing calculations (uses coherence)?
- Pre-processing required?
- On-line (doesn't need all objects before drawing begins)?
- If objects move, does it take more work than normal to draw the frame?
- If the viewer moves, does it take more work than normal to draw the frame?
- Typically polygon-based?
- Efficient shading (doesn't compute colors of hidden surfaces)?
- Handles transparency?
- Handles refraction?

Ray casting

Idea: For each pixel center P_j

- Send ray from eye point (COP), C, through P_j into scene.
- Intersect ray with each object.
- Select nearest intersection.
Ray casting, cont.

Implementation:
- Might parameterize each ray:
 \[r(t) = C + t (P_{ij} - C) \]
- Each object \(O_k \) returns \(t_k > 0 \) such that first intersection with \(O_k \) occurs at \(r(t_k) \).

Q: Given the set \(\{t_k\} \) what is the first intersection point?

Note: these calculations generally happen in world coordinates. No projective matrices are applied.

Ray casting: Analysis

- Classification?
- Easy to implement?
- Easy to implement in hardware?
- Incremental drawing calculations (uses coherence)?
- Pre-processing required?
- On-line (doesn’t need all objects before drawing begins)?
- If objects move, does it take more work than normal to draw the frame?
- If the viewer moves, does it take more work than normal to draw the frame?
- Typically polygon-based?
- Efficient shading (doesn’t compute colors of hidden surfaces)?
- Handles transparency?
- Handles refraction?

Binary-space partitioning (BSP) trees

Idea:
- Do extra preprocessing to allow quick display from any viewpoint.

Key observation: A polygon \(A \) is painted in correct order if
 - Polygons on far side of \(A \) are painted first
 - \(A \) is painted next
 - Polygons in front of \(A \) are painted last.

BSP tree creation
BSP tree creation (cont’d)

procedure MakeBSPTree:

 takes PolygonList L
 returns BSPTree

 Choose polygon A from L to serve as root
 Split all polygons in L according to A
 node ← A
 node.neg ← MakeBSPTree(Polygons on neg. side of A)
 node.pos ← MakeBSPTree(Polygons on pos. side of A)
 return node

end procedure

Note: Performance is improved when fewer polygons are split --- in practice, best of ~5 random splitting polygons are chosen.

Note: BSP is created in world coordinates. No projective matrices are applied before building tree.

BSP tree display

procedure DisplayBSPTree:

 Takes BSPTree T

 if T is empty then return

 if viewer is in front (on pos. side) of T.node
 DisplayBSPTree(T.____)
 Draw T.node
 DisplayBSPTree(T.____)
 else
 DisplayBSPTree(T.____)
 Draw T.node
 DisplayBSPTree(T.____)
 end if

end procedure

BSP trees: Analysis

- Classification?
- Easy to implement?
- Easy to implement in hardware?
- Incremental drawing calculations (uses coherence)?
- Pre-processing required?
- On-line (doesn’t need all objects before drawing begins)?
- If objects move, does it take more work than normal to draw the frame?
- If the viewer moves, does it take more work than normal to draw the frame?
- Typically polygon-based?
- Efficient shading (doesn’t compute colors of hidden surfaces)?
- Handles transparency?
- Handles refraction?

Cost of Z-buffering

Z-buffering is the algorithm of choice for hardware rendering, so let’s think about how to make it run as fast as possible...

The steps involved in the Z-buffer algorithm are:

- Send a triangle to the graphics hardware.
- Transform the vertices of the triangle using the modeling matrix.
- Shade the vertices.
- Transform the vertices using the projection matrix.
- Set up for incremental rasterization calculations
- Rasterize and update the framebuffer according to z.

What is the overall cost of Z-buffering?
Cost of Z-buffering, cont’d

We can approximate the cost of this method as:

\[k_{bus} v_{bus} + k_{xform} v_{xform} + k_{shade} v_{shade} + k_{setup} \Delta_{rast} + d m^2 \]

Where:

- \(k_{bus} \) = bus cost to send a vertex
- \(v_{bus} \) = number of vertices sent over the bus
- \(k_{xform} \) = cost of transforming a vertex
- \(v_{xform} \) = number of vertices transformed
- \(k_{shade} \) = cost of shading a vertex
- \(v_{shade} \) = number of vertices shaded
- \(k_{setup} \) = cost of setting up for rasterization
- \(\Delta_{rast} \) = number of triangles being rasterized
- \(d \) = depth complexity (average times a pixel is covered)
- \(m^2 \) = number of pixels in frame buffer

Visibility tricks for Z-buffers

Given this cost function:

\[k_{bus} v_{bus} + k_{xform} v_{xform} + k_{shade} v_{shade} + k_{setup} \Delta_{rast} + d m^2 \]

what can we do to accelerate Z-buffering?

<table>
<thead>
<tr>
<th>Accel method</th>
<th>(v_{bus})</th>
<th>(v_{xform})</th>
<th>(v_{shade})</th>
<th>(\Delta_{rast})</th>
<th>(d)</th>
<th>(m)</th>
</tr>
</thead>
</table>

Summary

What to take home from this lecture:

- Classification of hidden surface algorithms
- Understanding of Z-buffer, ray casting, and BSP tree hidden surface algorithms
- Familiarity with some Z-buffer acceleration strategies