Topics in Articulated Animation

Animation

Articulated models:
- rigid parts
- connected by joints

They can be animated by specifying the joint angles (or other display parameters) as functions of time.

Character Representation

Character Models are rich, complex
- hair, clothes (particle systems)
- muscles, skin (FFD’s etc.)

Focus is rigid-body Degrees of Freedom (DOFs)
- joint angles
Simple Rigid Body → Skeleton

Computing a Sensor Position

- Forward kinematics
 - uses vector-matrix multiplication
 - transformation matrix is composition of all joint transforms between sensor/effector and root

\[
x_h, y_h, z_h, \theta_h, \phi_h, \sigma_h
\]

\[
\theta_i, \phi_i, \sigma_i
\]

\[
\theta_t, \phi_t, \sigma_t
\]

\[
\theta_c, \phi_c
\]

\[
v_w = T(x_h, y_h, z_h) R(\theta_h, \phi_h, \sigma_h) TR(\theta_t, \phi_t, \sigma_t) TR(\theta_c) v_s
\]

Joints = Rotations

To specify a pose, we specify the joint-angle rotations.

Each joint can have up to three rotational DOFs.

1 DOF: knee
2 DOF: wrist
3 DOF: arm

Euler angles

An Euler angle is a rotation about a single Cartesian axis.

Create multi-DOF rotations by concatenating Eulers.

Can get three DOF by concatenating:

Euler-X
Euler-Y
Euler-Z
Singularities

What is a singularity?
- continuous subspace of parameter space all of whose elements map to same rotation

Why is this bad?
- induces gimbal lock - two or more axes align, results in loss of rotational DOFs (i.e. derivatives)

Singularities in Action

An object whose orientation is controlled by Euler rotation $\text{XYZ}(\theta, \phi, \sigma)$

$$\mathbf{R}(\theta, \phi, \sigma) = \mathbf{R}_x(\theta) \cdot \mathbf{R}_y(\phi) \cdot \mathbf{R}_z(\sigma)$$

$\mathbf{R}(0,0,0) : \text{Okay}$

$\mathbf{R}(0, \pm 90^\circ, 0) : \text{X and Z axes align}$

Eliminates a DOF

In this configuration, changing θ (X Euler angle) and σ (Z Euler angle) produce the same result.

No way to rotate around world X axis!

Resulting Behavior

No applied force or other stimuli can induce rotation about world X-axis

The object locks up!!
Singularities in Euler Angles

Cannot be avoided (occur at 0° or 90°)

Difficult to work around

But, only affects three DOF rotations

Other Properties of Euler Angles

Several important tasks are easy:

- interactive specification (sliders, etc.)
- joint limits
- Euclidean interpolation (Hermites, Beziers, etc.)
 - May be funky for tumbling bodies
 - fine for most joints

Quaternions

But… singularities are unacceptable for IK, optimization

Traditional solution: Use unit quaternions to represent rotations

- S^3 has same topology as rotation space (a sphere), so no singularities

History of Quaternions

Invented by Sir William Rowan Hamilton in 1843

\[H = w + ix + jy + kz \]

where $i^2 = j^2 = k^2 = ijk = -1$

I still must assert that this discovery appears to me to be as important for the middle of the nineteenth century as the discovery of fluxions [the calculus] was for the close of the seventeenth.

Hamilton

[quaternions] ... although beautifully ingenious, have been an unmixed evil to those who have touched them in any way.

Thompson
Quatervin as a 4 vector

\[q = \begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} w \\ v \end{pmatrix} \]

Axis-angle rotation as a quaternion

\[q = \begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} w \\ v \end{pmatrix} \]

Unit Quaternions

\[q = \begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix} \]

\[w = \sqrt{1 - (x^2 + y^2 + z^2)} \]

\[|q| = 1 \]

\[x^2 + y^2 + z^2 + w^2 = 1 \]

Quaternion Product

\[\begin{pmatrix} w_1 & v_1 \\ v_1 & v_1 \end{pmatrix} = \begin{pmatrix} w_1 w_2 - v_1 \cdot v_2 \\ w_1 v_2 + w_2 v_1 + v_1 \times v_2 \end{pmatrix} \]

\[\begin{pmatrix} w_1 & w_2 \\ v_1 & v_2 \end{pmatrix} \neq \begin{pmatrix} w_2 & w_1 \\ v_2 & v_1 \end{pmatrix} \]
Quaternion Conjugate

\[q^* = \left(\begin{array}{l} w_1 \\ v_1 \end{array} \right)^* = \left(\begin{array}{l} w_1 \\ -v_1 \end{array} \right) \]

\((p^*)^* = p \)

\((pq)^* = q^* p^* \)

\((p + q)^* = p^* + q^* \)

Quaternion Inverse

\[q^{-1}q = 1 \]

\[q^{-1} = q^*/|q| = \left(\begin{array}{l} w \\ -v \end{array} \right)/|q| = \left(\begin{array}{l} w \\ -v \end{array} \right)/(w^2 + v \cdot v) \]

Quaternion Rotation

\[qpq^{-1} = \left(\begin{array}{l} w \\ v \end{array} \right) \left(\begin{array}{l} 0 \\ -v \end{array} \right) \left(\begin{array}{l} w \\ p \cdot v \end{array} \right) \]

\[= \left(\begin{array}{l} w \cdot \left(wp - p \times v \right) \\ v \cdot p \cdot v - wp \cdot v = 0 \\ v(w(wp - pv) + (p \cdot v)v + v(wp - p \times v)) \end{array} \right) \]

What about a quaternion product \(q_1q_2\) ?

Quaternion constraints

Restricting the rotation cone

\[\frac{1 - \cos(\theta_i)}{2} = q_y^2 + q_z^2 \]

Restricting the rotation twist around an axis

\[\tan(\theta / 2) = \frac{q_{ax}}{q_w} \]
Matrix Form

\[
q = \begin{pmatrix}
w \\
x \\
y \\
z
\end{pmatrix}
\]

\[
M = \begin{pmatrix}
1 - 2y^2 - 2z^2 & 2xy + 2wz & 2xz - 2wy \\
2xy - 2wz & 1 - 2x^2 - 2z^2 & 2yz + 2wx \\
2xz + 2wy & 2yz - 2wx & 1 - 2x^2 - 2y^2
\end{pmatrix}
\]

Quaternions: What Works

Simple formulae for converting to rotation matrix

Continuous derivatives - no singularities

“Optimal” interpolation - geodesics map to shortest paths in rotation space

Nice calculus (corresponds to rotations)

What Hierarchies Can and Can’t Do

Advantages:

- Reasonable control knobs
- Maintains structural constraints

Disadvantages:

- Doesn’t always give the “right” control knobs
 - e.g. hand or foot position - re-rooting may help
- Can’t do closed kinematic chains (keep hand on hip)
- Other constraints: do not walk through walls

Procedural Animation

Transformation parameters as functions of other variables

Simple example:

- a clock with second, minute and hour hands
- hands should rotate together
- express all the motions in terms of a “seconds” variable
- whole clock is animated by varying the seconds parameter
Models as Code: draw-a-bug

void draw_bug(walk_phase_angle, xpos, ypos, zpos){
 pushmatrix
 translate(xpos, ypos, zpos)
 calculate all six sets of leg angles based on
 walk phase angle.
 draw bug body
 for each leg:
 pushmatrix
 translate(leg pos relative to body)
 draw_bug_leg(theta1 & theta2 for that leg)
 popmatrix
 popmatrix
}

void draw_bug_leg(float theta1, float theta2){
glPushMatrix();
glRotatef(theta1, 0, 0, 1);
draw_leg_segment(SEGMENT1_LENGTH)
glTranslatef(SEGMENT1_LENGTH, 0, 0);
glRotatef(theta2, 0, 0, 1);
draw_leg_segment(SEGMENT2_LENGTH)
glPopMatrix();
}

Motion Editing

Tools for transforming already existing animations

Hard Example

In the figure below, what expression would you use to calculate the arm’s rotation angle to keep the tip on the star-shaped wheel as the wheel rotates???