Parametric surfaces

CSE 457, Autumn 2003
Graphics
http://www.cs.washington.edu/education/courses/457/03au/

Mathematical surface representations
Explicit $z=f(x, y)$ (a.k.a., a "height field") what if the curve isn't a function?

Implicit $g(x, y, z)=0$

Parametric $S(u, v)=(x(u, v), y(u, v), z(u, v))$ For the sphere:
$x(u, v)=r \cos 2 \pi v \sin \pi u$
$\mathrm{y}(u, v)=r \sin 2 \pi v \sin \pi u$
$z(u, v)=r \cos \pi u$

As with curves, we'll focus on parametric surfaces.

Readings and References

Readings

- Sections 2.1.4, 3.4-3.5, 3D Computer Graphics, Watt

Other References

- Section 3.6, 3D Computer Graphics, Watt.
- An Introduction to Splines for use in Computer Graphics and Geometric Modeling, Bartels, Beatty, and Barsky.

$$
\text { 8-Dec-2003 cse457-parametric-surfaces © } 2003 \text { University of Washington }
$$

Surfaces of revolution

Idea: rotate a 2 D profile curve around an axis. What kinds of shapes can you model this way?

Constructing surfaces of revolution

Given: A curve $C(u)$ in the $x y$-plane:
Let $R_{x}(\theta)$ be a rotation about the x-axis.

Find: A surface $S(u, v)$ which is $C(u)$ rotated about the x-axis.

Solution:

Orientation

The big issue:
» How to orient $C(u)$ as it moves along $T(v)$?
Here are two options:

1. Fixed (or static): Just translate O_{c} along $T(v)$.

2. Moving. Use the Frenet frame of $T(v)$.

Allows smoothly varying orientation.
Permits surfaces of revolution, for example.
8-Dec-2003

General sweep surfaces

The surface of revolution is a special case of a swept surface. Idea: Trace out surface $S(u, v)$ by moving a profile curve $C(u)$ along a trajectory curve $T(v)$.

More specifically:
» Suppose that $C(u)$ lies in an $\left(x_{c}, y_{c}\right)$ coordinate system with origin O_{c}.
» For every point along $T(v)$, lay $C(u)$ so that O_{c} coincides with $T(v)$.
8-Dec-2003 cse457-parametric-surfaces © 2003 University of Washington

Frenet frames

Motivation: Given a curve $T(v)$, we want to attach a smoothly varying coordinate system.

$\mathbf{t}(v)=$ normalize $\left[T^{\prime}(v)\right]$
$\mathbf{b}(v)=$ normalize $\left[T^{\prime}(v) \times T^{\prime \prime}(v)\right]$
$\mathbf{n}(v)=\mathbf{b}(v) \times \mathbf{t}(v)$

To get a 3D coordinate system, we need 3 independent direction vectors.
As we move along $T(v)$, the Frenet frame (t, b, n) varies smoothly.

Frenet swept surfaces

Orient the profile curve $C(u)$ using the Frenet frame of the trajectory $T(v)$:
» Put $C(u)$ in the normal plane .
» Place O_{c} on $T(v)$.
» Align x_{c} for $C(u)$ with \mathbf{b}.
» Align y_{c} for $C(u)$ with -n.

If $T(v)$ is a circle, you get a surface of revolution exactly!
What happens at inflection points, i.e., where curvature goes to zero?

Tensor product Bézier surfaces

Given a grid of control points $V_{i j}$, forming a control net, construct a surface $S(u, v)$ by:
» treating rows of V (the matrix consisting of the $V_{i j}$) as control points for curves $V_{0}(u), \ldots, V_{n}(u)$.
» treating $V_{0}(u), \ldots, V_{n}(u)$ as control points for a curve parameterized by v.

Variations

Several variations are possible:
» Scale $C(u)$ as it moves, possibly using length of $T(v)$ as a scale factor.
» Morph $C(u)$ into some other curve $\tilde{Q} u)$ as it moves along $T(v)$.
> ..

Tensor product Bézier surfaces, cont.

Tensor product B-spline surfaces

As with spline curves, we can piece together a sequence of Bézier surfaces to make a spline surface. If we enforce C^{2} continuity and local control, we get B-spline curves:

» treat rows of B as control points to generate Bézier control points in u.
» treat Bézier control points in u as B -spline control points in v.
» treat B -spline control points in v to generate Bézier control points in u.

Tensor product B-spline surfaces, cont.

- Which B-spline control points are interpolated by the surface?

