Texture Mapping

CSE 457, Autumn 2003
Graphics

http://www.cs.washington.edu/education/courses/457/03au/
Readings and References

Readings

• Intro to Chapter 8 and intros to 8.1, 8.4, 8.6, 8.8, 3D Computer Graphics, Watt

Other References

• Watt, the rest of Chapter 8
Texture mapping

- Texture mapping allows you to take a simple polygon and give it the appearance of something much more complex.
 - Due to Ed Catmull, PhD thesis, 1974
 - Refined by Blinn & Newell, 1976
- Texture mapping ensures that “all the right things” happen as a textured polygon is transformed and rendered.

Texture mapping (Woo et al., fig. 9-1)
Non-parametric texture mapping

- With “non-parametric texture mapping”:
 » Texture size and orientation are fixed
 » They are unrelated to size and orientation of polygon
 » Gives cookie-cutter effect
Parametric texture mapping

- With “parametric texture mapping,” texture size and orientation are tied to the polygon.

- **Idea:**
 - Separate “texture space” and “screen space”
 - Texture the polygon as before, but in texture space
 - Deform (render) the textured polygon into screen space

- A texture can modulate just about any parameter – diffuse color, specular color, specular exponent, …
Implementing texture mapping

- A texture lives in its own abstract image coordinates parameterized by \((u,v)\) in the range \([0..1], [0..1]\):

\[
\begin{align*}
u &= x/w \\
v &= y/h
\end{align*}
\]

- It can be wrapped around many different surfaces

- If the surface moves/deforms, the texture goes with it.
Mapping to texture image coords

The texture is usually stored as an image. Thus, we need to convert from abstract texture coordinates:

\((u, v)\) in the range \([0..1], [0..1]\)

to texture image coordinates:

\((u_{\text{tex}}, v_{\text{tex}})\) in the range \([0.. w_{\text{tex}}], [0.. h_{\text{tex}}]\)

Q: What do you do when the texture sample you need lands between texture pixels?

Ray intersection

\[v = \frac{y}{h} \]

\[u = \frac{\phi}{2\pi} \]

\[v_{\text{tex}} = v_{\text{tex}} \]

Mapping to abstract texture coords

Mapping to texture pixel coords
Texture resampling

To get the “in between” values, we need to resample the texture.

A common choice is **bilinear interpolation**:

\[
T(a, b) = T(i + \Delta_x, j + \Delta_y) = T(i, j) + T(i + 1, j) + T(i, j + 1) + T(i + 1, j + 1)
\]
Antialiasing

If you point-sample the texture map, you get aliasing:

Proper antialiasing requires area averaging in the texture:

From Crow, SIGGRAPH '84
Computing the average color

The computationally difficult part is summing over the covered pixels.

Several methods have been used:

The simplest is **brute force**:

Figure out which texels are covered and add up their colors to compute the average.

Approximating a quadrilateral texture area with (a) a square, (b) a rectangle. Too small an area causes aliasing; too large an area causes blurring. After Heckbert 86.
A faster method is **mip maps** developed by Lance Williams (1983)

» Stands for “multum in parvo” – many things in a small place

» Keep textures prefiltered at multiple resolutions

» Has become the graphics hardware standard
The mip map hierarchy can be thought of as an image pyramid:

- Level 0 ($T_0[i,j]$) is the original image.
- Level 1 ($T_1[i,j]$) averages over 2x2 neighborhoods of original.
- Level 2 ($T_2[i,j]$) averages over 4x4 neighborhoods of original.
- Level 3 ($T_3[i,j]$) averages over 8x8 neighborhoods of original.
Mip map resampling

- What would the mip-map return for an average over a 5x5 neighborhood at location \((u_0, v_0)\)?
Summed area tables

A more accurate method than mip maps is summed area tables invented by Frank Crow (1984). Rectangles vs squares.

Recall from calculus:

\[
\int_a^b f(x)\,dx = \int_a^{-\infty} f(x)\,dx - \int_{-\infty}^a f(x)\,dx
\]

In discrete form:

\[
\sum_{i=k}^{m} f[i] = \sum_{i=0}^{m} f[i] - \sum_{i=0}^{k} f[i]
\]
Summed area tables (cont’d)

We can extend this idea to 2D by creating a table, $S[i,j]$, that contains the sum of everything below and to the left.

![Diagram of summed area table]

Q: How do we compute the average over a region from (l, b) to (r, t)?

Characteristics:
- Requires more memory
- Gives less blurry textures
Comparison of techniques

Point sampled

MIP-mapped

Summed area table

Figure 5: Checkerboards mapped onto a square showing vertically compressed texture.

From Crow, SIGGRAPH '84
Solid textures

Q: What kinds of artifacts might you see from using a marble veneer instead of solid marble?

One solution is to use solid textures:
» Use model-space coordinates to index into a 3D texture
» Like “carving” the object from the material

One difficulty of solid texturing is coming up with the textures.
Solid textures (cont'd)

Here's an example for a vase cut from a solid marble texture:

Solid marble texture by Ken Perlin, (Foley, IV-21)
Displacement mapping

- Textures can be used for more than just color.
- In **displacement mapping**, a texture is used to perturb the surface geometry itself:

$$\tilde{Q}(u) = Q(u) + d(u)N(u)$$

- These displacements “animate” with the surface

Q: Do you have to do hidden surface calculations on \tilde{Q}?
Bump mapping

In **bump mapping**, a texture is used to perturb the normal:

- Use the original, simpler geometry, $Q(u)$, for hidden surfaces.
- Use the normal from the displacement map for shading:

$$\tilde{N} = \text{normal}[ilde{Q}(u)]$$

Q: What artifacts in the images would reveal that bump mapping is a fake?
Displacement vs. bump mapping

Input texture

Rendered as displacement map over a rectangular surface
Displacement vs. bump mapping

Original rendering

Bump map and rendering by Wyvern Aldinger

Rendering with bump map wrapped around a cylinder
Environment mapping

- In **environment mapping** (also known as **reflection mapping**), a texture is used to model an object's environment:
 - Rays are bounced off objects into environment
 - Color of the environment used to determine color of the illumination
 - Really, a simplified form of ray tracing
 - Environment mapping works well when there is just a single object – or in conjunction with ray tracing
- Under simplifying assumptions, environment mapping can be implemented in hardware.
- With a ray tracer, the concept is easily extended to handle refraction as well as reflection.
Environment mapping example
Combining texture maps

- Using texture maps in combination gives even better effects, as in *Young Sherlock Holmes* …

Construction of the glass knight, (Foley, IV-24)
Combining texture maps (cont'd)

Phong lighting with diffuse texture

Bump mapping + Glossy reflection

Rivet stains + Shinier reflections

Environment-mapped mirror reflection

Combine textures and add dirt

Close-up

Construction of the glass knight, (Foley, IV-24)
Summary

• What to take home from this lecture:
• The meaning of the boldfaced terms.
• Familiarity with the various kinds of texture mapping, including their strengths and limitations.
• Understanding of the various approaches to antialiased texture mapping:
 » Brute force
 » Mip maps
 » Summed area tables