Hidden Surface Algorithms

CSE 457, Autumn 2003
Graphics

http://www.cs.washington.edu/education/courses/457/03au/
Readings and References

Readings

- Sections 6.6 (esp. intro and subsections 1, 4, and 8–10), 12.1.4, *3D Computer Graphics*, Watt

Other References

- Foley, van Dam, Feiner, Hughes, Chapter 15
 » http://www.acm.org/pubs/citations/journals/surveys/1974-6-1/p1-sutherland/
Introduction

• In the previous lecture, we figured out how to transform the geometry so that the relative sizes will be correct if we drop the z component.

• But, how do we decide which geometry actually gets drawn to a pixel?

• Known as the hidden surface elimination problem or the visible surface determination problem.

• There are dozens of hidden surface algorithms.

• They can be characterized in at least three ways:
 » Object-precision vs. image-precision (a.k.a., object-space vs. image-space)
 » Object order vs. image order
 » Sort first vs. sort last
Object-precision algorithms

• **Basic idea:**
 » Operate on the geometric primitives themselves. (We’ll use “object” and “primitive” interchangeably.)
 » Objects typically intersected against each other
 » Tests performed to high precision
 » Finished list of visible objects can be drawn at any resolution

• **Complexity:**
 » For n objects, can take $O(n^2)$ time to compute visibility.
 » For an mxm display, have to fill in colors for m^2 pixels.
 » Overall complexity can be $O(k_{obj}n^2 + k_{disp}m^2)$.

• **Implementation:**
 » Difficult to implement
 » Can get numerical problems
Image-precision algorithm

- **Basic idea:**
 - Find the closest point as seen through each pixel
 - Calculations performed at display resolution
 - Does not require high precision

- **Complexity:**
 - Naïve approach checks all n objects at every pixel. Then, $O(n \ m^2)$.
 - Better approaches check only the objects that *could* be visible at each pixel. Let’s say, on average, d objects are visible at each pixel (a.k.a., depth complexity). Then, $O(d \ m^2)$.

- **Implementation:**
 - Very simple to implement.
 - Used a lot in practice.
Object order vs. image order

- **Object order:**
 - Consider each object only once, draw its pixels, and move on to the next object.
 - Might draw the same pixel multiple times.

- **Image order:**
 - Consider each pixel only once, find nearest object, and move on to the next pixel.
 - Might compute relationships between objects multiple times.
Sort first vs. sort last

- **Sort first:**
 - Find some depth-based ordering of the objects relative to the camera, then draw back to front.
 - Build an ordered data structure to avoid duplicating work.

- **Sort last:**
 - Sort implicitly as more information becomes available.
Outline of Lecture

- Z-buffer
- Ray casting
- Binary space partitioning (BSP) trees
Z-buffer

• The **Z-buffer** or **depth buffer** algorithm [Catmull, 1974] is probably the simplest and most widely used.
• Here is pseudocode for the Z-buffer hidden surface algorithm:

```
for each pixel \((i,j)\) do
    Z-buffer \([i,j]\) ← FAR
    Framebuffer\([i,j]\) ← <background color>
end for
for each polygon \(A\) do
    for each pixel in \(A\) do
        Compute depth \(z\) and shade \(s\) of \(A\) at \((i,j)\)
        if \(z > Z-buffer\ [i,j]\) then
            Z-buffer \([i,j]\) ← \(z\)
            Framebuffer\([i,j]\) ← \(s\)
        end if
    end for
end for
```

Q: What should FAR be set to?
Rasterization

- The process of filling in the pixels inside of a polygon is called **rasterization**.

 During rasterization, the z value and shade s can be computed incrementally (i.e., quickly!).

Interesting fact:
- Described as the “brute-force image space algorithm” by [SSS]
- Mentioned only in Appendix B of [SSS] as a point of comparison for huge memories, but written off as totally impractical.

Today, Z-buffers are commonly implemented in hardware. Tomorrow ...

http://www.cs.washington.edu/education/courses/457/03au/misc/power-trends.png
Clipping and the viewing frustum

- The center of projection and the portion of the projection plane that map to the final image form an infinite pyramid. The sides of the pyramid are clipping planes.

- Frequently, additional clipping planes are inserted to restrict the range of depths. These clipping planes are called the near and far or the hither and yon clipping planes.

- All of the clipping planes bound the viewing frustum.
Computing z

- In the lecture on projections, we said that we would apply the following 3x4 projective transformation:
 \[
 \begin{bmatrix}
 x' \\
y' \\
w'
 \end{bmatrix} =
 \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & -1/d & 0
 \end{bmatrix}
 \begin{bmatrix}
 x \\
y \\
z
 \end{bmatrix}
 \]

- and keep the z-component to do Z-buffering (ie, $z' = z$)

- Strictly speaking, in order for interpolated z to work correctly, we actually need to map it according to:
 \[z' = A + B/z\]

- For $B < 0$, is depth ordering preserved?

- In addition, we have finite precision and would like all of our z bits to be uniformly distributed between the clipping planes.
Computing z, cont’d

- These requirements lead to the following 4x4 projective transformation:

$$
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 w'
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & f + n & -2fn \\
 0 & 0 & d(f - n) & d(f - n)
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
$$

- What is z' after the perspective divide?

- What do $z = -n$ and $z = -f$ get mapped to?
Z-buffer: Analysis

- Classification?
- Easy to implement?
- Easy to implement in hardware?
- Incremental drawing calculations (uses coherence)?
- Pre-processing required?
- On-line (doesn’t need all objects before drawing begins)?
- If objects move, does it take more work than normal to draw the frame?
- If the viewer moves, does it take more work than normal to draw the frame?
- Typically polygon-based?
- Efficient shading (doesn’t compute colors of hidden surfaces)?
- Handles transparency?
- Handles refraction?
Ray casting

- **Idea:** For each pixel center \(P_{ij} \)
 - Send ray from eye point (COP), \(C \), through \(P_{ij} \) into scene.
 - Intersect ray with each object.
 - Select nearest intersection.
Ray casting, cont.

Implementation:

» Might parameterize each ray: \(\mathbf{r}(t) = \mathbf{C} + t (\mathbf{P}_{ij} - \mathbf{C}) \)

» Each object \(O_k \) returns \(t_k > 0 \) such that first intersection with \(O_k \) occurs at \(\mathbf{r}(t_k) \).

Q: Given the set \(\{t_k\} \) what is the first intersection point?

Note: these calculations generally happen in world coordinates. No projective matrices are applied.
Ray casting: Analysis

- Classification?
- Easy to implement?
- Easy to implement in hardware?
- Incremental drawing calculations (uses coherence)?
- Pre-processing required?
- On-line (doesn’t need all objects before drawing begins)?
- If objects move, does it take more work than normal to draw the frame?
- If the viewer moves, does it take more work than normal to draw the frame?
- Typically polygon-based?
- Efficient shading (doesn’t compute colors of hidden surfaces)?
- Handles transparency?
- Handles refraction?
Binary-space partitioning (BSP) trees

- **Idea:**
 - Do extra preprocessing to allow quick display from any viewpoint.

- **Key observation:** A polygon A is painted in correct order if
 - Polygons on far side of A are painted first
 - A is painted next
 - Polygons in front of A are painted last.
BSP tree creation
BSP tree creation (cont’d)

procedure MakeBSPTree:

takes PolygonList L

returns BSPTree

Choose polygon A from L to serve as root
Split all polygons in L according to A
node ← A

node.neg ← MakeBSPTree(Polygons on neg. side of A)
node.pos ← MakeBSPTree(Polygons on pos. side of A)

return node

end procedure

Note: Performance is improved when fewer polygons are split --- in practice, best of ~ 5 random splitting polygons are chosen.

Note: BSP is created in world coordinates. No projective matrices are applied.
BSP tree display

procedure DisplayBSPTree:

Takes BSPTree T

if T is empty then return

if viewer is in front half-space of T.node

DisplayBSPTree(T. _____)
Draw T.node
DisplayBSPTree(T._____)

else

DisplayBSPTree(T. _____)
Draw T.node
DisplayBSPTree(T. _____)

end if

end procedure
BSP trees: Analysis

- Classification?
- Easy to implement?
- Easy to implement in hardware?
- Incremental drawing calculations (uses coherence)?
- Pre-processing required?
- On-line (doesn’t need all objects before drawing begins)?
- If objects move, does it take more work than normal to draw the frame?
- If the viewer moves, does it take more work than normal to draw the frame?
- Typically polygon-based?
- Efficient shading (doesn’t compute colors of hidden surfaces)?
- Handles transparency?
- Handles refraction?
Cost of Z-buffering

• Z-buffering is the algorithm of choice for hardware rendering, so let’s think about how to make it run as fast as possible…
• The steps involved in the Z-buffer algorithm are:
 • Send a triangle to the graphics hardware.
 • Transform the vertices of the triangle using the modeling matrix.
 • Shade the vertices.
 • Transform the vertices using the projection matrix.
 • Set up for incremental rasterization calculations
 • Rasterize and update the framebuffer according to z.

• What is the overall cost of Z-buffering?
Cost of Z-buffering, cont’d

We can approximate the cost of this method as:

\[k_{bus} v_{bus} + k_{xform} v_{xform} + k_{shade} v_{shade} + k_{setup} \Delta_{rast} + d m^2 \]

Where:

- \(k_{bus} \) = bus cost to send a vertex
- \(v_{bus} \) = number of vertices sent over the bus
- \(k_{shade,xform} \) = cost of transforming and shading a vertex
- \(v_{shade,xform} \) = number of vertices transformed and shaded
- \(k_{setup} \) = cost of setting up for rasterization
- \(\Delta_{rast} \) = number of triangles being rasterized
- \(d \) = depth complexity (average times a pixel is covered)
- \(m^2 \) = number of pixels in frame buffer
Visibility tricks for Z-buffers

Given this cost function:

\[k_{\text{bus}} v_{\text{bus}} + k_{\text{xform}} v_{\text{xform}} + k_{\text{shade}} v_{\text{shade}} + k_{\text{setup}} \Delta_{\text{rast}} + d \, m^2 \]

what can we do to accelerate Z-buffering?
Summary

• What to take home from this lecture:
 » Classification of hidden surface algorithms
 » Understanding of Z-buffer, ray casting, and BSP tree hidden surface algorithms
 » Familiarity with some Z-buffer acceleration strategies