Hidden Surface Algorithms

CSE 457, Autumn 2003

Graphics
http://www.cs.washington.edu/education/courses/457/03au/

Introduction

- In the previous lecture, we figured out how to transform the geometry so that the relative sizes will be correct if we drop the z component.
- But, how do we decide which geometry actually gets drawn to a pixel?
- Known as the hidden surface elimination problem or the visible surface determination problem.
- There are dozens of hidden surface algorithms.
- They can be characterized in at least three ways:
» Object-precision vs. image-precision (a.k.a., object-space vs. imagespace)
» Object order vs. image order
» Sort first vs. sort last

Readings and References

Readings

- Sections 6.6 (esp. intro and subsections 1, 4, and 8-10), 12.1.4, 3D Computer Graphics, Watt

Other References

- Foley, van Dam, Feiner, Hughes, Chapter 15
- I. E. Sutherland, R. F. Sproull, and R. A. Schumacker, A characterization of ten hidden surface algorithms, $A C M$ Computing Surveys 6(1): 1-55, March 1974.
» http://www.acm.org/pubs/citations/journals/surveys/1974-6-1/p1-sutherland/

Object-precision algorithms

- Basic idea:
" Operate on the geometric primitives themselves. (We'll use "object" and "primitive" interchangeably.)
» Objects typically intersected against each other
» Tests performed to high precision
» Finished list of visible objects can be drawn at any resolution
- Complexity:
» For n objects, can take $O\left(n^{2}\right)$ time to compute visibility.
» For an $m x m$ display, have to fill in colors for m^{2} pixels.
» Overall complexity can be $O\left(k_{o b j} n^{2}+k_{d i s p} m^{2}\right)$.
- Implementation:
» Difficult to implement
» Can get numerical problems

Image-precision algorithm

- Basic idea:
» Find the closest point as seen through each pixel
» Calculations performed at display resolution
» Does not require high precision
- Complexity:
» Naïve approach checks all n objects at every pixel. Then, $O\left(\mathrm{n} \mathrm{m}^{2}\right)$.
» Better approaches check only the objects that could be visible at each pixel. Let's say, on average, d objects are visible at each pixel (a.k.a., depth complexity). Then, $O\left(d m^{2}\right)$.
- Implementation:
» Very simple to implement.
- Used a lot in practice.

Sort first vs. sort last

- Sort first:
» Find some depth-based ordering of the objects relative to the camera, then draw back to front.
» Build an ordered data structure to avoid duplicating work.
- Sort last:
» Sort implicitly as more information becomes available.

Object order vs. image order

- Object order:
» Consider each object only once, draw its pixels, and move on to the next object.
» Might draw the same pixel multiple times.
- Image order:
» Consider each pixel only once, find nearest object, and move on to the next pixel.
» Might compute relationships between objects multiple times.

Outline of Lecture

- Z-buffer
- Ray casting
- Binary space partitioning (BSP) trees

Z-buffer

-The Z-buffer or depth buffer algorithm [Catmull, 1974] is probably the simplest and most widely used.
-Here is pseudocode for the Z-buffer hidden surface algorithm:

```
for each pixel (i,j) do
    Z-buffer [i,j] \leftarrowFAR
    Framebuffer[i,j]}\leftarrow<<background color>
end for
for each polygon A do
    for each pixel in A do
        Compute depth z and shade s of A at (i,j)
        if z > Z-buffer [i,j] then
            Z-buffer [i,j]}\leftarrow
            Framebuffer[i,j]}\leftarrow
        end if
    end for
end for

\section*{Clipping and the viewing frustum}
- The center of projection and the portion of the projection plane that map to the final image form an infinite pyramid. The sides of the pyramid are clipping planes.
- Frequently, additional clipping planes are inserted to restrict the range of depths. These clipping planes are called the near and far or the hither and yon clipping planes.
- All of the clipping planes bound
 the the viewing frustum.

\section*{Rasterization}
- The process of filling in the pixels inside of a polygon is called rasterization.

During rasterization, the \(z\) value and shade \(s\) can be computed incrementally (ie, quickly!).


Interesting fact:
- Described as the "brute-force image space algorithm" by [SSS]
- Mentioned only in Appendix B of [SSS] as a point of comparison for huge memories, but written off as totally impractical.
Today, Z-buffers are commonly implemented in hardware. Tomorrow ... http://www.cs.washington.edu/education/courses/457/03au/misc/power-trends.png

\section*{Computing \(z\)}
- In the lecture on projections, we said that we would apply the following \(3 \times 4\) projective transformation:
\[
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 / d & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]
\]
- and keep the \(z\)-component to do Z-buffering (ie, \(z^{\prime}=z\) )
- Strictly speaking, in order for interpolated \(z\) to work correctly, we actually need to map it according to:
\[
z^{\prime}=\mathrm{A}+\mathrm{B} / \mathrm{z}
\]
- For \(\mathrm{B}<0\), is depth ordering preserved?
- In addition, we have finite precision and would like all of our \(z\) bits to be uniformly distributed between the clipping planes.

\section*{Computing \(z\), cont' d}

\section*{Z-buffer: Analysis}
- These requirements lead to the following \(4 \times 4\) projective transformation:
\(\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ w^{\prime}\end{array}\right]=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{f+n}{d(f-n)} & \frac{2 f n}{d(f-n)} \\ 0 & 0 & -1 / d & 0\end{array}\right]\left[\begin{array}{c}x \\ y \\ z \\ 1\end{array}\right]=\)
- What is z ' after the perspective divide?
- What do \(z=-n\) and \(z=-f\) get mapped to?

\section*{Ray casting}

- Idea: For each pixel center \(\boldsymbol{P}_{i j}\)
» Send ray from eye point (COP), \(\mathbf{C}\), through \(\boldsymbol{P}_{i j}\) into scene.
» Intersect ray with each object.
» Select nearest intersection.
- Classification?
- Easy to implement?
- Easy to implement in hardware?
- Incremental drawing calculations (uses coherence)?
- Pre-processing required?
- On-line (doesn't need all objects before drawing begins)?
- If objects move, does it take more work than normal to draw the frame?
- If the viewer moves, does it take more work than normal to draw the frame?
- Typically polygon-based?
- Efficient shading (doesn't compute colors of hidden surfaces)?
- Handles transparency?
- Handles refraction?

27-Oct-2003
cse457-09-hiddensurfaces © 2003 University of Washington

\section*{Ray casting, cont.}

\section*{Implementation:}
" Might parameterize each ray: \(\mathbf{r}(\mathrm{t})=\mathbf{C}+\mathrm{t}\left(\boldsymbol{P}_{i j}-\mathbf{C}\right)\)
» Each object \(O_{k}\) returns \(\mathrm{t}_{k}>0\) such that first intersection with \(\mathrm{O}_{k}\) occurs at \(\mathbf{r}\left(t_{k}\right)\).


Q: Given the set \(\left\{t_{k}\right\}\) what is the first intersection point?
Note: these calculations generally happen in world coordinates. No projective matrices are applied.

\section*{Ray casting: Analysis}
- Classification?
- Easy to implement?
- Easy to implement in hardware?
- Incremental drawing calculations (uses coherence)?
- Pre-processing required?
- On-line (doesn't need all objects before drawing begins)?
- If objects move, does it take more work than normal to draw the frame?
- If the viewer moves, does it take more work than normal to draw the frame?
- Typically polygon-based?
- Efficient shading (doesn't compute colors of hidden surfaces)?
- Handles transparency?
- Handles refraction?

\section*{Binary-space partitioning (BSP) trees}

- Idea:
» Do extra preprocessing to allow quick display from any viewpoint.
- Key observation: A polygon \(A\) is painted in correct order if
» Polygons on far side of \(A\) are painted first
» \(A\) is painted next
» Polygons in front of \(A\) are painted last.
27-Oct-2003
cse457-09-hiddensurfaces © 2003 University of Washington

\section*{BSP tree creation}


\section*{BSP tree creation (cont'd)}
```

procedure MakeBSPTree:
takes PolygonList L
returns BSPTree
Choose polygon A from L to serve as root
Split all polygons in L according to A
node }\leftarrow
node.neg \leftarrow MakeBSPTree(Polygons on neg. side of A)
node.pos \leftarrow MakeBSPTree(Polygons on pos. side of A)
return node
end procedure

```

Note: Performance is improved when fewer polygons are split --- in practice, best of \(\sim 5\) random splitting polygons are chosen.

Note: BSP is created in world coordinates. No projective matrices are applied.

\section*{BSP tree display}
```

procedure DisplayBSPTree:
Takes BSPTree T
if T is empty then return
if viewer is in front half-space of T.node
DisplayBSPTree(T.

```
\(\qquad\)
``` )
 Draw T.node
 DisplayBSPTree(T.
```

$\qquad$

``` _)
 else
 DisplayBSPTree(T.
```

$\qquad$

``` -)
 Draw T.node
 DisplayBSPTree(T.
```

$\qquad$

``` -)
 end if
end procedure
```


## BSP trees: Analysis

- Classification?
- Easy to implement?
- Easy to implement in hardware?
- Incremental drawing calculations (uses coherence)?
- Pre-processing required?
- On-line (doesn't need all objects before drawing begins)?
- If objects move, does it take more work than normal to draw the frame?
- If the viewer moves, does it take more work than normal to draw the frame?
- Typically polygon-based?
- Efficient shading (doesn't compute colors of hidden surfaces)?
- Handles transparency?
- Handles refraction?



## Cost of Z-buffering

-Z-buffering is the algorithm of choice for hardware rendering, so let's think about how to make it run as fast as possible...
-The steps involved in the Z-buffer algorithm are:

- Send a triangle to the graphics hardware.
- Transform the vertices of the triangle using the modeling matrix.
- Shade the vertices.
- Transform the vertices using the projection matrix.
- Set up for incremental rasterization calculations
- Rasterize and update the framebuffer according to $z$.
-What is the overall cost of Z-buffering?


## Cost of Z-buffering, cont'd

We can approximate the cost of this method as:

$$
k_{\text {bus }} v_{\text {bus }}+k_{\text {xform }} v_{\text {xform }}+k_{\text {shade }} v_{\text {shade }}+k_{\text {setup }} \Delta_{\text {rast }}+d m^{2}
$$

Where:
$\mathrm{k}_{\text {bus }}=$ bus cost to send a vertex
$v_{\text {bus }}=$ number of vertices sent over the bus
$\mathrm{k}_{\text {shade,xform }}=$ cost of transforming and shading a vertex
$v_{\text {shade,xform }}=$ number of vertices transformed and shaded
$\mathrm{k}_{\text {setup }}=$ cost of setting up for rasterization
$\Delta_{\text {rast }}=$ number of triangles being rasterized
$\mathrm{d}=$ depth complexity (average times a pixel is covered)
$\mathrm{m}^{2}=$ number of pixels in frame buffer
cse457-09-hiddensurfaces © 2003 University of Washington

## Visibility tricks for Z-buffers

Given this cost function:
$k_{\text {bus }} v_{\text {bus }}+k_{\text {xform }} v_{\text {xform }}+k_{\text {shade }} v_{\text {shade }}+k_{\text {setup }} \Delta_{\text {rast }}+d m^{2}$ what can we do to accelerate Z-buffering?

