Hierarchical Modeling

CSE 457, Autumn 2003
Graphics

http://www.cs.washington.edu/education/courses/457/03au/
References

Symbols and instances

- Most graphics APIs support a few geometric **primitives**:
 - spheres, cubes, cylinders
 - these procedures define points for you, but they're still just points P
- These symbols are **instanced** using an **instance transformation**.
 - the points are originally defined in a local coordinate system (eg, unit cube)

Q: What is the matrix for the instance transformation above?
Connecting primitives
3D Example: A robot arm

- Consider this robot arm with 3 degrees of freedom:
 - Base rotates about its vertical axis by θ
 - Lower arm rotates in its xy-plane by ϕ
 - Upper arm rotates in its xy-plane by ψ

Q: What matrix do we use to transform
 - the base? the upper arm? the lower arm?
Robot arm implementation

The robot arm could be displayed by using a global matrix and recomputing it at each step:

```
Matrix M_model;

main() {
    ...
    robot_arm();
    ...
}

robot_arm() {
    M_model = R_y(theta);
    base();
    M_model = R_y(theta)*T(0,h1,0)*R_z(phi);
    upper_arm();
    M_model = R_y(theta)*T(0,h1,0)*R_z(phi)*T(0,h2,0)*R_z(psi);
    lower_arm();
}
```

Do the matrix computations seem just a tad wasteful?
Instead of recalculating the global matrix each time, we could just update it as we go along:

```c
Matrix M_model;

main() {
    ...
    M_model = Identity();
    robot_arm();
    ...
}

robot_arm() {
    M_model *= R_y(theta);
    base();
    M_model *= T(0,h1,0)*R_z(phi);
    upper_arm();
    M_model *= T(0,h2,0)*R_z(psi);
    lower_arm();
}
```
Robot arm implementation, OpenGL

OpenGL maintains a global state matrix called the **model-view matrix**.

```c
main() {
    ...
    glMatrixMode( GL_MODELVIEW );
    glLoadIdentity();
    robot_arm();
    ...
}

robot_arm() {
    glRotatef( theta, 0.0, 1.0, 0.0 );
    base();
    glTranslatef( 0.0, h1, 0.0 );
    glRotatef( phi, 0.0, 0.0, 1.0 );
    upper_arm();
    glTranslatef( 0.0, h2, 0.0 );
    glRotatef( psi, 0.0, 0.0, 1.0 );
    lower_arm();
}
```
Hierarchical modeling

- Hierarchical models can be composed of instances using trees or DAGs:

- edges contain geometric transformations
- nodes contain geometry (and possibly drawing attributes)

![Tree structure for automobile.](image1)

![Directed-acyclic-graph (DAG) model of automobile.](image2)

figures from Angel
Another example: human figure

Q: What’s a sensible way to traverse this tree?
Human figure implementation

We can also design code for drawing the human figure, with a slight modification due to the branches in the tree:

```c
figure() {
    torso();
    M_save = M_model;
    M_model *= T( . . .)*R( . . .);
    head();
    M_model = M_save;
    M_model *= T( . . .)*R( . . .);
    left_upper_arm();
    M_model *= T( . . .)*R( . . .);
    left_lower_arm();
    M_model = M_save;
    ...
}
```
What if we add a hand?

```c
figure() {
  torso();
  M_save = M_model;
  M_model *= T(. . .)*R(. . .);
  head();
  M_model = M_save;
  M_model *= T(. . .)*R(. . .);
  left_upper_arm();
  M_model *= T(. . .)*R(. . .);
  left_lower_arm();
  M_model *= T(. . .)*R(. . .);
  left_hand();
  M_save2 = M_model;
  M_model *= T(. . .)*R(. . .);
  left_thumb();
  left_forefinger();
  M_model = M_save2;
  . . .
}
```

Is there a better way to keep track of piles of matrices that need to be saved, modified, and restored?
Push and pop

```c
figure() {
    torso();
    push(M_model);
    M_model *= T( . . )*R( . . );
    head();
    M_model = pop(M_model);
    push(M_model);
    M_model *= T( . . )*R( . . );
    left_upper_arm();
    M_model *= T( . . )*R( . . );
    left_lower_arm();
    M_model *= T( . . )*R( . . );
    left_hand();
    push(M_model);
    M_model *= T( . . )*R( . . );
    left_thumb();
    M_model = pop(M_model);
    push(M_model);
    M_model *= T( . . )*R( . . );
    left_forefinger();
    M_model = pop(M_model);
    push(M_model);
    . . .
}
```
Push and pop, OpenGL

```c
figure() {
    torso();
    glPushMatrix();
    glTranslate( ... );
    glRotate( ... );
    head();
    glPopMatrix();
    glPushMatrix();
    glTranslate( ... );
    glRotate( ... );
    left_upper_arm();
    glTranslate( ... );
    glRotate( ... );
    left_lower_arm();
    glTranslate( ... );
    glRotate( ... );
    left_hand();
    glPushMatrix();
    glTranslate( ... );
    glRotate( ... );
    left_thumb();
    glPopMatrix();
    glPushMatrix();
    glTranslate( ... );
    glRotate( ... );
    left_forefinger();
    glPopMatrix();

    ...
}
```
Animation

• The above examples are called **articulated models**:
 » rigid parts
 » connected by joints

• They can be animated by specifying the joint angles (or other display parameters) as functions of time.
Kinematics and dynamics

- Definitions:
 - **Kinematics**: how the positions of the parts vary as a function of the joint angles.
 - **Dynamics**: how the positions of the parts vary as a function of applied forces.

- Questions:
 - **Q**: What do the terms *inverse kinematics* and *inverse dynamics* mean?
 - **Q**: Why are these problems more difficult?
Key-frame animation

- The most common method for character animation in production is **key-frame animation**.

 Each joint specified at various **key frames** (not necessarily the same as other joints)
 System does interpolation or **in-betweening**

- Doing this well requires:
 A way of smoothly interpolating key frames:
 splines
 A good interactive system
 A lot of skill on the part of the animator
Scene graphs

- The idea of hierarchical modeling can be extended to an entire scene, encompassing:
 - many different objects
 - lights
 - camera position
- This is called a scene tree or scene graph.
Order of transformations

- Let’s revisit the very first simple example in this lecture.
- To draw the transformed house, we would write OpenGL code like:

```c
glMatrixMode( GL_MODELVIEW );
glLoadIdentity();
glTranslatef( ... );
glRotatef( ... );
glScalef( ... );
house();
```

Note that we are building the composite transformation matrix by starting from the left and postmultiplying each additional matrix.
Global, fixed coordinate system

- One way to think of transformations is as movement of points in a global, fixed coordinate system:
 - Build the transformation matrix sequentially from left to right: T, then R, then S
 - Then apply the transformation matrix to the object points: multiply all the points in P by the composite matrix TRS
- this transformation takes the points from original to final positions

![Diagram of transformation process with TRSP, RSP, SP, and P indicating translated, rotated, scaled, and points to draw, respectively.](image)
Local, changing coordinate system

- Another way to think of transformations is as affecting a local coordinate system that the primitive is eventually drawn in.
 - This is EXACTLY the same transformation as on the previous page, it's just how you look at it.

Draw!
Summary

• Here’s what you should take home from this lecture:
 » All the **boldfaced terms**.
 » How primitives can be instanced and composed to create hierarchical models using geometric transforms.
 » How the notion of a model tree or DAG can be extended to entire scenes.
 » How keyframe animation works.
 » How transforms can be thought of as affecting either the geometry, or the coordinate system which it is drawn in.