Dot Product

CSE 457, Autumn 2003
 Graphics

http://www.cs.washington.edu/education/courses/457/03au/

Readings and References

Readings

- Sections 1.3.4, 1.3.5, 3D Computer Graphics, Watt

Other References

- Section A.3, Dot Products and Distances, Computer Graphics, Principles and Practice, Foley, van Dam

Dot Product

- The dot product or inner product of two vectors is a very useful operation in computer graphics and is applied in numerous ways
- These notes are a short review of what it the dot product is and some examples of how it gets used

Definition

$$
\begin{aligned}
v & =\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] \\
w & =\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right] \\
v \cdot w & =v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3} \\
& =\|v\| w \| \cos (\theta) \\
& \text { if } v \text { is a unit vector, then } \\
v \cdot w & =v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3} \\
& =\|w\| \cos (\theta) \\
& \text { and } \operatorname{so} \text { } v \cdot w \text { is the length of the projection of } w \text { onto } v
\end{aligned}
$$

Illustration of $V \cdot W$

$$
\begin{aligned}
V_{x} & =\|V\| \cos \left(\alpha_{v}\right) \\
V_{y} & =\|V\| \sin \left(\alpha_{v}\right) \\
W_{x} & =\|W\| \cos \left(\alpha_{w}\right) \\
W_{y} & =\|W\| \sin \left(\alpha_{w}\right)
\end{aligned}
$$

$$
\begin{aligned}
V \cdot W & =V_{x} W_{x}+V_{y} W_{y} \\
& =\|V\| \cos \left(\alpha_{v}\right)\|W\| \cos \left(\alpha_{w}\right)+\|V\| \sin \left(\alpha_{v}\right)\|W\| \sin \left(\alpha_{w}\right) \\
& \left.=\|V\|\|W\| \cos \left(\alpha_{v}\right) \cos \left(\alpha_{w}\right)+\sin \left(\alpha_{v}\right) \sin \left(\alpha_{w}\right)\right] \\
& =\|V\|\|W\| \cos \left(\alpha_{w}-\alpha_{v}\right) \\
& =\|V\| W W \cos (\theta)
\end{aligned}
$$

The cosine is a useful function ...

if both v and w are unit vectors, then

$$
\begin{aligned}
v \cdot w & =v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3} \\
& =\|v\| w \| \cos (\theta) \\
& =\cos (\theta)
\end{aligned}
$$

and so $v \cdot w$ is just the cosine of the angle between the vectors

$\theta=90^{\circ}, \cos (\theta)=0$

Unit vectors

The dot product of v with itself is

$$
\begin{aligned}
v \cdot v & =v_{1} v_{1}+v_{2} v_{2}+v_{3} v_{3} \\
& =\|v\| v \| v \cos (0) \\
& =\|v\|^{2}
\end{aligned}
$$

and so $v \cdot v$ is the square of its length
and if v is a unit vector then $v \cdot v$ is 1
the columns of a rotation matrix are perpendicular unit vectors
$\mathrm{a} \cdot \mathrm{a}=\cos \theta \cos \theta+\sin \theta \sin \theta=1$
$\mathrm{a} \cdot \mathrm{b}=\cos \theta(-\sin \theta)+\sin \theta \cos \theta=0$
and so the transpose of a rotation matrix

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] *\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$ is its inverse

notice that the transpose is also rotation through $-\theta$, $\operatorname{since}-\sin (-\theta)=\sin (\theta)$

Front facing polygon?

surface normal dot product with ray direction

Equation of a line

$A x+B y+C=0$

All vectors (x, y) for which $(A, B) \cdot(x, y)=-C$

Where on ray is closest approach to C?

Diffuse reflection of light

$$
\begin{aligned}
A_{p} & =A \cos \theta \\
\frac{A_{p}}{A} & =\cos \theta \\
N \cdot L & =\|L\| \cos \theta \\
& \text { so } N \cdot L \text { gives a scaled value for diffuse reflected light intensity }
\end{aligned}
$$

