
17-Oct-2003 cse457-05-affine © 2003 University of Washington 1

Affine Transformations

CSE 457, Autumn 2003
Graphics

http://www.cs.washington.edu/education/courses/457/03au/

17-Oct-2003 cse457-05-affine © 2003 University of Washington 2

Readings and References

Readings
• Section 1.1, 3D Computer Graphics, Watt

Other References
• Sections 5.1-5.5, Computer graphics : principles and practice,

James D. Foley, et al.
» on reserve in the Engineering Library

17-Oct-2003 cse457-05-affine © 2003 University of Washington 3

Geometric transformations

• Geometric transformations will map points in one
space to points in another: (x',y',z') = f(x,y,z).

• These transformations can be very simple, such as
scaling each coordinate, or complex, such as non-
linear twists and bends.

• We'll focus on transformations that can be
represented easily with matrix operations.

• We'll start in 2D...

17-Oct-2003 cse457-05-affine © 2003 University of Washington 4

Representation : point

• We can represent a point, p = (x,y), in the plane

» as a column vector

» as a row vector

x
y

[]x y

17-Oct-2003 cse457-05-affine © 2003 University of Washington 5

Representation : matrix
• Represent a 2-D transformation M by a matrix

• If p is a column vector, M goes on the left:

• If p is a row vector, MT goes on the right:

• We will use column vectors.

=

a b
M

c d

=

=

'
'

M
x a b x
y c d y

p' p

[] []' '

TM
a c

x y x y
b d

=

=

p' p

17-Oct-2003 cse457-05-affine © 2003 University of Washington 6

Two-dimensional transformations

• Here's what you get with a 2 x 2 transformation matrix M:

• And so:

• We will develop some intimacy with the elements a, b, c, d…

'
'

x a b x
y c d y

=

'
'

x ax by
y cx dy

= +
= +

17-Oct-2003 cse457-05-affine © 2003 University of Washington 7

Identity

• Suppose we choose a=d=1, b=c=0:
» Gives the identity matrix:

» Doesn't move the points at all

1 0
0 1

17-Oct-2003 cse457-05-affine © 2003 University of Washington 9

1

2

1 2

1

2

1 2

1

2

1 2

x

y

x

y

x

y

Gives a scaling matrix:

Provides uniform scaling or
differential scaling in x and
y:

Scaling

0
0
a

d

'
'

x ax
y dy

=
=

• Suppose we set b=c=0, but let a and d take on any positive
value:

⋅

y
x

20
02

⋅

y
x

20

0
2
1

17-Oct-2003 cse457-05-affine © 2003 University of Washington 10

Reflections

• Suppose we keep b=c=0, but let either a or d go
negative.

• Examples:
1 0

0 1
−

1 0
0 1

 −

x

y

x

y

17-Oct-2003 cse457-05-affine © 2003 University of Washington 11

Shear

• Now let's leave a=d=1 and experiment with b. . . .
• The matrix

• gives:

1
0 1

b

'
'

x x by
y y

= +
=

=

′
′

y
x

y
x

10
11

1

1

1

1

x

y

x

y

x'

y'

17-Oct-2003 cse457-05-affine © 2003 University of Washington 12

Effect on unit square

• Let's see how a general 2 x 2 transformation M affects the unit
square:

[] []

0 1 1 0 0
0 0 1 1 0

a b
c d

a b a a b b
c d c c d d

=

+
= +

p q r s p' q' r' s'

17-Oct-2003 cse457-05-affine © 2003 University of Washington 13

Effect on unit square, cont.

• Observe:
» Origin invariant under M
» M can be determined just by knowing how the corners (1,0)

and (0,1) are mapped
• these are the perpendicular basis vectors of the original space

» a and d give x- and y-scaling
» b and c give x- and y-shearing

17-Oct-2003 cse457-05-affine © 2003 University of Washington 14

Rotation

• From our observations of the effect on the unit square, it
should be easy to write down a matrix for “rotation about the
origin”:

1

1

x

y

x

y

==)(θRM

=

0
1

dc
ba

=

1
0

dc
ba

17-Oct-2003 cse457-05-affine © 2003 University of Washington 15

Limitations of the 2 x 2 matrix

• A 2 x 2 matrix allows
» Scaling
» Rotation
» Reflection
» Shearing

• Q: What important operation does that leave out?

17-Oct-2003 cse457-05-affine © 2003 University of Washington 16

Homogeneous coordinates

• Idea is to loft the problem up into 3-space, adding a third
component to every point:

• And then transform with a 3 x 3 matrix:

• . . . gives translation!

1

x
x

y
y

 →

 = =

' 1 0
' () 0 1
' 1 10 0 1

x

y

x x xt
y y yT t
w

t

1 0 1
0 1 1 2
0 0 1

1

x

y

x

y

1 1

1

17-Oct-2003 cse457-05-affine © 2003 University of Washington 17

Rotation about arbitrary points

• Translate q to origin
• Rotate
• Translate back
• Note: Transformation order is important!!

Until now, we have only considered rotation about the origin.

With homogeneous coordinates, you can specify a rotation, q, about any
point q = [qx qy]T with a matrix:

x

y

x

y

x

y

x

y

q
θ

17-Oct-2003 cse457-05-affine © 2003 University of Washington 18

Basic 3-D transformations: scaling

• Some of the 3-D transformations are just like the 2-D ones.
• For example, scaling:

' 0 0 0
' 0 0 0
' 0 0 0

1 0 0 0 1 1

x

y

z

x s x
y s y
z s z

 =

x x

y

z

y

z

17-Oct-2003 cse457-05-affine © 2003 University of Washington 19

Translation in 3D

' 1 0 0
' 0 1 0
' 0 0 1

1 0 0 0 1 1

x

y

z

x t x
y t y
z t z

 =

x x

y

z

y

z

17-Oct-2003 cse457-05-affine © 2003 University of Washington 20

Rotation in 3D

• Rotation now has more possibilities in 3D:

• How else might you specify a rotation?

1 0 0 0
0 cos sin 0

()
0 sin cos 0
0 0 0 1
cos 0 sin 0

0 1 0 0
()

sin 0 cos 0
0 0 0 1

cos sin 0 0
sin cos 0 0

()
0 0 1 0
0 0 0 1

x

y

z

R

R

R

θ θ
θ

θ θ

θ θ

θ
θ θ

θ θ
θ θ

θ

 −
 =

 =
 −

−

 =

x

z

y

xR

yR

zR

Use right hand rule

17-Oct-2003 cse457-05-affine © 2003 University of Washington 21

Shearing in 3D
• Shearing is also more complicated. Here is one example:

• We’ll call this a “shear parallel to the x-z plane” or “shear with
respect to the x-z plane.”

' 1 0 0
' 0 1 0 0
' 0 0 1 0

1 0 0 0 1 1

x b x
y y
z z

 =

x x

y

z

y

z

17-Oct-2003 cse457-05-affine © 2003 University of Washington 22

Properties of affine transformations

• All of the transformations we've looked at so far are
examples of “affine transformations.”

• Here are some useful properties of affine
transformations:
» Lines map to lines
» Parallel lines remain parallel
» Midpoints map to midpoints (in fact, ratios are always

preserved)
= = =ratio s

t
pq p'q'
qr q'r'

p

q

r
p'

q'

r'
s

t

s
t

:

:�

17-Oct-2003 cse457-05-affine © 2003 University of Washington 23

Affine transformations in OpenGL
• OpenGL maintains a “modelview” matrix that holds the current

transformation M.
• The modelview matrix is applied to points (usually vertices of

polygons) before drawing.
• It is modified by commands including:

» glLoadIdentity() M ← I
– set M to identity

» glTranslatef(tx, ty, tz) M ← MT
– translate by (tx, ty, tz)

» glRotatef(θ, x, y, z) M ← MR
– rotate by angle θ about axis (x, y, z)

» glScalef(sx, sy, sz) M ← MS
– scale by (sx, sy, sz)

• Add transformations by postmultiplication of modelview matrix.

17-Oct-2003 cse457-05-affine © 2003 University of Washington 24

Summary

• What to take away from this lecture:
» All the names in boldface.
» How points and transformations are represented.
» What all the elements of a 2 x 2 transformation matrix do

and how these generalize to 3 x 3 transformations.
» What homogeneous coordinates are and how they work for

affine transformations.
» How to concatenate transformations.
» The mathematical properties of affine transformations.

