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Affine Transformations

CSE 457, Autumn 2003
Graphics

http://www.cs.washington.edu/education/courses/457/03au/
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Readings and References

Readings
• Section 1.1, 3D Computer Graphics, Watt

Other References
• Sections 5.1-5.5, Computer graphics : principles and practice,

James D. Foley, et al.
» on reserve in the Engineering Library
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Geometric transformations

• Geometric transformations will map points in one
space to points in another: (x',y',z') = f(x,y,z).

• These transformations can be very simple, such as
scaling each coordinate, or complex, such as non-
linear twists and bends.

• We'll focus on transformations that can be
represented easily with matrix operations.

• We'll start in 2D...
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Representation : point

• We can represent a point, p = (x,y), in the plane

» as a column vector

» as a row vector

x
y
 
 
 

[ ]x y
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Representation : matrix
• Represent a 2-D transformation M by a matrix

• If p is a column vector, M goes on the left:

• If p is a row vector, MT goes on the right:

• We will use column vectors.
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Two-dimensional transformations

• Here's what you get with a 2 x 2 transformation matrix M:

• And so:

• We will develop some intimacy with the elements a, b, c, d…

'
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Identity

• Suppose we choose a=d=1, b=c=0:
» Gives the identity matrix:

»  Doesn't move the points at all

1 0
0 1
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Gives a scaling matrix:

Provides uniform scaling or
differential scaling in x and
y:

Scaling

0
0
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d
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• Suppose we set b=c=0, but let a and d take on any positive
value:
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Reflections

• Suppose we keep b=c=0, but let either a or d go
negative.

• Examples:
1 0

0 1
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1 0
0 1
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Shear

• Now let's leave a=d=1 and experiment with b. . . .
• The matrix

• gives:

1
0 1
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Effect on unit square

• Let's see how a general 2 x 2 transformation M affects the unit
square:

[ ] [ ]

0 1 1 0 0
0 0 1 1 0

a b
c d

a b a a b b
c d c c d d
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Effect on unit square, cont.

• Observe:
» Origin invariant under M
» M can be determined just by knowing how the corners (1,0)

and (0,1) are mapped
• these are the perpendicular basis vectors of the original space

» a and d give x- and y-scaling
» b and c give x- and y-shearing
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Rotation

• From our observations of the effect on the unit square, it
should be easy to write down a matrix for “rotation about the
origin”:
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Limitations of the 2 x 2 matrix

• A 2 x 2 matrix allows
» Scaling
» Rotation
» Reflection
» Shearing

•  Q: What important operation does that leave out?
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Homogeneous coordinates

• Idea is to loft the problem up into 3-space, adding a third
component to every point:

• And then transform with a 3 x 3 matrix:

• . . . gives translation!
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Rotation about arbitrary points

• Translate q to origin
• Rotate
• Translate back
• Note: Transformation order is important!!

Until now, we have only considered rotation about the origin.

With homogeneous coordinates, you can specify a rotation, q, about any
point q = [qx qy]T with a matrix:
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Basic 3-D transformations: scaling

• Some of the 3-D transformations are just like the 2-D ones.
• For example, scaling:

' 0 0 0
' 0 0 0
' 0 0 0

1 0 0 0 1 1
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Translation in 3D

' 1 0 0
' 0 1 0
' 0 0 1

1 0 0 0 1 1
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Rotation in 3D

• Rotation now has more possibilities in 3D:

• How else might you specify a rotation?

1 0 0 0
0 cos sin 0

( )
0 sin cos 0
0 0 0 1
cos 0 sin 0

0 1 0 0
( )

sin 0 cos 0
0 0 0 1

cos sin 0 0
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Shearing in 3D
• Shearing is also more complicated.  Here is one example:

• We’ll call this a “shear parallel to the x-z plane” or “shear with
respect to the x-z plane.”

' 1 0 0
' 0 1 0 0
' 0 0 1 0
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Properties of affine transformations

• All of the transformations we've looked at so far are
examples of “affine transformations.”

• Here are some useful properties of affine
transformations:
» Lines map to lines
» Parallel lines remain parallel
» Midpoints map to midpoints (in fact, ratios are always

preserved)
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Affine transformations in OpenGL
• OpenGL maintains a “modelview” matrix that holds the current

transformation M.
• The modelview matrix is applied to points (usually vertices of

polygons) before drawing.
• It is modified by commands including:

» glLoadIdentity()         M ← I
– set M to identity

» glTranslatef(tx, ty, tz) M ← MT
– translate by (tx, ty, tz)

» glRotatef(θ, x, y, z) M ← MR
– rotate by angle θ about axis (x, y, z)

» glScalef(sx, sy, sz) M ← MS
– scale by (sx, sy, sz)

• Add transformations by postmultiplication of modelview matrix.
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Summary

• What to take away from this lecture:
» All the names in boldface.
» How points and transformations are represented.
» What all the elements of a 2 x 2 transformation matrix do

and how these generalize to 3 x 3 transformations.
» What homogeneous coordinates are and how they work for

affine transformations.
» How to concatenate transformations.
» The mathematical properties of affine transformations.


