What is an image?

• We can think of an image as a function, \(f \), from \(\mathbb{R}^2 \) to \(\mathbb{R} \):
 - \(f(x, y) \) gives the intensity of a channel at position \((x, y) \)
 - Realistically, we expect the image only to be defined over a rectangle, with a finite range:
 - \(f : [a,b] \times [c,d] \rightarrow [0,1.0] \)

• A color image is just three functions pasted together. We can write this as a “vector-valued” function:

\[
\tilde{f}(x,y) = \begin{bmatrix} r(x,y) \\ g(x,y) \\ b(x,y) \end{bmatrix}
\]
What is a digital image?

- In computer graphics, we usually operate on digital (discrete) images:
 - **Sample** the space on a regular grid
 - **Quantize** each sample (round to nearest integer)

If our samples are Δ apart, we can write this as:

$$f[i, j] = \text{Quantize}\{ f(i\Delta, j\Delta) \}$$

Image processing

- An image processing operation typically defines a new image g in terms of an existing image f.
- The simplest operations are those that transform each pixel in isolation. These pixel-to-pixel operations can be written as $g(x, y) = t(f(x, y))$

Examples:
 - threshold: emphasize a particular transition level
 - RGB \rightarrow grayscale: extract the luminance for the pixel

A typical choice for mapping to grayscale is to apply the YIQ television matrix and keep the Y.

$$\begin{bmatrix} Y \\ I \\ Q \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.275 & -0.321 \\ 0.212 & -0.523 & 0.311 \end{bmatrix} * \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

single pixel changes

- **threshold at 55**
- **threshold at 128**

Pixel movement

- Some operations preserve intensities, but move pixels around in the image
 $$g(x, y) = f(\bar{x}(x, y), \bar{y}(x, y))$$

example: image registration
more pixel movement effects

- Ripple
- Image transitions
- Reflection in ripples

Noise

- Image processing is also useful for noise reduction
- Common types of noise:
 - **Salt and pepper noise**: contains random occurrences of black and white pixels
 - **Impulse noise**: contains random occurrences of white pixels
 - **Gaussian noise**: variations in intensity drawn from a Gaussian normal distribution

Ideal noise reduction

- Original
- Salt and pepper noise
- Impulse noise
- Gaussian noise

Image 1
Image 2
Average
Practical noise reduction

- How can we “smooth” away noise in a single image?

- Is there a more abstract way to represent this sort of operation? Of course there is!

Convolution

- One of the most common methods for filtering an image is called convolution.
- In 1D, convolution is defined as:

\[
g(x) = f(x) * h(x)
\]

\[
= \int_{-\infty}^{\infty} f(x')h(x-x')dx'
\]

\[
= \int_{-\infty}^{\infty} f(x')\tilde{h}(x'-x)dx'
\]

where \(\tilde{h}(x) = h(-x) \)

\(g(x) \) is “f convolved with h”:
- evaluate the integral of \(f \cdot h \) with \(h \) flipped around the y-axis and centered at \(x \)

Discrete convolution

- For a digital signal, we define discrete convolution as:

\[
g[i] = f[i] * h[i]
\]

\[
= \sum_{j} f[j]h[i-j]
\]

\[
= \sum_{j} f[j]\tilde{h}[j-i]
\]

where \(\tilde{h}[i] = h[-i] \)

\(g[i] \) is “f convolved with h”:
- evaluate the sum of \(f \cdot h \) with \(h \) flipped around the y-axis and centered at \(i \)

Convolution in 2D

In two dimensions, convolution becomes:

\[
g(x, y) = f(x, y) * h(x, y)
\]

\[
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x', y')h(x-x', y-y')dx'dy'
\]

\[
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x', y')\tilde{h}(x'-x, y'-y)dx'dy'
\]

where \(\tilde{h}(x, y) = h(-x, -y) \)

Similarly, discrete convolution in 2D becomes:

\[
g[i, j] = f[i, j] * h[i, j]
\]

\[
= \sum_{k} \sum_{l} f[k, l]h[i-k, j-l]
\]

\[
= \sum_{k} \sum_{l} f[k, l]\tilde{h}[k-i, l-j]
\]

where \(\tilde{h}[i, j] = h[-i, -j] \)
Convolution representation

- Since \(f \), \(g \), and \(\tilde{h} \) are defined over finite regions, we can write them out in two-dimensional arrays:

```
\begin{array}{cccccccc}
242 & 245 & 245 & 245 & 244 & 228 & 191 & 165 \\
245 & 240 & 220 & 204 & 184 & 151 & 138 \\
232 & 192 & 165 & 141 & 131 & 142 & 138 \\
190 & 165 & 144 & 143 & 142 & 140 & 137 & 138 \\
141 & 145 & 148 & 146 & 126 & 125 & 126 & 135 \\
\end{array}
```

\(f \)

\(g \)

\(\tilde{h} \)

Note: This is not matrix multiplication!

Mean filters

- How can we represent our noise-reducing averaging filter as a convolution diagram?
Gaussian filters

- Gaussian filters weigh pixels based on their distance from the center of the convolution filter. In particular:

\[h[i, j] = \frac{e^{-\frac{(i^2 + j^2)}{2\sigma^2}}}{C} \]

- This does a decent job of blurring noise while preserving features of the image.
- What parameter controls the width of the Gaussian?
- What happens to the image as the Gaussian filter kernel gets wider?
- What is the constant \(C \)? What should we set it to?
Median filters

- A **Median Filter** operates over an $m \times m$ region by selecting the median intensity in the region.
- What advantage does a median filter have over a mean filter?
- Is a median filter a kind of convolution?

Effect of median filters

Comparison: Gaussian noise

Comparison: salt and pepper noise
Edge detection

- One of the most important uses of image processing is **edge detection**:
 - Really easy for humans
 - Really difficult for computers
 - Fundamental in computer vision
 - Important in many graphics applications

What is an edge?

- Q: How might you detect an edge in 1D?

Gradients

- The **gradient** is the 2D equivalent of the derivative:
 \[
 \nabla f(x, y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right)
 \]

- Properties of the gradient
 - It’s a vector
 - Points in the direction of maximum increase of \(f \)
 - Magnitude is rate of increase

- How can we approximate the gradient in a discrete image?

Less than ideal edges

- Pixel row plotted
Steps in edge detection

- Edge detection algorithms typically proceed in three or four steps:
 - **Filtering**: cut down on noise
 - **Enhancement**: amplify the difference between edges and non-edges
 - **Detection**: use a threshold operation
 - **Localization** (optional): estimate geometry of edges beyond pixels

Edge enhancement

- A popular gradient magnitude computation is the **Sobel operator**:
 \[
 S_x = \begin{bmatrix}
 -1 & 0 & 1 \\
 -2 & 0 & 2 \\
 -1 & 0 & 1
 \end{bmatrix}
 \]
 \[
 S_y = \begin{bmatrix}
 1 & 2 & 1 \\
 0 & 0 & 0 \\
 -1 & -2 & -1
 \end{bmatrix}
 \]

- We can then compute the magnitude of the vector \((s_x, s_y)\).

Results of Sobel edge detection

[Images of original, smoothed, magnitude, and thresholded images]

Second derivative operators

- The Sobel operator can produce thick edges. Ideally, we’re looking for infinitely thin boundaries.

 An alternative approach is to look for local extrema in the first derivative: places where the change in the gradient is highest.

 Q: A peak in the first derivative corresponds to what in the second derivative?
Localization with the Laplacian

- An equivalent measure of the second derivative in 2D is the **Laplacian**:
 \[\nabla^2 f(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \]

- Using discrete difference equations, the Laplacian filter can be shown to be:
 \[\Delta^2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix} \]

Zero crossings of this filter correspond to positions of maximum gradient. These zero crossings can be used to localize edges.

Sharpening with the Laplacian

Why does the sign make a difference?

How can you write a filter that makes the bottom image?
Summary

What you should take away from this lecture:

» The meanings of all the boldfaced terms.
» A richer understanding of the terms “image” and “image processing”
» How noise reduction is done
» How convolution filtering works
» The effect of mean, Gaussian, and median filters
» What an image gradient is and how it can be computed
» How edge detection is done
» What the Laplacian image is and how it is used in either edge detection or image sharpening