3. Displays and framebuffers
Reading

Required

▪ Angel, pp.19-31.

Optional

▪ Foley et al., sections 1.5, 4.2-4.5
History

• Whirlwind Computer - MIT, 1950
 • CRT display

• SAGE air-defense system - middle 1950’s
 • “Whirlwind II”
 • light pens

• Sketchpad - 1963, Ivan Sutherland
 • first interactive graphics system
 • constraint-based
 • interaction techniques for choosing, pointing, drawing
 • data structures for replicating components
Modern graphics systems

Current graphics systems consist of:

• An application, which talks to a…

• Graphics library (e.g., OpenGL or Direct3D), which talks to the…

• Graphics hardware

The graphics hardware can do a lot of fancy work these days. At a minimum, it contains a framebuffer to drive a display…
Cathode ray tubes (CRTs)

Consists of:

- electron gun
- electron focusing lens
- deflection plates/coils
- electron beam
- anode with phosphor coating
CRTs, cont.

Electrons “boil off” the heated cathode and shoot towards the anode. Electrons striking the phosphors create light through:

- fluorescence (fraction of usec)
- phosphorescence (10 to 60 usec)

Different phosphors have different:

- color
 - red: europium yttrium vanadate
 - green: zinc cadmium sulfide
 - blue: zinc sulfide
- persistence (as long as a few seconds)

The image must be refreshed to avoid flicker, typically at least 60 Hz, though 72 Hz is easier on the eyes.
Calligraphic displays

Also called vector displays, stroke displays, or random-scan displays.

Used by:

- Sutherland’s Sketchpad
- Asteroids video game
- Oscilloscopes
Raster displays

raster, from radere, “to scrape”

Electron beam traces over screen in *raster scan order*.

- Each left-to-right trace is called a *scan line*.
- Each spot on the screen is a *pixel*.
- When the beam is turned off to sweep back, that is a *retrace*, or a *blanking interval*.
Framebuffers

Intensity of the raster scan beam is modulated according to the contents of a framebuffer.

Each element of the framebuffer is associated with a single pixel on the screen.
Resolution

The display’s "resolution" is determined by:

- number of scan lines
- number of pixels per scan line
- number of bits per pixel

Resolution is used here to mean total number of bits in a display. It should really refer to the resolvable dots per unit length…

Examples:

- Bitmapped display 960 x 1152 x 1b 1/8 MB
- NTSC TV 640 x 480 x 16b 1/2 MB
- Color workstation 1280 x 1024 x 24b 4 MB
- Laser-printed page
 - 300 dpi 8.5 x 11 x 300^2 x 1b 1 MB
 - 1200 dpi 8.5 x 11 x 1200^2 x 1b 17 MB
- Film 4500 x 3000 x 30b 50 MB
Aspect ratio

Frame aspect ratio = horizontal / vertical size

- TV: 4 : 3
- HDTV: 16 : 9
- Letter-size paper: 8.5 : 11 (about 3 : 4)
- 35mm film: 3 : 2
- Panavision: 2.35 : 1

Pixel aspect ratio = pixel width / pixel height

- nowadays, this is almost always 1.
Many color monitors employ shadow mask technology. The variety depicted above:

- uses **triads** of red, green, and blue phosphors at each pixel
- uses three electron guns, one per color
- **shadow mask** used to make each kind of phosphor only “visible” from one gun

These are also known as **RGB monitors**.
Color Trinitron CRT’s

A competing technology is called Trinitron (by Sony):

- uses vertical stripes of red, green, and blue phosphors at each pixel
- uses three electron guns, one per color
- uses an aperture grille to make each kind of phosphor only “visible” from one gun

You can see two horizontal lines at about $\frac{1}{4}$ and $\frac{3}{4}$ of the way up the screen on Trinitron displays. Why?
Laptops typically use **liquid crystal displays** (LCD’s).

- Light enters a **vertical polarizer**
- **Nematic crystal** twists light based on applied voltage (more voltage, less twisting)
- Light passes through **horizontal polarizer**

Passive matrix displays use a matrix of electrodes to control the voltages. Problem: slow to switch, overflows.

Active matrix displays have a transistor at each cell. They use a faster switching crystal and transistors that hold charge and prevent overflow.

Color filters are used to get color display.
Additive color mixing

All colors on a monitor or LCD are produced using combinations of red, green, and blue.

A display that allows 256 voltage settings for each of R, G, and B is known as a **full-color system**.

The description of each color in framebuffer memory is known as a **channel**.
Color tables

Color tables allow more color versatility when you only have a few bits per pixel. You get to select a small **palette** of from a large number of available colors.

Each framebuffer element is now an index into the color table, where the actual values of each channel are stored.

- Color table entries can be changed in software.
The term **true-color** is sometimes used to refer to systems which the framebuffer directly stores the values of each channel.

As memory prices have fallen, true-color has become fairly standard.
Anatomy of an RGB image
Color tables on 24-bit systems

Even full-color systems often use color tables. In this case, there is a separate color table for each 8 bit channel.

Q: Why would you want this capability?
Double-buffering

Q: What happens when you write to the framebuffer while it is being displayed on the monitor?

Double-buffering provides a solution.
Summary

Here’s what you should take home from this lecture:

- All of the **boldfaced terms**.
- Sketchpad (1963) was the first interactive graphics system.
- The basic components of black-and-white and color CRTs.
- Raster vs. calligraphic displays.
- The principle operation for an LCD display.
- Computing screen resolution & framebuffer size.
- The correspondence between elements of framebuffer memory and pixels on-screen.
- How color tables and double-buffering work.