Display Devices

Cathode ray tubes (CRTs)

- Consists of:
 - electron gun
 - electron focusing lens
 - deflection plates/coils
 - electron beam
 - anode with phosphor coating

CRTs, cont.

- Electrons “boil off” the heated cathode and shoot towards the anode. Electrons striking the phosphors create light through:
 - fluorescence (fraction of usec)
 - phosphorescence (10 to 60 usec)

- Different phosphors have different:
 - color
 - persistence (as long as a few seconds)

- The image must be refreshed to avoid flicker:
 - typically need at least 60 Hz (why 60 Hz?)
 - exact frequency depends on:
 - persistence
 - image intensity
 - ambient lighting
 - wavelength
 - observer

Reading

Hear & Baker, Computer graphics (2nd edition),
Chapter 2: Video Display Devices, p. 36-48, Prentice Hall

Optional
Raster displays

Electron beam traces over screen in raster scan order:
- Each left-to-right trace is called a scan line.
- Each spot on the screen is a pixel.
- When the beam is turned off to sweep back, that is a retrace, or a blanking interval.

Color CRT monitors

Most color monitors employ shadow mask technology:
- uses triads of red, green, and blue phosphors at each pixel
- uses three electron guns, one per color
- shadow mask used to make each kind of phosphor only “visible” from one gun

These are also known as RGB monitors.

Color CRT monitors, cont’d

A competing technology is called Trinitron (by Sony):
- uses vertical stripes of red, green, and blue phosphors at each pixel
- uses three electron guns, one per color
- uses an aperture grille to make each kind of phosphor only “visible” from one gun
CRT Drawbacks

- Moire patterns result when shadow-mask and dot-pitch frequencies are mismatched
- Convergence (varying angles of approach distance of e-beam across CRT face)
- Limit on practical size (< 1 meter)
- Spurious X-ray radiation
- Occupies a large volume

Liquid Crystal Displays

Laptops typically use liquid crystal displays (LCD’s).
- Light enters a vertical polarizer
- Nematic crystal twists light based on applied voltage (more voltage, less twisting)
- Light passes through horizontal polarizer

Liquid Crystal Displays

Passive matrix displays use a matrix of electrodes to control the voltages. Problem: slow to switch, overflows.

Active Matrix Displays

- Active matrix displays have a transistor at each cell. They use a faster switching crystal and transistors that hold charge and prevent overflow.
- Color filters are used to get color display.
Plasma Displays

- Large format displays (pixels ~1mm compared to 0.2mm for CRT)
- Large viewing angle
- Basically fluorescent tubes

Resolution

- The display’s **resolution** is determined by:
 - number of scan lines
 - number of pixels per scan line
 - number of bits per pixel

- **Examples:**
 - Bitmapped display: 960 x 1152 x 1b
 - 1/8 MB
 - NTSC TV: 640 x 480 x 16b
 - 1/2 MB
 - Color workstation: 1280 x 1024 x 24b
 - 4 MB
 - Laser-printed page:
 - 300 dpi: 8.5 x 11 x 300\(^2\) x 1b
 - 1 MB
 - 1200 dpi: 8.5 x 11 x 1200\(^2\) x 1b
 - 17 MB
 - Film: 4500 x 3000 x 30b
 - 50 MB

Framebuffers

- Intensity of the raster scan beam is modulated according to the contents of a **framebuffer**.
- Each element of the framebuffer is associated with a single **pixel** on the screen.

Additive color mixing

All colors on a monitor are produced using combinations of red, green, and blue.
A monitor that allows 256 voltage settings for each of R, G, and B is known as a **full-color system**.
The description of each color in framebuffer memory is known as a **channel**.
Specifying colors

• The number of color choices depends on the amount of framebuffer storage allocated per pixel.
• 16 bpp systems often allocate 5 bits to red, 6 to green, and 5 to blue. Why does green get the extra bit?

RGB framebuffer

The term **true-color** is sometimes used to refer to systems which the framebuffer directly stores the values of each channel.

Color tables

• **Color tables** allow more color versatility when you only have a few bits per pixel. You get to select a small **palette** of from a large number of available colors.
• Each framebuffer element is now an index into the color table, where the actual values of each channel are stored.
 - Color table entries can be changed in software.

Color tables on 24-bit systems

Even full-color systems often use color tables. In this case, there is a separate color table for each 8 bit channel.

• Most SGI workstations are like this.
• Q: Why would you want this capability?
Double-buffering

• **Q:** What happens when you write to the framebuffer while it is being displayed on the monitor?
• **Double-buffering** provides a solution.

Summary

• Here’s what you should take home from this lecture:
 – The basic components of black-and-white and color CRTs
 – Computing screen resolution & framebuffer size
 – How different display technologies work
 – The correspondence between elements of framebuffer memory and pixels on-screen
 – How color tables work
 – How double-buffering works