Image Processing

Definitions
• Many graphics techniques that operate only on images
• **Image processing**: operations that take images as input, produce images as output
• In its most general form, an image is a function f from \mathbb{R}^2 to \mathbb{R}
 - $f(x, y)$ gives the intensity of a channel at position (x, y) defined over a rectangle, with a finite range:
 $$f: [a,b] \times [c,d] \rightarrow [0,1]$$
 - A color image is just three functions pasted together:
 $$f(x, y) = (f_r(x, y), f_g(x, y), f_b(x, y))$$

Images as Functions

Reading
Course Reader:
Jain et. Al. *Machine Vision*
Chapter 4 and 5
What is a digital image?

- In computer graphics, we usually operate on digital (discrete) images:
 - Sample the space on a regular grid
 - Quantize each sample (round to nearest integer)
- If our samples are Δ apart, we can write this as:

$$f[i, j] = \text{Quantize} \{ f(i\Delta, j\Delta) \}$$

Sampled digital image

Image processing

- An image processing operation typically defines a new image g in terms of an existing image f.
- The simplest operations are those that transform each pixel in isolation. These pixel-to-pixel operations can be written:

$$g(x, y) = t(f(x, y))$$

- Example: threshold, RGB \rightarrow grayscale

Pixel Movement

- Some operations preserve intensities, but move pixels around in the image

$$f'(x, y) = f(g(x, y), h(x, y))$$

- Examples: many amusing warps of images
Multiple input images

• Some operations define a new image g in terms of n existing images (f_1, f_2, \ldots, f_n), where n is greater than 1

• Example: cross-dissolve between 2 input images

Noise

• Common types of noise:
 – Salt and pepper noise: contains random occurrences of black and white pixels
 – Impulse noise: contains random occurrences of white pixels
 – Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

Noise Examples

Ideal noise reduction
Convolution

- Convolution is a fancy way to combine two functions.
 - Think of f as an image and h as a “smear” operator
 - g determines a new intensity at each point in terms of intensities of a neighborhood of that point

\[
g(x) = f(x) \ast h(x)
\]

\[
= \int f(x') h(x - x') dx'
\]

\[
= \int f(x') \int h(x - x') dx'
\]

where $h(x) = h(-x)$

Convolution in 2D

In two dimensions, convolution becomes:

\[
g(x, y) = f(x, y) \ast h(x, y)
\]

\[
= \int \int f(x', y') h(x - x', y - y') dx' dy'
\]

\[
= \int \int f(x', y') \int h(x - x', y - y') dx'dy'
\]

where $h(x, y) = h(-x, -y)$
Discrete convolution in 2D

Similarly, discrete convolution in 2D becomes:

\[g[i, j] = f[i, j] * h[i, j] \]
\[= \sum_k \sum_l f[k, l] h[i - k, j - l] \]

where \(h[i, j] = h[-i, -j] \).

Convolution Representation

- Since \(f \) and \(h \) are defined over finite regions, we can write them out in two-dimensional arrays:
- Note: This is not matrix multiplication!

Mean Filters

- How can we represent our noise-reducing averaging filter as a convolution diagram?
Gaussian Filters

- Gaussian filters weigh pixels based on their distance to the location of convolution.
 \[h[i, j] = e^{-\frac{(i^2 + j^2)}{2\sigma^2}} \]
- Blurring noise while preserving features of the image
- Smoothing the same in all directions
- More significance to neighboring pixels
- Width parameterized by \(\sigma \)
- Gaussian functions are separable
- Convolving with multiple Gaussian filters results in a single Gaussian filter

Median Filters

- A Median Filter operates over a k x k region by selecting the median intensity in the region.
- What advantage does a median filter have over a mean filter?
- Is a median filter a kind of convolution?
Edge Detection

- One of the most important uses of image processing is **edge detection**
 - Really easy for humans
 - Really difficult for computers
 - Fundamental in computer vision
 - Important in many graphics applications

- What defines an edge?

Gradient

- The **gradient** is the 2D equivalent of the derivative:

\[
\nabla f(x, y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right)
\]

- Properties of the gradient
 - It’s a vector
 - Points in the direction of maximum increase of \(f \)
 - Magnitude is rate of increase

- How can we approximate the gradient in a discrete image?

Less than ideal edges
Edge Detection Algorithms

- Edge detection algorithms typically proceed in three or four steps:
 - Filtering: cut down on noise
 - Enhancement: amplify the difference between edges and non-edges
 - Detection: use a threshold operation
 - Localization (optional): estimate geometry of edges beyond pixels

Edge Enhancement

- A popular gradient magnitude computation is the **Sobel operator**:

 \[
 s_x = \begin{bmatrix}
 -1 & 0 & 1 \\
 -2 & 0 & 2 \\
 -1 & 0 & 1
 \end{bmatrix}
 \]

 \[
 s_y = \begin{bmatrix}
 1 & 2 & 1 \\
 0 & 0 & 0 \\
 -1 & -2 & -1
 \end{bmatrix}
 \]

- We can then compute the magnitude of the vector \((s_x, s_y)\)

Sobel Operator:

Original

Sobel:

\(\nabla x \)

\(\nabla y \)

Magnitude

Threshold = 64

Threshold = 128

Second derivative operators

- The Sobel operator can produce thick edges. Ideally, we’re looking for infinitely thin boundaries.
- An alternative approach is to look for local extrema in the first derivative: places where the change in the gradient is highest.
- **Q:** A peak in the first derivative corresponds to what in the second derivative?
Localization with the Laplacian

- An equivalent measure of the second derivative in 2D is the Laplacian:
 \[\nabla^2 f(x,y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \]

- Using the same arguments we used to compute the gradient filters, we can derive a Laplacian filter to be:
 \[\Delta^2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix} \]

- Zero crossings of this filter correspond to positions of maximum gradient. These zero crossings can be used to localize edges.

Sharpening with the Laplacian

- Original + Laplacian
- Original - Laplacian
- Original
- Laplacian (+128)

Summary

- Formal definitions of image and image processing
- Kinds of image processing: pixel-to-pixel, pixel movement, convolution, others
- Types of noise and strategies for noise reduction
- Definition of convolution and how discrete convolution works
- The effects of mean, median and Gaussian filtering
- How edge detection is done
- Gradients and discrete approximations