Realistic Character Animation

Modeling Realistic Motion
- Model muscles
- Environment forces
- Energy consumption
- Individual style

Reading
- Jessica Hodgins, et.al, Animating Human Athletics, SIGGRAPH ’95
- Zoran Popović, Changing Physics for Character Animation, SIGGRAPH ‘00

Two Approaches
- Simulate robot controllers
- Solve a large optimization that obeys laws of physics and minimized energy consumption
Where do the control laws come from?

- Observation
- Biomechanical literature
- Optimization
- Intuition

Hierarchy of control laws

1. State machine
2. Control actions
3. Low level control
Hierarchy of control laws

1. State machine
2. Control actions
3. Low level control

Running state machine

Flight duration
Forward Velocity

Ground speed matching

Balance: roll, pitch, yaw

Mirroring: hips and shoulders
Control laws for all states

Neck: turn in desired facing direction
Shoulder: mirror hip angle
Elbow: mirror magnitude of shoulder
Wrist: constant angle
Waist: keep body upright

Hierarchy of control laws

1. State machine
2. Control actions
3. Low level control

Low level control

\[\tau = k(\theta_d - \theta) + k_v(\dot{\theta}_d - \dot{\theta}) \]

Difference between walking and running

- Walking: double support
- Running: flight phase
- Energy transfer patterns
 - Inverted pendulum
 - Pogostick
Spacetime Optimization

Captured Motion

- Works well only for small deformations
- No high-level editing constructs

High Level Control

- Get a limp walk by making one leg stiff
- Reduce gravity to get a “moon walk”
- Change the position and timing of foot placements
- Make a “quiet” run by reducing the floor impact forces
The New Approach

- Transform existing motion
- Spacetime constraints formulation
- Simplified character representation
- Get the best of both worlds:
 - Expressiveness of captured data
 - Controllability of the spacetime model

Outline

- Complex Model
- Simplified Model
- Motion Library
- Final motion
- Reconstruction
- Transformed spacetime motion

Outline

- Original motion
- Final motion
- Reconstruction
- Simplified Model

Outline

- Simplified Kinematics
- Human Run
- Human Jump
Motion Synthesis As Constrained Optimization

- Body, muscle and force DOFs: q(t)
- Constraints:
 - Pose \(C_p \)
 - Mechanical \(C_m \)
 - Dynamics \(C_d \)
- Objective \(E(q(t)) \)

Outline

- Transformed spacetime motion
- Spacetime motion model
- Spacetime Editing

Spacetime Editing

- Change pose and environment constraints
 - Foot placement and timing
 - Introduce a new obstacle
- Change the objective function
 - Minimize floor impact forces
 - Make dynamic balance more important
Spacetime Editing

- Change explicit character parameters
 - Short leg
 - Redistribute mass
 - Modify muscle characteristic
 - Gravity

Example: Human Run

- Original model has 59 DOFs
- Simplified model has 19 DOFs
- Optimizations are done on one gait cycle
- Each optimization completes within 2 minutes

Example: Human Broad Jump

- Original model has 59 DOFs
- Simplified model has 11 DOFs
- Entire upper body reduced to a mass point
- No joint angle DOFs
Hopper

Prismatic Joint