Topics in Articulated Animation

Animation

Articulated models:
- rigid parts
- connected by joints

They can be animated by specifying the joint angles (or other display parameters) as functions of time.

- \(q_i(t) \)

Character Representation

Character Models are rich, complex
- hair, clothes (particle systems)
- muscles, skin (FFD’s etc.)

Focus is rigid-body Degrees of Freedom (DOFs)
- joint angles

Reading

Shoemake, “Quaternions Tutorial”
Simple Rigid Body → Skeleton

Kinematics and dynamics

Kinematics: how the positions of the parts vary as a function of the joint angles.

Dynamics: how the positions of the parts vary as a function of applied forces.

Key-frame animation

- Each joint specified at various **key frames** (not necessarily the same as other joints)
- System does interpolation or **in-betweening**

Doing this well requires:
- A way of smoothly interpolating key frames: **splines**
- A good interactive system
- A lot of skill on the part of the animator

Efficient Skeleton: Hierarchy

- each bone relative to parent
- easy to limit joint angles
Computing a Sensor Position

Forward kinematics
- uses vector-matrix multiplication
- transformation matrix is composition of all joint transforms between sensor/effector and root

\[\mathbf{v}_w = \mathbf{T}(x_h, y_h, z_h) \mathbf{R}(\theta_h, \phi_h, \sigma_h) \mathbf{TR}(\theta_t, \phi_t, \sigma_t) \mathbf{TR}(\theta_c) \mathbf{TR}(\theta_f) \mathbf{v}_s \]

Joints = Rotations

To specify a pose, we specify the joint-angle rotations

Each joint can have up to three rotational DOFs

1 DOF: knee
2 DOF: wrist
3 DOF: arm

Euler angles

An Euler angle is a rotation about a single Cartesian axis
Create multi-DOF rotations by concatenating Eulers

Can get three DOF by concatenating:

Euler-X
Euler-Y
Euler-Z

Singularities

What is a singularity?
- continuous subspace of parameter space all of whose elements map to same rotation

Why is this bad?
- induces **gimbal lock** - two or more axes align, results in loss of rotational DOFs (i.e. derivatives)
Singularities in Action

An object whose orientation is controlled by Euler rotation $XYZ(\theta, \phi, \sigma)$

$(0,0,0)$: Okay

$(0, \pm 90^\circ, 0)$: X and Z axes align

Eliminates a DOF

In this configuration, changing θ (X Euler angle) and σ (Z Euler angle) produce the same result.

No way to rotate around world X axis!

Resulting Behavior

No applied force or other stimuli can induce rotation about world X-axis

The object locks up!!

Singularities in Euler Angles

Cannot be avoided (occur at 0° or 90°)

Difficult to work around

But, only affects three DOF rotations
Other Properties of Euler Angles

Several important tasks are easy:
- interactive specification (sliders, etc.)
- joint limits
- Euclidean interpolation (Hermites, Beziers, etc.)
 - May be funky for tumbling bodies
 - fine for most joints

Quaternions

But… singularities are unacceptable for IK, optimization

Traditional solution: Use unit quaternions to represent rotations
- S^3 has same topology as rotation space (a sphere), so no singularities

History of Quaternions

Invented by Sir William Rowan Hamilton in 1843

\[H = w + ix + jy + kz \]
where \(i^2 = j^2 = k^2 = ijk = -1 \)

I still must assert that this discovery appears to me to be as important for the middle of the nineteenth century as the discovery of fluxions [the calculus] was for the close of the seventeenth.

Hamilton

[quaternions] … although beautifully ingenious, have been an unmixed evil to those who have touched them in any way.

Thompson

Quaternion as a 4 vector

\[q = \begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} w \\ v \end{pmatrix} \]
Axis-angle rotation as a quaternion

\[
q = \begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} w \\ v \end{pmatrix}
\]

\[
q = \begin{pmatrix} \cos(\theta/2) \\ \sin(\theta/2) \mathbf{r} \end{pmatrix}
\]

Unit Quaternions

\[
q = \begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix}
\]

\[
w = \sqrt{1 - (x^2 + y^2 + z^2)}
\]

\[
|q| = 1 \quad x^2 + y^2 + z^2 + w^2 = 1
\]

Quaternion Product

\[
\begin{pmatrix} w_1 \\ v_1 \end{pmatrix} \begin{pmatrix} w_2 \\ v_2 \end{pmatrix} = \begin{pmatrix} w_1 w_2 - v_1 \cdot v_2 \\ w_1 v_2 + w_2 v_1 + v_1 \times v_2 \end{pmatrix}
\]

\[
\begin{pmatrix} w_1 \\ v_1 \end{pmatrix} \begin{pmatrix} w_2 \\ v_2 \end{pmatrix} \neq \begin{pmatrix} w_2 \\ v_2 \end{pmatrix} \begin{pmatrix} w_1 \\ v_1 \end{pmatrix}
\]

Quaternion Conjugate

\[
q^* = \begin{pmatrix} w_1^* \\ v_1 \end{pmatrix} = \begin{pmatrix} w_1 \\ -v_1 \end{pmatrix}
\]

\[
(p^*)^* = p \\
(pq)^* = q^* p^* \\
(p + q)^* = p^* + q^*
\]
Quaternion Inverse

\[q^{-1}q = 1 \]

\[q^{-1} = q^* / |q| = \left(\begin{array}{c} w \\ -v \end{array} \right) / |q| = \left(\begin{array}{c} w \\ -v \end{array} \right) / (w^2 + v \cdot v) \]

Quaternion Rotation

\[qpq^{-1} = \begin{pmatrix} w \\ v \end{pmatrix} \begin{pmatrix} 0 \\ -v \end{pmatrix} = \begin{pmatrix} w \\ 0 \end{pmatrix} \begin{pmatrix} w \cdot v \\ v \end{pmatrix} = \begin{pmatrix} wv \cdot v - wp \cdot v = 0 \\ w(wp - p \times v) \end{pmatrix} \]

What about a quaternion product \(q_1q_2 \)?

Quaternion constraints

Restricting the rotation cone

\[\frac{1 - \cos(\theta)}{2} = q_x^2 + q_y^2 \]

Restricting the rotation twist around an axis

\[\tan(\theta/2) = \frac{q_{aux}}{q_w} \]

Matrix Form

\[q = \begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix} \]

\[M = \begin{pmatrix} 1 - 2y^2 - 2z^2 & 2xy + 2wz & 2xz - 2wy \\ 2xy - 2wz & 1 - 2x^2 - 2z^2 & 2yz + 2wx \\ 2xz + 2wy & 2yz - 2wx & 1 - 2x^2 - 2y^2 \end{pmatrix} \]
Quaternions: What Works

Simple formulae for converting to rotation matrix

Continuous derivatives - no singularities

“Optimal” interpolation - geodesics map to shortest paths in rotation space

Nice calculus (corresponds to rotations)

What Hierarchies Can and Can’t Do

Advantages:
- Reasonable control knobs
- Maintains structural constraints

Disadvantages:
- Doesn’t always give the “right” control knobs
 - e.g. hand or foot position - re-rooting may help
- Can’t do closed kinematic chains (keep hand on hip)
- Other constraints: do not walk through walls

Procedural Animation

Transformation parameters as functions of other variables

Simple example:
- a clock with second, minute and hour hands
- hands should rotate together
- express all the motions in terms of a “seconds” variable
- whole clock is animated by varying the seconds parameter

Models as Code: draw-a-bug

```c
void draw_bug(walk_phase_angle, xpos, ypos, zpos) {
    pushmatrix
    translate(xpos, ypos, zpos)
    calculate all six sets of leg angles based on walk phase angle.
    draw bug body
    for each leg:
        pushmatrix
        translate(leg pos relative to body)
        draw bug_leg(theta1&theta2 for that leg)
        popmatrix
    popmatrix
}

void draw_bug_leg(float theta1, float theta2) {
    glPushMatrix();
    glRotatef(theta1, 0, 0, 1);
    draw_leg_segment(SEGMENT1_LENGTH)
    glTranslatef(SEGMENT1_LENGTH, 0, 0);
    glRotatef(theta2, 0, 0, 1);
    draw_leg_segment(SEGMENT2_LENGTH)
    glPopMatrix();
}
```
Hard Example

In the figure below, what expression would you use to calculate the arm’s rotation angle to keep the tip on the star-shaped wheel as the wheel rotates???