How can we find corresponding points?
How can we find correspondences?
How do we describe an image patch?
How do we describe an image patch?

Patches with similar content should have similar descriptors.
Raw patches as local descriptors

The simplest way to describe the neighborhood around an interest point is to write down the list of intensities to form a feature vector.

But this is very sensitive to even small shifts, rotations.
SIFT descriptor

Full version

- Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
- Compute an orientation histogram for each cell
- 16 cells * 8 orientations = 128 dimensional descriptor

Adapted from slide by David Lowe
SIFT descriptor

Full version

- Divide the 16x16 window into a 4x4 grid of cells
- Compute an orientation histogram for each cell
- 16 cells * 8 orientations = 128 dimensional descriptor
Numeric Example

<table>
<thead>
<tr>
<th></th>
<th>0.37</th>
<th>0.79</th>
<th>0.97</th>
<th>0.98</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.08</td>
<td>0.45</td>
<td>0.79</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>0.04</td>
<td>0.31</td>
<td>0.73</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td>0.45</td>
<td>0.75</td>
<td>0.90</td>
<td>0.98</td>
<td></td>
</tr>
</tbody>
</table>

by Yao Lu
$$\text{magnitude}(x,y) = \sqrt{(L(x + 1, y) - L(x - 1, y))^2 + (L(x, y + 1) - L(x, y - 1))^2}$$

$$\theta(x,y) = \arctan\left(\frac{L(x,y+1) - L(x,y-1)}{L(x+1,y) - L(x-1,y)}\right)$$

by Yao Lu
Orientations in each of the 16 pixels of the cell

The orientations all ended up in two bins: 11 in one bin, 5 in the other. (rough count)
SIFT descriptor

Full version

• Start with a 16x16 window (256 pixels)
• Divide the 16x16 window into a 4x4 grid of cells (16 cells)
• Compute an orientation histogram for each cell
• 16 cells * 8 orientations = 128 dimensional descriptor
• Threshold normalize the descriptor:

\[\sum_{i} d_i^2 = 1 \quad \text{such that:} \quad d_i < 0.2 \]

Adapted from slide by David Lowe
Properties of SIFT

Extraordinarily robust matching technique

- Can handle changes in viewpoint
 - Up to about 30 degree out of plane rotation
- Can handle significant changes in illumination
 - Sometimes even day vs. night (below)
- Fast and efficient—can run in real time
- Various code available
 - http://www.cs.ubc.ca/~lowe/keypoints/
Example

NASA Mars Rover images with SIFT feature matches
Figure by Noah Snavely
Example: Object Recognition

SIFT is extremely powerful for object instance recognition, especially for well-textured objects

Lowe, IJCV04
Example: Google Goggle

Google Goggles in Action

Click the icons below to see the different ways Google Goggles can be used.

Landmark Book Contact Info Artwork Places Wine Logo
panorama?

• We need to match (align) images
Matching with Features

- Detect feature points in both images
Matching with Features

• Detect feature points in both images
• Find corresponding pairs
Matching with Features

- Detect feature points in both images
- Find corresponding pairs
- Use these matching pairs to align images - the required mapping is called a homography.
Automatic mosaicing
Recognition of specific objects, scenes

Schmid and Mohr 1997

Sivic and Zisserman, 2003

Rothganger et al. 2003

Lowe 2002
Example: 3D Reconstructions

- Photosynth (also called Photo Tourism) developed at UW by Noah Snavely, Steve Seitz, Rick Szeliski and others

 http://www.youtube.com/watch?v=p16frKJLVi0

- Building Rome in a day, developed at UW by Sameer Agarwal, Noah Snavely, Steve Seitz and others

 http://www.youtube.com/watch?v=kxtQqYLRaSQ&feature=player_embedded
When does the SIFT descriptor fail?

Patches SIFT thought were the same but aren’t:
Other methods: Daisy

Circular gradient binning

1 Ring 6 Segments 1 Ring 8 Segments
2 Rings 6 Segments 2 Rings 8 Segments

Daisy

Picking the best DAISY, S. Winder, G. Hua, M. Brown, CVPR 09
Other methods: SURF

For **computational efficiency** only compute gradient histogram with 4 bins:

![SURF Gradient Histogram](image)

Fig. 3. The descriptor entries of a sub-region represent the nature of the underlying intensity pattern. Left: In case of a homogeneous region, all values are relatively low. Middle: In presence of frequencies in \(x \) direction, the value of \(\sum |d_x| \) is high, but all others remain low. If the intensity is gradually increasing in \(x \) direction, both values \(\sum d_x \) and \(\sum |d_x| \) are high.

SURF: Speeded Up Robust Features
Herbert Bay, Tinne Tuytelaars, and Luc Van Gool, ECCV 2006
Other methods: BRIEF

Randomly sample pair of pixels a and b. 1 if a > b, else 0. Store binary vector.

Fig. 2. Different approaches to choosing the test locations. All except the rightmost one are selected by random sampling. Showing 128 tests in every image.
Descriptors and Matching

- The SIFT descriptor and the various variants are used to describe an image patch, so that we can match two image patches.

- In addition to the descriptors, we need a distance measure to calculate how different the two patches are?
Feature distance

How to define the difference between two features f_1, f_2?

- Simple approach is $\text{SSD}(f_1, f_2)$
 - sum of square differences between entries of the two descriptors
 $$\sum_i (f_{1i} - f_{2i})^2$$
 - But it can give good scores to very ambiguous (bad) matches
Feature distance in practice

How to define the difference between two features f_1, f_2?

- Better approach: ratio distance $= \frac{SSD(f_1, f_2)}{SSD(f_1, f_2')}$
 - f_2 is best SSD match to f_1 in I_2
 - f_2' is 2nd best SSD match to f_1 in I_2
 - gives large values (~ 1) for ambiguous matches

WHY?
Eliminating more bad matches

Throw out features with distance > threshold
 • How to choose the threshold?
True/false positives

The distance threshold affects performance

- True positives = # of detected matches that are correct
 - Suppose we want to maximize these—how to choose threshold?
- False positives = # of detected matches that are incorrect
 - Suppose we want to minimize these—how to choose threshold?
Other kinds of descriptors

• There are descriptors for other purposes
 • Describing shapes
 • Describing textures
 • Describing features for image classification
 • Describing features for a code book
Local Descriptors: Shape Context

Count the number of points inside each bin, e.g.:

Count = ?

Log-polar binning: more precision for nearby points, more flexibility for farther points.

Belongie & Malik, ICCV 2001
Texture

- The texture features of a patch can be considered a descriptor.
- E.g. the LBP histogram is a texture descriptor for a patch.
Bag-of-words models

Bag-of-words models

Bag-of-words models

Bag-of-words models

What is a bag-of-words representation?

• For a text document
• Have a dictionary of non-common words
• Count the occurrence of each word in that document
• Make a histogram of the counts
• Normalize the histogram by dividing each count by the sum of all the counts
• The histogram is the representation.

apple worm tree dog joint leaf grass bush fence
Bags of features for image classification

1. Extract features
Bags of features for image classification

1. Extract features
2. Learn “visual vocabulary”
Bags of features for image classification

1. Extract features
2. Learn “visual vocabulary”
3. Quantize features using visual vocabulary
Bags of features for image classification

1. Extract features
2. Learn “visual vocabulary”
3. Quantize features using visual vocabulary
4. Represent images by frequencies of “visual words”
A possible texture representation

1. Feature extraction

- **Regular grid**: *every grid square is a feature*
 - Vogel & Schiele, 2003
 - Fei-Fei & Perona, 2005

- **Interest point detector**: *the region around each point*
 - Csurka et al. 2004
 - Fei-Fei & Perona, 2005
 - Sivic et al. 2005
1. Feature extraction

1. Detect patches
 - [Mikojaczyk and Schmid '02]
 - [Mata, Chum, Urban & Pajdla, '02]
 - [Sivic & Zisserman, '03]

2. Normalize patch

3. Compute SIFT descriptor
 - [Lowe'99]

Slide credit: Josef Sivic
1. Feature extraction

Lots of feature descriptors for the whole image or set of images.
2. Discovering the visual vocabulary

What is the dimensionality?

feature vector space
2. Discovering the visual vocabulary

Clustering
2. Discovering the visual vocabulary
Viewpoint invariant description (Sivic)

- Two types of viewpoint covariant regions computed for each frame
 - Shape Adapted (SA) Mikolajczyk & Schmid
 - Maximally Stable (MSER) Matas et al.
- Detect different kinds of image areas
- Provide complimentary representations of frame
- Computed at twice originally detected region size to be more discriminating
Examples of Harris-Affine Operator

(Shape Adapted Regions)

Fig. 6. (a) Example of a 3D scene observed from significantly different viewpoints. There are 14 inliers to a robustly estimated fundamental matrix, all of them correct. (b) An image pairs for which our method fails. There exist, however, corresponding points which we have selected manually.
Examples of Maximally Stable Regions
Feature Descriptor

- Each region represented by a 128-dimensional vector using SIFT descriptor.
Noise Removal

- Tracking region over 70 frames (must track over at least 3)

First (left) and last (right) frame of the track.

Close-up of the 1st, 20th, 40th, 55th, 70th frame.
Visual Vocabulary for Sivic’s Work

• Implementation: K-Means clustering

• Regions tracked through contiguous frames and average description computed

• 10% of tracks with highest variance eliminated, leaving about 1000 regions per frame

• Subset of 48 shots (~10%) selected for clustering

• Distance function: Mahalanobis

• 6000 SA clusters and 10000 MS clusters
Visual Vocabulary

Shape-Adapted

Maximally Stable

Figure 2: Samples from the clusters corresponding to a single visual word. (a) Two examples of clusters of Shape Adapted regions. (b) Two examples of clusters of Maximally Stable regions.
Sivic’s Experiments on Video Shot Retrieval

- Goal: match scene locations within closed world of shots
- Data: 164 frames from 48 shots taken at 19 different 3D locations; 4-9 frames from each location
Experiments - Results

Precision = # relevant images/total # of frames retrieved
Recall = # correctly retrieved frames/ # relevant frames
More Pictorial Results
Clustering and vector quantization

- Clustering is a common method for learning a visual vocabulary or codebook
 - Each cluster center produced by k-means becomes a codevector
 - Codebook can be learned on separate training set
- The codebook is used for quantizing features
 - A *vector quantizer* takes a feature vector and maps it to the index of the nearest code vector in a codebook
- Codebook = visual vocabulary
- Code vector = visual word

![Diagram](image)
Another example visual vocabulary

Fei-Fei et al. 2005
Example codebook

Source: B. Leibe
Another codebook

Source: B. Leibe
Visual vocabularies: Issues

- How to choose vocabulary size?
 - Too small: visual words not representative of all patches
 - Too large: quantization artifacts, overfitting

- Computational efficiency
 - Vocabulary trees (Nister & Stewenius, 2006)
3. **Image representation:** histogram of codewords

![Histogram of Codewords](image)
Image classification

• Given the bag-of-features representations of images from different classes, learn a classifier using machine learning
But what about layout?

All of these images have the same color histogram
Spatial pyramid representation

- Extension of a bag of features
- Locally orderless representation at several levels of resolution

Lazebnik, Schmid & Ponce (CVPR 2006)
Spatial pyramid representation

- Extension of a bag of features
- Locally orderless representation at several levels of resolution
Spatial pyramid representation

- Extension of a bag of features
- Locally orderless representation at several levels of resolution

Lazebnik, Schmid & Ponce (CVPR 2006)
Finale

- Describing images or image patches is very important for matching and recognition.
- The SIFT descriptor was invented in 1999 and is still very heavily used.
- Other descriptors are also available, some much simpler, but less powerful.
- Texture and shape descriptors are also useful.
- Bag-of-words is a handy technique borrowed from text retrieval. Lots of people use it to compare images or regions.
- Sivic developed a video frame retrieval system using this method, called it Video Google.
- The spatial pyramid allows us to describe an image as a whole and over its parts at multiple levels.