Stereo

CSE 455
Linda Shapiro
WHY DO WE HAVE TWO EYES?
Why do we perceive depth?
What do humans use as depth cues?

Motion

Convergence
When watching an object close to us, our eyes point slightly inward. This difference in the direction of the eyes is called convergence. This depth cue is effective only on short distances (less than 10 meters).

Binocular Parallax
As our eyes see the world from slightly different locations, the images sensed by the eyes are slightly different. This difference in the sensed images is called binocular parallax. Human visual system is very sensitive to these differences, and binocular parallax is the most important depth cue for medium viewing distances. The sense of depth can be achieved using binocular parallax even if all other depth cues are removed.

Monocular Movement Parallax
If we close one of our eyes, we can perceive depth by moving our head. This happens because human visual system can extract depth information in two similar images sensed after each other, in the same way it can combine two images from different eyes.

Focus

Accommodation
Accommodation is the tension of the muscle that changes the focal length of the lens of eye. Thus it brings into focus objects at different distances. This depth cue is quite weak, and it is effective only at short viewing distances (less than 2 meters) and with other cues.

Marko Teittinen http://www.hitl.washington.edu/scivw/EVE/III.A.1.c_DepthCues.html
What do humans use as depth cues?

Image cues

Retinal Image Size
When the real size of the object is known, our brain compares the sensed size of the object to this real size, and thus acquires information about the distance of the object.

Linear Perspective
When looking down a straight level road we see the parallel sides of the road meet in the horizon. This effect is often visible in photos and it is an important depth cue. It is called linear perspective.

Texture Gradient
The closer we are to an object the more detail we can see of its surface texture. So objects with smooth textures are usually interpreted being farther away. This is especially true if the surface texture spans all the distance from near to far.

Overlapping
When objects block each other out of our sight, we know that the object that blocks the other one is closer to us. The object whose outline pattern looks more continuous is felt to lie closer.

Aerial Haze
The mountains in the horizon look always slightly bluish or hazy. The reason for this are small water and dust particles in the air between the eye and the mountains. The farther the mountains, the hazier they look.

Shades and Shadows
When we know the location of a light source and see objects casting shadows on other objects, we learn that the object shadowing the other is closer to the light source. As most illumination comes downward we tend to resolve ambiguities using this information. The three dimensional looking computer user interfaces are a nice example on this. Also, bright objects seem to be closer to the observer than dark ones.

Amount of horizontal movement is …

…inversely proportional to the distance from the camera
Depth from Stereo

Goal: recover depth by finding image coordinate x' that corresponds to x
Depth from disparity

\[\frac{x - x'}{O - O'} = \frac{f}{z} \]

Disparity is inversely proportional to depth.

\[\text{disparity} = x - x' = \frac{B \cdot f}{z} \]
Depth from Stereo

Goal: recover depth by finding image coordinate x' that corresponds to x

Sub-Problems

1. Calibration: How do we recover the relation of the cameras (if not already known)?
2. Correspondence: How do we search for the matching point x'?
Correspondence Problem

We have two images taken from cameras with different intrinsic and extrinsic parameters.

How do we match a point in the first image to a point in the second? How can we constrain our search?
Key idea: Epipolar constraint

Potential matches for x have to lie on the corresponding line l'.

Potential matches for x' have to lie on the corresponding line l.
Epipolar geometry: notation

- **Baseline** – line connecting the two camera centers
- **Epipoles**
 - intersections of baseline with image planes
 - projections of the other camera center
- **Epipolar Plane** – plane containing baseline (1D family)
Epipolar geometry: notation

- **Baseline** – line connecting the two camera centers
- **Epipoles**
 - intersections of baseline with image planes
 - projections of the other camera center
- **Epipolar Plane** – plane containing baseline (1D family)
- **Epipolar Lines** - intersections of epipolar plane with image planes (always come in corresponding pairs)
Example: Converging cameras
Example: Motion parallel to image plane
Example: Forward motion

What would the epipolar lines look like if the camera moves directly forward?
Example: Motion perpendicular to image plane
Example: Motion perpendicular to image plane

- Points move along lines radiating from the epipole: “focus of expansion”
- Epipole is the principal point
Example: Forward motion

Epipole has same coordinates in both images.
Points move along lines radiating from “Focus of expansion”
Epipolar constraint

- If we observe a point x in one image, where can the corresponding point x' be in the other image?
Epipolar constraint

- Potential matches for x have to lie on the corresponding epipolar line l'.

- Potential matches for x' have to lie on the corresponding epipolar line l.
Epipolar constraint example
Epipolar constraint: Calibrated case

- Assume that the intrinsic and extrinsic parameters of the cameras are known
- We can multiply the projection matrix of each camera (and the image points) by the inverse of the calibration matrix to get *normalized* image coordinates
- We can also set the global coordinate system to the coordinate system of the first camera. Then the projection matrices of the two cameras can be written as $[I \mid 0]$ and $[R \mid t]$
Simplified Matrices for the 2 Cameras

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\end{pmatrix} = \begin{pmatrix} I | 0 \end{pmatrix}
\]

\[
\begin{pmatrix}
R & t \\
0 & 1 \\
\end{pmatrix} = (R | T)
\]
Epipolar constraint: Calibrated case

The vectors Rx, t, and x' are coplanar
Epipolar constraint: Calibrated case

\[x' \cdot [t \times (Rx)] = 0 \quad \Rightarrow \quad x'^T E x = 0 \quad \text{with} \quad E = [t \times] R \]

The vectors \(Rx, t, \) and \(x' \) are coplanar

Essential Matrix E
(Longuet-Higgins, 1981)
Epipolar constraint: Calibrated case

- $E \times x$ is the epipolar line associated with x ($l' = E \times x$)
- $E^T x'$ is the epipolar line associated with x' ($l = E^T x'$)
- $E e = 0$ and $E^T e' = 0$
- E is singular (rank two)
- E has five degrees of freedom

$x' \cdot [t \times (R x)] = 0 \quad \rightarrow \quad x'^T E x = 0 \quad \text{with} \quad E = [t \times] R$
Epipolar constraint: Uncalibrated case

- The calibration matrices K and K' of the two cameras are unknown.
- We can write the epipolar constraint in terms of unknown normalized coordinates:

$$\hat{x}'^T E \hat{x} = 0 \quad \hat{x} = K^{-1} x, \quad \hat{x}' = K'^{-1} \hat{x}'$$
Epipolar constraint: Uncalibrated case

\[\hat{x}'^T E \hat{x} = 0 \quad \Rightarrow \quad x'^T F x = 0 \quad \text{with} \quad F = K'^{-T} E K^{-1} \]

\[\hat{x} = K^{-1} x \]

\[\hat{x}' = K'^{-1} x' \]

Fundamental Matrix
(Faugeras and Luong, 1992)
Epipolar constraint: Uncalibrated case

\[\hat{x}'^T E \hat{x} = 0 \quad \Rightarrow \quad x'^T F x = 0 \quad \text{with} \quad F = K'^{-T} E K^{-1} \]

- \(F x \) is the epipolar line associated with \(x \) (\(l' = F x \))
- \(F^T x' \) is the epipolar line associated with \(x' \) (\(l' = F^T x' \))
- \(F e = 0 \) and \(F^T e' = 0 \)
The eight-point algorithm

\[x = (u, v, 1)^T, \quad x' = (u', v', 1) \]

\[
\begin{bmatrix}
 u' & v' & 1
\end{bmatrix}
\begin{bmatrix}
 f_{11} & f_{12} & f_{13} \\
 f_{21} & f_{22} & f_{23} \\
 f_{31} & f_{32} & f_{33}
\end{bmatrix}
\begin{bmatrix}
 u \\
 v \\
 1
\end{bmatrix} = 0
\]

\[
\begin{bmatrix}
 f_{11} \\
 f_{12} \\
 f_{13} \\
 f_{21} \\
 f_{22} \\
 f_{23} \\
 f_{31} \\
 f_{32} \\
 f_{33}
\end{bmatrix} = 0
\]

\[
\text{Minimize: } \sum_{i=1}^{N} (x_i'^T F x_i)^2
\]

under the constraint \[\|F\|^2 = 1 \]

Smallest eigenvalue of \(A^T A \)
Comparison of estimation algorithms

<table>
<thead>
<tr>
<th></th>
<th>8-point</th>
<th>Normalized 8-point</th>
<th>Nonlinear least squares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Av. Dist. 1</td>
<td>2.33 pixels</td>
<td>0.92 pixel</td>
<td>0.86 pixel</td>
</tr>
<tr>
<td>Av. Dist. 2</td>
<td>2.18 pixels</td>
<td>0.85 pixel</td>
<td>0.80 pixel</td>
</tr>
</tbody>
</table>
Moving on to stereo…

Fuse a calibrated binocular stereo pair to produce a depth image

image 1

image 2

Dense depth map

Many of these slides adapted from Steve Seitz and Lana Lazebnik
Depth from disparity

\[\frac{x - x'}{O - O'} = \frac{f}{z} \]

Disparity is inversely proportional to depth.

\[\text{disparity} = x - x' = \frac{B \cdot f}{z} \]
Basic stereo matching algorithm

• If necessary, **rectify** the two stereo images to transform epipolar lines into scanlines

• For each pixel x in the first image
 • Find corresponding epipolar scanline in the right image
 • Search the scanline and pick the best match x’
 • Compute disparity x-x’ and set depth(x) = fB/(x-x’)

36
Simplest Case: Parallel images

Epipolar constraint:

\[x^T E x' = 0, \quad E = t \times R \]

\[R = I \quad t = (T, 0, 0) \]

\[E = t \times R = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -T \\ 0 & T & 0 \end{bmatrix} \]

\[
\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -T \\ 0 & T & 0 \end{pmatrix}
\]

The y-coordinates of corresponding points are the same.
Stereo image rectification
Stereo image rectification

• Reproject image planes onto a common plane parallel to the line between camera centers

• Pixel motion is horizontal after this transformation

• Two homographies (3x3 transform), one for each input image reprojection

Example

Unrectified

Rectified
Correspondence search: for HW3

- Slide a window along the right scanline and compare contents of that window with the reference window in the left image
- Matching cost: SSD, SAD, or normalized correlation
Correspondence search

Left

Right

scanline

SSD
Correspondence search

Left

Right

scanline

Norm. corr
Effect of window size

- Smaller window
 + More detail
 - More noise

- Larger window
 + Smoother disparity maps
 - Less detail
 - Fails near boundaries
Failures of correspondence search

Textureless surfaces

Occlusions, repetition

Non-Lambertian surfaces, specularities
Results with window search

Data

Window-based matching

Ground truth
How can we improve window-based matching?

So far, matches are independent for each point.

What constraints or priors can we add?
Stereo constraints/priors

- **Uniqueness**
 - For any point in one image, there should be at most one matching point in the other image
Stereo constraints/priors

• **Uniqueness**
 - For any point in one image, there should be at most one matching point in the other image

• **Ordering**
 - Corresponding points should be in the same order in both views
Stereo constraints/priors

- **Uniqueness**
 - For any point in one image, there should be at most one matching point in the other image

- **Ordering**
 - Corresponding points should be in the same order in both views

"Ordering constraint doesn’t hold"
Priors and constraints

- Uniqueness
 - For any point in one image, there should be at most one matching point in the other image

- Ordering
 - Corresponding points should be in the same order in both views

- Smoothness
 - We expect disparity values to change slowly (for the most part)
Stereo as energy minimization

What defines a good stereo correspondence?

1. Match quality
 - Want each pixel to find a good match in the other image

2. Smoothness
 - If two pixels are adjacent, they should (usually) move about the same amount
Matching windows: for HW3

Similarity Measure

- Sum of Absolute Differences (SAD)
- Sum of Squared Differences (SSD)
- Zero-mean SAD
- Locally scaled SAD
- Normalized Cross Correlation (NCC)

Formula

\[
\text{SAD: } \sum_{(i,j) \in W} |I_1(i,j) - I_2(x+i,y+j)|
\]

\[
\text{SSD: } \sum_{(i,j) \in W} (I_1(i,j) - I_2(x+i,y+j))^2
\]

\[
\text{Zero-mean SAD: } \sum_{(i,j) \in W} |I_1(i,j) - I_1(i,j) - I_2(x+i,y+j) + \bar{I}_2(x+i,y+j)|
\]

\[
\text{Locally scaled SAD: } \sum_{(i,j) \in W} |I_1(i,j) - \frac{\bar{I}_1(i,j)}{\bar{I}_2(x+i,y+j)} I_2(x+i,y+j)|
\]

\[
\text{NCC: } \frac{\sum_{(i,j) \in W} I_1(i,j) \cdot I_2(x+i,y+j)}{\sqrt{\sum_{(i,j) \in W} I_1^2(i,j) \cdot \sum_{(i,j) \in W} I_2^2(x+i,y+j)}}
\]

http://siddhantahuja.wordpress.com/category/stereo-vision/
Real-time stereo

Nomad robot searches for meteorites in Antarctica
http://www.frc.ri.cmu.edu/projects/meteorobot/index.html

Used for robot navigation (and other tasks)
 • Several software-based real-time stereo techniques have been developed (most based on simple discrete search)
Why does stereo fail?

Fronto-Parallel Surfaces: Depth is constant within the region of local support
Why does stereo fail?

Monotonic Ordering - Points along an epipolar scanline appear in the same order in both stereo images

Occlusion – All points are visible in each image
Why does stereo fail?

Image Brightness Constancy: Assuming Lambertian surfaces, the brightness of corresponding points in stereo images are the same.
Why does stereo fail?

Match Uniqueness: For every point in one stereo image, there is at most one corresponding point in the other image.
Stereo reconstruction pipeline

Steps

• Calibrate cameras
• Rectify images
• \textbf{Compute disparity}
• Estimate depth

What will cause errors?

• Camera calibration errors
• Poor image resolution
• Occlusions
• Violations of brightness constancy (specular reflections)
• Large motions
• Low-contrast image regions
Multi-view stereo ?
Using more than two images

Multi-View Stereo for Community Photo Collections
M. Goesele, N. Snavely, B. Curless, H. Hoppe, S. Seitz
Proceedings of ICCV 2007,