Region Segmentation
Readings: Chapter 10: 10.1
Additional Materials Provided

• K-means Clustering (text)
• EM Clustering (paper)
• Graph Partitioning (text)
• Mean-Shift Clustering (paper)
Image Segmentation

Image segmentation is the operation of partitioning an image into a collection of connected sets of pixels.

1. into regions, which usually cover the image

2. into linear structures, such as
 - line segments
 - curve segments

3. into 2D shapes, such as
 - circles
 - ellipses
 - ribbons (long, symmetric regions)
Example: Regions
Main Methods of Region Segmentation

1. Region Growing
2. Split and Merge
3. Clustering
Clustering

• There are K clusters C_1, \ldots, C_K with means m_1, \ldots, m_K.

• The least-squares error is defined as

$$D = \sum_{k=1}^{K} \sum_{x_i \in C_k} \| x_i - m_k \|^2.$$

• Out of all possible partitions into K clusters, choose the one that minimizes D.

Why don’t we just do this?
If we could, would we get meaningful objects?
K-Means Clustering

Form K-means clusters from a set of n-dimensional vectors

1. Set ic (iteration count) to 1

2. Choose randomly a set of K means $m_1(1), \ldots, m_K(1)$.

3. For each vector x_i compute $D(x_i, m_k(ic))$, $k=1,\ldots,K$ and assign x_i to the cluster C_j with nearest mean.

4. Increment ic by 1, update the means to get $m_1(ic),\ldots,m_K(ic)$.

5. Repeat steps 3 and 4 until $C_k(ic) = C_k(ic+1)$ for all k.
K-Means Example 1
K-Means Example 2
K-Means Example 3

1. Select an image:
2. Select a processor:
3. Click

Options:
Init Method 0

Process done!

640*480 (607,118): RGB(20,22,1)

(228,26): RGB(255,170,0)
K-means Variants

• Different ways to initialize the means
• Different stopping criteria
• Dynamic methods for determining the right number of clusters (K) for a given image

• The EM Algorithm: a probabilistic formulation of K-means
K-Means

- **Boot Step:**
 - Initialize K clusters: C_1, \ldots, C_K

 Each cluster is represented by its mean m_j

- **Iteration Step:**
 - Estimate the cluster for each data point

 $x_i \mapsto C(x_i)$
 - Re-estimate the cluster parameters

\[m_j = \text{mean}\{x_i \mid x_i \in C_j\} \]
K-Means Example
K-Means Example

Where do the red points belong?
<table>
<thead>
<tr>
<th>Cluster Representation</th>
<th>K-means</th>
<th>EM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Representation</td>
<td>mean</td>
<td>mean, variance, and weight</td>
</tr>
<tr>
<td>Initialization</td>
<td>randomly select K means</td>
<td>initialize K Gaussian distributions</td>
</tr>
<tr>
<td>Expectation</td>
<td>assign each point to closest mean</td>
<td>soft-assign each point to each distribution</td>
</tr>
<tr>
<td>Maximization</td>
<td>compute means of current clusters</td>
<td>compute new params of each distribution</td>
</tr>
</tbody>
</table>
Notation

$N(\mu, \sigma)$ is a 1D normal (Gaussian) distribution with mean μ and standard deviation σ (so the variance is σ^2).
$N(\mu, \Sigma)$ is a multivariate Gaussian distribution with mean μ and covariance matrix Σ.

What is a covariance matrix?

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>G</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>σ_R^2</td>
<td>σ_{RG}</td>
<td>σ_{RB}</td>
</tr>
<tr>
<td>G</td>
<td>σ_{GR}</td>
<td>σ_G^2</td>
<td>σ_{GB}</td>
</tr>
<tr>
<td>B</td>
<td>σ_{BR}</td>
<td>σ_{BG}</td>
<td>σ_B^2</td>
</tr>
</tbody>
</table>

variance(X): $\sigma_X^2 = \sum (x_i - \mu)^2 (1/N)$

cov(X,Y) = $\sum (x_i - \mu_x)(y_i - \mu_y) (1/N)$
1. Suppose we have a set of clusters: C_1, C_2, \ldots, C_K over a set of data points $X = \{x_1, x_2, \ldots, x_N\}$.

 - $P(C_j)$ is the probability or weight of cluster C_j.
 - $P(C_j | x_i)$ is the probability of cluster C_j given point x_i.
 - $P(x_i | C_j)$ is the probability of point x_i belonging to cluster C_j.

2. Suppose that a cluster C_j is represented by a Gaussian distribution $N(\mu_j, \sigma_j)$. Then for any point x_i:

$$P(x_i | C_j) = \frac{1}{\sqrt{2\pi \sigma_j}} e^{-\frac{(x_i - \mu_j)^2}{2\sigma_j^2}}$$
EM: Expectation-Maximization

• **Boot Step:**
 – Initialize K clusters: C_1, \ldots, C_K
 $$(\mu_j, \Sigma_j) \text{ and } P(C_j) \text{ for each cluster } j.$$

• **Iteration Step:**
 – Estimate the cluster of each data point $p(C_j \mid x_i)$
 – Re-estimate the cluster parameters $$(\mu_j, \Sigma_j), p(C_j) \text{ For each cluster } j$$
1-D EM with Gaussian Distributions

• Each cluster C_j is represented by a Gaussian distribution $N(\mu_j, \sigma_j)$.
• Initialization: For each cluster C_j initialize its mean μ_j, variance σ_j^2, and weight α_j.

$N(\mu_1, \sigma_1)$
$\alpha_1 = P(C_1)$

$N(\mu_2, \sigma_2)$
$\alpha_2 = P(C_2)$

$N(\mu_3, \sigma_3)$
$\alpha_3 = P(C_3)$
Expectation

• For each point x_i and each cluster C_j compute $P(C_j | x_i)$.

• $P(C_j | x_i) = \frac{P(x_i | C_j) \cdot P(C_j)}{P(x_i)}$

• $P(x_i) = \sum_j P(x_i | C_j) \cdot P(C_j)$

• Where do we get $P(x_i | C_j)$ and $P(C_j)$?
1. Use the pdf for a normal distribution:

\[
P(x_i \mid C_j) = \frac{1}{\sqrt{2\pi \sigma_j}} e^{-\frac{(x_i - \mu_j)^2}{2\sigma_j^2}}
\]

2. Use \(\alpha_j = P(C_j) \) from the current parameters of cluster \(C_j \).
Maximization

- Having computed $P(C_j | x_i)$ for each point x_i and each cluster C_j, use them to compute new mean, variance, and weight for each cluster.

\[
\mu_j = \frac{\sum_i p(C_j | x_i) \cdot x_i}{\sum_i p(C_j | x_i)}
\]

\[
\sigma_j^2 = \sum_j \frac{\sum_i p(C_j | x_i) \cdot (x_i - \mu_j) \cdot (x_i - \mu_j)^T}{\sum_i p(C_j | x_i)}
\]

\[
p(C_j) = \frac{\sum_i p(C_j | x_i)}{N}
\]
Multi-Dimensional Expectation Step for Color Image Segmentation

\[
p(C_j | x_i) = \frac{p(x_i | C_j) \cdot p(C_j)}{p(x_i)} = \frac{\sum_j p(x_i | C_j) \cdot p(C_j)}{p(x_i)}
\]
Multi-dimensional Maximization Step for Color Image Segmentation

\[\mu_j = \frac{\sum_i p(C_j | x_i) \cdot x_i}{\sum_i p(C_j | x_i)} \]

\[\Sigma_j = \frac{\sum_i p(C_j | x_i) \cdot (x_i - \mu_j) \cdot (x_i - \mu_j)^T}{\sum_i p(C_j | x_i)} \]

\[p(C_j) = \frac{\sum_i p(C_j | x_i)}{N} \]

Input (Known)
\[x_1 = \{r_1, g_1, b_1\} \]
\[x_2 = \{r_2, g_2, b_2\} \]
\[\ldots \]
\[x_i = \{r_i, g_i, b_i\} \]
\[\ldots \]

Input (Estimation)

Classification Results
\[p(C_1 | x_1) \]
\[p(C_j | x_2) \]
\[\ldots \]
\[p(C_j | x_i) \]
\[\ldots \]

Output
Cluster Parameters
\((\mu_1, \Sigma_1), p(C_1)\) for \(C_1\)
\((\mu_2, \Sigma_2), p(C_2)\) for \(C_2\)
\[\ldots \]
\((\mu_k, \Sigma_k), p(C_k)\) for \(C_k\)
Full EM Algorithm
Multi-Dimensional

• **Boot Step:**
 – Initialize K clusters: C_1, \ldots, C_K

 (μ_j, Σ_j) and $P(C_j)$ for each cluster j.

• **Iteration Step:**
 – Expectation Step

 $$p(C_j \mid x_i) = \frac{p(x_i \mid C_j) \cdot p(C_j)}{p(x_i)} = \frac{p(x_i \mid C_j) \cdot p(C_j)}{\sum_j p(x_i \mid C_j) \cdot p(C_j)}$$

 – Maximization Step

 $$\mu_j = \frac{\sum_i p(C_j \mid x_i) \cdot x_i}{\sum_i p(C_j \mid x_i)}$$

 $$\Sigma_j = \frac{\sum_i p(C_j \mid x_i) \cdot (x_i - \mu_j) \cdot (x_i - \mu_j)^T}{\sum_i p(C_j \mid x_i)}$$

 $$p(C_j) = \frac{\sum_i p(C_j \mid x_i)}{N}$$
Visualizing EM Clusters

ellipses show one, two, and three standard deviations

http://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm
EM Applications

• Blobworld: Image segmentation using Expectation-Maximization and its application to image querying

• Yi’s Generative/Discriminative Learning of object classes in color images
Blobworld: Sample Results
Jianbo Shi’s Graph-Partitioning

- An image is represented by a graph whose nodes are pixels or small groups of pixels.

- The goal is to partition the vertices into disjoint sets so that the similarity within each set is high and across different sets is low.
Minimal Cuts

• Let $G = (V,E)$ be a graph. Each edge (u,v) has a weight $w(u,v)$ that represents the similarity between u and v.

• Graph G can be broken into 2 disjoint graphs with node sets A and B by removing edges that connect these sets.

• Let $\text{cut}(A,B) = \sum_{u \in A, v \in B} w(u,v)$.

• One way to segment G is to find the minimal cut.
Cut(A,B)

cut(A,B) = \sum_{u \in A, v \in B} w(u,v)
Minimal cut favors cutting off small node groups, so Shi proposed the **normalized cut**.

\[
\text{Ncut}(A,B) = \frac{\text{cut}(A,B)}{\text{asso}(A,V)} + \frac{\text{cut}(A,B)}{\text{asso}(B,V)}
\]

\[
\text{asso}(A,V) = \sum_{u \in A, t \in V} w(u,t)
\]

How much is A connected to the graph as a whole.
Example Normalized Cut

\[\text{Ncut}(A,B) = \frac{3}{21} + \frac{3}{16} \]
Shi turned graph cuts into an eigenvector/eigenvalue problem.

- Set up a weighted graph \(G = (V, E) \)
 - \(V \) is the set of \((N) \) pixels
 - \(E \) is a set of weighted edges (weight \(w_{ij} \) gives the similarity between nodes \(i \) and \(j \))
 - Length \(N \) vector \(d \): \(d_i \) is the sum of the weights from node \(i \) to all other nodes
 - \(N \times N \) matrix \(D \): \(D \) is a diagonal matrix with \(d \) on its diagonal
 - \(N \times N \) symmetric matrix \(W \): \(W_{ij} = w_{ij} \)
• Let x be a characteristic vector of a set A of nodes
 – $x_i = 1$ if node i is in a set A
 – $x_i = -1$ otherwise

• Let y be a continuous approximation to x

\[
y = (1 + x) - \frac{\sum_{x_i > 0} d_i}{\sum_{x_i < 0} d_i} (1 - x).
\]

• Solve the system of equations

\[(D - W) y = \lambda \ D \ y\]

for the eigenvectors y and eigenvalues λ

• Use the eigenvector y with second smallest eigenvalue to bipartition the graph ($y \Rightarrow x \Rightarrow A$)

• If further subdivision is merited, repeat recursively
How Shi used the procedure

Shi defined the edge weights \(w(i,j) \) by

\[
 w(i,j) = e^{-\|F(i)-F(j)\|_2 / \sigma} \left\{ \begin{array}{ll}
 e^{-\|X(i)-X(j)\|_2 / \sigma} & \text{if } \|X(i)-X(j)\|_2 < r \\
 0 & \text{otherwise}
\end{array} \right.
\]

where \(X(i) \) is the spatial location of node \(i \)
\(F(i) \) is the feature vector for node \(I \)
which can be intensity, color, texture, motion…

The formula is set up so that \(w(i,j) \) is 0 for nodes that are too far apart.
Examples of Shi Clustering

See Shi’s Web Page
http://www.cis.upenn.edu/~jshi/
Problems with Graph Cuts

- Need to know when to stop
- Can be slow.

Problems with EM

- Local minima
- Need to know number of segments
- Need to choose generative model
Mean-Shift Clustering

- Simple, like K-means
- But you don’t have to select K
- Statistical method
- Guaranteed to converge to a fixed number of clusters.
Finding Modes in a Histogram

• How Many Modes Are There?
 – Easy to see, hard to compute
Mean Shift [Comaniciu & Meer]

- **Iterative Mode Search**
 1. Initialize random seed, and window W
 2. Calculate center of gravity (the “mean”) of W: $\sum_{x \in W} xH(x)$
 3. Translate the search window to the mean
 4. Repeat Step 2 until convergence
Numeric Example
Must Use Normalized Histogram!

window \(W \) centered at 12

\[
\sum x N(x) = 10(5/15)+11(4/15)+12(3/15)+13(2/15)+14(1/15) \\
= 11.33
\]
Mean Shift Approach

- Initialize a window around each point
- See where it shifts—this determines which segment it’s in
- Multiple points will shift to the same segment

Mean shift trajectories
Segmentation Algorithm

• First run the mean shift procedure for each data point x and store its convergence point z.

• Link together all the z’s that are closer than .5 from each other to form clusters

• Assign each point to its cluster

• Eliminate small regions
Mean-shift for image segmentation

- Useful to take into account spatial information
 - instead of (R, G, B), run in (R, G, B, x, y) space
References

