Content-Based Image Retrieval

Readings: Chapter 8: 8.1-8.4

- Queries
- Commercial Systems
- Retrieval Features
- Indexing in the FIDS System
- Lead-in to Object Recognition
Content-based Image Retrieval (CBIR)

Searching a large database for images that *match* a query:

- What kinds of databases?
- What kinds of queries?
- What constitutes a match?
- How do we make such searches efficient?
Applications

- Art Collections
 e.g. Fine Arts Museum of San Francisco
- Medical Image Databases
 CT, MRI, Ultrasound, The Visible Human
- Scientific Databases
 e.g. Earth Sciences
- General Image Collections for Licensing
 Corbis, Getty Images
- The World Wide Web
 Google, Microsoft, etc
What is a query?

- an image you already have
- a rough sketch you draw
- a symbolic description of what you want
e.g. an image of a man and a woman on a beach
Some Systems You Can Try

Corbis Stock Photography and Pictures

http://pro.corbis.com/

- Corbis sells high-quality images for use in advertising, marketing, illustrating, etc.

- Search is entirely by keywords.

- Human indexers look at each new image and enter keywords.

- A thesaurus constructed from user queries is used.
Microsoft Bing

- http://www.bing.com/

- first use keywords, then mouse over an image and click on show similar images
Google Similar Image Search

//https://images.google.com/imghp?hl=en&gws_rd=ssl

Drag in images or browse for them in the regular Google Image Tool.
IBM’s QBIC (Query by Image Content)

- The first commercial system.

- Uses or has-used color percentages, color layout, texture, shape, location, and keywords.
Original QBIC system looked like this

Usage: I: Get Info C: Color Histogram L: Layout T: Texture S: Special Hybrid

Query was:
Random
Like

• Shopping search engine

• http://www.like.com/

• Google bought it.
Problem with Text-Based Search

- Retrieval for pigs for the color chapter of my book
- Small company (was called Ditto)
- Allows you to search for pictures from web pages
Image Features / Distance Measures

Query Image

User

Image Database

Images

Image Feature Extraction

Retrieved Images

Distance Measure

Feature Space
Features

- **Color** (histograms, gridded layout, wavelets)
- **Texture** (*Laws, Gabor filters, local binary pattern*)
- **Shape** (*first segment the image, then use statistical or structural shape similarity measures*)
- **Objects and their Relationships**

This is the most powerful, but you have to be able to recognize the objects!
Color Histograms

Figure 8.4: Results of a QBIC search based on color percentages; the query specified 60% red, 30% yellow, and 10% black (images courtesy of 3gamma).
The QBIC color histogram distance is:

\[d_{\text{hist}}(I,Q) = (h(I) - h(Q))^T A (h(I) - h(Q)) \]

- \(h(I) \) is a K-bin histogram of a database image
- \(h(Q) \) is a K-bin histogram of the query image
- \(A \) is a \(K \times K \) similarity matrix
Similarity Matrix

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>G</th>
<th>B</th>
<th>Y</th>
<th>C</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>.5</td>
<td>0</td>
<td>.5</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>.5</td>
<td>.5</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td>?</td>
</tr>
<tr>
<td>Y</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>V</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

How similar is blue to cyan?
Gridded Color

Gridded color distance is the sum of the color distances in each of the corresponding grid squares.

What color distance would you use for a pair of grid squares?
Color Layout (IBM’s Gridded Color)

Figure 8.3: Results of a QEC search based on color layout similarity; the query is the example image shown in the top left position (images courtesy of Egemena).
Texture Distances

- Pick and Click (user clicks on a pixel and system retrieves images that have in them a region with similar texture to the region surrounding it).
- Gridded (just like gridded color, but use texture).
- Histogram-based (e.g. compare the LBP histograms).
Laws Texture

Figure 5.6: Results of an image database search based on texture similarity. (Images from the MIT Media Lab VisTex database: http://visTex.ai.mit.edu/visTex/imagery/VisTexTexture/visTex.html.)
Shape Distances

• Shape goes one step further than color and texture.

• It requires identification of regions to compare.

• There have been many shape similarity measures suggested for pattern recognition that can be used to construct shape distance measures.
Global Shape Properties: Projection Matching

In projection matching, the horizontal and vertical projections form a histogram.

What are the weaknesses of this method? strengths?
Global Shape Properties: Tangent-Angle Histograms

Is this feature invariant to starting point? Is it invariant to size, translation, rotation?
Boundary Matching

- Fourier Descriptors
- Sides and Angles
- Elastic Matching

The distance between query shape and image shape has two components:

1. energy required to deform the query shape into one that best matches the image shape

2. a measure of how well the deformed query matches the image
Del Bimbo Elastic Shape Matching

query

retrieved images
Regions and Relationships

- Segment the image into regions
- Find their properties and interrelationships
- Construct a graph representation with nodes for regions and edges for spatial relationships
- Use graph matching to compare images

Like what?
Blobworld (Carson et al, 1999)

- Segmented the query (and all database images) using EM on color+texture
- Allowed users to select the most important region and what characteristics of it (color, texture, location)
- Asked users if the background was also important
Tiger Image as a Graph (motivated by Blobworld)
Andy Berman’s FIDS System

- multiple distance measures
- Boolean and linear combinations
- efficient indexing using images as keys
Andy Berman’s FIDS System:

Use of key images and the triangle inequality for efficient retrieval. $d(I,Q) \geq |d(I,K) - d(Q,K)|$
Andy Berman’s FIDS System:

Bare-Bones Triangle Inequality Algorithm

Offline

1. Choose a small set of key images
2. Store distances from database images to keys

Online (given query Q)

1. Compute the distance from Q to each key
2. Obtain lower bounds on distances to database images
3. Threshold or return all images in order of lower bounds
Andy Berman’s FIDS System:

Flexible Image Database System: Example

An example from our system using a simple color measure.
images in system: 37,748
threshold: 100 out of 1000
images eliminated: 37,729
Andy Berman’s FIDS System:

Bare-Bones Algorithm with Multiple Distance Measures

Offline

1. Choose key images for each measure
2. Store distances from database images to keys for all measures

Online (given query Q)

1. Calculate lower bounds for each measure
2. Combine to form lower bounds for composite measures
3. Continue as in single measure algorithm
Andy Berman’s FIDS System:

Triangle Tries

A triangle trie is a tree structure that stores the distances from database images to each of the keys, one key per tree level.
Andy Berman’s FIDS System:

Triangle Tries and Two-Stage Pruning

- First Stage: Use a short triangle trie.
- Second Stage: Bare-bones algorithm on the images returned from the triangle-trie stage.

The quality of the output is the same as with the bare-bones algorithm itself, but execution is faster.
Andy Berman’s FIDS System:

Flexible Image Database System: Example

of images in system: 37,748
Depth of triangle trie: 6
of images eliminated by trie: 30,300
images eliminated by second-stage: 7429
19 images remaining, as before
Andy Berman’s FIDS System:

Flexible Image Database System: Example

Example from our system using a combination color+texture measure
images in system: 37,748
images from color trie: 3,676
images from texture trie: 497
images in merged set: 3,785
images eliminated: 33,963
Andy Berman’s FIDS System:

Performance on a Pentium Pro 200-mHz

Step 1. Extract features from query image. \((.02s \leq t \leq .25s)\)

Step 2. Calculate distance from query to key images. \((1\mu s \leq t \leq .8ms)\)

Step 3. Calculate lower bound distances.
\((t \approx 4ms \text{ per 1000 images using 35 keys, which is about 250,000 images per second.})\)

Step 4. Return the images with smallest lower bound distances.
Demo of FIDS

- http://www.cs.washington.edu/research/imagedatabase/demo/

- Try this and the other demos on the same page.
Weakness of Low-level Features

- Can’t capture the high-level concepts
Current Research Objective

Query Image

User

Image Database

Images

Object-oriented Feature Extraction

Retrieved Images

boat

...Drawing

Categories

Animals

Buildings

• Office Buildings

• Houses

Transportation

• Boats

• Vehicles

...
Overall Approach

- Develop object recognizers for common objects
- Use these recognizers to design a new set of both low- and mid-level features
- Design a learning system that can use these features to recognize classes of objects
Boat Recognition

1. Select an image: boat07188237.jpg
2. Select a processor: OR_sailboat
3. Click

Quick help: select an image and a processor, click the Process button.
Processors:
- OR_sky: Sky recognition
- OR_sea: Sea recognition
- OR_boat: Boat recognition
- OR_sailboat: Sailboat recognition

comments to pfilr@cs.washington.edu
Last Modified: Wednesday, December 31, 1969 16:00:00
Vehicle Recognition

1. Select an image: car213.jpg
2. Select a processor: VehicleRecognition
3. Click: process>>

Options:
- Sigma: 2.0
- Triangle Len: 161

Quick help: select an Image and a Processor, click the Process button.

Processors:
- VehicleRecognition: The final result
- ContourSymmetryCal: Localize the horizontal position by contour symmetry
- DropLineSymmetryCal: Localize the horizontal position by contour gray-level symmetry
- HorizontalLineSymCal: Localize the horizontal position by symmetric horizontal line length
- SymmetryFinder: Localize the horizontal position by using the three symmetry-based methods above.
- IntensitySymFinder: Localize the horizontal position by intensity-based symmetry (slow, high resolution)
- IntensitySymFinder2: Localize the horizontal position by intensity-based symmetry (fast, low resolution)
- HorizontalEdge: Localize the horizontal position by horizontal-edge-based recognition
Building Recognition

1. Select an image: images/bp88.JPG
2. Select a processor: CSOSM_br
3. Click

Options:

• Quick help: select an Image and a Processor, click the Process button.
• Processors:
 - CSOSM_br: Building recognition by consistent line clusters

[comments to xc@cs.washington.edu]
Last Modified: Wednesday, December 31, 1969 12:00:00
A Consistent Line Cluster is a set of lines that are homogeneous in terms of some line features.

- **Color-CLC**: The lines have the same color feature.

- **Orientation-CLC**: The lines are parallel to each other or converge to a common vanishing point.

- **Spatially-CLC**: The lines are in close proximity to each other.
Color-CLC

- Color feature of lines: color pair \((c_1, c_2)\)
- Color pair space:
 - RGB \((256^3 \times 256^3)\) Too big!
 - Dominant colors \((20 \times 20)\)
- Finding the color pairs:
 - One line \(\rightarrow\) Several color pairs
- Constructing Color-CLC: use clustering
Orientation-CLC

- The lines in an Orientation-CLC are parallel to each other in the 3D world.
- The parallel lines of an object in a 2D image can be:
 - Parallel in 2D
 - Converging to a vanishing point (perspective)
Orientation-CLC
Spatially-CLC

- Vertical position clustering
- Horizontal position clustering
Building Recognition by CLC

Two types of buildings → Two criteria

- Inter-relationship criterion
- Intra-relationship criterion
Inter-relationship criterion

\((N_{c1} > T_{i1} \text{ or } N_{c2} > T_{i1}) \text{ and } (N_{c1} + N_{c2}) > T_{i2}\)

\(N_{c1} = \text{number of intersecting lines in cluster 1}\)

\(N_{c2} = \text{number of intersecting lines in cluster 2}\)
Intra-relationship criterion

\[|S_0| > T_{j1} \text{ or } w(S_0) > T_{j2} \]

\[S_0 = \text{set of heavily overlapping lines in a cluster} \]
Experimental Evaluation

- Object Recognition
 - 97 well-patterned buildings (bp): 97/97
 - 44 not well-patterned buildings (bnp): 42/44
 - 16 not patterned non-buildings (nbnp): 15/16 (one false positive)
 - 25 patterned non-buildings (nbp): 0/25

- CBI R
Experimental Evaluation

Well-Patterned Buildings
Experimental Evaluation
Non-Well-Patterned Buildings

False negative

False negative
Experimental Evaluation

Non-Well-Patterned Non-Buildings
Experimental Evaluation
Well-Patterned Non-Buildings (false positives)
Experimental Evaluation (CBI R)

<table>
<thead>
<tr>
<th></th>
<th>Total Positive Classification (#)</th>
<th>Total Negative Classification (#)</th>
<th>False positive (#)</th>
<th>False negative (#)</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbogreens</td>
<td>0</td>
<td>47</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Campusinfall</td>
<td>27</td>
<td>21</td>
<td>0</td>
<td>5</td>
<td>89.6</td>
</tr>
<tr>
<td>Cannonbeach</td>
<td>30</td>
<td>18</td>
<td>0</td>
<td>6</td>
<td>87.5</td>
</tr>
<tr>
<td>Yellowstone</td>
<td>4</td>
<td>44</td>
<td>4</td>
<td>0</td>
<td>91.7</td>
</tr>
</tbody>
</table>
Experimental Evaluation (CBIR)

False positives from Yellowstone