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Abstract

We present a new, interactive tool callatklligent Scissorsvhich we use for image seg-
mentation. Fully automated segmentation is an unsolved problem, while manual tracing is inaccu-
rate and laboriously unacceptable. However, Intelligent Scissors allow objects within digital
images to be extracted quickly and accurately using simple gesture motions with a mouse. When
the gestured mouse position comes in proximity to an object edige;vaire boundary‘snaps”
to, and wraps around the object of interest.

Live-wire boundary detection formulates boundary detection as an optimal path search in
a weighted graph. Optimal graph searching provides mathematically piece-wise optimal bound-
aries while greatly reducing sensitivity to local noise or other intervening structures. Robustness is
further enhanced witbn-the-fly trainingwhich causes the boundary to adhere to the specific type
of edge currently being followed, rather than simply the strongest edge in the neighborhood.
Boundary coolingautomatically freezes unchanging segments and automates input of additional
seed points. Cooling also allows the user to be much more free with the gesture path, thereby

increasing the efficiency and finesse with which boundaries can be extracted.
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1. Introduction

Fully automatic general image segmentation is an unsolved problem due to the wide vari-
ety of image sources, content, and complexity and hence, has given way to a variety of semiauto-
mated approaches, initialization schemes, etc. In many cases, manual segmentation (i.e., tracing
the object boundary) is still widely used when an image component must be segmented from a
complex background. For this reason intelligent segmentation tools which exploit high level
visual expertise but require minimal user interaction become appealing.

This paper details an interactive, digital image segmentation tool called “Intelligent Scis-
sors” which allows rapid object extraction from arbitrarily complex backgrounds. Intelligent Scis-
sors formulates boundary finding as an unconstrained graph search [11] in which the boundary is
represented as an optimal path within the graph. The main advantage of this technique, which dif-
ferentiates it from previous optimal boundary based segmentation techniques, is the interactive
“live-wire” tool, developed in our lab in January of 1992. The live-wire tool allows the user to
interactively select an optimal boundary segment by immediately displaying the minimum cost
path from the current cursor position to a previously specified “seed” point in the image. Thus, it
is the method and style of interaction which fundamentally distinguishes our Intelligent Scissors
technique from previous work in optimal boundary detection.

Some boundary based segmentation techniques compute a single optimal boundary based
on some initial template or contour. Rather than decide on a single optimal boundary, our live-
wire technique computes, at interactive speed, an optimal path from a selected seeckpeint to
other point in the image and lets the user choose, interactively, based on the current cursor posi-
tion, the path which visually corresponds best to a segment of the desired object boundary.

To minimize user interaction required in manual seed point selection, seed points are gen-
erated automatically along a current active boundary segment via boundary “cooling”. Boundary
cooling occurs when a section of the current interactive portion of the boundary has not changed
recently and consequently “freezes”, depositing a new seed point, while reinitiating the optimal

path expansion.
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Training on boundary characteristics (gradient magnitude, image intensity, etc.) is also
added. To allow the algorithm to adapt to different types of edges, training is implemented
dynamically rather than having a separate training phase. This allows the live-wire tool to adjust
to changing boundary characteristitging segmentation.

Figure 1 demonstrates how live-wire segmentation is used to extract a complex object
boundary from a nontrivial background. Figures 1(a-c) show selected frames from the first couple
of seconds of the interactive segmentation process while Figures 1(d-f) are frames near the end of
the process. Fig. 1(g) is the completed boundary. The entire boundary was defined in approxi-
mately 45 seconds. Fig. 1 also provides a feel for the interactive style of the live-wire segmenta-
tion process. Notice in frames (a) through (f) that a seed point (shown as a red dot), is “anchored”
to the boundary of the object and that another point (indicated by the green cross hairs) is free to
move around the image. Since a globally optimal path is computed at interactive speeds from a
seed point to every other point in an image, that path is displayed as the “free” point moves,
thereby allowing the user to interactively select an optimal path that corresponds to a portion of
the desired boundary. This interactive selection is the essence of the live-wire and is at the heart of
Intelligent Scissors.

The remainder of this paper details previous optimal boundary based techniques, the Intel-
ligent Scissors tool, and presents both qualitative (visual) and quantitative (timing, accuracy, and

reproducibility) results obtained with the Intelligent Scissors segmentation tool.
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Figure 1: Selected frames from an example live-wire segmentation where both the object boundary extracted
and the background are complex. The red dots are seed points, the green crosshair is the free point, the blue
contour segments correspond to portions of the “set” boundary, and the yellow contour segment is the live-
wire boundary segment. (a-c) Selected frames from the first couple of seconds of the interactive segmentation
process. (d-f) Selected frames from the last couple of seconds of the process. (g) The final object boundary
contains 2348 pixels. (Image size: 84Q0)
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2. Previous Work in Optimal Boundary Detection

Among the global boundary based techniques, graph searching and dynamic programming
are popular techniques used to find the globally “optimal” boundaries based on some local cost
criteria [2,7,8,20-23]. They formulate the boundary finding problem as a directed graph or cost
functional to which an optimal solution is sought.

Montanari [21] was perhaps the first to apply a global optimization algorithm to boundary
detection in images. He proposes “a technique for recognizing systems of lines” based on
dynamic programming to minimize a heuristic “figure of merit” or cost function and develops a
figure of merit for low curvature lines based on image intensity, path curvature and path length.
The algorithm detects a line (with local variations) in an artificial image even when the line is
hardly visible due to noise.

Ballard and Sklansky [2] extend Montanari’s algorithm by using gradient magnitude, gra-
dient direction and a closure measure in their evaluation function. They use dynamic program-
ming with directed searching to detect circular tumors in chest radiographs.

Chien and Fu [8] argue that Ballard and Sklansky’s decision function is “too specifically
designed for one type of application” and develop a more general “criterion” function which has
both local (e.g., gradient) and global (e.g., curvature) components. They minimize the criterion
function using a modified decision tree search and apply their technique to determine cardiac
boundaries in chest x-rays.

Martelli [20] shows that any optimization problem using dynamic programming can be
formulated as a shortest or minimum cost path graph search. He applies Nilsson’s [27] A* heuris-
tic graph search algorithm to the boundary detection problem where the heuristic is used to prune
the search and thereby reduce computation. His technique successfully identifies multiple touch-
ing objects and occluded boundaries in artificial images with Gaussian noise.

Cappalletti and Rosenfeld [7] also use Nilsson’s A* algorithm with searching constraints
to extract closed, two-dimensional boundaries in each slice of a three-dimensional volume. The

local cost is a function of the three-dimensional gradient with an additional distance cost from any
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contour in a neighboring slice. Graph searching is applied iteratively, both in 2-D and 3-D, to
improve the boundary in each iteration.

Udupa [28] formulates optimal two-dimensional boundary finding as a graph search using
dynamic programming. Like Martelli [20], he formulates the image grid as a directed graph where
pixel corners are nodes and the cracks between pixels are directed arcs. Unlike previous
approaches, his formulation does not impose any sampling constraints on the boundary shape or
searching constraints within the graph search, allowing paths of arbitrary complexity to be
extracted. The algorithm computes cumulative graph node costs in a step-wise dynamic program-
ming fashion until an optimal path is computed from a seed node to every other node within the
image (or some specified region of interest).

Based on Udupa’s formulation, and in collaboration with him, Morse et al. [22,23] present
a boundary finding algorithm which computes a piece-wise optimal boundary given multiple
input control points. Rather than specify constraints and heuristics for a specific problem, this
method utilizes a probabilistic “likelihood” function. Manual training provides specific feature
distributions used to compute Bayesian probabilities. Since the algorithm iterates through the 2-D
likelihood matrix (generated from the input image), the resulting complexityn'%) @bperenis
the image width and height. It is important to emphasize that, unlike the live-wire technique pre-
sented in this paper, the approach in [22,23] is strictly an iterative, non-interactive method for
boundary finding, where a series of user-selected control points are fed into a dynamic program-
ming procedure, requiring a few 10’s of seconds to compute the boundary.

Snakes, active contours, and thin plate models are another global boundary based seg-
mentation techniques that have received a great deal of attention [1,9,10,14,17,18,30]. Active
contours are initialized manually with a rough approximation to a boundary of interest and then
allowed to iterate over the contour to determine the boundary that minimizes an energy functional.

Kass, Witkin, and Terzopoulos [17,18] introduced a global minimum energy contour
called “snakes” or active contours. Given an initial approximation to a desired contour, a snake

locates the closest minimum energy contour by iteratively minimizing an energy functional which
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combines internal forces to keep the active contour smooth, external forces to attract the snake to
image features, and constraint forces which help define the overall shape of the contour. The con-
straint forces are applied by interactively attaching “springs” to points on the contour which pull
on the contour or by placing “volcanoes” (high energy peaks) which repel the contour. Points of
high curvature can be specified since curvature weights are parametric. The energy minimization
is performed via variational calculus.

Amini, Weymouth, and Jain [1] show that variational calculus used by Kass et al. may be
subject to relative (local) minima, that it cannot enforce hard (non-differentiable) constraints, that
it may be numerically unstable for discrete, noisy data, and finally that it may oscillate. They
present an active contour algorithm with a similar energy functional but use dynamic program-
ming to minimize the functional rather than variational calculus.

Williams and Shah [30] claim that the dynamic programming technique of Amini et. al. is
too time and memory expensive, beinmﬁﬁ) for both. They propose a locally optimal technique
that minimizes the energy functional local to each contour point. This results in faster iterations
but may require more iterations to converge. Their results compared well to the variational calcu-
lus technique when applied to contrived images that contained strong, well defined edges and sim-
ple object shapes.

Daneels et al. [10] compare the active contour methods presented by Kass et al., Amini et
al., and Williams and Shah in terms of iteration speed, number of iterations, and quality of results.
They then propose a two-stage technique that uses the greedy algorithm presented by Williams
and Shah for quick initial convergence followed by a few iterations of the slower dynamic pro-
gramming technique (optimized by alternating search neighborhoods and dropping “stable”
points) for improved quality.

Geiger et al. [14] apply dynamic programming to detect deformable contours. They use a
noniterative technique that searches for the optimal contour within a large neighborhood around
the initial contour. They utilize a multi-scale technique to achieve greater processing efficiency

while sacrificing guaranteed optimality. Like Kass et. al. [17,18], they apply deformable contours
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to the detection of object boundaries, tracking object boundaries over time, and matching object
boundaries in stereo pairs.

Cohen and Kimmel [9] utilize a shortest path approach (similar to [11]) to detect the glo-
bal minimum of an active contour’s energy between two points. Like [14], their approach does not
iterate over the contour, but rather they find the single, globally optimal solution for all paths con-
necting two points, thereby reducing initialization time. They compute a “surface of minimal
action” from one poinpg to every other point in the image then employ gradient descent to deter-
mine an optimal path from the another fixed pgmt,They can also detect closed boundaries in
an image given a single boundary point by determining minimal saddle points in the surface.

The methods discussed thus far follow a pattern of user input--whether through defining a
figure of merit, a decision function, a 2-D template, or an initial active contour, etc.--to initialize
the algorithm, followed by contour selection based on the input, for the graph searching tech-
niques, or contour refinement of the input, for active contour techniques. If the resulting contour is
not satisfactory, this may in turn be followed by one or more iterations of user input (to adjust
parameters, change the figure of merit, input a new initial active contour, locally modify an exist-
ing contour or energy landscape, etc.) and reapplication of the algorithm.

This cycle exists because the previous algorithms often compute a single contour based on
the user input. An alternative approach would be to compute multiple candidate contours (or con-
tour segments) and then let the user select the desired contour interactively from the candidate set.
With the possible exception of [9], such an approach would be problematic for most of the active
contour models since they require an initial contour (or a piece of one [10]) on which to iterate.
On the other hand, the graph searching methods have the inherent capability to compute an opti-
mal path to multiple destination nodes. In terms of image space, such algorithms can compute an
optimal path from a start point to many, if not all, pixels specified within a sampling window (as
defined by any geometric heuristics or 2-D templates). Unfortunately, previous graph searching
techniques typically limit the utility of the optimal computation by requiring goal nodes to be

specifieda priori.
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The interactive optimal path selection algorithm, or live-wire technique, was developed as
a general image segmentation tool which takes advantage of the multiple optimal paths generated
by graph searching techniques. The live-wire technique was developed to overcome the limita-
tions of [22,23]. Although [22,23] use dynamic programming to compute unrestricted optimal
paths from every grid point in the image to every other grid point, it still suffers from the same
iterative, non-interactive style as previous graph searching boundary finding methods in that the
user inputs a series of control points which are then connected with piece-wise optimal segments
into a single contour. There is no immediate feedback to indicate where, or how far apart to place
the seed points on the boundary. Consequently, multiple iterations, requiring input of multiple
control points is typical with this technique.

The live-wire technique eliminates the guess work of previous “batch mode” seed point
placement methods by providing immediate, interactive feedback of the optimal boundary seg-
ment as the user places each point. Both the concept of interactive optimal path selection and the
term “live-wire” had their origin at Brigham Young Univ. in Jan. 1992. A working prototype of
the live-wire tool was demonstrated to Udupa in Feb. 1992 [4]. Each group pursued separate
implementations independent of each other which were subsequently presented almost concur-
rently in conference proceedings [24,29]. Continued independent development of the live-wire
algorithm appears in various conference proceedings [5,12,25] as well as a Master’s thesis [26].

While Intelligent Scissors and the live-wire algorithm has been published previously
[5,6,24,25], it has been in limited form due to page limitations. Thus, the purpose of this paper is
to present the full details of Intelligent Scissors: the local cost functional (with on-the-fly train-
ing), the efficient implementation of Dijkstra’s optimal graph search [11], and especially the inter-
active live-wire optimal path selection tool (with cursor snap and path cooling). Further, this paper
presents quantitative timing, accuracy, and reproducibility results and compares them to manual

tracing.
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3. Intelligent Scissors

The underlying mechanism for Intelligent Scissors is the “live-wire” path selection tool.
The live-wire tool allows the user to interactively select the desired optimal path from the entire
collection of optimal paths (one for each pixel in the image) generated from a specified seed point.
The optimal path from each pixel is determined at interactive speeds by computing an optimal
spanning tree of the image using an efficient implementation of Dijkstra’s graph searching algo-
rithm. The basic idea is to formulate the image as a weighted graph where pixels represent nodes

with directed, weighted edges connecting each pixel with its 8 adjacent neighbors.

3.1 Local Costs
If p andq are two neighboring pixels in the image th@mn q) represents the local cost on
the directed link (or edge) fromto g. The local cost function is a weighted sum of component

cost functions on each of the following image features:

Image Feature Formulation
Laplacian Zero-Crossing f;
Gradient Magnitude fo
Gradient Direction o
Edge Pixel Value fp
“Inside” Pixel Value f|
“Outside” Pixel Value fo

Combining these feature components into a local cost function gives

I(p, a) = w; Of ;(0) + g Of () + wp, Of p(p, @) + wp Of p(a) + 0oy O () + 005 Of () (1)
where eaclw is the weight of the corresponding feature function. Empirically (and by default),
weights ofw; = 0.3, = 0.3,wp = 0.1,wp = 0.1, = 0.1, andwg = 0.1 seem to work well in a
wide range of images. However, these weights can be easily adjusted.

The Laplacian zero-crossinfy, and the two gradient featurdg,andfp, have static cost

functions. Static costs can be computed without ayiori information about image content.
The gradient magnitudég, and the three pixel value componerigsf,, andfg, (“inside” and
“outside” features are introduced in [12,29]) have dynamic cost functions. (Notk; tisathe
only cost feature that has both static and dynamic components.) Dynamic costs can be computed

only after training [3] (discussed in Section 3.1.6). Since a meaningful static cost funcfign for
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f,, andfg could not be formulated, they have meaning only after training. As a result, if training is
turned off or if no training data is available, the weight$gai, andfs are zero.

The Laplacian zero-crossindy, and the gradient magnitudg;, are edge operators
employing image convolution with multi-scale kernels. This allows the cost functions for these
features to adapt to a variety of image types by automatically selecting, on a pixel by pixel basis,
the kernel width that best matches the line-spread function of the imaging hardware used to obtain
the current image [13,16].

3.1.1 Laplacian Zero-Crossing )

The primary purpose of the multi-scale Laplacian zero-crossing comptnesnfpor edge
localization [13,19]. As mentioned, multiple kernel widths are used, each corresponding to a dif-
ferent standard deviation for the 2-D Gaussian distribution. The kernels are normalized such that
the sum of their positive elements (or weights) are equal. This is done so that comparisons can be
made between the results of convolutions with different kernel sizes. The standard deviations used
to compute Laplacian kernels vary from 1/3 of a pixel (producing a 5x5 kernel) to 2 pixels (giving
a 15x15 kernel) in increments of 1/3 of a pixel. The kernels are large enough to include all kernel
elements which are nonzero when represented as 16 bit fixed-point values. Multiple kernel sizes
are used because smaller kernels are more sensitive to fine detail while larger kernels suppress
noise. By default, kernel sizes of 5x5 and 9x9 are used and seem to work well in a variety of
images. However, for low contrast, low SNR images, larger kernel sizes can be easily used.

The Laplacian zero-crossing is used to create a binary local cost feature. If a pixel is on a
zero-crossing then the component cost for all links to that pixel is low; otherwise it is high. That

is, if 1. () is the Laplacian of the original imadgeat a point or pixed}, then

~ 0, ifl (g) =0
fz(a) = El; if 1_(q) %0 @

However, a discrete Laplacian image produces very few, if any, actual zero valued pixels. Rather,
a zero-crossing is represented by two neighboring pixels with opposite sign. Of the two pixels, the
one that is closest to zero is chosen to represent the zero-crossingt;Tiaus for Laplacian

image pixels that are either zero or closer to zero than any neighbor with an opposite sign; other-
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Figure 2: (a) Optimal path with and (b) without the binary Laplacian zero-crossing local cost feature.

wise,f; is 1. The four horizontal/vertical neighbors of a pixel constitute the neighborhood used to
determine the zero-crossing. This creates a single pixel wide cost “canyon” and results in bound-
aries “snapping” to and localizing object edges.

Figure 2 demonstrates the difference between globally optimal boundaries defined with
and without the zero-crossing feature. Notice how the optimal path defined with the zero-crossing
cost canyon follows the corkscrew more tightly than does the path without the binary feature.

Since multiple kernels can be used in the formulatiofy,dhen each binary cost feature
resulting from a given kernel width (or standard deviation) has a weight which contributes to the
component feature cost. That is, the zero-crossing cost feature is the weighted sum of the binary
zero-crossing maps computed for each kernel size used where the sum of the kernel weights is
unity. (Default values are 0.45 for the 5x5 kernel and 0.55 for the 9x9 kernel). Therefore, a given
pixel's zero-crossing feature co8f, is zero if and only if the Laplacian from each kernel gives a
zero-crossing at that pixel and it is 1 if and only if all Laplacian outputs do not have a zero-cross-
ing at that pixel, otherwise Ofs < 1.

3.1.2 Multi-Scale Gradient Magnitude €g)

Since the Laplacian zero-crossing creates a binary fegtwlees not distinguish between
a “strong” or high gradient edge and a “weak” or low gradient edge. Gradient magnitude, how-
ever, is directly proportional to the image gradient. The gradient magnitude is computed by
approximating the partial derivatives of the imag& andy using derivative of Gaussian kernels

of various scales. This gives the horizontgland the vertical,, partial gradient magnitudes of

2

y How-

the image. An image’s gradient magnit@e&an then be approximated By = I)z( +1
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ever, the static gradient magnitude cost feature needs to be low for strong edges (high gradients)
and high for weak edges (low gradients). Thus, the static cost feature is computed by subtracting
the gradient magnitude image from its own maximum and then dividing the result by the maxi-
mum gradient (to scale the maximum cost to 1 prior to multiplying by the feature wgjgfithe

resulting static feature cost function is

_maxG')-G" _ G'
G~ maxG) 1_max(G’) (3)

whereG” = G - min(G) for G computed above, giving an inverse linear ramp function.

As with the Laplacian zero-crossing, multiple kernel sizes are used to compute the gradi-
ent magnitude feature cost. Also, each kernel is normalized such that the sum of positive kernel
values is equal for all kernel widths. This is done for the same reason as for the Laplacian kernels:
so direct comparisons can be made between the results obtained from different kernel sizes.

Unlike the results of the multiple Laplacian kernels, the multiple gradient magnitude ker-
nel results are not simply combined in a weighted linear fashion. Instead, the result for the kernel
that “best” approximates the natural spatial scale of each particular edge, on a pixel by pixel basis,
is used. Best match is estimated in one of two ways. First, the kernel size giving the largest gradi-
ent magnitude at a pixel is the kernel size used at that pixel. Or second, the Laplacian kernel pro-
ducing the steepest slope at the zero-crossing corresponds to the best gradient magnitude kernel
size for that point. By default, the second technique, based on the Laplacian kernel, is used to
determine the best kernel size, but the first method can be specified (for low contrast, low SNR
images where the zero-crossing information is noisy and unreliable).

Figure 3 shows the two gradient magnitude images obtained from Fig. 13(a) using both
techniques for determining the best kernel size. Fig. 3(a) was computed by convolving every pixel
with the gradient magnitude kernels for each kernel size and keeping the result that produced the
largest magnitude. Fig. 3(b) uses the maximum Laplacian zero-crossing slope to determine which
size of gradient magnitude kernel to apply at each pixel. Since the second technique only pro-
duces output for zero-crossing pixels, those pixels that do not correspond to a zero-crossing use,

by default, the smallest (3x3) gradient magnitude kernel to provide a complete gradient map.
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Figure 3: (a) Gradient image of Fig. 4.2(a) obtained by convolving each pixel with the gradient magnitude
kernel that produced the largest magnitude. (b) Gradient image obtained by convolving with the gradient
magnitude kernel size that produced the largest Laplacian zero-crossing slope.

3.1.3 Gradient Direction (p)

The gradient direction or orientation adds a smoothness constraint to the boundary by
associating a relatively high cost for sharp changes in boundary direction. The gradient direction
is simply the direction of the unit vector definedipgndly. Therefore, lettingd(p) be a unit vec-
tor of the gradient direction at a poiptand definingD'(p) as the unit vector perpendicular
(rotated 90 clockwise) taD(p) (i.e., forD(p) = [I(p). Iy(P)], D'(p) = [Iy(P), -Ix(P)]), then the for-

mulation of the gradient direction feature cost is

fo(p ) = é?,—T{ acodd,(p. q)] + acogd(p, o)1} (4)
where
do(p, ) = D'(p) L(p, q) )
dy(p, a) = L(p,q) (D'(q)
are vector dot products and
—p; if D’ -p) =0
L(p.q) = —L_ =P if D'(p)Ha—p)2 ®

Tp—difp-q; if D'(p) a- p) <O
is the normalized bidirectional link or unit edge vector between pxalsdq and simply com-
putes the direction of the link betwegandq such that the difference betwegeand the direction

of the link is minimized. Links are either horizontal, vertical, or diagonal (relative to the position
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Figure 4: Three example computations gf (é) The gradient directions of the two pixels are similar to
each other and the link between them, (b) the pixel directions are similar to each other but are near perpen-
dicular to the link between them, and (c) neither the pixel directions nor the link between them are similar.

of g in p’'s neighborhood) and point such that the dot produ€r'@) andL(p,q) is positive (i.e.,

the angle betweed'(p) and the link< T/ 2), as noted in (6) above. Figure 4 gives three example
computations ofp. The main purpose of including the neighborhood link direction is to associate
a high cost with an edge between two neighboring pixels that have similar gradient directions but
are perpendicular, or near perpendicular, to the link between them (Fig. 4(b)). Therefore, the
direction feature cost is low when the gradient direction of the two neighboring pixels are similar
to each other and the link between them (Fig. 4(a)).

3.1.4 Pixel Value Featuresfg, f, fp)

As mentioned, the pixel value feature costs only have meaning after training. Edge pixel
values are simply the scaled source image pixel values directly beneath the portion of the object
boundary used for training. Since typical gray-scale image pixel values range from 0 to 255, then
the edge pixel value for a pixelis given by the scaling function

fo(p) = 52 (P) ™)

wherel(p) is the pixel value of the source imagepailhe “inside” and “outside” pixel values
[12,29] are also taken (and scaled) directly from the source image, but they are sampled at some
offset from the defined object boundary. More specifically, the inside pixel value for a given point

or pixelp is sampled a distand¢efrom p in the gradient direction and the outside pixel value is
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sampled an equal distance in the opposite direction. Thus, the formulation for the inside pixel

value,f|(p), and the outside pixel valuig(p), for a given pixep is

f(p) = 52! (p+KD(p)) ®)

and
fo(P) = 5e2l (P—KD(p)) ©)

whereD(p) is the unit vector of the gradient direction as defined in section 3.1Biamither a
constant distance value (as determined by the user) or corresponds to a distance 1 pixel larger than
half of the optimal kernel width at pixpl Since the resulting sampling position for the inside and
outside features will typically not correspond to a pixel’'s exact center, the value can be taken as
the closest pixel (default) or bilinearly interpolated from each of the four surrounding pixels.
3.1.5 Color

Computing the local cost for color images varies slightly for most of the local cost fea-
tures. Both the Laplacian zero-crossing and the gradient magnitude are computed by processing
each of the three color bands (in RGB color space) independently and combining the results by
maximizing over the three respective outputs to produce a single valued local cost image for each
feature. Since the Laplacian zero-crossing is a binary feature, a bitwise OR operator achieves the
same result as does computing the maximum of the three outputs. The pixel value features,
andfg, are currently computed by taking the brightness (in the HSB color space) of the corre-
sponding pixel. The gradient direction computation is unchanged for color images.
3.1.6 On-the-fly Training

Often, an object boundary may not consist of “strong” edge features. For example, Figure
5(a) shows a CT scan of the heart where the boundary of the left ventricle (labelled) has a low gra-
dient magnitude--especially when compared to the much higher gradient magnitude (right of the
ventricle) of the heart’s nearby outer boundary. Figure 6 compares the histograms of the gradient
magnitude values sampled from boundary points on both the left ventricle and outer heart wall
and then shows how the static gradient magnitude cost map favors the higher gradient values by

mapping them to relatively lower costs. As a result, when trying to track the right boundary of the
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Figure 5: (a) CT scan of the heart. (b) Untrained live-wire
segment (cuts across corner of left ventricle). (c) Short
boundary segment and untrained live-wire segment (snaps to
the stronger gradient of the outer heart wall). (d) Live-wire
segments (including closing segment) trained on selected
boundary segment. Notice that the short training segment is
all that is needed to completely define the left ventricle
boundary.

(d)

ventricle, the optimal boundary “snaps” to the lower cost outer heart boundary rather than follow
the desired higher cost ventricle boundary. Further, since the ventricle boundary’s gradient magni-
tude is relatively low (corresponding to a relatively high static feature cost) then the short, high
local cost path that cuts across the upper-left corner of the ventricle produces a cumulative lower
cost than the desired longer, slightly lower local cost path around the corner. Both of these prob-
lems are resolved when the gradient magnitude feature cost function is determined dynamically
from a sample of the desired boundary (static training as applied to boundary finding is introduced
in [3]). Figure 6(c) shows a dynamic gradient magnitude cost map created from the histogram of
the sampled left ventricle boundary points. Notice how it favors gradient magnitude values similar

to those sampled from the left ventricle boundary.
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Cost

Training allows dynamic adaptation of certain cost feature functions based on a sample
boundary segment. Training is performed dynamically as part of the boundary segmentation pro-
cess. Trained features are updated interactively as an object boundary is being defined. This elim-
inates a separate training phase and allows the trained feature cost functions to adapt within the
object being segmented as well as between objects in the image. Figure 5(d) demonstrates how
training was effective in isolating the weaker left ventricle edge to completely define the ventri-
cle’s boundary with a single short training segment.

To facilitate sampling of edge characteristics, feature value images are precomputed for all
trainable features: the three pixel value featuge§, andfo, and the gradient magnitude feature,

f'c (where f's = G'/max(G") is simply the scaled gradient magnitude). During training, sam-
pled pixel values from these precomputed feature images are used as indices into the correspond-
ing feature histograms. As such, feature value images are computed by simply scaling and
roundingfp, f|, fo, andf'g respectively. Lettingp, 1}, o, andlg be the feature value images corre-

sponding to the feature cost functidpd,, fo, andf's, respectively, then
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lp = [ (Np—1)fp+0.5]
I, = [(n—1)f, +0.5]
lo = | (No-1)fo+0.5]
lg = [ (ng—=1)f'g+0.5]

compute the feature value images whgsen,, no = 256 andhg = 1024 are the respective histo-

(10)

gram domains (i.e., number of entries or bins). These feature images are sampled to both create
dynamic histograms (which are then scaled, weighted, and inverted to create cost maps) and as
indices into the dynamic feature cost maps when computing link costs.

Selection of a “good” boundary segment for training is made interactively using the live-
wire tool. To allow training to adapt to gradual (or smooth) changes in edge characteristics, the
trained feature cost functions are based only on the most recent or closest portion of the current
defined object boundary. A training length or maximum sampletsiggecifies how many of the
most recent boundary pixels are used to generate the training statistics. A monotonically decreas-
ing weight functionw, determines the contribution from each of the clospstels. The training
algorithm samples the precomputed feature value images along the tlosess of the edge
segment and increments the boundary feature histogram element by the corresponding pixel
weight to generate a histogram for each feature involved in training.

Since training is based on learned edge characteristics from the most recent portion of an
object’s boundary, training is most effective for those objects with edge properties that do not
change drastically (or at least change smoothly) as its boundary is traversed. In fact, training can
be counter-productive for objects with sudden and/or dramatic changes in edge features. However,
the dynamic nature of training allows the user to interactively activate training so that it can be
applied to a section of the object boundary and then deactivate it before encountering a sudden
transition in edge features.

The training length is typically short (32 to 64 pixels) to allow it to adapt to gradual
changes. However, short training segments often result in noisy sampled distributions. Convolv-

ing the boundary feature histograms with a 1-D Gaussian helps reduce the effects of noise.
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After sampling and smoothing, each feature histogram is then scaled and inverted to create
the feature cost map. A maximum local link cddt, specifies the largest integer cost possible
through summation of feature cost components. Each scaled feature’s maximum link cost is the
product of the feature’s weight factos, and the maximum link cost valug, For example, the
maximum gradient magnitude link costNk; = wg * M. These maximum feature cost values are
used as scaling factors when converting the sampled histograms into feature cost maps. Thus, let-
ting hg represent the sampled and smoothed gradient magnitude histogram, the dynamic gradient

magnitude cost mapys, is computed by invertinlyg, scaling and rounding as follows:

max(hz) —h
G = LWMGW'SJ = L ofl- x(hG)D 0.5J (11)

where the division by makg) scales the histogram between 0 and 1 for further scalidddy
The same equation is used for the other dynamic feature costmgaps, andmg, with appro-
priate substitutions dip, h;, andhg for hg andMp, M;, andMg, for Mg.

Gradient magnitude is the only feature cost that has both static and dynamic (trained)
functions. As such, it is often desirable to combine both the static and dynamic functions. One
such case arises whehoundary points are not available for sampling. In such a case the sampled
distribution is even more noisy and less reliable. To overcome this, a scaling length or minimum
sample sizes, determines how many boundary pixels constitute a “reliable” sample. Since a
boundary sample containing fewer thepixels is deemed to contain insufficient data to create a
reliable dynamic gradient magnitude cost map, the static gradient cost function is combined with
the sampled cost mamg. The minimum sample sizg,and the actual number of sampled points,

<t (wheret is the training length or maximum sample size specified previously), are used to
compute a adjusted static gradient magnitude cost which is then combinedwitie gradient
magnitude cost map). Thus, the new, combined gradient magnitude cost'gmémmbining the

static and dynamic gradient magnitude components), is

Fmintns(), LMG[l—();—S—:—E%} + 0.5J% if t_<s w2

Mg (X) , iftg=>s

m'5(x)

I
(|
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wherex=0, 1, .. .ng - 1 is the domain aih'g, Mg is the gradient magnitude scaling factor, and
mg is the sampled gradient magnitude cost map.

Notice that no restriction was placed on the size of the minimum sampkeisizgation
to t; thus, ifs >t then the inverse linear ramp is always present, though not dominant, in the cost
map. Notice further that t§ = O (i.e., no training data is available), thel simply produces the
unadjustedstatic gradient magnitude cost function (an inverse linear ramp). Mfyispmputes
both the static and dynamic gradient magnitude cost functions.

Finally, given as input a connected sequencésqfoints (i.e., pixel positions); for
i=0,1,..1g’1 such thap, # p;, ; anfp;, ;—py < J2 , the training algorithm is as follows:

Algorithm 1: Training on boundary segment.

Input:
tgst {# of boundary points sampled.}
p; fori=0,1,...,t s1 {Connected point sequence.}
o] {Smoothing kernel scale.}

Data Structures:

w {Training weight vector.}
hgh ph ;,h o {Feature histograms.}
Output:
m'cmpm;,mgo {Trained feature cost maps.}
Algorithm:
clear(h @), {Clear all feature histograms.}
clear(h p);
clearth ),
clearth o),
fori=0tot ﬁ-l do begin ] {Sample feature points.}
v=l gp ;) av)=h gv)+w(i);
v=l pofpi); h p(V)=h p(v)+w();
valy(pi)i by (v)=h  (v)+w(i);
v=l op i) h  dv)=h v)+w(i);
end
smooth(h g o), {Smooth histograms by 0.}

smooth(h p, 0);
smooth(h , o),
smooth(h o o),

ms=(1-h gmax(th g)*M g {Scale and invert histograms.}
np=(1-h p/max(h p)*M p
m=(1-h ;/max(h | ))*M

me(1-h max(h M o

ifs>t  gthen {Add in static gradient magnitude map.}
forv=0ton 1 do

m' (v)=min(m 4Vv),floor(M G(1-(x*(s-t IM(n  51)*s))+0.5));
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3.1.7 Static Neighborhood Link Cost

Since training is not available on the Laplacian zero-crossing and gradient direction fea-
tures, these costs are precomputed and combined into a static neighborhood cost map, thereby
avoiding expensive cost computations within the interactive live-wire environment. These com-
bined costs are computed for every link by summing the scaled, rounded local static cost func-
tions. Given a poinf, and any neighboring poirg, the static link cost maps, is

ls(p. @) = [ M f ,(a) +0.5] +| Mp [f 5 (p, @) + 0.5 (13)
whereMz; andMp are the maximum Laplacian zero-crossing and gradient orientation link cost
(similar toMp, M|, M, andMg defined for Eq. (11)). Since there are 8 neighbors for each pixel,
the precomputed static link méag, requires 81 cost values foN image pixels.

3.1.8 Final Local Link Cost

Finally, to compensate for differing distances to a pixel's neighbors, gradient magnitude
costs are weighted by Euclidean distance. The local gradient magnitude costs to horizontal and
vertical neighbors are scaled by/2  and to diagonal neighbors by 1. Thus, the weighting func-

tion wy, for a neighbonq of a pixelp is

El; if Ly(p, @) # 0 O Ly(p g #0
wy(p.a) =071 . _ ~ (14)
a7 if L(p,d) =0 0Ly(p,g =0

whereL, andL, are the horizontal and vertical components of the bidirectional link vector
defined in Eq. (6).

As described in Eqg. (1), the local cost functins a weighted summation of feature cost
functions {, fp, fg, etc.) and ranges from O to 1. However, we create an updated local cost func-
tion,|”, with an integer range between 0 &nd 1 (inclusive) which incorporates training, the pre-
computed static link mafdg and the Euclidean distance weighting function. The resulting,

updated local cost functioh, for a neighboq of a pixelp is

I'(p, @)= Is(p, @) +w(p, a) ' (15(q)) + Mp(1p(Q)) + my(1()) + Mp(lp(@))  (15)
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wherelgis the static link cost in Eq. (13)y is the neighborhood weighting function in Eq. (14),
eachm (or mg) is the corresponding feature’s mapping function generated through training as
defined in Eq. (11) (or Eg. (12)), and e&db the precomputed feature value image for the corre-

sponding feature (Eq. (10)).

3.2 Unrestricted Graph Search

Although this work was motivated by [22,23], it does not utilize either the graph formula-
tion or the optimal path computation [28] described therein. Rather, our graph formulation is pixel
based rather than crack based and we utilize a more efficient optimal graph search algorithm
based on Dijkstra’s [11] algorithm. Note that Nilsson’s A* algorithm [27], utilized in both [20]
and [7], is essentially Dijkstra’s algorithm with an additional heuristic which can be used to prune
the graph search. This paper extends previous optimal graph search boundary finding methods in
3 ways:

1) It imposes no sampling or searching constraints.

2) The active list is sorted with a specializedNDijucket sort (where N is the number of
pixels processed in the image).

3) Noa priori goal nodes/pixels are specified.

First, with the exception of [22,23,28], many of the previous boundary finding techniques that uti-
lize graph searching or dynamic programming impose searching and/or sampling constraints to
reduce the problem size and/or enforce specific boundary properties. This paper imposes no such
constraints, thereby providing object boundaries with greater degrees of freedom and generality.
Second, this paper uses discrete local costs within a range. This permits the use of a specialized
bin sort algorithm that inserts points into a sorted list (called the active list) in constant time.
Finally, since the live-wire tool determines a goal pixel after the fact, the graph search algorithm
must compute the optimal path to all pixels since any one of them may subsequently be chosen--

but this is the key to the interactive nature of the live-wire tool.
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The graph search algorithm is initialized by placing a start or seed §airi a cumula-
tive cost of 0, on an otherwise empty list(called the active list). A poinp, is placed on the
active list in sorted order based on its total or cumulative gmt, All other points in the image
are (effectively) initialized with infinite costAfter initialization, the graph search then iteratively
generates a minimum cost spanning tree of the image, based on the local cost furintesch
iteration, the point or pixgb with the minimum cumulative cost (i.e., the point at the start of the
sorted list) is removed frorh and “expanded” by computing the total cost to eacp'sotinex-
panded neighbors. For each neightpof p, the cumulative cost tpis the sum of the total cost to
p plus the local link cost from to g--that is,gimp = 9(p) + I'(p, 0). If the newly computed total
cost toq is less than the previous cost (i.e.gif, < 9(a)) theng(q) is assigned the new, lower
cumulative cost and an optimal path pointer is set fydrack top. After computing the cumula-
tive cost tgp’'s unexpanded neighbors and setting any necessary optimal path ppirgensrked
as expanded and the process repeats until all the image pixels have been expanded.

The active list is implemented as an array of sublists where the array size is the range of
discrete local costdyl. Each sublist corresponds to points with equal cumulative path cost. As
such, the order of points within a sublist is not important and can be arbitrary. Consequently, the
sublists are singly linked list implementations of stacks.Ll(Bt q denote that a poirg with
cumulative path costis added to the active list in sorted order by pushingto the stack at list
array index = cmodM. If M is a constant power of 2, the modulo operation can be replaced with
a faster bitwiséAND operation resulting in=c AND (M - 1). Thus, adding a point to the active
list requires one bitwis&ND operation to compute the stack index, the corresponding array
indexing operation, and then two pointer assignments to push the point on the stack.

Let N(p) be the set of pixels neighboripgande(p) be a boolean mapping function indi-
cating that a point has been expanded. Furtherpiefq) be the optimal path pointer for the point

g, then the unrestricted graph search algorithm is as follows:

1. The points are simply marked as not yet having a cumulative cost
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Algorithm 2: Unrestricted graph search.

Input:
S {Start (or seed) point/pixel.}
I( pq) {Local cost function for link between pixels pand q.}
Data Structures:
L {List of active pixels sorted by total cost (initially empty).}
N(p) {Neighborhood set of p (contains 8 neighbors of pixel).}
e(p) {Boolean function indicating if p has been expanded/processed.}
alp) {cumulative cost function from seed point to p.}
Output
ptr {Pointers from each pixel indicating the minimum cost path.}
Algorithm:
g(s)=0;, L(0) 1S; {Initialize active list with zero cost seed point.}
while L #0 do begin  {While there are unexpanded points:}
p—min(L); {Remove minimum cost point p from list.}
e( p)=TRUE; {Mark p as expanded (i.e., processed).}
for each q ON(p) such that not e( q) do begin
Imp=9(P)*I'( P, q); {Compute cumulative cost to neighbor.}
if g OL and g ymp,<9(q) then begin {Remove higher cost neighbor }
i=g( q) AND (M-1); g L(); { from list}
end
if g OL then begin {If neighbor not on list,}
a(q)=g tmp’ { assign neighbor’s cumulative cost,}
ptr( q)=p; { set (or reset) back pointer,}
i=g( q) AND (M-1); { compute (new) index into list,}
L@{) 1q; { and place on (or return to) the}
end { active list.}
end

end
This algorithm is implemented twice with different computations for the local linkl'¢psty).
The local link cost'(p, q) does not change from the previous definition if training is applied.

When training is not active, the local link cost function is
I"(p, a)=ls(p, ) + w(p, @) L' g(15(a)) (16)

where the gradient magnitude mapping function is simply computing the static inverse linear
ramp. Using Eq. (16) when training is off provides better computational efficiency in the interac-
tive live-wire environment.

Removing the next minimum cumulative cost point from the sorted list is denoted by
p—min(L) and involves searching the array of sublists for the first sublist with at least one point
on it. The search begins at the index corresponding to the cumulative cost of the last expanded
point and proceeds incrementally, wrapping around to O when the end of the array is reached, until
it finds a non-empty stack index. Specificallycifs the cumulative cost of the last expanded

point, then removing the next minimum cumulative cost pofindm L is given by
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c=c-1; {Decrement c to compensate for increment in loop.}

repeat {Search for next lowest cost non-empty stack:}
c=c+1; { Increment c to next highest cumulative cost.}
i=c AND (M-1); { Compute list array index.}

until L) =0

pt L3); {Pop next minimum cost point of stack i.}

wherept L(i) denotes popping the poipff of the stack at indeixon the list. Obviously, remov-

ing the minimum cost point from the sorted list cannot be done in constant time. In the worst case
(assuming thak is not empty), the search would requiie- 1 iterations to find the next point.
However, assuming that a point is added to the list at any index with equal probability, the analogy
of a snow plow during a storm can be applied for demonstration. If a plow is clearing a circular
path repeatedly during a snow storm, the part of the path with the deepest snow is always just in
front of the plow. Likewise, the active points currently on the sorted list should generally be most
concentrated at indexes just above the index for the cumulative abtéte last point expanded.

Notice that since the active list is sorted, when a new, lower cumulative cost is computed
for a point already on the list, then that point must be removed from the list and added with the
lower costq- L(i) denotes removing the poigtirom the stack at index Like adding a point to
the sorted list, this operation is performed in constant time. Pointers for every pixel keep track of
the location of each point on the active list. The stack index for the point is also already known (by
keeping the cumulative cost for each pixel). Since the order of points on a sublist is not important,
the data for the point being removed is overwritten with the data from the head of the sublist (or
top of stack) and the stack is then popped, thereby preventing the need to search for and reassign
pointers in the single linked list implementation of the stack.

Figure 7 demonstrates how the graph search algorithm creates a minimum cumulative cost
path map (with corresponding optimal path pointers). Figure 7(a) is the initial local cost map with
the seed point circled. For simplicity of demonstration the local costs in this example are pixel
based rather than link based and can be thought of as representing the gradient magnitude cost
feature. Figure 7(b) shows a portion of the cumulative cost and pointer map after expanding the
seed point (with a cumulative cost of zero). Notice how the diagonal local costs have been scaled
by Euclidean distance (consistent with the gradient magnitude cost feature described previously).

Weighting by Euclidean distance demonstrates how the cumulative costs to points currently on the
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Figure 7: (a) Initial local cost matrix. (b) Seed point (shaded) expanded. (c) 2 points (shaded) expanded. (d)
5 points (shaded) expanded. (e) 47 points expanded. (f) Finished cumulative cost and path matrix with two of
many paths (free points shaded) indicated.

active list (bold numbers) can change if even lower cumulative costs are computed from as yet
unexpanded neighbors. This is demonstrated in Figure 7(c) where two points have now been
expanded--the seed point and the next lowest cumulative cost point. Notice how the points diago-
nal to the seed point have changed cumulative cost and direction pointers. The Euclidean weight-
ing between the seed and diagonal points makes them more expensive than horizontal or vertical
paths. Figures 7(d-f) show the cumulative cost/direction pointer map at various stages of comple-
tion. Note how the algorithm produces a “wavefront” of active points and that the wavefront

grows out faster in areas of lower costs.
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3.3 Interactive “Live-Wire”

Once the optimal path pointers are generated, a desired boundary segment can be chosen
dynamically via a “free” point. Interactive movement of the free point by the mouse cursor causes
the boundary to behave like a live-wire as it adapts to the new minimum cost path by following
the optimal path pointers from the free point back to the seed point. Thus, by constraining the seed
point and free points to lie near a given edge, the user is able to interactively wrap the live-wire
boundary around the object of interest. Figure 8 demonstrates how a live-wire boundary segment
adapts to changes in the free point (cursor position) by latching onto more and more of an object
boundary. When movement of the free point causes the boundary to digress from the desired
object edge, interactive input of a new seed point prior to the point of departure reinitiates the
unrestricted graph search expansion. This causes potential paths to be recomputed from the new
seed point while effectively “tying off” the boundary computed up to the new seed point.

Since only one optimal path exists from every pixel (or free point) to the seed point, a
closed boundary surrounding an object of interest cannot be generated with a single seed point. A
minimum of two seed points must be placed to ensure a closed object boundary. The path map
from the first seed point of every object is maintained during the course of an object’s boundary
definition to provide a path from the free point which specifies a closing boundary segment after
two or more seed points are specified. The closing boundary segment from the free point to the

first seed point eliminates the need for the user to manually close off the boundary.

Free Point
Fath

t 8
Current

T
Free Point t ’ -

Figure 8: Example of live-wire snap. As the free point changes via cursor movement, the live-wire segment is
updated and displayed from each free point position. The live-wire segments from three different free points
and the same seed point are shown (two previous paths from free points g tinteg and the current

live-wire path from the free point at timg.t
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Figure 9: (a) With only a single seed point, only a single optimal path is available from a given free point.
(b) However, with an additional seed point, both current and closing live-wire segments are specified to cre-
ate a closed object boundary (in conjunction with the optimal boundary segment between seed points).

Figure 9 illustrates why a minimum of two seed points are necessary to ensure a closed
boundary with the live-wire tool. Fig. 9(a) contains only one seed point and since the free point
only specifies a single pixel, only a single optimal path is specified and drawn. However, with a
minimum of two seed points, a single free point can specify the optimal path back to the most
recent seed point (the current live-wire segment) and the optimal path back to the first seed point
placed for that object (the closing segment).

3.3.1 Cursor Snap

Placing seed points directly on an object’s edge is often difficult and tedious. If a seed
point is not localized to an object edge then spikes results on the segmented boundary at those
seed points. To facilitate seed point placement, a cursor snap is available which forces the mouse
pointer to the maximum gradient magnitude pixel within a user specified neighborhood [15,25].
The neighborhood can be anywhere frorl {resulting in no cursor snap) toXi® (where the
cursor can snap as much as 9 pixels in Bahdy). Cursor snap is interactively computed for a
given neighborhood size by finding, for the current pxebrresponding to the mouse cursor, the
maximum dynamic gradient magnitude pixglwithin p’'s neighborhood. Thus, as the mouse cur-
sor is moved by the user, the free point immediately snaps or jump® i@ a neighborhood

pixel representing a “good” edge point, thereby facilitating placement of subsequent seed points.
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3.3.2 Automatic Seed Point Generation via Path Cooling

While generating closed boundaries around objects of interest can require as few as two
seed points, more than two seed points are often required to accurately define an object’s bound-
ary. Typically, two to five seed points are required for simple boundary definition but complex
objects may require many more. Even with cursor snap, manual placement of seed points can be
tedious and often requires a large portion of the overall time required for boundary definition.

Path cooling relieves the user from placing most seed points by automatically selecting a
pixel on the current active boundary segment to be a new seed point. Selection is based on “path
cooling” which in turn relies on path coalescence. Even though only a single minimum cost path
exists from each pixel to a given seed point, many paths “coalesce” and share portions of their
optimal path with other paths from other pixels. If any two optimal paths from two distinct pixels
share a common point or pixel, then the two paths are identical from that pixel back to the seed
point. This is primarily noticeable if the seed point is placed near an object edge and the free point
is moved away from the seed point but remains in the vicinity of the object edge. Though a new
path is selected and displayed every time the mouse cursor moves, the paths are typically all iden-
tical near the seed point and only change local to the free point. As the free point moves farther
and farther away from the seed point, the portion of the active “live-wire” boundary segment that
does not change becomes longer and longer.

Using boundary cooling, seed points are automatically placed by finding a pixel on the
active live-wire segment that has a “stable” history. Each pixel in the image maintains a count in
milliseconds of how long it has been included in the active boundary (to estimate time on the
active boundary) and also a count of how many times it has been redrawn (to estimate the number
of coalesced paths from distinct free points). The time count provides the live-wire segment with
a sense of “cooling”. The longer a pixel is on a stable section of the live-wire boundary, the more
history it accumulates until it eventually “freezes” and automatically produces a new seed point.
Figure 10 shows how path cooling facilitates boundary definition by automatically generating

seed points for an object boundary.
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Figure 10: With path cooling (and overlap detection), the free point or cursor path (shown in gray) is less
constrained, allowing the user to simply gesture around the object. As the free point moves, the current live-
wire segment (shown in white) cools and freezes, automatically creating a new seed point. The frozen seg-
ment turns blue (shown as black) for user feedback.

The time history is both event and data driven whereas the redraw history is purely event
driven. When the free point changes via mouse movement, each pixel's history is updated on the
previous live-wire segment by following the pointers from the previous free point back to the seed
point and each pixel’s history on the segment is updated. Specifically, each pixel's redraw history
is incremented and the time history is updated by adding to the time both the number of millisec-
onds that the segment was displayed and a scaled gradient magnitude value. The gradient magni-
tude factor is the data driven portion of the time history and causes pixels on strong edge features
to cool more quickly than do those that are not on strong edge features.

Both the time and redraw histories have two thresholds: a lower threshold determines if a
pixel is a “candidate” for automatic selection and an upper threshold determines if the live-wire
segment is “valid”. The first pixel with both counts that satisfies the lower thresholdanslia
date for selection and thérst candidate poinbn the live-wire segment containing a pixel that
meets both upper thresholds (i.evadid live-wire segment) is chosen as the new seed point.

Ideally, automatic seed points would be placed on the object boundary as far from the last
seed point and as close to the current free point as possible. Automatic placement nearer the cur-
rent free point can be achieved with a single, relatively small threshold for both of the history fea-
tures, but a small threshold generates seed points close to manually placed points--since a short
boundary segment near the manual seed point begins to accumulate a history. Consequently, a sin-
gle, small threshold will only allow short live-wire segments to be defined before a new seed point

is automatically created--thus the motivation for an upper threshold. The lower threshold is rela-
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tively small so thatandidateseed points are close to the current free point and the upper thresh-
old is large so thavalid live-wire segments are relatively long. Since a relatively large upper
threshold produces longer live-wire segments, it effectively “pushes” candidate seed points away
from the previous seed point.
3.3.3 Backup

As with many automatic processes made for very general problem sets, such as arbitrary
digital images, seed point generation via path cooling does not always produce seed points on the
desired object boundary. Therefore, the cumulative cost and optimal pointer maps (and other cor-
responding data structures) from old seed points are retained and a backup facility is available if a
seed point is placed incorrectly. When backup is specified, the current seed point is removed along
with the corresponding cumulative cost map, optimal pointer map, etc., and the previous seed
point with its corresponding maps is reinstated as the current active seed point. Backup can be
invoked successively to remove several seed points in the reverse order of their creation.
3.3.4 Interleaving Seed Point Expansion with Interactive Live-Wire

Since live-wire segmentation is an interactive tool, delays and lags in processing mouse
and other events are undesirable. However, expansion of a seed point to compute optimal paths to
every pixel in an image can require several seconds. For a 512x512 image, it requires approxi-
mately 2.8 seconds with training (and 1.5 seconds without training) on a 99 MHz HP 735 Unix
workstation to compute optimal paths from every pixel in the image to a seed point. Waiting for
even one second can become very distracting and counterproductive for such an interactive appli-
cation, especially with path cooling activated. Interleaving seed point expansion with event pro-
cessing virtually eliminates lag and results in acceptable interactivity. Since every pixel inside the
expanding wavefront already has an optimal path, the goal of interleaving is to keep the wavefront
expansion ahead of cursor movement. If the free point moves faster than, and moves outside of,
the expanding wavefront then no path is available and therefore no “live-wire” is displayed until
the wavefront catches up to the cursor position. For example, Figure 11 shows how the wavefront

of pixels on the active list expands out from a selected seed point. In Fig. 11(a), the seed point has
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just recently been placed and the wavefront has just begun to expand out into the image. However,
even though the wavefront is still expanding, cursor events are processed such that the live-wire
boundary is drawn since the cursor position is interior to the wavefront. In Fig. 11(b), the cursor
has moved faster than the expanding wavefront, causing the live-wire boundary to temporarily
disappear since no optimal path information is available outside the wavefront. In Fig. 11(c), the
wavefront has quickly expanded to include the free point; thus, the live-wire optimal path can
again be displayed. Typically, the wavefront expansion quickly envelopes an area of interest (i.e.,
the area of the image where cursor movement is taking place). Consequently, there is rarely any

noticeable disappearance of the live-wire segment.

Free Paoint

Figure 11: Example of interleaved wavefront expansion and event
processing: (a) The seed point has recently been placed and the
wavefront has just begun to expand. (b) While the wavefront is still
expanding, the free point (moving very quickly) has moved outside
the wavefront; as a result, no optimal path information is available
and subsequently, no live-wire boundary segment is displayed. (c)
The expanding wavefront has “caught” up and envelops the free
point, allowing the live-wire optimal path to be displayed interac- |
tively. Since the object of interest (the pocket knife) is completely : 2 Fre= Foint
contained within the wavefront, seed point expansions halts until a =
new seed point is specified or the free point strays outside the

wavefront. k T
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4. Results

Figures 12 to 18 demonstrate the robustness and generality of Intelligent Scissors on a
wide variety of images including real world, color images with complex object boundaries, fore-
grounds, and backgrounds. In Figures 12 through 15, each live-wire boundary (in white) is over-
laid on top of the “ideal” object boundary (in black) for comparison. Thus, black appears only
where the live-wire boundary deviates from the ideal. Figure 12 contains a synthetic test image
which is used to demonstrate how Intelligent Scissors perform in the presence of edge blurring
and white Gaussian noise that may be typical of that produced by a variety of image acquisition
hardware. The ideal boundaries in the synthetic image are determined directly from the original
binary image. Figures 13 to 15 demonstrate how well live-wire segmentation handles grayscale
images acquired with various types of imaging hardware. The ideal boundaries in these images
are meticulously defined and, since there is no direct binary standard for comparison, are neces-
sarily subjective. Finally, Figures 16 through 18 demonstrate Intelligent Scissors utility in defin-
ing complex real world object boundaries in nontrivial scenes.

Figure 12(a) is a synthetic binary image where the different shapes are created to test the
live-wire’s ability to track both curved shapes with varying degrees of curvature (note the comb
pattern in the right object) and polygonal shapes with sharp corners. Gaussian noise and blur are
added to simulate real world images. The boundary definition times for the polygon and curve in

Fig. 12 are 4.3 seconds and 8.3 seconds, respectively.

(@ (b)
Figure 12: (a) Synthetic test image created from a two-color (binary) image by applying Gaussian blur
(0=1.33 pixels) and white, Gaussian noige=16 gray levels). (b) Overlaid “ideal” (black) and live-wire
(white) boundary
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(b)

Figure 13: (a) Desktop image with various objects. (b) Overlaid “ideal” (black) and live-wire (white)
boundaries.

Fig. 13 is an arranged “desktop” scene that, by design, contains difficulties for typical
local edge following algorithms, such as where the pocket knife and the paper-clip holder touch.
Figure 13(b) overlays the manually defined “ideal” boundaries with the live-wire boundaries to
demonstrate how closely the live-wire boundaries match the ideal. The actualrémesed and

number of seed points needed to define each object boundary are as follows:

: Time # of
Desktop Object iy seconds) Seed Points

Paper Clip Holder 3.6 2
Block 24 2
Pocket Knife 4.6 4
Correction Fluid 51 4
Spoon 9.8 8

Figures 14 and 15 demonstrate the live-wire’s functionality on medical images. Fig. 14 is a
CT scan of a spinal vertebrae. The outer boundary of the vertebrae required 5.9 seconds and 5
seed points for live-wire boundary definition. Notice in Fig 14(b) that the live-wire boundary var-
ies noticeably from the “ideal” boundary just right and slightly down of center although the white,

live-wire boundary appears more correct in that area of the vertebrae.

2. Times given are for the actual boundaries presented and represent the best time (from several boundary definitionrattempts) fo
an acceptable boundary.
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@ (b)
Figure 14: (a) CT scan of spinal vertebrae. (b) Overlaid “ideal” (black) and live-wire (white) boundary.

Figure 15(a) shows an angiogram of a coronary vessel. The left boundary is defined in 2.6
seconds with 3 seed points whereas the right side is defined with only a single seed point/free
point pair in 1.9 seconds. As can be seen, the live-wire boundaries agree well with the “ideal”

boundaries.

(a) (b)

Figure 15: (a) Coronary angiogram of coronary artery. (b) Overlaid “ideal” (black) and live-wire (white)
boundary.
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Figure 16: (a) Image of parrots with
nonhomogeneous regions for both the
foreground and background. (b)
Resulting live-wire boundary (in yel-
low) using Intelligent Scissors
required 16.1 seconds (866 boundary
pixels) for the left bird and 17.9 sec-
onds (902 boundary pixels) for the
right bird (Image size: 74¢500).

(b)

Figures 16 through 18 are full color images which demonstrate Intelligent Scissors’ gener-
ality and application to complex, real world scenes and object boundaries. The object boundaries
in these images are not trivial and demonstrate the power and diversity of live-wire segmentation.
As with the horse in Figure 1, the object boundaries in Figures 16 thought 18 contain areas of
strong, well isolated edge features which can be defined with long live-wire segments while other
areas of the same objects require more human guidance (and thereby shorter live-wire segments)
to specify the desired object boundary and isolate it from nearby edge information in either the
background or the foreground. Due to the interactive optimal path selection inherent in Intelligent
Scissors, the user is able to provide only as much guidance as is necessary to define an object

boundary.
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Figure 17: (a) Image of bighorn sheep that contains regions with similar color as that of the background. (b)
Resulting live-wire boundary (in yellow) using Intelligent Scissors required 46.3seconds (1883 boundary
pixels). (Image size: 44840)

@ ‘ (b)

Figure 18: (a) Image of a family sitting in a tree. (b) Resulting live-wire boundary (in yellow) using Intelli-
gent Scissors required 23.2 seconds (1349 boundary pixels). (Image siz€2@80
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4.1 Timing, Accuracy, and Reproducibility

Tables 1 through 4 presents the timing, accuracy and reproducibility (both intra- and inter-
user) for the live-wire segmentation tool and compare it with manual tracing of the same objects.
These results measure the average accuracy and intra-user variability for 8 different users and tab-
ulate the inter-user variability between them as well. Each user spent some time becoming famil-
iar with the live-wire tool and its interface as well as the manual tracing tool. After they felt
comfortable using the two tools, they were asked to manually trace 5 objects 3 times and “live-
wire” the same 5 objects 5 times. The five objects are the polygon and the curved shape in the syn-
thetic test image in Fig. 12(a), the paper clip holder and the pocket knife in the desktop image of
Fig. 13(a), and finally the outer boundary of the spinal vertebrae in Fig. 14(a).

Table 1 presents the average boundary definition time for manually traced and live-wire
boundaries across all users for each object and Table 2 gives the average boundary accuracy for
manual and live-wire boundaries across all users for each object. For objects from the synthetic
image (where the object boundaries are objectively known), the hand-traced and live-wired
boundaries are compared against a Euclidean distance map created directly from the synthetic
image’s original binary image. Boundaries of real world objects are compared against the distance
map created from the “ideal” boundary for each corresponding object. Comparison with the dis-
tance map is performed on a pixel by pixel basis and the statistics are accumulated over all bound-
aries for a given object (and segmentation technique) and over all users.

As can be seen from Tables 1 and 2, the live-wire segmentation performed better in all
cases in terms of time required to define the boundary, mean distance and standard deviation from
the boundary, and the percent of boundary pixels that are less than 1 pixel and 4 pixels away from

the ideal boundary. Since the manual tracing tool can easily define straight line segments, then

Object | (vesWre, ) | Manual Trace
Polygon 11.7 20.9
Curve 25.2 66.3
Paper clip holder 10.0 235
Pocket Knife 13.7 34.8
Spinal Vertebrae 17.0 49.1

Table 1: Average timing comparison between live-wire and manually traced boundaries (all users).
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) Mean | Standard
Object Measure Distance | Deviation
(pixels) | (pixels)
Live-Wire 0.018 0.161 97.55 99.78 99.98
Manual Trace 0.333 0.649 69.14 92.33 99.73
Live-Wire 0.026 0.311 97.12 99.68 99.88
Manual Trace 0.862 1.235 44.62 73.538 97.68
Live-Wire 0.504 1.438 82.90 88.99 95.40

" Manual Trace 1.505 1.257 19.79 55.30 96.11
Live-Wire 0.244 0.716 83.72 93.30 99.58
Manual Trace 1.661 1.314 17.17 48.05 97.38
Live-Wire 0.203 0.861 91.63 95.33 98.15

" Manual Trace 1.608 1.368 19.77 52.70 94.65
Live-Wire 0.172 0.806 92.09 96.15 98.671
Manual Trace 1.157 1.304 35.42 65.66 96.71

Percent | Percent | Percent
Exact | <1 Pixel|< 4 Pixels

Polygon

Curve

-

Paper clip holde

Pocket knife

Spinal vertebra

All objects

Table 2:Accuracy comparison between live-wire boundaries and hand-traced boundaries.
objects with straight segments (such as the polygon) are conceptually easier to define than objects
with curved edges. But even in the case of the polygon, the hand-traced boundaries required, on
the average, almost twice as long to define, and with lower accuracy. Figure 19 is a graphical com-
parison of the average boundary definition times for each object using live-wire and manual trac-
ing while Figure 20 graphs the difference in accuracy between live-wire and hand-traced

boundaries.

. Mean | Standard
Object Measure Distance | Deviation
(pixels) | (pixels)
Live-Wire 0.040 0.280 97.05 99.35 99.91
Manual Trace 0.916 1.006 35.88 78.47 98.63
Live-Wire 0.058 0.451 96.34 99.28 99.75
Manual Trace 1.671 1.664 20.28 53.26 92.85
Live-Wire 0.194 0.945 92.63 96.54 98.45

" Manual Trace 1.311 1.328 24.80 66.20 96.73
Live-Wire 0.118 0.632 93.30 97.83 99.49
Manual Trace 1.359 1.288 25.83 60.71 95.94
Live-Wire 0.079 0.588 95.89 98.81 99.61

" Manual Trace 1.700 1.512 19.32 51.67 92.84
Live-Wire 0.114 0.594 95.46 98.58 99.50
Manual Trace 1.455 1.461 24.10 60.13 94.82

Percent | Percent | Percent
Exact | <1 Pixel|< 4 Pixels

Polygon

Curve

-

Paper clip hold

Pocket knife

™

Spinal vertebra

All objects

Table 3:Intra-user reproducibility comparison between live-wire boundaries and manually traced boundaries.
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Mean | Standard

; : Percent | Percent | Percent
Object Measure I%bsig(%rlge D(%\i’)'(%ﬁ'so)n Exact | <1 Pixel |< 4 Pixels|

Live-Wire 0.046 0.295 96.61 99.25 99.91
Manual Trace 1.060 0.977 28.70 72.1% 98.76
Live-Wire 0.059 0.467 96.37 99.26 99.73
Manual Trace 1.862 1.683 17.99 47.3] 90.44
Live-Wire 0.307 1.204 90.19 94.24 96.84

" Manual Trace 1.416 1.368 24.84 62.00 94.79
Live-Wire 0.144 0.6983 92.22 97.17 99.37
Manual Trace 1.631 1.436 19.60 51.44 93.66
Live-Wire 0.087 0.634 95.63 98.68 99.54

" Manual Trace 1.990 1.634 16.30 43.43 89.75
Live-Wire 0.114 0.700 94.79 8.06 99.20
Manual Trace 1.676 1.539 20.50 52.98 92.99

Polygon

Curve

T

-

Paper clip holde

Pocket knife

Spinal vertebra

All objects

Table 4:Inter-user reproducibility comparison between live-wire boundaries and manually traced boundaries.

Tables 3 and 4 summarize the overall intra- and inter-user reproducibility results respec-
tively. To compute the intra-user reproducibility for a given user and boundary definition tech-
nique (either live-wire or hand-traced), each boundary defined by the user is compared to every
other boundary defined for the same object by the same user. These statistics are gathered for each
object over all users to produce the overall, average intra-user reproducibility statistics. For the
inter-user statistics, each boundary defined with a particular tool (i.e., live-wire or manually
traced) for every user is compared against every boundary for the same object defined by every
other user using the same tool. Figure 21 is a graph comparing the intra- and inter-user reproduc-
ibility between live-wire and hand-traced boundaries. Notice that even the livertareuser
reproducibility is considerably better than tm#ra-user reproducibility for manually traced

boundaries.

4.2 Computational Complexity

Previous graph searching/dynamic programming approaches to boundary detection were
typically computationally expensive. However, by restricting the local costs to integer values
within a range, the graph searching algorithm can take advantage diphuoket sort wherdl

is the number of image pixels for which optimal paths have been computed from the pixel to a
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traced boundary definition times. parison between live-wire parison between live-wire
and hand-traced boundary and hand-traced boundary
accuracy. reproducibility (both intra-

and inter-user).
seed point. As mentioned in Section 3.2, adding points to the sorted active list requires constant
time and removing points requires near constant time. As a result, the algorithm’s computational
complexity’ for N image pixels is G{). This can be seen by examining the algorithm in a worst
case situation. As a pixel is removed from the active list, it is expanded by computing the cumula-
tive cost to all of its neighbors that have not already been expanded. In the worst case, a pixel
computes a cumulative cost to all of its 8 neighbors, resultinly cu&ulative cost computations
for N pixels. However, not every point can be expanded after all of its neighbors have. Except for
the seed point, every point that has a cumulative cost must have at least one neighbor that has
already been expanded. In fact, once an edge between two pixels has been used to compute the
cumulative cost as a result of expanding one of the two pixels, that edge will not be considered
again for a cumulative cost computation. Thus, each edge between pixels is considered only once.

Since each pixel has an edge to each of its 8 neighbors and since each edge is shared by 2 pixels

3. If the wavefront expands to fill an entirem image, themN = nnt otherwiseN < nm
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then the total number of cumulative cost computation®fpixels isgN = 4N , which is still

O(N). Consequently, the graph expansion, when interleaved with interactive event processing, can
compute optimal paths at interactive speeds. As mentioned previously, an HP 735/99 workstation
requires approximately 1.5 seconds to compute untrained optimal paths (using Eq. (16)) from a
seed point to every other pixel in a 512x512 image whereas with training (using Eq. (15)) it

requires approximately 2.8 seconds.
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5. Conclusion and Future Work

This paper has presented an interactive image segmentation tool based on an unrestricted

graph search. The major contributions of this work are:

1) The addition of the Laplacian zero-crossing binary feature cost that improves edge
localization for optimal boundary segments.

2) Due to the ability to add and remove nodes to and from the active list in constant time,
this algorithm is less computationally expensive than traditional graph searching/
dynamic programming based boundary finding approaches.

3) The improved computational speed makes interaction possible during optimal path
generation, allowing for interactive selection of the desired optimal boundary segment
via the live-wire segmentation tool.

4) Cooling helps reduce the need for user input and thereby facilitates and improves the
live-wire’s interactivity.

5) On-the-fly training is unique from traditional training algorithms that have been
applied to boundary definition and allows for training information to be updated and
used dynamically as part of the normal boundary definition process.

It is important to note that the last three contributions are realized only through the second contri-
bution: the ability to generate all the optimal paths at interactive speeds.

In conclusion, when compared to tedious manual tracing, the Intelligent Scissors segmen-
tation tool provides a quicker, more accurate, and more reproducible general purpose tool for
defining object boundaries within images. As such, Intelligent Scissors can, and has been, applied
to medical image volume segmentation, digital image composition, general color and grayscale

image segmentation, and line extraction from scanned documents.

5.1 Future Work

Although Intelligent Scissors have dramatically decreased the time and increased the
accuracy and reproducibility with which boundaries can be extracted, there are opportunities for
extension of this work. Possible additions to the current Intelligent Scissors tool include:

1) Improved training by automatic weight adjustment and feature selection.

2) Subpixel estimation of boundaries for antialiasing.
3) Extending the domain to temporal or spatial sequences of images.
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First, training currently relies on feature cost weights that are set (via command line argu-
ments or default values) when the program is initiated. However, it is likely that the reliability or
importance of the different feature costs change from one object to another. For that matter, each
feature’s strength may change within an object’s boundary. Since training gathers statistics on var-
ious image features, it is possible to adjust feature cost weights based on the variance, standard
deviation, or some other similar measure of the feature distribution. A strong feature would tend
to exhibit a tight clustering (resulting in a low variance) whereas a weak feature would likely pro-
duce a spread or multi-modal distribution. By adjusting the feature weights based on the feature
distributions, the live-wire may be better able to adapt to the current object’s edge features.

Second, the live-wire tool currently creates a single pixel wide object boundary and, for
closed boundaries, assumes that the pixels within the boundary belong to some object of interest.
However, it does not specify if the boundary pixels are themselves part of the segmented object or
not. In fact, it will often be the case that a boundary pixel cannot be classified as simply belonging
to the object or not, rather, a boundary pixel will partially belong to the segmented object and par-
tially belong to the background or some other object. Thus, future research may explore sub-pixel
representations for live-wire boundaries.

Finally, applications such as medical volume imaging and image composition for special
effects in movies need to segment an object (or group of objects) from each 2-D image plane or
frame of a spatial or temporal image sequence. Further work in live-wire segmentation could
include extending the tool to segment objects in 3-space where the third dimension is either spa-
tial or temporal. As such, the local costs may be computed using 3-D convolution kernels and the
current live-wire tool may be extended to a live-wire in 3-space (as opposed to the current restric-
tion in a 2-D plane) or possibly even to a live-surface tool where an optimal surface segment is
selected from a large set of optimal surfaces.

As can be seen, though Intelligent Scissors serve as a useful a general purpose tool for seg-
menting 2-D object boundaries from images of arbitrary content and complexity, there are still
several research areas that could extend and enhance the possibilities of this tool. As such, Intelli-

gent Scissors promise to remain ondb#ing edgeof interactive image segmentation techniques.

(46)



6. References

[1] A. A. Amini, T. E. Weymouth, and R. C. Jain, “Using Dynamic Programming for Solving Varia-
tional Problems in Vision,JEEE Transactions on Pattern Analysis and Machine IntelligekWok
12, No. 9, pp. 855-866, Sept. 1990.

[2] D. H. Ballard and J. Sklansky, “Tumor Detection in Radiograpsimputers and Biomedical
ResearchVol. 6, No. 4, pp. 299-321, Aug. 1973

[3] W. A. Barrett, P. D. Clayton, and H. R. Warner, “Determination of Left Vetricular Contours: A Prob-
abilistic Algorithm Derived from Angiographic Image§bmputers and Biomedical Resdarvol.
13, No. 6, pp. 522-548, Dec. 1980.

[4] W. A. Barrett, Personal communication to J. K. Udupa regarding interactive live-wire optimal path
selection, Feb. 1992.

[5] W. A. Barrett and E. N. Mortensen, “Fast, Accurate, and Reproducible Live-Wire Boundary Extrac-
tion,” in Proceedings of Visualization in Biomedical Computing @6 183-192, Hamburg, Ger-
many, Sept. 1996.

[6] W. A. Barrett and E. N. Mortensen, “Interactive Live-Wire Boundary Extractibtgtiical Image
Analysis Vol. 1, No. 4, pp. 331-341, 1997.

[7]1 J. D. Cappelletti and A. Rosenfeld, “Three-Dimensional Boundary Followibgthputer Vision,
Graphics, and Image Processingpl. 48, No. 1, pp. 80-92, Oct. 1989.

[8] Y.P.Chienand K. S. Fu, “A Decision Function Method for Boundary Detec@omiputer Graph-
ics and Image Processingol. 3, No. 2, pp. 125-140, June 1974.

[9] L. D. Cohen and R. Kimmel, “Global Minimum for Active Contour Models: A Minimum Path
Approach,” inProceedings of IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR ‘965an Francisco, CA, June 1996.

[10] D. Daneels, et al., “Interactive Outlining: An Improved Approach Using Active ContourSPIB
Proceedings of Storage and Retrieval for Image and Video Datgb#se4908, pp. 226-233, San
Jose, CA, Feb. 1993.

[11] E. W. Dijkstra, “A Note on Two Problems in Connexion with GrapNsiterische Mathematikol.
1, pp. 269-270, 1959.

[12] A. X. Falcéo, J. K. Udupa, S. Samarasekera, and B. E. Hirsch, “User-Steered Image Boundary Seg-
mentation,” inProceedings of the SPIE--Medical Imaging 1996: Image Processoig2710, pp.
278-288, Newport Beach, CA, Feb. 1996.

[13] M. M. Fleck, “Multiple Widths Yield Reliable Finite DifferencedEEE Transactions on Pattern
Analysis and Machine Intelligenceol. 14, No. 4, pp. 412-429, April 1992.

[14] D. Geiger, A. Gupta, L. A. Costa, and J. Vlontzos, “Dynamic Programming for Detecting, Tracking,
and Matching Deformable Contour$EZEE Transactions on Pattern Analysis and Machine Intelli-
gence Vol. 17, No. 3, pp. 294-302, Mar. 1995 (CorrectiorP&MI, Vol. 18, No. 5, pg. 575, May
1996)

[15] M. Gleicher, “Image Snapping,” iRroceedings of the ACM SIGGRAPH 95: 22nd International
Conference on Computer Graphics and Interactive Technigped83-190, Los Angeles, CA, Aug.
1995.

[16] H. Jeong and C. I. Kim, “Adaptive Determination of Filter Scales for Edge Detedt#E Trans-
actions on Pattern Analysis and Machine Intelligends. 14, No. 5, pp. 579- 585, May 1992.

(47)



[17]
[18]
[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active Contour ModelsPriteedings of the
First International Conference on Computer Visipp. 259-268, London, England, June 1987.

M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active Contour Modeletnational Journal of
Computer VisionVol. 1, No. 4, pp. 321-331, Jan. 1988.

D. Marr and E. Hildreth, “Theory of Edge DetectioRfoceedings of the Royal Society of Lon-
don--Series B: Biological Sciengé®l. 207, No. 1167, pp. 187-217, Febh. 29, 1980.

A. Martelli, “An Application of Heuristic Search Methods to Edge and Contour DetecGomimu-
nications of the ACMvol. 19, No. 2, pp. 73-83, Feb. 1976.

U. Montanari, “On the Optimal Detection of Curves in Noisy Pictu@srhmunication of the ACM
\Vol. 14, No. 5, pp. 335-345, May 1971.

B. S. Morse,Trainable Automated Boundary Tracking Using Two-Dimensional Graph Searching
with Dynamic ProgrammingMasters Thesis, Department of Computer Science, Brigham Young
University, Provo, UT, Aug. 1990.

B. S. Morse, W. A. Barrett, J. K. Udupa, and R. P. Burfwainable Optimal Boundary Finding
Using Two-Dimensional Dynamic Programmiriiechnical Report No. MIPG180, Department of
Radiology, University of Pennsylvania, Philadelphia, PA, March 1991.

E. N. Mortensen, B. S. Morse, W. A. Barrett, and J. K. Udupa, “Adaptive Boundary Detection Using
'Live-Wire' Two-Dimensional Dynamic Programming,” lBEEE Proceedings of Computers in Car-
diology, pp. 635-638, Durham, NC, Oct. 1992.

E. N. Mortensen and W. A. Barrett, “Intelligent Scissors for Image CompositioRfbreedings of
the ACM SIGGRAPH 95: 22nd International Conference on Computer Graphics and Interactive
Techniquespp. 191-198, Los Angeles, CA, Aug. 1995.

E. N. MortensenAdaptive Boundary Detection Using 'Live-Wire' Two-Dimensional Dynamic Pro-
grammirg. Masters Thesis, Department of Computer Science, Brigham Young University, Provo,
UT, Aug. 1995.

N. J. NilssonPrinciples of Artificial IntelligencePalo Alto, CA: Tioga, 1980.

J. K. Udupa, Personal communication to W. A. Barrett regarding two-dimensional boundary detec-
tion using dynamic programming with graph searching. 1989.

J. K. Udupa, S. Samarasekera, and W. A. Barrett, “Boundary Detection via Dynamic Programming,”
in Proceedings of the SPIE: Visualization in Biomedical Computiny®21808, pp. 33-39, Chapel
Hill, NC, Oct. 1992.

D. J. Williams and M. Shah, “A Fast Algorithm for Active Contours and Curvature Estimation,”
CVGIP: Image Understandind/ol. 55, No. 1, pp. 14-26, Jan. 1992.

(48)



