
Interactive Segmentation with Intelligent Scissors

Eric N. Mortensen

William A. Barrett

Brigham Young University
(1)

-

naccu-

igital

. When

rch in

ound-

ness is

type

rhood.

itional

thereby
Abstract

We present a new, interactive tool calledIntelligent Scissors which we use for image seg

mentation. Fully automated segmentation is an unsolved problem, while manual tracing is i

rate and laboriously unacceptable. However, Intelligent Scissors allow objects within d

images to be extracted quickly and accurately using simple gesture motions with a mouse

the gestured mouse position comes in proximity to an object edge, alive-wire boundary “snaps”

to, and wraps around the object of interest.

Live-wire boundary detection formulates boundary detection as an optimal path sea

a weighted graph. Optimal graph searching provides mathematically piece-wise optimal b

aries while greatly reducing sensitivity to local noise or other intervening structures. Robust

further enhanced withon-the-fly training which causes the boundary to adhere to the specific

of edge currently being followed, rather than simply the strongest edge in the neighbo

Boundary cooling automatically freezes unchanging segments and automates input of add

seed points. Cooling also allows the user to be much more free with the gesture path,

increasing the efficiency and finesse with which boundaries can be extracted.
(2)

e vari-

miauto-

, tracing

from a

level

Scis-

cis-

dary is

ich dif-

ractive

r to

 cost

hus, it

issors

y based

r live-

to

or posi-

.

e gen-

ndary

anged

ptimal
1. Introduction

Fully automatic general image segmentation is an unsolved problem due to the wid

ety of image sources, content, and complexity and hence, has given way to a variety of se

mated approaches, initialization schemes, etc. In many cases, manual segmentation (i.e.

the object boundary) is still widely used when an image component must be segmented

complex background. For this reason intelligent segmentation tools which exploit high

visual expertise but require minimal user interaction become appealing.

This paper details an interactive, digital image segmentation tool called “Intelligent

sors” which allows rapid object extraction from arbitrarily complex backgrounds. Intelligent S

sors formulates boundary finding as an unconstrained graph search [11] in which the boun

represented as an optimal path within the graph. The main advantage of this technique, wh

ferentiates it from previous optimal boundary based segmentation techniques, is the inte

“live-wire” tool, developed in our lab in January of 1992. The live-wire tool allows the use

interactively select an optimal boundary segment by immediately displaying the minimum

path from the current cursor position to a previously specified “seed” point in the image. T

is the method and style of interaction which fundamentally distinguishes our Intelligent Sc

technique from previous work in optimal boundary detection.

Some boundary based segmentation techniques compute a single optimal boundar

on some initial template or contour. Rather than decide on a single optimal boundary, ou

wire technique computes, at interactive speed, an optimal path from a selected seed point every

other point in the image and lets the user choose, interactively, based on the current curs

tion, the path which visually corresponds best to a segment of the desired object boundary

To minimize user interaction required in manual seed point selection, seed points ar

erated automatically along a current active boundary segment via boundary “cooling”. Bou

cooling occurs when a section of the current interactive portion of the boundary has not ch

recently and consequently “freezes”, depositing a new seed point, while reinitiating the o

path expansion.
(3)

 also

ented

adjust

object

couple

 end of

pproxi-

enta-

hored”

 free to

 from a

oves,

tion of

heart of

e Intel-

y, and
Training on boundary characteristics (gradient magnitude, image intensity, etc.) is

added. To allow the algorithm to adapt to different types of edges, training is implem

dynamically rather than having a separate training phase. This allows the live-wire tool to

to changing boundary characteristicsduring segmentation.

Figure 1 demonstrates how live-wire segmentation is used to extract a complex

boundary from a nontrivial background. Figures 1(a-c) show selected frames from the first

of seconds of the interactive segmentation process while Figures 1(d-f) are frames near the

the process. Fig. 1(g) is the completed boundary. The entire boundary was defined in a

mately 45 seconds. Fig. 1 also provides a feel for the interactive style of the live-wire segm

tion process. Notice in frames (a) through (f) that a seed point (shown as a red dot), is “anc

to the boundary of the object and that another point (indicated by the green cross hairs) is

move around the image. Since a globally optimal path is computed at interactive speeds

seed point to every other point in an image, that path is displayed as the “free” point m

thereby allowing the user to interactively select an optimal path that corresponds to a por

the desired boundary. This interactive selection is the essence of the live-wire and is at the

Intelligent Scissors.

The remainder of this paper details previous optimal boundary based techniques, th

ligent Scissors tool, and presents both qualitative (visual) and quantitative (timing, accurac

reproducibility) results obtained with the Intelligent Scissors segmentation tool.
(4)

ed
lue

e-
tion
ry
Figure 1: Selected frames from an example live-wire segmentation where both the object boundary extract
and the background are complex. The red dots are seed points, the green crosshair is the free point, the b
contour segments correspond to portions of the “set” boundary, and the yellow contour segment is the liv
wire boundary segment. (a-c) Selected frames from the first couple of seconds of the interactive segmenta
process. (d-f) Selected frames from the last couple of seconds of the process. (g) The final object bounda
contains 2348 pixels. (Image size: 640×420)

(a) (b) (c)

(d) (e) (f)

(g)
(5)

mming

al cost

r cost

dary

ed on

ps a

ength.

ine is

 gra-

gram-

cally

h has

iterion

ardiac

n be

euris-

 prune

 touch-

aints

e. The

m any
2. Previous Work in Optimal Boundary Detection

Among the global boundary based techniques, graph searching and dynamic progra

are popular techniques used to find the globally “optimal” boundaries based on some loc

criteria [2,7,8,20-23]. They formulate the boundary finding problem as a directed graph o

functional to which an optimal solution is sought.

Montanari [21] was perhaps the first to apply a global optimization algorithm to boun

detection in images. He proposes “a technique for recognizing systems of lines” bas

dynamic programming to minimize a heuristic “figure of merit” or cost function and develo

figure of merit for low curvature lines based on image intensity, path curvature and path l

The algorithm detects a line (with local variations) in an artificial image even when the l

hardly visible due to noise.

Ballard and Sklansky [2] extend Montanari’s algorithm by using gradient magnitude,

dient direction and a closure measure in their evaluation function. They use dynamic pro

ming with directed searching to detect circular tumors in chest radiographs.

Chien and Fu [8] argue that Ballard and Sklansky’s decision function is “too specifi

designed for one type of application” and develop a more general “criterion” function whic

both local (e.g., gradient) and global (e.g., curvature) components. They minimize the cr

function using a modified decision tree search and apply their technique to determine c

boundaries in chest x-rays.

Martelli [20] shows that any optimization problem using dynamic programming ca

formulated as a shortest or minimum cost path graph search. He applies Nilsson’s [27] A* h

tic graph search algorithm to the boundary detection problem where the heuristic is used to

the search and thereby reduce computation. His technique successfully identifies multiple

ing objects and occluded boundaries in artificial images with Gaussian noise.

Cappalletti and Rosenfeld [7] also use Nilsson’s A* algorithm with searching constr

to extract closed, two-dimensional boundaries in each slice of a three-dimensional volum

local cost is a function of the three-dimensional gradient with an additional distance cost fro
(6)

D, to

 using

here

revious

hape or

to be

ogram-

in the

sent

ltiple

, this

ture

he 2-D

e pre-

od for

ogram-

ed seg-

 Active

 then

tional.

tour

snake

hich
contour in a neighboring slice. Graph searching is applied iteratively, both in 2-D and 3-

improve the boundary in each iteration.

Udupa [28] formulates optimal two-dimensional boundary finding as a graph search

dynamic programming. Like Martelli [20], he formulates the image grid as a directed graph w

pixel corners are nodes and the cracks between pixels are directed arcs. Unlike p

approaches, his formulation does not impose any sampling constraints on the boundary s

searching constraints within the graph search, allowing paths of arbitrary complexity

extracted. The algorithm computes cumulative graph node costs in a step-wise dynamic pr

ming fashion until an optimal path is computed from a seed node to every other node with

image (or some specified region of interest).

Based on Udupa’s formulation, and in collaboration with him, Morse et al. [22,23] pre

a boundary finding algorithm which computes a piece-wise optimal boundary given mu

input control points. Rather than specify constraints and heuristics for a specific problem

method utilizes a probabilistic “likelihood” function. Manual training provides specific fea

distributions used to compute Bayesian probabilities. Since the algorithm iterates through t

likelihood matrix (generated from the input image), the resulting complexity is O(n3) wheren is

the image width and height. It is important to emphasize that, unlike the live-wire techniqu

sented in this paper, the approach in [22,23] is strictly an iterative, non-interactive meth

boundary finding, where a series of user-selected control points are fed into a dynamic pr

ming procedure, requiring a few 10’s of seconds to compute the boundary.

 Snakes, active contours, and thin plate models are another global boundary bas

mentation techniques that have received a great deal of attention [1,9,10,14,17,18,30].

contours are initialized manually with a rough approximation to a boundary of interest and

allowed to iterate over the contour to determine the boundary that minimizes an energy func

Kass, Witkin, and Terzopoulos [17,18] introduced a global minimum energy con

called “snakes” or active contours. Given an initial approximation to a desired contour, a

locates the closest minimum energy contour by iteratively minimizing an energy functional w
(7)

nake to

he con-

h pull

ints of

ization

ay be

, that

They

gram-

al. is

e

ations

 calcu-

nd sim-

mini et

esults.

illiams

 pro-

table”

 use a

around

iency

tours
combines internal forces to keep the active contour smooth, external forces to attract the s

image features, and constraint forces which help define the overall shape of the contour. T

straint forces are applied by interactively attaching “springs” to points on the contour whic

on the contour or by placing “volcanoes” (high energy peaks) which repel the contour. Po

high curvature can be specified since curvature weights are parametric. The energy minim

is performed via variational calculus.

 Amini, Weymouth, and Jain [1] show that variational calculus used by Kass et al. m

subject to relative (local) minima, that it cannot enforce hard (non-differentiable) constraints

it may be numerically unstable for discrete, noisy data, and finally that it may oscillate.

present an active contour algorithm with a similar energy functional but use dynamic pro

ming to minimize the functional rather than variational calculus.

Williams and Shah [30] claim that the dynamic programming technique of Amini et.

too time and memory expensive, being O(nm3) for both. They propose a locally optimal techniqu

that minimizes the energy functional local to each contour point. This results in faster iter

but may require more iterations to converge. Their results compared well to the variational

lus technique when applied to contrived images that contained strong, well defined edges a

ple object shapes.

Daneels et al. [10] compare the active contour methods presented by Kass et al., A

al., and Williams and Shah in terms of iteration speed, number of iterations, and quality of r

They then propose a two-stage technique that uses the greedy algorithm presented by W

and Shah for quick initial convergence followed by a few iterations of the slower dynamic

gramming technique (optimized by alternating search neighborhoods and dropping “s

points) for improved quality.

Geiger et al. [14] apply dynamic programming to detect deformable contours. They

noniterative technique that searches for the optimal contour within a large neighborhood

the initial contour. They utilize a multi-scale technique to achieve greater processing effic

while sacrificing guaranteed optimality. Like Kass et. al. [17,18], they apply deformable con
(8)

 object

 glo-

es not

 con-

imal

eter-

 in

e.

ning a

alize

 tech-

tour is

djust

exist-

sed on

r con-

ate set.

active

erate.

an opti-

pute an

 (as

rching

 be
to the detection of object boundaries, tracking object boundaries over time, and matching

boundaries in stereo pairs.

Cohen and Kimmel [9] utilize a shortest path approach (similar to [11]) to detect the

bal minimum of an active contour’s energy between two points. Like [14], their approach do

iterate over the contour, but rather they find the single, globally optimal solution for all paths

necting two points, thereby reducing initialization time. They compute a “surface of min

action” from one pointp0 to every other point in the image then employ gradient descent to d

mine an optimal path from the another fixed point,p1. They can also detect closed boundaries

an image given a single boundary point by determining minimal saddle points in the surfac

The methods discussed thus far follow a pattern of user input--whether through defi

figure of merit, a decision function, a 2-D template, or an initial active contour, etc.--to initi

the algorithm, followed by contour selection based on the input, for the graph searching

niques, or contour refinement of the input, for active contour techniques. If the resulting con

not satisfactory, this may in turn be followed by one or more iterations of user input (to a

parameters, change the figure of merit, input a new initial active contour, locally modify an

ing contour or energy landscape, etc.) and reapplication of the algorithm.

This cycle exists because the previous algorithms often compute a single contour ba

the user input. An alternative approach would be to compute multiple candidate contours (o

tour segments) and then let the user select the desired contour interactively from the candid

With the possible exception of [9], such an approach would be problematic for most of the

contour models since they require an initial contour (or a piece of one [10]) on which to it

On the other hand, the graph searching methods have the inherent capability to compute

mal path to multiple destination nodes. In terms of image space, such algorithms can com

optimal path from a start point to many, if not all, pixels specified within a sampling window

defined by any geometric heuristics or 2-D templates). Unfortunately, previous graph sea

techniques typically limit the utility of the optimal computation by requiring goal nodes to

specifieda priori.
(9)

ed as

nerated

 limita-

timal

same

hat the

gments

 place

ultiple

point

y seg-

and the

 of

parate

concur-

e-wire

 [26].

usly

per is

rain-

inter-

paper

anual
The interactive optimal path selection algorithm, or live-wire technique, was develop

a general image segmentation tool which takes advantage of the multiple optimal paths ge

by graph searching techniques. The live-wire technique was developed to overcome the

tions of [22,23]. Although [22,23] use dynamic programming to compute unrestricted op

paths from every grid point in the image to every other grid point, it still suffers from the

iterative, non-interactive style as previous graph searching boundary finding methods in t

user inputs a series of control points which are then connected with piece-wise optimal se

into a single contour. There is no immediate feedback to indicate where, or how far apart to

the seed points on the boundary. Consequently, multiple iterations, requiring input of m

control points is typical with this technique.

The live-wire technique eliminates the guess work of previous “batch mode” seed

placement methods by providing immediate, interactive feedback of the optimal boundar

ment as the user places each point. Both the concept of interactive optimal path selection

term “live-wire” had their origin at Brigham Young Univ. in Jan. 1992. A working prototype

the live-wire tool was demonstrated to Udupa in Feb. 1992 [4]. Each group pursued se

implementations independent of each other which were subsequently presented almost

rently in conference proceedings [24,29]. Continued independent development of the liv

algorithm appears in various conference proceedings [5,12,25] as well as a Master’s thesis

While Intelligent Scissors and the live-wire algorithm has been published previo

[5,6,24,25], it has been in limited form due to page limitations. Thus, the purpose of this pa

to present the full details of Intelligent Scissors: the local cost functional (with on-the-fly t

ing), the efficient implementation of Dijkstra’s optimal graph search [11], and especially the

active live-wire optimal path selection tool (with cursor snap and path cooling). Further, this

presents quantitative timing, accuracy, and reproducibility results and compares them to m

tracing.
(10)

tool.

entire

 point.

ptimal

 algo-

t nodes

n

ent

ult),

.

mputed

for
3. Intelligent Scissors

The underlying mechanism for Intelligent Scissors is the “live-wire” path selection

The live-wire tool allows the user to interactively select the desired optimal path from the

collection of optimal paths (one for each pixel in the image) generated from a specified seed

The optimal path from each pixel is determined at interactive speeds by computing an o

spanning tree of the image using an efficient implementation of Dijkstra’s graph searching

rithm. The basic idea is to formulate the image as a weighted graph where pixels represen

with directed, weighted edges connecting each pixel with its 8 adjacent neighbors.

3.1 Local Costs

If p andq are two neighboring pixels in the image thenl(p, q) represents the local cost o

the directed link (or edge) fromp to q. The local cost function is a weighted sum of compon

cost functions on each of the following image features:

Combining these feature components into a local cost function gives

(1)

where eachω is the weight of the corresponding feature function. Empirically (and by defa

weights ofωZ = 0.3,ωG = 0.3,ωD = 0.1,ωP = 0.1,ωI = 0.1, andωO = 0.1 seem to work well in a

wide range of images. However, these weights can be easily adjusted.

The Laplacian zero-crossing,fZ, and the two gradient features,fG andfD, have static cost

functions. Static costs can be computed without anya priori information about image content

The gradient magnitude,fG, and the three pixel value components,fP, fI, andfO, (“inside” and

“outside” features are introduced in [12,29]) have dynamic cost functions. (Note thatfG is the

only cost feature that has both static and dynamic components.) Dynamic costs can be co

only after training [3] (discussed in Section 3.1.6). Since a meaningful static cost function fP,

Image Feature Formulation
Laplacian Zero-Crossing fZ

Gradient Magnitude fG
Gradient Direction fD
Edge Pixel Value fP

“Inside” Pixel Value fI
“Outside” Pixel Value fO

l p q,() ωZ f Z q()⋅ ωG f G q()⋅ ωD f D p q,()⋅ ω+ P f P q()⋅ ωI f I q()⋅ ωO f O q()⋅+ + + +=
(11)

ng is

these

 basis,

 obtain

 a dif-

ch that

 can be

s used

iving

kernel

l sizes

uppress

iety of

.

is on a

 That

ather,

ls, the

; other-
fI, andfO could not be formulated, they have meaning only after training. As a result, if traini

turned off or if no training data is available, the weights forfP, fI, andfO are zero.

The Laplacian zero-crossing,fZ, and the gradient magnitude,fG, are edge operators

employing image convolution with multi-scale kernels. This allows the cost functions for

features to adapt to a variety of image types by automatically selecting, on a pixel by pixel

the kernel width that best matches the line-spread function of the imaging hardware used to

the current image [13,16].

3.1.1 Laplacian Zero-Crossing (fZ)

The primary purpose of the multi-scale Laplacian zero-crossing component,fZ, is for edge

localization [13,19]. As mentioned, multiple kernel widths are used, each corresponding to

ferent standard deviation for the 2-D Gaussian distribution. The kernels are normalized su

the sum of their positive elements (or weights) are equal. This is done so that comparisons

made between the results of convolutions with different kernel sizes. The standard deviation

to compute Laplacian kernels vary from 1/3 of a pixel (producing a 5x5 kernel) to 2 pixels (g

a 15x15 kernel) in increments of 1/3 of a pixel. The kernels are large enough to include all

elements which are nonzero when represented as 16 bit fixed-point values. Multiple kerne

are used because smaller kernels are more sensitive to fine detail while larger kernels s

noise. By default, kernel sizes of 5x5 and 9x9 are used and seem to work well in a var

images. However, for low contrast, low SNR images, larger kernel sizes can be easily used

The Laplacian zero-crossing is used to create a binary local cost feature. If a pixel

zero-crossing then the component cost for all links to that pixel is low; otherwise it is high.

is, if IL(q) is the Laplacian of the original image,I, at a point or pixelq, then

(2)

However, a discrete Laplacian image produces very few, if any, actual zero valued pixels. R

a zero-crossing is represented by two neighboring pixels with opposite sign. Of the two pixe

one that is closest to zero is chosen to represent the zero-crossing. Thus,fZ is 0 for Laplacian

image pixels that are either zero or closer to zero than any neighbor with an opposite sign

f Z q()
0; if I L q() 0=

1; if I L q() 0≠

=

(12)

ed to

bound-

d with

ossing

e.

e

to the

 binary

ights is

 given

s a

cross-

n

 how-

ed by

ls

f

-

wise,fZ is 1. The four horizontal/vertical neighbors of a pixel constitute the neighborhood us

determine the zero-crossing. This creates a single pixel wide cost “canyon” and results in

aries “snapping” to and localizing object edges.

Figure 2 demonstrates the difference between globally optimal boundaries define

and without the zero-crossing feature. Notice how the optimal path defined with the zero-cr

cost canyon follows the corkscrew more tightly than does the path without the binary featur

Since multiple kernels can be used in the formulation offZ, then each binary cost featur

resulting from a given kernel width (or standard deviation) has a weight which contributes

component feature cost. That is, the zero-crossing cost feature is the weighted sum of the

zero-crossing maps computed for each kernel size used where the sum of the kernel we

unity. (Default values are 0.45 for the 5x5 kernel and 0.55 for the 9x9 kernel). Therefore, a

pixel’s zero-crossing feature cost,fZ, is zero if and only if the Laplacian from each kernel give

zero-crossing at that pixel and it is 1 if and only if all Laplacian outputs do not have a zero-

ing at that pixel, otherwise 0 <fZ < 1.

3.1.2 Multi-Scale Gradient Magnitude (fG)

Since the Laplacian zero-crossing creates a binary feature,fZ does not distinguish betwee

a “strong” or high gradient edge and a “weak” or low gradient edge. Gradient magnitude,

ever, is directly proportional to the image gradient. The gradient magnitude is comput

approximating the partial derivatives of the image inx andy using derivative of Gaussian kerne

of various scales. This gives the horizontal,Ix, and the vertical,Iy, partial gradient magnitudes o

the image. An image’s gradient magnitudeG can then be approximated by . How

(a) (b)

Figure 2: (a) Optimal path with and (b) without the binary Laplacian zero-crossing local cost feature.

G Ix
2

I y
2

+=
(13)

adients)

tracting

maxi-

gradi-

 kernel

ernels:

s.

 ker-

 kernel

l basis,

t gradi-

el pro-

e kernel

sed to

 SNR

 both

y pixel

ced the

 which

ly pro-

ing use,

p.
ever, the static gradient magnitude cost feature needs to be low for strong edges (high gr

and high for weak edges (low gradients). Thus, the static cost feature is computed by sub

the gradient magnitude image from its own maximum and then dividing the result by the

mum gradient (to scale the maximum cost to 1 prior to multiplying by the feature weightωG). The

resulting static feature cost function is

(3)

whereG ́= G - min(G) for G computed above, giving an inverse linear ramp function.

As with the Laplacian zero-crossing, multiple kernel sizes are used to compute the

ent magnitude feature cost. Also, each kernel is normalized such that the sum of positive

values is equal for all kernel widths. This is done for the same reason as for the Laplacian k

so direct comparisons can be made between the results obtained from different kernel size

Unlike the results of the multiple Laplacian kernels, the multiple gradient magnitude

nel results are not simply combined in a weighted linear fashion. Instead, the result for the

that “best” approximates the natural spatial scale of each particular edge, on a pixel by pixe

is used. Best match is estimated in one of two ways. First, the kernel size giving the larges

ent magnitude at a pixel is the kernel size used at that pixel. Or second, the Laplacian kern

ducing the steepest slope at the zero-crossing corresponds to the best gradient magnitud

size for that point. By default, the second technique, based on the Laplacian kernel, is u

determine the best kernel size, but the first method can be specified (for low contrast, low

images where the zero-crossing information is noisy and unreliable).

Figure 3 shows the two gradient magnitude images obtained from Fig. 13(a) using

techniques for determining the best kernel size. Fig. 3(a) was computed by convolving ever

with the gradient magnitude kernels for each kernel size and keeping the result that produ

largest magnitude. Fig. 3(b) uses the maximum Laplacian zero-crossing slope to determine

size of gradient magnitude kernel to apply at each pixel. Since the second technique on

duces output for zero-crossing pixels, those pixels that do not correspond to a zero-cross

by default, the smallest (3x3) gradient magnitude kernel to provide a complete gradient ma

f G
max G′() G′–

max G′()
--------------------------------- 1 G′

max G′()
---------------------–= =
(14)

ary by

rection

r

ition
3.1.3 Gradient Direction (fD)

The gradient direction or orientation adds a smoothness constraint to the bound

associating a relatively high cost for sharp changes in boundary direction. The gradient di

is simply the direction of the unit vector defined byIx andIy. Therefore, lettingD(p) be a unit vec-

tor of the gradient direction at a pointp and definingD'(p) as the unit vector perpendicula

(rotated 90° clockwise) toD(p) (i.e., forD(p) = [Ix(p), Iy(p)], D'(p) = [Iy(p), -Ix(p)]), then the for-

mulation of the gradient direction feature cost is

(4)

where

(5)

are vector dot products and

(6)

is the normalized bidirectional link or unit edge vector between pixelsp andq and simply com-

putes the direction of the link betweenp andq such that the difference betweenp and the direction

of the link is minimized. Links are either horizontal, vertical, or diagonal (relative to the pos

Figure 3: (a) Gradient image of Fig. 4.2(a) obtained by convolving each pixel with the gradient magnitude
kernel that produced the largest magnitude. (b) Gradient image obtained by convolving with the gradient
magnitude kernel size that produced the largest Laplacian zero-crossing slope.

(a) (b)

f D p q,() 2
3π
------ dp p q,()[]acos dq p q,()[]acos+{ }=

dp p q,() D′ p() L p q,()⋅=

dq p q,() L p q,() D′ q()⋅=

L p q,() 1
p q–

q p if D′ p() q p–() 0≥⋅;–

p q if D′ p() q p–() 0<⋅;–

=

(15)

ple

ciate

ns but

re, the

imilar

 pixel

 object

5, then

at some

 point

 is

n-
.

of q in p’s neighborhood) and point such that the dot product ofD'(p) andL(p,q) is positive (i.e.,

the angle betweenD'(p) and the link≤), as noted in (6) above. Figure 4 gives three exam

computations offD. The main purpose of including the neighborhood link direction is to asso

a high cost with an edge between two neighboring pixels that have similar gradient directio

are perpendicular, or near perpendicular, to the link between them (Fig. 4(b)). Therefo

direction feature cost is low when the gradient direction of the two neighboring pixels are s

to each other and the link between them (Fig. 4(a)).

3.1.4 Pixel Value Features (fP, fI , fO)

As mentioned, the pixel value feature costs only have meaning after training. Edge

values are simply the scaled source image pixel values directly beneath the portion of the

boundary used for training. Since typical gray-scale image pixel values range from 0 to 25

the edge pixel value for a pixelp is given by the scaling function

(7)

whereI(p) is the pixel value of the source image atp. The “inside” and “outside” pixel values

[12,29] are also taken (and scaled) directly from the source image, but they are sampled

offset from the defined object boundary. More specifically, the inside pixel value for a given

or pixel p is sampled a distancek from p in the gradient direction and the outside pixel value

p

q

p

q

L L

D′ p() 0.870 0.492,[]=

D′ q() 0.473 0.881,[]=

L p q,() 0.707 0.707,[]=

dp p q,() D′ p() L p q,()⋅ 0.964= =

dq p q,() L p q,() D′ q()⋅ 0.957= =

f D p q,() 2
3π
------ dp p q,()[]acos dq p q,()[]acos+{ }=

0.120=

(a) (b)

D′ p() 0.870 0.492,[]=

D′ q() 0.473 0.881,[]=

L p q,() 0.707 0.707–,[]=

dp p q,() 0.267=

dq p q,() 0.288–=

f D p q,() 0.671=

Figure 4: Three example computations of fD: (a) The gradient directions of the two pixels are similar to
each other and the link between them, (b) the pixel directions are similar to each other but are near perpe
dicular to the link between them, and (c) neither the pixel directions nor the link between them are similar

p

qL

(c)

D′ p() 0.870 0.492,[]=

D′ q() 0.881– 0.473,[]=

L p q,() 0.707 0.707–,[]=

dp p q,() 0.267=

dq p q,() 0.957=

f D p q,() 0.880=

π 2⁄

f P p() 1
255
--------- I p()=
(16)

 pixel

ger than

nd

ken as

.

 fea-

cessing

ults by

or each

ves the

s,

corre-

igure

ow gra-

 of the

radient

rt wall

lues by

of the
sampled an equal distance in the opposite direction. Thus, the formulation for the inside

value,fI(p), and the outside pixel value,fO(p), for a given pixelp is

(8)

and

(9)

whereD(p) is the unit vector of the gradient direction as defined in section 3.1.3 andk is either a

constant distance value (as determined by the user) or corresponds to a distance 1 pixel lar

half of the optimal kernel width at pixelp. Since the resulting sampling position for the inside a

outside features will typically not correspond to a pixel’s exact center, the value can be ta

the closest pixel (default) or bilinearly interpolated from each of the four surrounding pixels

3.1.5 Color

Computing the local cost for color images varies slightly for most of the local cost

tures. Both the Laplacian zero-crossing and the gradient magnitude are computed by pro

each of the three color bands (in RGB color space) independently and combining the res

maximizing over the three respective outputs to produce a single valued local cost image f

feature. Since the Laplacian zero-crossing is a binary feature, a bitwise OR operator achie

same result as does computing the maximum of the three outputs. The pixel value featurefP, fI,

and fO, are currently computed by taking the brightness (in the HSB color space) of the

sponding pixel. The gradient direction computation is unchanged for color images.

3.1.6 On-the-fly Training

Often, an object boundary may not consist of “strong” edge features. For example, F

5(a) shows a CT scan of the heart where the boundary of the left ventricle (labelled) has a l

dient magnitude--especially when compared to the much higher gradient magnitude (right

ventricle) of the heart’s nearby outer boundary. Figure 6 compares the histograms of the g

magnitude values sampled from boundary points on both the left ventricle and outer hea

and then shows how the static gradient magnitude cost map favors the higher gradient va

mapping them to relatively lower costs. As a result, when trying to track the right boundary

f I p() 1
255
--------- I p k D p()⋅+()=

f O p() 1
255
--------- I p k D p()⋅–()=
(17)

follow

magni-

, high

e lower

 prob-

mically

duced

ram of

imilar
ventricle, the optimal boundary “snaps” to the lower cost outer heart boundary rather than

the desired higher cost ventricle boundary. Further, since the ventricle boundary’s gradient

tude is relatively low (corresponding to a relatively high static feature cost) then the short

local cost path that cuts across the upper-left corner of the ventricle produces a cumulativ

cost than the desired longer, slightly lower local cost path around the corner. Both of these

lems are resolved when the gradient magnitude feature cost function is determined dyna

from a sample of the desired boundary (static training as applied to boundary finding is intro

in [3]). Figure 6(c) shows a dynamic gradient magnitude cost map created from the histog

the sampled left ventricle boundary points. Notice how it favors gradient magnitude values s

to those sampled from the left ventricle boundary.

Figure 5: (a) CT scan of the heart. (b) Untrained live-wire
segment (cuts across corner of left ventricle). (c) Short
boundary segment and untrained live-wire segment (snaps to
the stronger gradient of the outer heart wall). (d) Live-wire
segments (including closing segment) trained on selected
boundary segment. Notice that the short training segment is
all that is needed to completely define the left ventricle
boundary.

(a) (b) (c)

(d)
(18)

ample

n pro-

is elim-

ithin the

tes how

entri-

 for all

e,

am-

espond-

g and

e-
Training allows dynamic adaptation of certain cost feature functions based on a s

boundary segment. Training is performed dynamically as part of the boundary segmentatio

cess. Trained features are updated interactively as an object boundary is being defined. Th

inates a separate training phase and allows the trained feature cost functions to adapt w

object being segmented as well as between objects in the image. Figure 5(d) demonstra

training was effective in isolating the weaker left ventricle edge to completely define the v

cle’s boundary with a single short training segment.

To facilitate sampling of edge characteristics, feature value images are precomputed

trainable features: the three pixel value features,fP, fI, andfO, and the gradient magnitude featur

f´G (where is simply the scaled gradient magnitude). During training, s

pled pixel values from these precomputed feature images are used as indices into the corr

ing feature histograms. As such, feature value images are computed by simply scalin

roundingfP, fI, fO, andf'G respectively. LettingIP, II, IO, andIG be the feature value images corr

sponding to the feature cost functionsfP, fI, fO, andf'G, respectively, then

Gradient Magnitude nG-10
0

F
re

qu
en

cy
 (

of
 O

cc
ur

re
nc

e)

Left Ventricle Boundary

Outer Heart Boundary

MG

C
os

t

Gradient Magnitude nG-10
0

Static Cost Map

Dynamic Cost Map

Combined Boundary Histogram

(a) (b)

(c)

Figure 6: (a) Histogram showing the gradient
magnitude of sampled points from the left ventricle
boundary and the outer heart wall boundary in the
image in Fig. 3.5(a). (b) The static gradient magni-
tude cost map shows that without training, high
gradients are favored since they map to lower
costs. However, with training, the dynamic cost
map (c) favors gradients similar to those sampled
from the training boundary segment.

MG

C
os

t
Gradient Magnitude nG-10

0

f′G G′ max G′()⁄=
(19)

-

h create

 and as

 live-

cs, the

current

ecreas-

g pixel

n of an

o not

ing can

owever,

an be

sudden

ual

nvolv-

.

(10)

compute the feature value images wherenP, nI, nO = 256 andnG = 1024 are the respective histo

gram domains (i.e., number of entries or bins). These feature images are sampled to bot

dynamic histograms (which are then scaled, weighted, and inverted to create cost maps)

indices into the dynamic feature cost maps when computing link costs.

Selection of a “good” boundary segment for training is made interactively using the

wire tool. To allow training to adapt to gradual (or smooth) changes in edge characteristi

trained feature cost functions are based only on the most recent or closest portion of the

defined object boundary. A training length or maximum sample size,t, specifies how many of the

most recent boundary pixels are used to generate the training statistics. A monotonically d

ing weight function,w, determines the contribution from each of the closestt pixels. The training

algorithm samples the precomputed feature value images along the closestt pixels of the edge

segment and increments the boundary feature histogram element by the correspondin

weight to generate a histogram for each feature involved in training.

Since training is based on learned edge characteristics from the most recent portio

object’s boundary, training is most effective for those objects with edge properties that d

change drastically (or at least change smoothly) as its boundary is traversed. In fact, train

be counter-productive for objects with sudden and/or dramatic changes in edge features. H

the dynamic nature of training allows the user to interactively activate training so that it c

applied to a section of the object boundary and then deactivate it before encountering a

transition in edge features.

The training length is typically short (32 to 64 pixels) to allow it to adapt to grad

changes. However, short training segments often result in noisy sampled distributions. Co

ing the boundary feature histograms with a 1-D Gaussian helps reduce the effects of noise

I P nP 1–() f P 0.5+=

I I nI 1–() f I 0.5+=

I O nO 1–() f O 0.5+=

I G nG 1–() f ′G 0.5+=
(20)

 create

le

t is the

re

hus, let-

radient

ained)

. One

pled

imum

ce a

e a

d with

ts,

ed to
After sampling and smoothing, each feature histogram is then scaled and inverted to

the feature cost map. A maximum local link cost,M, specifies the largest integer cost possib

through summation of feature cost components. Each scaled feature’s maximum link cos

product of the feature’s weight factor,ω, and the maximum link cost value,M. For example, the

maximum gradient magnitude link cost isMG = ωG • M. These maximum feature cost values a

used as scaling factors when converting the sampled histograms into feature cost maps. T

ting hG represent the sampled and smoothed gradient magnitude histogram, the dynamic g

magnitude cost map,mG, is computed by invertinghG, scaling and rounding as follows:

(11)

where the division by max(hG) scales the histogram between 0 and 1 for further scaling byMG.

The same equation is used for the other dynamic feature cost maps,mP, mI, andmO, with appro-

priate substitutions ofhP, hI, andhO for hG andMP, MI, andMO for MG.

Gradient magnitude is the only feature cost that has both static and dynamic (tr

functions. As such, it is often desirable to combine both the static and dynamic functions

such case arises whent boundary points are not available for sampling. In such a case the sam

distribution is even more noisy and less reliable. To overcome this, a scaling length or min

sample size,s, determines how many boundary pixels constitute a “reliable” sample. Sin

boundary sample containing fewer thans pixels is deemed to contain insufficient data to creat

reliable dynamic gradient magnitude cost map, the static gradient cost function is combine

the sampled cost map,mG. The minimum sample size,s, and the actual number of sampled poin

ts ≤ t (wheret is the training length or maximum sample size specified previously), are us

compute a adjusted static gradient magnitude cost which is then combined withmG (the gradient

magnitude cost map). Thus, the new, combined gradient magnitude cost map,m'G (combining the

static and dynamic gradient magnitude components), is

(12)

mG

max hG() hG–

max hG()
----------------------------------MG 0.5+ MG 1

hG

max hG()
----------------------–

 0.5+= =

m′G x()
min mG x() MG 1

x s ts–()
nG 1–()s

-----------------------– 0.5+,
 if ts s<;

mG x() if ts s≥;

=

(21)

nd

e cost
wherex = 0, 1, . . .,nG - 1 is the domain ofm'G, MG is the gradient magnitude scaling factor, a

mG is the sampled gradient magnitude cost map.

Notice that no restriction was placed on the size of the minimum sample sizes in relation

to t; thus, ifs > t then the inverse linear ramp is always present, though not dominant, in th

map. Notice further that ifts = 0 (i.e., no training data is available), thenm'G simply produces the

unadjusted static gradient magnitude cost function (an inverse linear ramp). Thus,m'G computes

both the static and dynamic gradient magnitude cost functions.

Finally, given as input a connected sequence oftS points (i.e., pixel positions),pi for

i=0,1,...,tS-1 such that and , the training algorithm is as follows:

Algorithm 1: Training on boundary segment.

Input:
t S ≤t {# of boundary points sampled.}
pi for i=0,1,...,t S-1 {Connected point sequence.}
σ {Smoothing kernel scale.}

Data Structures:
w {Training weight vector.}
hG,h P,h I ,h O {Feature histograms.}

Output:
m' G,mP,mI ,mO {Trained feature cost maps.}

Algorithm:
clear(h G); {Clear all feature histograms.}
clear(h P);
clear(h I);
clear(h O);

for i=0 to t S-1 do begin {Sample feature points.}
v=I G(p i); h G(v)=h G(v)+w(i);
v=I P(p i); h P(v)=h P(v)+w(i);
v=I I (p i); h I (v)=h I (v)+w(i);
v=I O(p i); h O(v)=h O(v)+w(i);

end

smooth(h G, σ); {Smooth histograms by σ.}
smooth(h P, σ);
smooth(h I , σ);
smooth(h O, σ);

mG=(1-h G/max(h G))*M G {Scale and invert histograms.}
mP=(1-h P/max(h P))*M P
mI =(1-h I /max(h I))*M I
mO=(1-h O/max(h O))*M O

if s>t S then {Add in static gradient magnitude map.}
for v=0 to n G-1 do

m' G(v)=min(m G(v),floor(M G*(1-(x*(s-t S))/((n G-1)*s))+0.5));

pi pi 1+≠ pi 1+ pi– 2≤
(22)

n fea-

 thereby

 com-

t func-

 cost

ixel,

itude

tal and

 func-

r

st

 func-

e-

ing,
3.1.7 Static Neighborhood Link Cost

Since training is not available on the Laplacian zero-crossing and gradient directio

tures, these costs are precomputed and combined into a static neighborhood cost map,

avoiding expensive cost computations within the interactive live-wire environment. These

bined costs are computed for every link by summing the scaled, rounded local static cos

tions. Given a point,p, and any neighboring point,q, the static link cost map,lS, is

(13)

whereMZ andMD are the maximum Laplacian zero-crossing and gradient orientation link

(similar toMP, MI, MO, andMG defined for Eq. (11)). Since there are 8 neighbors for each p

the precomputed static link map,lS, requires 8N cost values forN image pixels.

3.1.8 Final Local Link Cost

Finally, to compensate for differing distances to a pixel’s neighbors, gradient magn

costs are weighted by Euclidean distance. The local gradient magnitude costs to horizon

vertical neighbors are scaled by and to diagonal neighbors by 1. Thus, the weighting

tion wN for a neighborq of a pixelp is

(14)

whereLx andLy are the horizontal and vertical components of the bidirectional link vectoL

defined in Eq. (6).

As described in Eq. (1), the local cost function,l, is a weighted summation of feature co

functions (fZ, fD, fG, etc.) and ranges from 0 to 1. However, we create an updated local cost

tion, l´, with an integer range between 0 andM - 1 (inclusive) which incorporates training, the pr

computed static link map,lS, and the Euclidean distance weighting function. The result

updated local cost function,l', for a neighborq of a pixelp is

(15)

lS p q,() MZ f⋅ Z q() 0.5+ MD f D p q,() 0.5+⋅+=

1 2⁄

wN p q,()
1 ; if Lx p q,() 0 Ly p q,() 0≠∧≠

1

2
-------; if Lx p q,() 0 Ly p q,()∨ 0= =

=

l ′ p q,() lS p q,() w+ N p q,() m′G I G q()() mP I P q()() mI I I q()() mO I O q()()+ + +⋅=
(23)

),

g as

rre-

ula-

 pixel

orithm

20]

prune

thods in

f

at uti-

ints to

no such

erality.

cialized

time.

orithm

hosen--
wherelS is the static link cost in Eq. (13),wN is the neighborhood weighting function in Eq. (14

eachm (or m'G) is the corresponding feature’s mapping function generated through trainin

defined in Eq. (11) (or Eq. (12)), and eachI is the precomputed feature value image for the co

sponding feature (Eq. (10)).

3.2 Unrestricted Graph Search

Although this work was motivated by [22,23], it does not utilize either the graph form

tion or the optimal path computation [28] described therein. Rather, our graph formulation is

based rather than crack based and we utilize a more efficient optimal graph search alg

based on Dijkstra’s [11] algorithm. Note that Nilsson’s A* algorithm [27], utilized in both [

and [7], is essentially Dijkstra’s algorithm with an additional heuristic which can be used to

the graph search. This paper extends previous optimal graph search boundary finding me

3 ways:

1) It imposes no sampling or searching constraints.

2) The active list is sorted with a specialized O(N) bucket sort (where N is the number o
pixels processed in the image).

3) Noa priori goal nodes/pixels are specified.

First, with the exception of [22,23,28], many of the previous boundary finding techniques th

lize graph searching or dynamic programming impose searching and/or sampling constra

reduce the problem size and/or enforce specific boundary properties. This paper imposes

constraints, thereby providing object boundaries with greater degrees of freedom and gen

Second, this paper uses discrete local costs within a range. This permits the use of a spe

bin sort algorithm that inserts points into a sorted list (called the active list) in constant

Finally, since the live-wire tool determines a goal pixel after the fact, the graph search alg

must compute the optimal path to all pixels since any one of them may subsequently be c

but this is the key to the interactive nature of the live-wire tool.
(24)

ly

the

r

nge of

t. As

tly, the

 with

e

rray

i-

t

The graph search algorithm is initialized by placing a start or seed point,s, with a cumula-

tive cost of 0, on an otherwise empty list,L (called the active list). A point,p, is placed on the

active list in sorted order based on its total or cumulative cost,g(p). All other points in the image

are (effectively) initialized with infinite cost1. After initialization, the graph search then iterative

generates a minimum cost spanning tree of the image, based on the local cost function,l'. In each

iteration, the point or pixelp with the minimum cumulative cost (i.e., the point at the start of

sorted list) is removed fromL and “expanded” by computing the total cost to each ofp’s unex-

panded neighbors. For each neighborq of p, the cumulative cost toq is the sum of the total cost to

p plus the local link cost fromp to q--that is,gtmp = g(p) + l'(p, q). If the newly computed total

cost toq is less than the previous cost (i.e., ifgtmp < g(q)) theng(q) is assigned the new, lowe

cumulative cost and an optimal path pointer is set fromq back top. After computing the cumula-

tive cost top’s unexpanded neighbors and setting any necessary optimal path pointers,p is marked

as expanded and the process repeats until all the image pixels have been expanded.

The active list is implemented as an array of sublists where the array size is the ra

discrete local costs,M. Each sublist corresponds to points with equal cumulative path cos

such, the order of points within a sublist is not important and can be arbitrary. Consequen

sublists are singly linked list implementations of stacks. LetL(i)↓q denote that a pointq with

cumulative path costc is added to the active list in sorted order by pushingq onto the stack at list

array indexi = c modM. If M is a constant power of 2, the modulo operation can be replaced

a faster bitwiseAND operation resulting ini = c AND (M - 1). Thus, adding a point to the activ

list requires one bitwiseAND operation to compute the stack index, the corresponding a

indexing operation, and then two pointer assignments to push the point on the stack.

Let N(p) be the set of pixels neighboringp ande(p) be a boolean mapping function ind

cating that a pointp has been expanded. Further, letptr(q) be the optimal path pointer for the poin

q, then the unrestricted graph search algorithm is as follows:

1. The points are simply marked as not yet having a cumulative cost
(25)

ed.

linear

erac-

d by

 point

panded

d, until

ed
Algorithm 2: Unrestricted graph search.

Input:
s {Start (or seed) point/pixel.}
l(p,q) {Local cost function for link between pixels p and q.}

Data Structures:
L {List of active pixels sorted by total cost (initially empty).}
N(p) {Neighborhood set of p (contains 8 neighbors of pixel).}
e(p) {Boolean function indicating if p has been expanded/processed.}
g(p) {cumulative cost function from seed point to p.}

Output:
ptr {Pointers from each pixel indicating the minimum cost path.}

Algorithm:
g(s)=0; L(0) ↓s ; {Initialize active list with zero cost seed point.}
while L ≠∅ do begin {While there are unexpanded points:}

p←min(L); {Remove minimum cost point p from list.}
e(p)=TRUE; {Mark p as expanded (i.e., processed).}

for each q ∈N(p) such that not e(q) do begin
gtmp=g(p)+l'(p, q); {Compute cumulative cost to neighbor.}
if q ∈L and g tmp<g(q) then begin {Remove higher cost neighbor }

i=g(q) AND (M-1); q←L(i); { from list.}
end
if q ∉L then begin {If neighbor not on list,}

g(q)=g tmp; { assign neighbor’s cumulative cost,}
ptr(q)= p; { set (or reset) back pointer,}
i=g(q) AND (M-1); { compute (new) index into list,}
L(i) ↓q; { and place on (or return to) the}

end { active list.}
end

end

This algorithm is implemented twice with different computations for the local link costl'(p, q).

The local link costl'(p, q) does not change from the previous definition if training is appli

When training is not active, the local link cost function is

(16)

where the gradient magnitude mapping function is simply computing the static inverse

ramp. Using Eq. (16) when training is off provides better computational efficiency in the int

tive live-wire environment.

Removing the next minimum cumulative cost point from the sorted list is denote

p←min(L) and involves searching the array of sublists for the first sublist with at least one

on it. The search begins at the index corresponding to the cumulative cost of the last ex

point and proceeds incrementally, wrapping around to 0 when the end of the array is reache

it finds a non-empty stack index. Specifically, ifc is the cumulative cost of the last expand

point, then removing the next minimum cumulative cost pointp from L is given by

l ′ p q,() lS p q,() w+ N p q,() m′G I G q()()⋅=
(26)

t case

.

nalogy

rcular

 just in

 most

puted

ith the

ack of

n (by

ortant,

list (or

reassign

ve cost

 with

 pixel

ude cost

ing the

 scaled

iously).

 on the
c=c-1; {Decrement c to compensate for increment in loop.}
repeat {Search for next lowest cost non-empty stack:}

c=c+1; { Increment c to next highest cumulative cost.}
i=c AND (M-1); { Compute list array index.}

until L(i) ≠∅
p↑L(i); {Pop next minimum cost point of stack i.}

wherep↑L(i) denotes popping the pointp off of the stack at indexi on the list. Obviously, remov-

ing the minimum cost point from the sorted list cannot be done in constant time. In the wors

(assuming thatL is not empty), the search would requireM - 1 iterations to find the next point

However, assuming that a point is added to the list at any index with equal probability, the a

of a snow plow during a storm can be applied for demonstration. If a plow is clearing a ci

path repeatedly during a snow storm, the part of the path with the deepest snow is always

front of the plow. Likewise, the active points currently on the sorted list should generally be

concentrated at indexes just above the index for the cumulative costc of the last point expanded.

Notice that since the active list is sorted, when a new, lower cumulative cost is com

for a point already on the list, then that point must be removed from the list and added w

lower cost.q←L(i) denotes removing the pointq from the stack at indexi. Like adding a point to

the sorted list, this operation is performed in constant time. Pointers for every pixel keep tr

the location of each point on the active list. The stack index for the point is also already know

keeping the cumulative cost for each pixel). Since the order of points on a sublist is not imp

the data for the point being removed is overwritten with the data from the head of the sub

top of stack) and the stack is then popped, thereby preventing the need to search for and

pointers in the single linked list implementation of the stack.

Figure 7 demonstrates how the graph search algorithm creates a minimum cumulati

path map (with corresponding optimal path pointers). Figure 7(a) is the initial local cost map

the seed point circled. For simplicity of demonstration the local costs in this example are

based rather than link based and can be thought of as representing the gradient magnit

feature. Figure 7(b) shows a portion of the cumulative cost and pointer map after expand

seed point (with a cumulative cost of zero). Notice how the diagonal local costs have been

by Euclidean distance (consistent with the gradient magnitude cost feature described prev

Weighting by Euclidean distance demonstrates how the cumulative costs to points currently
(27)

 as yet

 been

 diago-

weight-

 vertical

omple-

front

d)
 of
active list (bold numbers) can change if even lower cumulative costs are computed from

unexpanded neighbors. This is demonstrated in Figure 7(c) where two points have now

expanded--the seed point and the next lowest cumulative cost point. Notice how the points

nal to the seed point have changed cumulative cost and direction pointers. The Euclidean

ing between the seed and diagonal points makes them more expensive than horizontal or

paths. Figures 7(d-f) show the cumulative cost/direction pointer map at various stages of c

tion. Note how the algorithm produces a “wavefront” of active points and that the wave

grows out faster in areas of lower costs.

11 13 12 9 5 8 3 1 2 4 10

14 11 7 4 2 5 8 4 6 3 8

11 6 3 5 7 9 12 11 10 7 4

7 4 6 11 13 18 17 14 8 5 2

6 2 7 10 15 15 21 19 8 3 5

8 3 4 7 9 13 14 15 9 5 6

11 5 2 8 3 4 5 7 2 5 9

12 4 2 1 5 6 3 2 4 8 12

10 9 7 5 9 8 5 3 7 8 15

41 35 31 29 35

38 29 23 22 24 29

28 18 16 21 28 37

18 12 16 27 38

14 8 13 20 29 35 52 36 28 32

14 6 6 12 14 22 28 35 27 25 31

18 7 2 9 5 9 14 21 18 23 32

16 4 0 1 6 12 13 15 19 27 40

18 13 7 6 14 17 18 17 24 30

(a)

(e)

45 41 35 31 29 35 33 34 36 40 50

38 29 23 22 24 29 37 38 42 39 43

28 18 16 21 28 37 46 49 47 40 35

18 12 16 27 38 53 59 53 39 33 31

14 8 13 20 29 35 49 54 35 28 32

14 6 6 12 14 22 28 35 27 25 31

18 7 2 9 5 9 14 21 18 23 32

16 4 0 1 6 12 13 15 19 27 39

18 13 7 6 14 17 18 17 24 30 45

(f)

Figure 7: (a) Initial local cost matrix. (b) Seed point (shaded) expanded. (c) 2 points (shaded) expanded. (
5 points (shaded) expanded. (e) 47 points expanded. (f) Finished cumulative cost and path matrix with two
many paths (free points shaded) indicated.

6 6 12 14 23

20 7 2 9 5 9

16 4 0 1 6 13

18 13 7 6 14

7 2 9 5

4 0 1 6

13 7 6 14

7 2 11

4 0 1

13 7 7

(b) (c)

(d)
(28)

 chosen

auses

owing

e seed

e-wire

egment

 object

desired

es the

the new

int, a

point. A

th map

ndary

t after

t to the

t is
ts
3.3 Interactive “Live-Wire”

Once the optimal path pointers are generated, a desired boundary segment can be

dynamically via a “free” point. Interactive movement of the free point by the mouse cursor c

the boundary to behave like a live-wire as it adapts to the new minimum cost path by foll

the optimal path pointers from the free point back to the seed point. Thus, by constraining th

point and free points to lie near a given edge, the user is able to interactively wrap the liv

boundary around the object of interest. Figure 8 demonstrates how a live-wire boundary s

adapts to changes in the free point (cursor position) by latching onto more and more of an

boundary. When movement of the free point causes the boundary to digress from the

object edge, interactive input of a new seed point prior to the point of departure reinitiat

unrestricted graph search expansion. This causes potential paths to be recomputed from

seed point while effectively “tying off” the boundary computed up to the new seed point.

Since only one optimal path exists from every pixel (or free point) to the seed po

closed boundary surrounding an object of interest cannot be generated with a single seed

minimum of two seed points must be placed to ensure a closed object boundary. The pa

from the first seed point of every object is maintained during the course of an object’s bou

definition to provide a path from the free point which specifies a closing boundary segmen

two or more seed points are specified. The closing boundary segment from the free poin

first seed point eliminates the need for the user to manually close off the boundary.

Figure 8: Example of live-wire snap. As the free point changes via cursor movement, the live-wire segmen
updated and displayed from each free point position. The live-wire segments from three different free poin
and the same seed point are shown (two previous paths from free points at times t0 and t1 and the current
live-wire path from the free point at time t2).
(29)

closed

 point

with a

 most

d point

 seed

at those

 mouse

5,25].

 a

he

r-

oints.

re-
Figure 9 illustrates why a minimum of two seed points are necessary to ensure a

boundary with the live-wire tool. Fig. 9(a) contains only one seed point and since the free

only specifies a single pixel, only a single optimal path is specified and drawn. However,

minimum of two seed points, a single free point can specify the optimal path back to the

recent seed point (the current live-wire segment) and the optimal path back to the first see

placed for that object (the closing segment).

3.3.1 Cursor Snap

Placing seed points directly on an object’s edge is often difficult and tedious. If a

point is not localized to an object edge then spikes results on the segmented boundary

seed points. To facilitate seed point placement, a cursor snap is available which forces the

pointer to the maximum gradient magnitude pixel within a user specified neighborhood [1

The neighborhood can be anywhere from 1×1 (resulting in no cursor snap) to 19×19 (where the

cursor can snap as much as 9 pixels in bothx andy). Cursor snap is interactively computed for

given neighborhood size by finding, for the current pixelp corresponding to the mouse cursor, t

maximum dynamic gradient magnitude pixel,q, within p’s neighborhood. Thus, as the mouse cu

sor is moved by the user, the free point immediately snaps or jumps fromp to q, a neighborhood

pixel representing a “good” edge point, thereby facilitating placement of subsequent seed p

(a) (b)

Figure 9: (a) With only a single seed point, only a single optimal path is available from a given free point.
(b) However, with an additional seed point, both current and closing live-wire segments are specified to c
ate a closed object boundary (in conjunction with the optimal boundary segment between seed points).
(30)

as two

 bound-

plex

 can be

n.

ting a

n “path

t path

of their

ixels

e seed

e point

a new

all iden-

farther

t that

n the

unt in

n the

number

t with

 more

 point.

rating
3.3.2 Automatic Seed Point Generation via Path Cooling

While generating closed boundaries around objects of interest can require as few

seed points, more than two seed points are often required to accurately define an object’s

ary. Typically, two to five seed points are required for simple boundary definition but com

objects may require many more. Even with cursor snap, manual placement of seed points

tedious and often requires a large portion of the overall time required for boundary definitio

Path cooling relieves the user from placing most seed points by automatically selec

pixel on the current active boundary segment to be a new seed point. Selection is based o

cooling” which in turn relies on path coalescence. Even though only a single minimum cos

exists from each pixel to a given seed point, many paths “coalesce” and share portions

optimal path with other paths from other pixels. If any two optimal paths from two distinct p

share a common point or pixel, then the two paths are identical from that pixel back to th

point. This is primarily noticeable if the seed point is placed near an object edge and the fre

is moved away from the seed point but remains in the vicinity of the object edge. Though

path is selected and displayed every time the mouse cursor moves, the paths are typically

tical near the seed point and only change local to the free point. As the free point moves

and farther away from the seed point, the portion of the active “live-wire” boundary segmen

does not change becomes longer and longer.

Using boundary cooling, seed points are automatically placed by finding a pixel o

active live-wire segment that has a “stable” history. Each pixel in the image maintains a co

milliseconds of how long it has been included in the active boundary (to estimate time o

active boundary) and also a count of how many times it has been redrawn (to estimate the

of coalesced paths from distinct free points). The time count provides the live-wire segmen

a sense of “cooling”. The longer a pixel is on a stable section of the live-wire boundary, the

history it accumulates until it eventually “freezes” and automatically produces a new seed

Figure 10 shows how path cooling facilitates boundary definition by automatically gene

seed points for an object boundary.
(31)

 event

 on the

 seed

history

illisec-

t magni-

eatures

es if a

-wire

at

he last

 the cur-

y fea-

 a short

tly, a sin-

 point

s rela-

ve-
g-
The time history is both event and data driven whereas the redraw history is purely

driven. When the free point changes via mouse movement, each pixel’s history is updated

previous live-wire segment by following the pointers from the previous free point back to the

point and each pixel’s history on the segment is updated. Specifically, each pixel’s redraw

is incremented and the time history is updated by adding to the time both the number of m

onds that the segment was displayed and a scaled gradient magnitude value. The gradien

tude factor is the data driven portion of the time history and causes pixels on strong edge f

to cool more quickly than do those that are not on strong edge features.

Both the time and redraw histories have two thresholds: a lower threshold determin

pixel is a “candidate” for automatic selection and an upper threshold determines if the live

segment is “valid”. The first pixel with both counts that satisfies the lower thresholds is acandi-

date for selection and thefirst candidate point on the live-wire segment containing a pixel th

meets both upper thresholds (i.e., avalid live-wire segment) is chosen as the new seed point.

Ideally, automatic seed points would be placed on the object boundary as far from t

seed point and as close to the current free point as possible. Automatic placement nearer

rent free point can be achieved with a single, relatively small threshold for both of the histor

tures, but a small threshold generates seed points close to manually placed points--since

boundary segment near the manual seed point begins to accumulate a history. Consequen

gle, small threshold will only allow short live-wire segments to be defined before a new seed

is automatically created--thus the motivation for an upper threshold. The lower threshold i

Figure 10: With path cooling (and overlap detection), the free point or cursor path (shown in gray) is less
constrained, allowing the user to simply gesture around the object. As the free point moves, the current li
wire segment (shown in white) cools and freezes, automatically creating a new seed point. The frozen se
ment turns blue (shown as black) for user feedback.
(32)

resh-

per

 away

rbitrary

s on the

er cor-

ble if a

d along

s seed

can be

ouse

paths to

pproxi-

 Unix

g for

e appli-

t pro-

de the

vefront

side of,

 until

vefront

oint has
tively small so thatcandidate seed points are close to the current free point and the upper th

old is large so thatvalid live-wire segments are relatively long. Since a relatively large up

threshold produces longer live-wire segments, it effectively “pushes” candidate seed points

from the previous seed point.

3.3.3 Backup

As with many automatic processes made for very general problem sets, such as a

digital images, seed point generation via path cooling does not always produce seed point

desired object boundary. Therefore, the cumulative cost and optimal pointer maps (and oth

responding data structures) from old seed points are retained and a backup facility is availa

seed point is placed incorrectly. When backup is specified, the current seed point is remove

with the corresponding cumulative cost map, optimal pointer map, etc., and the previou

point with its corresponding maps is reinstated as the current active seed point. Backup

invoked successively to remove several seed points in the reverse order of their creation.

3.3.4 Interleaving Seed Point Expansion with Interactive Live-Wire

Since live-wire segmentation is an interactive tool, delays and lags in processing m

and other events are undesirable. However, expansion of a seed point to compute optimal

every pixel in an image can require several seconds. For a 512x512 image, it requires a

mately 2.8 seconds with training (and 1.5 seconds without training) on a 99 MHz HP 735

workstation to compute optimal paths from every pixel in the image to a seed point. Waitin

even one second can become very distracting and counterproductive for such an interactiv

cation, especially with path cooling activated. Interleaving seed point expansion with even

cessing virtually eliminates lag and results in acceptable interactivity. Since every pixel insi

expanding wavefront already has an optimal path, the goal of interleaving is to keep the wa

expansion ahead of cursor movement. If the free point moves faster than, and moves out

the expanding wavefront then no path is available and therefore no “live-wire” is displayed

the wavefront catches up to the cursor position. For example, Figure 11 shows how the wa

of pixels on the active list expands out from a selected seed point. In Fig. 11(a), the seed p
(33)

owever,

ve-wire

ursor

orarily

c), the

h can

st (i.e.,

ely any
just recently been placed and the wavefront has just begun to expand out into the image. H

even though the wavefront is still expanding, cursor events are processed such that the li

boundary is drawn since the cursor position is interior to the wavefront. In Fig. 11(b), the c

has moved faster than the expanding wavefront, causing the live-wire boundary to temp

disappear since no optimal path information is available outside the wavefront. In Fig. 11(

wavefront has quickly expanded to include the free point; thus, the live-wire optimal pat

again be displayed. Typically, the wavefront expansion quickly envelopes an area of intere

the area of the image where cursor movement is taking place). Consequently, there is rar

noticeable disappearance of the live-wire segment.

(a) (b)

(c)

Figure 11: Example of interleaved wavefront expansion and event
processing: (a) The seed point has recently been placed and the
wavefront has just begun to expand. (b) While the wavefront is still
expanding, the free point (moving very quickly) has moved outside
the wavefront; as a result, no optimal path information is available
and subsequently, no live-wire boundary segment is displayed. (c)
The expanding wavefront has “caught” up and envelops the free
point, allowing the live-wire optimal path to be displayed interac-
tively. Since the object of interest (the pocket knife) is completely
contained within the wavefront, seed point expansions halts until a
new seed point is specified or the free point strays outside the
wavefront.
(34)

s on a

 fore-

 over-

 only

 image

lurring

isition

riginal

yscale

images

 neces-

efin-

test the

comb

blur are

rve in
4. Results

Figures 12 to 18 demonstrate the robustness and generality of Intelligent Scissor

wide variety of images including real world, color images with complex object boundaries,

grounds, and backgrounds. In Figures 12 through 15, each live-wire boundary (in white) is

laid on top of the “ideal” object boundary (in black) for comparison. Thus, black appears

where the live-wire boundary deviates from the ideal. Figure 12 contains a synthetic test

which is used to demonstrate how Intelligent Scissors perform in the presence of edge b

and white Gaussian noise that may be typical of that produced by a variety of image acqu

hardware. The ideal boundaries in the synthetic image are determined directly from the o

binary image. Figures 13 to 15 demonstrate how well live-wire segmentation handles gra

images acquired with various types of imaging hardware. The ideal boundaries in these

are meticulously defined and, since there is no direct binary standard for comparison, are

sarily subjective. Finally, Figures 16 through 18 demonstrate Intelligent Scissors utility in d

ing complex real world object boundaries in nontrivial scenes.

Figure 12(a) is a synthetic binary image where the different shapes are created to

live-wire’s ability to track both curved shapes with varying degrees of curvature (note the

pattern in the right object) and polygonal shapes with sharp corners. Gaussian noise and

added to simulate real world images. The boundary definition times for the polygon and cu

Fig. 12 are 4.3 seconds and 8.3 seconds, respectively.

(a) (b)
Figure 12: (a) Synthetic test image created from a two-color (binary) image by applying Gaussian blur
(σ=1.33 pixels) and white, Gaussian noise (σ=16 gray levels). (b) Overlaid “ideal” (black) and live-wire
(white) boundary
(35)

pical

touch.

es to

4 is a

s and 5

 var-

hite,

mpts) fo
Fig. 13 is an arranged “desktop” scene that, by design, contains difficulties for ty

local edge following algorithms, such as where the pocket knife and the paper-clip holder

Figure 13(b) overlays the manually defined “ideal” boundaries with the live-wire boundari

demonstrate how closely the live-wire boundaries match the ideal. The actual times2 required and

number of seed points needed to define each object boundary are as follows:

Figures 14 and 15 demonstrate the live-wire’s functionality on medical images. Fig. 1

CT scan of a spinal vertebrae. The outer boundary of the vertebrae required 5.9 second

seed points for live-wire boundary definition. Notice in Fig 14(b) that the live-wire boundary

ies noticeably from the “ideal” boundary just right and slightly down of center although the w

live-wire boundary appears more correct in that area of the vertebrae.

2. Times given are for the actual boundaries presented and represent the best time (from several boundary definition atter
an acceptable boundary.

Desktop Object Time
(in seconds)

of
Seed Points

Paper Clip Holder 3.6 2

Block 2.4 2

Pocket Knife 4.6 4

Correction Fluid 5.1 4

Spoon 9.8 8

(a) (b)

Figure 13: (a) Desktop image with various objects. (b) Overlaid “ideal” (black) and live-wire (white)
boundaries.
(36)

 in 2.6

int/free

“ideal”
Figure 15(a) shows an angiogram of a coronary vessel. The left boundary is defined

seconds with 3 seed points whereas the right side is defined with only a single seed po

point pair in 1.9 seconds. As can be seen, the live-wire boundaries agree well with the

boundaries.

(a)

Figure 14: (a) CT scan of spinal vertebrae. (b) Overlaid “ideal” (black) and live-wire (white) boundary.

(b)

Figure 15: (a) Coronary angiogram of coronary artery. (b) Overlaid “ideal” (black) and live-wire (white)
boundary.

(a) (b)
(37)

ener-

ndaries

tation.

eas of

 other

gments)

er the

lligent

n object
Figures 16 through 18 are full color images which demonstrate Intelligent Scissors’ g

ality and application to complex, real world scenes and object boundaries. The object bou

in these images are not trivial and demonstrate the power and diversity of live-wire segmen

As with the horse in Figure 1, the object boundaries in Figures 16 thought 18 contain ar

strong, well isolated edge features which can be defined with long live-wire segments while

areas of the same objects require more human guidance (and thereby shorter live-wire se

to specify the desired object boundary and isolate it from nearby edge information in eith

background or the foreground. Due to the interactive optimal path selection inherent in Inte

Scissors, the user is able to provide only as much guidance as is necessary to define a

boundary.

Figure 16: (a) Image of parrots with
nonhomogeneous regions for both the
foreground and background. (b)
Resulting live-wire boundary (in yel-
low) using Intelligent Scissors
required 16.1 seconds (866 boundary
pixels) for the left bird and 17.9 sec-
onds (902 boundary pixels) for the
right bird (Image size: 740×500).

(a)

(b)
(38)

)
Figure 17: (a) Image of bighorn sheep that contains regions with similar color as that of the background. (b
Resulting live-wire boundary (in yellow) using Intelligent Scissors required 46.3seconds (1883 boundary
pixels). (Image size: 440×640)

(a) (b)

Figure 18: (a) Image of a family sitting in a tree. (b) Resulting live-wire boundary (in yellow) using Intelli-
gent Scissors required 23.2 seconds (1349 boundary pixels). (Image size: 480×720)

(a) (b)
(39)

 inter-

bjects.

and tab-

 famil-

 felt

 “live-

the syn-

age of

-wire

racy for

nthetic

-wired

ynthetic

istance

e dis-

 bound-

 in all

ion from

ay from

ts, then
4.1 Timing, Accuracy, and Reproducibility

Tables 1 through 4 presents the timing, accuracy and reproducibility (both intra- and

user) for the live-wire segmentation tool and compare it with manual tracing of the same o

These results measure the average accuracy and intra-user variability for 8 different users

ulate the inter-user variability between them as well. Each user spent some time becoming

iar with the live-wire tool and its interface as well as the manual tracing tool. After they

comfortable using the two tools, they were asked to manually trace 5 objects 3 times and

wire” the same 5 objects 5 times. The five objects are the polygon and the curved shape in

thetic test image in Fig. 12(a), the paper clip holder and the pocket knife in the desktop im

Fig. 13(a), and finally the outer boundary of the spinal vertebrae in Fig. 14(a).

Table 1 presents the average boundary definition time for manually traced and live

boundaries across all users for each object and Table 2 gives the average boundary accu

manual and live-wire boundaries across all users for each object. For objects from the sy

image (where the object boundaries are objectively known), the hand-traced and live

boundaries are compared against a Euclidean distance map created directly from the s

image’s original binary image. Boundaries of real world objects are compared against the d

map created from the “ideal” boundary for each corresponding object. Comparison with th

tance map is performed on a pixel by pixel basis and the statistics are accumulated over all

aries for a given object (and segmentation technique) and over all users.

As can be seen from Tables 1 and 2, the live-wire segmentation performed better

cases in terms of time required to define the boundary, mean distance and standard deviat

the boundary, and the percent of boundary pixels that are less than 1 pixel and 4 pixels aw

the ideal boundary. Since the manual tracing tool can easily define straight line segmen

Object Live-Wire
(in seconds)

Manual Trace
(in seconds)

Polygon 11.7 20.9

Curve 25.2 66.3

Paper clip holder 10.0 23.5

Pocket Knife 13.7 34.8

Spinal Vertebrae 17.0 49.1

Table 1:Average timing comparison between live-wire and manually traced boundaries (all users).
(40)

 objects

ired, on

al com-

l trac-

raced

s.
objects with straight segments (such as the polygon) are conceptually easier to define than

with curved edges. But even in the case of the polygon, the hand-traced boundaries requ

the average, almost twice as long to define, and with lower accuracy. Figure 19 is a graphic

parison of the average boundary definition times for each object using live-wire and manua

ing while Figure 20 graphs the difference in accuracy between live-wire and hand-t

boundaries.

Object Measure
Mean

Distance
(pixels)

Standard
Deviation
(pixels)

Percent
Exact

Percent
≤ 1 Pixel

Percent
≤ 4 Pixels

Polygon
Live-Wire 0.018 0.161 97.55 99.78 99.98

Manual Trace 0.333 0.649 69.14 92.33 99.73

Curve
Live-Wire 0.026 0.311 97.12 99.68 99.88

Manual Trace 0.862 1.235 44.62 73.53 97.68

Paper clip holder
Live-Wire 0.504 1.438 82.90 88.99 95.40

Manual Trace 1.505 1.257 19.79 55.30 96.11

Pocket knife
Live-Wire 0.244 0.716 83.72 93.30 99.58

Manual Trace 1.661 1.314 17.17 48.05 97.38

Spinal vertebrae
Live-Wire 0.203 0.861 91.63 95.33 98.15

Manual Trace 1.608 1.368 19.77 52.70 94.65

All objects
Live-Wire 0.172 0.806 92.09 96.15 98.67

Manual Trace 1.157 1.304 35.42 65.66 96.71

Table 2:Accuracy comparison between live-wire boundaries and hand-traced boundaries.

Object Measure
Mean

Distance
(pixels)

Standard
Deviation
(pixels)

Percent
Exact

Percent
≤ 1 Pixel

Percent
≤ 4 Pixels

Polygon
Live-Wire 0.040 0.280 97.05 99.35 99.91

Manual Trace 0.916 1.006 35.88 78.47 98.63

Curve
Live-Wire 0.058 0.451 96.34 99.28 99.75

Manual Trace 1.671 1.664 20.28 53.26 92.85

Paper clip holder
Live-Wire 0.194 0.945 92.63 96.54 98.45

Manual Trace 1.311 1.328 24.80 66.20 96.73

Pocket knife
Live-Wire 0.118 0.632 93.30 97.83 99.49

Manual Trace 1.359 1.288 25.83 60.72 95.94

Spinal vertebrae
Live-Wire 0.079 0.588 95.89 98.81 99.61

Manual Trace 1.700 1.512 19.32 51.67 92.84

All objects
Live-Wire 0.114 0.594 95.46 98.58 99.50

Manual Trace 1.455 1.461 24.10 60.13 94.82

Table 3:Intra-user reproducibility comparison between live-wire boundaries and manually traced boundarie
(41)

spec-

tech-

 every

 for each

or the

ually

y every

produc-

n were

alues

l to a

s.
Tables 3 and 4 summarize the overall intra- and inter-user reproducibility results re

tively. To compute the intra-user reproducibility for a given user and boundary definition

nique (either live-wire or hand-traced), each boundary defined by the user is compared to

other boundary defined for the same object by the same user. These statistics are gathered

object over all users to produce the overall, average intra-user reproducibility statistics. F

inter-user statistics, each boundary defined with a particular tool (i.e., live-wire or man

traced) for every user is compared against every boundary for the same object defined b

other user using the same tool. Figure 21 is a graph comparing the intra- and inter-user re

ibility between live-wire and hand-traced boundaries. Notice that even the live-wireinter-user

reproducibility is considerably better than theintra-user reproducibility for manually traced

boundaries.

4.2 Computational Complexity

Previous graph searching/dynamic programming approaches to boundary detectio

typically computationally expensive. However, by restricting the local costs to integer v

within a range, the graph searching algorithm can take advantage of an O(N) bucket sort whereN

is the number of image pixels for which optimal paths have been computed from the pixe

Object Measure
Mean

Distance
(pixels)

Standard
Deviation
(pixels)

Percent
Exact

Percent
≤ 1 Pixel

Percent
≤ 4 Pixels

Polygon
Live-Wire 0.046 0.295 96.61 99.25 99.91

Manual Trace 1.060 0.977 28.70 72.15 98.76

Curve
Live-Wire 0.059 0.467 96.37 99.26 99.73

Manual Trace 1.862 1.683 17.99 47.32 90.44

Paper clip holder
Live-Wire 0.307 1.204 90.19 94.24 96.88

Manual Trace 1.416 1.368 24.84 62.00 94.79

Pocket knife
Live-Wire 0.144 0.6983 92.22 97.17 99.37

Manual Trace 1.631 1.436 19.60 51.44 93.66

Spinal vertebrae
Live-Wire 0.087 0.634 95.63 98.68 99.56

Manual Trace 1.990 1.634 16.30 43.43 89.75

All objects
Live-Wire 0.114 0.700 94.79 8.06 99.20

Manual Trace 1.676 1.539 20.50 52.98 92.59

Table 4:Inter-user reproducibility comparison between live-wire boundaries and manually traced boundarie
(42)

onstant

ational

rst

mula-

a pixel

ept for

that has

pute the

idered

ly once.

 2 pixels
seed point. As mentioned in Section 3.2, adding points to the sorted active list requires c

time and removing points requires near constant time. As a result, the algorithm’s comput

complexity3 for N image pixels is O(N). This can be seen by examining the algorithm in a wo

case situation. As a pixel is removed from the active list, it is expanded by computing the cu

tive cost to all of its neighbors that have not already been expanded. In the worst case,

computes a cumulative cost to all of its 8 neighbors, resulting in 8N cumulative cost computations

for N pixels. However, not every point can be expanded after all of its neighbors have. Exc

the seed point, every point that has a cumulative cost must have at least one neighbor

already been expanded. In fact, once an edge between two pixels has been used to com

cumulative cost as a result of expanding one of the two pixels, that edge will not be cons

again for a cumulative cost computation. Thus, each edge between pixels is considered on

Since each pixel has an edge to each of its 8 neighbors and since each edge is shared by

3. If the wavefront expands to fill an entiren×m image, thenN = nm; otherwise,N < nm.

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 1 2 3 4
Distance (in Pixels)

P
er

ce
nt

ag
e (

of
 P

ix
el

s≤
 D

is
ta

nc
e

fr
om

 A
no

th
er

 C
on

to
ur

)

Intra-User
Inter-User

Intra-User
Inter-User

Reproducibility

Figure 21: Graphical com-
parison between live-wire
and hand-traced boundary
reproducibility (both intra-
and inter-user).

Live-Wire

Hand-Traced

0

5

10

15

20

25

Av
er

ag
e

T
im

e
(in

 s
ec

on
ds

)

30

40

50

60

35

45

55

65

Polygon Curve Holder Knife Spine
Object

Live-Wire

Hand-Traced

Boundary Definition Time

Figure 19:Graphical comparison
between live-wire and hand-
traced boundary definition times.

0 1 2 3 4
20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Distance (in Pixels)

Live-Wire
Hand-Traced

P
er

ce
nt

ag
e (

of
 P

ix
el

s≤
 D

is
ta

nc
e

fr
om

 “
Id

ea
l”

B
ou

nd
ar

y)

Accuracy

Figure 20: Graphical com-
parison between live-wire
and hand-traced boundary
accuracy.
(43)

ng, can

station

from a

5)) it
then the total number of cumulative cost computations forN pixels is , which is still

O(N). Consequently, the graph expansion, when interleaved with interactive event processi

compute optimal paths at interactive speeds. As mentioned previously, an HP 735/99 work

requires approximately 1.5 seconds to compute untrained optimal paths (using Eq. (16))

seed point to every other pixel in a 512x512 image whereas with training (using Eq. (1

requires approximately 2.8 seconds.

8
2
--N 4N=
(44)

stricted

ge

 time,

th
ment

s the

nd

contri-

gmen-

ool for

applied

yscale

d the

ies for
5. Conclusion and Future Work

This paper has presented an interactive image segmentation tool based on an unre

graph search. The major contributions of this work are:

1) The addition of the Laplacian zero-crossing binary feature cost that improves ed
localization for optimal boundary segments.

2) Due to the ability to add and remove nodes to and from the active list in constant
this algorithm is less computationally expensive than traditional graph searching/
dynamic programming based boundary finding approaches.

3) The improved computational speed makes interaction possible during optimal pa
generation, allowing for interactive selection of the desired optimal boundary seg
via the live-wire segmentation tool.

4) Cooling helps reduce the need for user input and thereby facilitates and improve
live-wire’s interactivity.

5) On-the-fly training is unique from traditional training algorithms that have been
applied to boundary definition and allows for training information to be updated a
used dynamically as part of the normal boundary definition process.

It is important to note that the last three contributions are realized only through the second

bution: the ability to generate all the optimal paths at interactive speeds.

In conclusion, when compared to tedious manual tracing, the Intelligent Scissors se

tation tool provides a quicker, more accurate, and more reproducible general purpose t

defining object boundaries within images. As such, Intelligent Scissors can, and has been,

to medical image volume segmentation, digital image composition, general color and gra

image segmentation, and line extraction from scanned documents.

5.1 Future Work

Although Intelligent Scissors have dramatically decreased the time and increase

accuracy and reproducibility with which boundaries can be extracted, there are opportunit

extension of this work. Possible additions to the current Intelligent Scissors tool include:

1) Improved training by automatic weight adjustment and feature selection.

2) Subpixel estimation of boundaries for antialiasing.

3) Extending the domain to temporal or spatial sequences of images.
(45)

 argu-

ity or

r, each

on var-

tandard

d tend

 pro-

feature

.

d, for

interest.

bject or

nging

d par-

b-pixel

ecial

lane or

 could

er spa-

nd the

restric-

ent is

 for seg-

e still

, Intelli-

s.
First, training currently relies on feature cost weights that are set (via command line

ments or default values) when the program is initiated. However, it is likely that the reliabil

importance of the different feature costs change from one object to another. For that matte

feature’s strength may change within an object’s boundary. Since training gathers statistics

ious image features, it is possible to adjust feature cost weights based on the variance, s

deviation, or some other similar measure of the feature distribution. A strong feature woul

to exhibit a tight clustering (resulting in a low variance) whereas a weak feature would likely

duce a spread or multi-modal distribution. By adjusting the feature weights based on the

distributions, the live-wire may be better able to adapt to the current object’s edge features

Second, the live-wire tool currently creates a single pixel wide object boundary an

closed boundaries, assumes that the pixels within the boundary belong to some object of

However, it does not specify if the boundary pixels are themselves part of the segmented o

not. In fact, it will often be the case that a boundary pixel cannot be classified as simply belo

to the object or not, rather, a boundary pixel will partially belong to the segmented object an

tially belong to the background or some other object. Thus, future research may explore su

representations for live-wire boundaries.

Finally, applications such as medical volume imaging and image composition for sp

effects in movies need to segment an object (or group of objects) from each 2-D image p

frame of a spatial or temporal image sequence. Further work in live-wire segmentation

include extending the tool to segment objects in 3-space where the third dimension is eith

tial or temporal. As such, the local costs may be computed using 3-D convolution kernels a

current live-wire tool may be extended to a live-wire in 3-space (as opposed to the current

tion in a 2-D plane) or possibly even to a live-surface tool where an optimal surface segm

selected from a large set of optimal surfaces.

As can be seen, though Intelligent Scissors serve as a useful a general purpose tool

menting 2-D object boundaries from images of arbitrary content and complexity, there ar

several research areas that could extend and enhance the possibilities of this tool. As such

gent Scissors promise to remain on thecutting edge of interactive image segmentation technique
(46)

ria-

l

rob-

 path

trac-
-

th
attern

ry Seg-

king,
lli-

al
.

6. References

[1] A. A. Amini, T. E. Weymouth, and R. C. Jain, “Using Dynamic Programming for Solving Va
tional Problems in Vision,”IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.
12, No. 9, pp. 855-866, Sept. 1990.

[2] D. H. Ballard and J. Sklansky, “Tumor Detection in Radiographs”,Computers and Biomedica
Research, Vol. 6, No. 4, pp. 299-321, Aug. 1973

[3] W. A. Barrett, P. D. Clayton, and H. R. Warner, “Determination of Left Vetricular Contours: A P
abilistic Algorithm Derived from Angiographic Images,”Computers and Biomedical Research, Vol.
13, No. 6, pp. 522-548, Dec. 1980.

[4] W. A. Barrett, Personal communication to J. K. Udupa regarding interactive live-wire optimal
selection, Feb. 1992.

[5] W. A. Barrett and E. N. Mortensen, “Fast, Accurate, and Reproducible Live-Wire Boundary Ex
tion,” in Proceedings of Visualization in Biomedical Computing 96, pp. 183-192, Hamburg, Ger
many, Sept. 1996.

[6] W. A. Barrett and E. N. Mortensen, “Interactive Live-Wire Boundary Extraction,”Medical Image
Analysis, Vol. 1, No. 4, pp. 331-341, 1997.

[7] J. D. Cappelletti and A. Rosenfeld, “Three-Dimensional Boundary Following,”Computer Vision,
Graphics, and Image Processing, Vol. 48, No. 1, pp. 80-92, Oct. 1989.

[8] Y. P. Chien and K. S. Fu, “A Decision Function Method for Boundary Detection”Computer Graph-
ics and Image Processing, Vol. 3, No. 2, pp. 125-140, June 1974.

[9] L. D. Cohen and R. Kimmel, “Global Minimum for Active Contour Models: A Minimum Pa
Approach,” inProceedings of IEEE Computer Society Conference on Computer Vision and P
Recognition (CVPR ‘96), San Francisco, CA, June 1996.

[10] D. Daneels, et al., “Interactive Outlining: An Improved Approach Using Active Contours,” inSPIE
Proceedings of Storage and Retrieval for Image and Video Databases, Vol. 1908, pp. 226-233, San
Jose, CA, Feb. 1993.

[11] E. W. Dijkstra, “A Note on Two Problems in Connexion with Graphs,”Numerische Mathematik, Vol.
1, pp. 269-270, 1959.

[12] A. X. Falcão, J. K. Udupa, S. Samarasekera, and B. E. Hirsch, “User-Steered Image Bounda
mentation,” inProceedings of the SPIE--Medical Imaging 1996: Image Processing, Vol. 2710, pp.
278-288, Newport Beach, CA, Feb. 1996.

[13] M. M. Fleck, “Multiple Widths Yield Reliable Finite Differences,”IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 14, No. 4, pp. 412-429, April 1992.

[14] D. Geiger, A. Gupta, L. A. Costa, and J. Vlontzos, “Dynamic Programming for Detecting, Trac
and Matching Deformable Contours,”IEEE Transactions on Pattern Analysis and Machine Inte
gence, Vol. 17, No. 3, pp. 294-302, Mar. 1995 (Correction inPAMI, Vol. 18, No. 5, pg. 575, May
1996)

[15] M. Gleicher, “Image Snapping,” inProceedings of the ACM SIGGRAPH 95: 22nd Internation
Conference on Computer Graphics and Interactive Techniques, pp. 183-190, Los Angeles, CA, Aug
1995.

[16] H. Jeong and C. I. Kim, “Adaptive Determination of Filter Scales for Edge Detection.”IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 5, pp. 579- 585, May 1992.
(47)

n-

hing
ung

of

sing
-

ctive

ro-
rovo,

detec-

ming,”
l

on,”
[17] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active Contour Models,” inProceedings of the
First International Conference on Computer Vision, pp. 259-268, London, England, June 1987.

[18] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active Contour Models,”International Journal of
Computer Vision, Vol. 1, No. 4, pp. 321-331, Jan. 1988.

[19] D. Marr and E. Hildreth, “Theory of Edge Detection,”Proceedings of the Royal Society of Lo
don--Series B: Biological Sciences, Vol. 207, No. 1167, pp. 187-217, Feb. 29, 1980.

[20] A. Martelli, “An Application of Heuristic Search Methods to Edge and Contour Detection,”Commu-
nications of the ACM, Vol. 19, No. 2, pp. 73-83, Feb. 1976.

[21] U. Montanari, “On the Optimal Detection of Curves in Noisy Pictures,”Communication of the ACM,
Vol. 14, No. 5, pp. 335-345, May 1971.

[22] B. S. Morse,Trainable Automated Boundary Tracking Using Two-Dimensional Graph Searc
with Dynamic Programming. Masters Thesis, Department of Computer Science, Brigham Yo
University, Provo, UT, Aug. 1990.

[23] B. S. Morse, W. A. Barrett, J. K. Udupa, and R. P. Burton,Trainable Optimal Boundary Finding
Using Two-Dimensional Dynamic Programming. Technical Report No. MIPG180, Department
Radiology, University of Pennsylvania, Philadelphia, PA, March 1991.

[24] E. N. Mortensen, B. S. Morse, W. A. Barrett, and J. K. Udupa, “Adaptive Boundary Detection U
'Live-Wire' Two-Dimensional Dynamic Programming,” inIEEE Proceedings of Computers in Car
diology, pp. 635-638, Durham, NC, Oct. 1992.

[25] E. N. Mortensen and W. A. Barrett, “Intelligent Scissors for Image Composition,” inProceedings of
the ACM SIGGRAPH 95: 22nd International Conference on Computer Graphics and Intera
Techniques, pp. 191-198, Los Angeles, CA, Aug. 1995.

[26] E. N. Mortensen,Adaptive Boundary Detection Using 'Live-Wire' Two-Dimensional Dynamic P
gramming. Masters Thesis, Department of Computer Science, Brigham Young University, P
UT, Aug. 1995.

[27] N. J. Nilsson,Principles of Artificial Intelligence. Palo Alto, CA: Tioga, 1980.

[28] J. K. Udupa, Personal communication to W. A. Barrett regarding two-dimensional boundary
tion using dynamic programming with graph searching. 1989.

[29] J. K. Udupa, S. Samarasekera, and W. A. Barrett, “Boundary Detection via Dynamic Program
in Proceedings of the SPIE: Visualization in Biomedical Computing 92, Vol. 1808, pp. 33-39, Chape
Hill, NC, Oct. 1992.

[30] D. J. Williams and M. Shah, “A Fast Algorithm for Active Contours and Curvature Estimati
CVGIP: Image Understanding, Vol. 55, No. 1, pp. 14-26, Jan. 1992.
(48)

