Automatic Image Stitching using Invariant Features

Matthew Brown and David Lowe,
University of British Columbia
Introduction

- Are you getting the whole picture?
 - Compact Camera FOV = 50 x 35°
Introduction

• Are you getting the whole picture?
 – Compact Camera FOV = 50 x 35°
 – Human FOV = 200 x 135°
Introduction

- Are you getting the whole picture?
 - Compact Camera FOV = 50 x 35°
 - Human FOV = 200 x 135°
 - Panoramic Mosaic = 360 x 180°
Recognising Panoramas
Recognising Panoramas

- 1D Rotations (θ)
 - Ordering \Rightarrow matching images
Recognising Panoramas

• 1D Rotations (θ)
 – Ordering \Rightarrow matching images
Recognising Panoramas

- 1D Rotations (θ)
 - Ordering \Rightarrow matching images
Recognising Panoramas

• 1D Rotations (θ)
 - Ordering \Rightarrow matching images

• 2D Rotations (θ, ϕ)
 - Ordering $\not\Rightarrow$ matching images
Recognising Panoramas

- **1D Rotations** (θ)
 - Ordering \Rightarrow matching images

- **2D Rotations** (θ, ϕ)
 - Ordering \nRightarrow matching images
Recognising Panoramas

- **1D Rotations (θ)**
 - Ordering \Rightarrow matching images

- **2D Rotations (θ, ϕ)**
 - Ordering $\not\Rightarrow$ matching images
Recognising Panoramas
Overview

- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
Overview

- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
Overview

- **Feature Matching**
 - SIFT Features
 - Nearest Neighbour Matching
- **Image Matching**
- **Bundle Adjustment**
- **Multi-band Blending**
- **Results**
- **Conclusions**
Overview

- Feature Matching
 - SIFT Features
 - Nearest Neighbour Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
Invariant Features

SIFT Features

• Invariant Features
 - Establish invariant frame
 • Maxima/minima of scale-space DOG ⇒ x, y, s
 • Maximum of distribution of local gradients ⇒ θ
 - Form descriptor vector
 • Histogram of smoothed local gradients
 • 128 dimensions

• SIFT features are...
 - Geometrically invariant to similarity transforms,
 • some robustness to affine change
 - Photometrically invariant to affine changes in intensity
Overview

- Feature Matching
 - SIFT Features
 - Nearest Neighbour Matching

- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
Nearest Neighbour Matching

- Nearest neighbour matching

\[
\forall j \quad \text{NN}(j) = \arg \min_i \|x_i - x_j\|, \; i \neq j
\]

- Use k-d tree
 - k-d tree recursively bi-partitions data at mean in the dimension of maximum variance
 - Approximate nearest neighbours found in $O(n \log n)$

- Find k-NN for each feature
 - $k \approx$ number of overlapping images (we use $k = 4$)
K-d tree
K-d tree
Overview

• Feature Matching
 – SIFT Features
 – Nearest Neighbour Matching
• Image Matching
• Bundle Adjustment
• Multi-band Blending
• Results
• Conclusions
Overview

- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
Overview

- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
Overview

• Feature Matching
• **Image Matching**
 – RANSAC for Homography
• Bundle Adjustment
• Multi-band Blending
• Results
• Conclusions
Overview

- Feature Matching
- Image Matching
 - RANSAC for Homography
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
RANSAC for Homography
RANSAC for Homography
RANSAC for Homography
RANSAC: 1D Line Fitting

least squares line
RANSAC: 1D Line Fitting
RANSAC: 1D Line Fitting
The RANSAC Algorithm

function H = RANSAC(points, nIterations)
{
 bestInliers = 0;
 bestH = zeros(3, 3);
 for (i = 0; i < nIterations; i++)
 {
 samplePoints = RandomSample(points);
 H = ComputeTransform(samplePoints);
 nInliers = Consistent(H);
 if (nInliers > bestInliers)
 {
 bestInliers = nInliers;
 bestH = H;
 } // end if
 } // end for
} // end RANSAC
2D Transforms

• Linear (affine)

\[
\begin{bmatrix}
 u \\
 v
\end{bmatrix} =
\begin{bmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix} +
\begin{bmatrix}
 a_{13} \\
 a_{23}
\end{bmatrix}
\]

• Homography

\[
\begin{bmatrix}
 u \\
 v \\
 1
\end{bmatrix} =
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
 u \\
 v \\
 1
\end{bmatrix} =
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]
Finding the panoramas
Finding the panoramas
Finding the panoramas
Finding the panoramas
Connected Components

- ConnectedComponent.m
- Find connected components in a square matrix
Overview

- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
Bundle Adjustment

- Adjust rotation, focal length of each image to minimise error in matched features
Bundle Adjustment

• Adjust rotation, focal length of each image to minimise error in matched features
Overview

- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
Overview

- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
Multi-band Blending

• Burt & Adelson 1983
 – Blend frequency bands over range $\propto \lambda$
2-band Blending

Low frequency ($\lambda > 2$ pixels)

High frequency ($\lambda < 2$ pixels)
Linear Blending
2-band Blending
Multi-band Blending

- No blending
Multi-band Blending

- Linear blending

Each pixel is a weighted sum

\[I_{linear} = \frac{\sum_i I^i W^i}{\sum_i W^i} \]
Multi-band Blending

- Multi-band blending

Each pixel is a weighted sum (for each band)

\[I_{k\sigma}^{\text{multi}} = \frac{\sum_i I_{k\sigma}^i W_{k\sigma}^i}{\sum_i W_{k\sigma}^i} \]
Multi-band Blending

- Linear blending
- Multi-band blending
Overview

- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
Overview

- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
Results
Results
Overview

- Feature Matching
- Image Matching
- Bundle Adjustment
- Multi-band Blending
- Results
- Conclusions
Overview

• Feature Matching
• Image Matching
• Bundle Adjustment
• Multi-band Blending
• Results
• Conclusions
Conclusions

• Fully automatic panoramas
 – A recognition problem...

• Invariant feature based method
 – SIFT features, RANSAC, Bundle Adjustment, Multi-band Blending
 – $O(n \log n)$

• Future Work
 – Advanced camera modelling
 • radial distortion, camera motion, scene motion, vignetting, exposure, high dynamic range, flash ...
 – Full 3D case – recognising 3D objects/scenes in unordered datasets. “PhotoTourism”.

http://www.autostitch.net