Surface Modeling and Display from Range and Color Data

Kari Pulli UW
Michael Cohen MSR
Tom Duchamp UW
Hugues Hoppe MSR
John McDonald UW
Linda Shapiro UW
Werner Stuetzle UW

UW = University of Washington
 Seattle, WA USA
MSR = Microsoft Research
 Redmond, WA USA
Introduction

Goal

- develop robust algorithms for constructing 3D models from range & color data

- use those models to produce realistic renderings of the scanned objects
Surface Reconstruction

Step 1: Data acquisition
Obtain range data that covers the object. Filter, remove background.

Step 2: Registration
Register the range maps into a common coordinate system.

Step 3: Integration
Integrate the registered range data into a single surface representation.

Step 4: Optimization
Fit the surface more accurately to the data, simplify the representation.
Problem

Noisy registered data

Signed distance fn & marching cubes

Hierarchical & directional space carving
Carve space in cubes

Label cubes

- Project cube to image plane (hexagon)
- Test against data in the hexagon
Several views

Processing order:
FOR EACH cube
 FOR EACH view

Rules:
any view thinks cube's out
 => it's out
every view thinks cube's in
 => it's in
else
 => it's at boundary
Hierarchical space carving

- Big cubes => fast, poor results
- Small cubes => slow, more accurate results
- Combination = octrees

RULES:
- cube's out => done
- cube's in => done
- else => recurse
Hierarchical space carving

- Big cubes => fast, poor results
- Small cubes => slow, more accurate results
- Combination = octrees

RULES:
- cube's out => done
- cube's in => done
- else => recurse
The rest of the chair
Same for a husky pup
Optimizing the dog mesh

Registered points

Initial mesh

Optimized mesh
View dependent texturing
Our viewer
Overview of VBR

Choose 3 close views

Render meshes from the current viewpoint

For each pixel
 * read it from each view
 * remove occluded ones
 * calculate a weighted average
 * paint the pixel
Reconstruction of Blood Vessel Trees from Visible Human Data

Zhenrong Qian and Linda Shapiro
Computer Science & Engineering Department
University of Washington
Introduction

• **Goal**
 – to reconstruct the blood vessels of the lungs from Visible Human Data

• **Computer vision**
 – semi-automation
 – low-level image processing
 – model construction
Visible Human Data: Slice through the Lung
Problems Encountered

• **Data source**
 – black spots that are not blood vessels
 – variations of lighting

• **Characteristics of blood vessels**
 – similar color surrounds
 – lack of knowledge
 – close location
 – shape variety
 – continuous change not expected
 – dense data
Finding the contours of a vessel being tracked (1)

Previous contour

Current slice

EM Segmentation

False color for the segmentation
Finding the contours of a vessel being tracked (2)

- The results after selecting regions of similar color to the tracked region
Finding the contours of a vessel being tracked (3)

- The results after selecting the region that overlaps most with the previous contour

![Selected regions](image1.png) ![Region that overlaps most](image2.png)
Find the contours of a vessel being tracked (4)

- The results after morphology to close holes and remove noise

Selected region
After noise removal
Find the contours of a vessel being tracked (5)

- The contour is determined through a fast-marching level-set approach

Previous contour

Current contour
How branching is handled

• One contour divides into two

• Two contours merge into one
The use of resampling when the axis is not vertical

- **Track** the axis through the center points of found contours
- **Fit** a spline curve
- **Resample** the data perpendicular to the spline curve
- **Use** the resampled contours for model creation
Detect the axis

Center points of found contours

Spline-fitted axis
Resample the data perpendicular to the spline curve
Overall Procedure for finding Vessel Trees

• The user selects a starting point

• The program automatically tracks the selected vessel and any branches it finds

• The program creates a generalized cylinder representation of the vessel tree

• The user may select more starting points
Some Initial Results

Artery tree from single seed

Vein tree from single seed
Typical Cross Section
Results: blood vessels in right lung from previous section