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Abstract
We propose a novel approach for solving the per-

ceptual grouping problem in vision. Rather than fo-
cusing on local features and their consistencies in the
image data, our approach aims at extracting the global
impression of an image. We treat image segmenta-
tion as a graph partitioning problem and propose a
novel global criterion, the normalized cut, for segment-
ing the graph. The normalized cut criterion measures
both the total dissimilarity between the di�erent groups
as well as the total similarity within the groups. We
show that an e�cient computational technique based
on a generalized eigenvalue problem can be used to op-
timize this criterion. We have applied this approach
to segmenting static images and found results very en-
couraging.

1 Introduction
Nearly 75 years ago, Wertheimer[17] launched the

Gestalt approach which laid out the importance of
perceptual grouping and organization in visual per-
ception. For our purposes, the problem of grouping
can be well motivated by considering the set of points
shown in the �gure (1).

Typically a human observer will perceive four ob-
jects in the image{a circular ring with a cloud of points
inside it, and two loosely connected clumps of points
on its right. However this is not the unique parti-
tioning of the scene. One can argue that there are
three objects{the two clumps on the right constitute
one dumbbell shaped object. Or there are only two
objects, a dumb bell shaped object on the right, and
a circular galaxy like structure on the left. If one were
perverse, one could argue that in fact every point was
a distinct object.

This may seem to be an arti�cial example, but ev-
ery attempt at image segmentation ultimately has to
confront a similar question{there are many possible
partitions of the domain D of an image into subsets
Di (including the extreme one of every pixel being a
separate entity). How do we pick the \right" one? We
believe the Bayesian view is appropriate{ one wants to
�nd the most probable interpretation in the context of
prior world knowledge. The di�culty, of course, is in
specifying the prior world knowledge{some of it is low
level such as coherence of brightness, color, texture, or
motion, but equally important is mid- or high- level
knowledge about symmetries of objects or object mod-
els.

Figure 1: How many groups?

This suggests to us that image segmentation based
on low level cues can not and should not aim to pro-
duce a complete �nal \correct" segmentation. The
objective should instead be to use the low-level coher-
ence of brightness, color, texture or motion attributes
to sequentially come up with candidate partitions. Mid
and high level knowledge can be used to either con-
�rm these groups or select some for further attention.
This attention could result in further repartitioning or
grouping. The key point is that image partitioning is
to be done from the big picture downwards, rather like
a painter �rst marking out the major areas and then
�lling in the details.

Prior literature on the related problems of cluster-
ing, grouping and image segmentation is huge. The
clustering community[9] has o�ered us agglomerative
and divisive algorithms; in image segmentation we
have region-based merge and split algorithms. The
hierarchical divisive approach that we are advocat-
ing produces a tree, the dendrogram. While most of
these ideas go back to the 70s (and earlier), the 1980s
brought in the use of Markov Random Fields[7] and
variational formulations[13, 2, 11]. The MRF and vari-
ational formulations also exposed two basic questions
(1) What is the criterion that one wants to optimize?
and (2) Is there an e�cient algorithm for carrying out
the optimization? Many an attractive criterion has
been doomed by the inability to �nd an e�ective algo-
rithm to �nd its minimum{greedy or gradient descent
type approaches fail to �nd global optima for these
high dimensional, nonlinear problems.

Our approach is most related to the graph theo-
retic formulation of grouping. The set of points in an
arbitrary feature space are represented as a weighted



undirected graph G = (V ;E), where the nodes of the
graph are the points in the feature space, and an edge
is formed between every pair of nodes. The weight
on each edge, w(i; j), is a function of the similarity
between nodes i and j.

In grouping, we seek to partition the set of vertices
into disjoint sets V1;V2; :::;Vm, where by some mea-
sure the similarity among the vertices in a set Vi is
high and across di�erent sets Vi,Vj is low.

To partition a graph, we need to also ask the fol-
lowing questions:
1. What is the precise criterion for a good partition?

2. How can such a partition be computed e�ciently?
In the image segmentation and data clustering com-
munity, there has been much previous work using
variations of the minimal spanning tree or limited
neighborhood set approaches. Although those use e�-
cient computational methods, the segmentation crite-
ria used in most of them are based on local properties
of the graph. Because perceptual grouping is about
extracting the global impressions of a scene, as we saw
earlier, this partitioning criterion often falls short of
this main goal.

In this paper we propose a new graph-theoretic
criterion for measuring the goodness of an image
partition{ the normalized cut. We introduce and jus-
tify this criterion in section 2. The minimization of
this criterion can be formulated as a generalized eigen-
value problem; the eigenvectors of this problem can be
used to construct good partitions of the image and the
process can be continued recursively as desired(section
3). In section 4 we show experimental results. The
formulation and minimization of the normalized cut
criterion draws on a body of results, theoretical and
practical, from the numerical analysis and theoretical
computer science communities{section 5 discusses pre-
vious work on the spectral partitioning problem. We
conclude in section 6.

2 Grouping as graph partitioning
A graph G = (V;E) can be partitioned into two

disjoint sets, A;B, A [B = V, A \B = ;, by simply
removing edges connecting the two parts. The de-
gree of dissimilarity between these two pieces can be
computed as total weight of the edges that have been
removed. In graph theoretic language, it is called the
cut:

cut(A;B) =
X

u2A;v2B

w(u; v): (1)

The optimal bi-partitioning of a graph is the one that
minimizes this cut value. Although there are exponen-
tial number of such partitions, �nding the minimum
cut of a graph is a well studied problem, and there
exist e�cient algorithms for solving it.

Wu and Leahy[18] proposed a clustering method
based on this minimum cut criterion. In particular,
they seek to partition a graph into k-subgraphs, such
that the maximum cut across the subgroups is mini-
mized. This problem can be e�ciently solved by re-
cursively �nding the minimumcuts that bisect the ex-
isting segments. As shown in Wu & Leahy's work, this

Min-cut 1
n1

n2

better cut

Min-cut 2

Figure 2: A case where minimum cut gives a bad par-
tition.

globally optimal criterion can be used to produce good
segmentation on some of the images.

However, as Wu and Leahy also noticed in their
work, the minimum cut criteria favors cutting small
sets of isolated nodes in the graph. This is not surpris-
ing since the cut de�ned in (1) increases with the num-
ber of edges going across the two partitioned parts.
Figure (2) illustrates one such case. Assuming the
edge weights are inversely proportional to the distance
between the two nodes, we see the cut that partitions
out node n1 or n2 will have a very small value. In
fact, any cut that partitions out individual nodes on
the right half will have smaller cut value than the cut
that partitions the nodes into the left and right halves.

To avoid this unnatural bias for partitioning out
small sets of points, we propose a new measure of dis-
association between two groups. Instead of looking
at the value of total edge weight connecting the two
partitions, our measure computes the cut cost as a
fraction of the total edge connections to all the nodes
in the graph. We call this disassociation measure the
normalized cut (Ncut):

Ncut(A;B) =
cut(A;B)

asso(A;V )
+

cut(A;B)

asso(B;V )
(2)

where asso(A; V ) =
P

u2A;t2V w(u; t) is the total
connection from nodes in A to all nodes in the graph,
and asso(B; V ) is similarly de�ned. With this de�ni-
tion of the disassociation between the groups, the cut
that partitions out small isolated points will no longer
have small Ncut value, since the cut value will almost
certainly be a large percentage of the total connection
from that small set to all other nodes. In the case il-
lustrated in �gure 2, we see that the cut1 value across
node n1 will be 100% of the total connection from that
node.

In the same spirit, we can de�ne a measure for to-
tal normalized association within groups for a given
partition:

Nasso(A;B) =
asso(A;A)

asso(A;V )
+

asso(B;B)

asso(B;V )
(3)

where asso(A;A) and asso(B;B) are total weights of
edges connecting nodes within A and B respectively.



We see again this is an unbiased measure, which re-

ects how tightly on average nodes within the group
are connected to each other.

Another important property of this de�nition of as-
sociation and disassociation of a partition is that they
are naturally related:

Ncut(A;B) =
cut(A;B)

asso(A;V )
+

cut(A;B)

asso(B;V )

=
asso(A;V )� asso(A;A)

asso(A;V )

+
asso(B;V )� asso(B;B)

asso(B;V )

= 2� (
asso(A;A)

asso(A;V )
+

asso(B;B)

asso(B;V )
)

= 2�Nasso(A;B)

Hence the two partition criteria that we seek in
our grouping algorithm, minimizing the disassociation
between the groups and maximizing the association
within the group, are in fact identical, and can be sat-
is�ed simultaneously. In our algorithm, we will use
this normalized cut as the partition criterion.

Having de�ned the graph partition criterion that we
want to optimize, we will show how such an optimal
partition can be computed e�ciently.

2.1 Computing the optimal partition
Given a partition of nodes of a graph, V, into two

sets A and B, let x be an N = jV j dimensional indica-
tor vector, xi = 1 if node i is in A, and �1 otherwise.
Let d(i) =

P
j w(i; j), be the total connection from

node i to all other nodes. With the de�nitions x and
d we can rewrite Ncut(A;B) as:

Ncut(A;B) =
cut(A;B)

asso(A; V )
+

cut(B;A)

asso(B; V )

=

P
(xi>0;xj<0)�wijxixjP

xi>0 di

+

P
(xi<0;xj>0)�wijxixjP

xi<0 di

Let D be an N � N diagonal matrix with d on its
diagonal, W be an N � N symmetrical matrix with

W(i,j) = wij, k =

P
xi>0

diP
i
di

, and 1 be an N �1 vector

of all ones. Using the fact 1+x
2

and 1�x
2

are indicator
vectors for xi > 0 and xi < 0 respectively, we can
rewrite 4[Ncut(x)] as:

= (1+x)T (D�W)(1+x)
k1TD1

+ (1�x)T (D�W)(1�x)
(1�k)1TD1

= (xT (D�W)x+1T (D�W)1)
k(1�k)1TD1

+ 2(1�2k)1T (D�W)x
k(1�k)1TD1

Let �(x) = xT (D�W)x, �(x) = 1T (D�W)x, 
 =
1T (D�W)1, and M = 1TD1, we can then further
expand the above equation as:

=
(�(x) + 
) + 2(1� 2k)�(x)

k(1� k)M

=
(�(x) + 
) + 2(1� 2k)�(x)

k(1� k)M
�

2(�(x) + 
)

M

+
2�(x)

M
+

2


M

dropping the last constant term, which in this case
equals 0, we get

=
(1� 2k + 2k2)(�(x) + 
) + 2(1� 2k)�(x)

k(1� k)M
+

2�(x)

M

=

(1�2k+2k2)
(1�k)2 (�(x) + 
) + 2(1�2k)

(1�k)2 �(x)

k
1�kM

+
2�(x)

M

Letting b = k
1�k , and since 
 = 0, it becomes,

=
(1 + b2)(�(x) + 
) + 2(1� b2)�(x)

bM
+

2b�(x)

bM

=
(1 + b2)(�(x) + 
)

bM
+

2(1� b2)�(x)

bM
+

2b�(x)

bM
�

2b


bM

=
(1 + b2)(xT (D�W)x+ 1T (D�W)1)

b1TD1

+
2(1� b2)1T (D�W)x

b1TD1

+
2bxT (D�W)x

b1TD1
�

2b1T (D�W)1

b1TD1

=
(1+ x)T (D�W)(1+ x)

b1TD1

+
b2(1� x)T (D�W)(1� x)

b1TD1

�
2b(1� x)T (D�W)(1+ x)

b1TD1

=
[(1+ x)� b(1� x)]T (D�W)[(1+ x)� b(1� x)]

b1TD1

Setting y = (1+x)� b(1�x), it is easy to see that

yTD1 =
X
xi>0

di � b
X
xi<0

di = 0 (4)

since b = k
1�k =

P
xi>0

diP
xi<0

di
; and

yTDy =
P

xi>0
di + b2

P
xi<0

di

= b
P

xi<0
di + b2

P
xi<0

di

= b(
P

xi<0
di + b

P
xi<0

di)

= b1TD1:



Putting everything together we have,

minxNcut(x) = miny
yT (D �W )y

yTDy
; (5)

with the condition yi 2 f1;�bg and yTD1 = 0.
Note that the above expression is the Rayleigh

quotient[8]. If y is relaxed to take on real values, we
can minimize equation (5) by solving the generalized
eigenvalue system,

(D�W)y = �Dy: (6)

However, we have two constraints on y, which come
from the condition on the corresponding indicator vec-
tor x. First consider the constraint yTD1 = 0. We
can show this constraint on y is automatically sat-
is�ed by the solution of the generalized eigensystem.
We will do so by �rst transforming equation (6) into
a standard eigensystem, and show the corresponding
condition is satis�ed there. Rewrite equation (6) as

D
� 1

2 (D�W)D�1
2 z = �z; (7)

where z =D
1
2y. One can easily verify that z0 = D

1
21

is an eigenvector of equation (7) with eigenvalue of 0.

Furthermore, D�1
2 (D�W)D� 1

2 is symmetric semi-
positive de�nite, since (D�W), also called the Lapla-
cian matrix, is known to be semi-positive de�nite[1].
Hence z0 is in fact the smallest eigenvector of equa-
tion (7), and all eigenvectors of equation (7) are per-
pendicular to each other. In particular, z1 the second
smallest eigenvector is perpendicular to z0. Translat-
ing this statement back into the general eigensystem
(6), we have 1) y0 = (0;1) is the smallest eigenvec-
tor, and 2) 0 = zT1 z0 =y

T
1D1, where y1 is the second

smallest eigenvector of (6).
Now recall a simple fact about the Rayleigh

quotient[8]:
Let A be a real symmetric matrix. Under the con-

straint that x is orthogonal to the j-1 smallest eigen-

vectors x1,...,xj�1, the quotient x
TAx
xTx is minimized

by the next smallest eigenvector xj, and its minimum
value is the correspoding eigenvalue �j.

As a result, we obtain:

z1 = arg:minzTz0=0
zTD� 1

2 (D�W)D�1
2 z

zTz
; (8)

and consequently,

y1 = arg:minyTD1=0
yT (D�W)y

yTDy
; (9)

Thus the second smallest eigenvector of the gener-
alized eigensystem (6) is the real valued solution to
our normalized cut problem. The only reason that it
is not necessarily the solution to our original problem
is that the second constraint on y that yi takes on
two discrete values is not automatically satis�ed. In
fact relaxing this constraint is what makes this opti-
mization problem tractable in the �rst place. We will

show in section (3) how this real valued solution can
be transformed into a discrete form.

A similar argument can also be made to show that
the eigenvector with the third smallest eigenvalue is
the real valued solution that optimally sub-partitions
the �rst two parts. In fact this line of argument can be
extended to show that one can sub-divide the existing
graphs, each time using the eigenvector with the next
smallest eigenvalue. However, in practice because the
approximation error from the real valued solution to
the discrete valued solution accumulates with every
eigenvector taken, and all eigenvectors have to satisfy
a global mutual orthogonal constraint, solutions based
on higher eigenvectors become unreliable. It is best
to restart solving the partitioning problem on each
subgraph individually.

In summary, we propose using the normalized cut
criteria for graph partitioning, and we have shown how
this criteria can be computed e�ciently by solving a
generalized eigenvalue problem.

3 The grouping algorithm
As we saw above, the generalized eigensystem in (6)

can be transformed into a standard eigenvalue prob-
lem. Solving a standard eigenvalue problem for all
eigenvectors takes O(n3) operations, where n is the
number of nodes in the graph. This becomes im-
practical for image segmentation applications where
n is the number of pixels in an image. Fortunately,
our graph partitioning has the following properties:
1) the graphs often are only locally connected and
the resulting eigensystems are very sparse, 2) only
the top few eigenvectors are needed for graph par-
titioning, and 3) the precision requirement for the
eigenvectors is low, often only the right sign bit is
required. These special properties of our problem can
be fully exploited by an eigensolver called the Lanc-
zos method. The running time of a Lanczos algorithm
is O(mn) + O(mM (n))[8], where m is the maximum
number of matrix-vector computations allowed, and
M (n) is the cost of a matrix-vector computation. In
the case where (D�W) is sparse, matrix-vector takes
only O(n) time. The number m depends on many
factors[8]. In our experiments on image segmenta-

tions, m is typically less than O(n
1
2 ).

Once the eigenvectors are computed, we can parti-
tion the graph into two pieces using the second small-
est eigenvector. In the ideal case, the eigenvector
should only take on two discrete values, and the signs
of the values can tell us exactly how to partition the
graph. However, our eigenvectors can take on contin-
uous values, and we need to choose a splitting point to
partition it into two parts. There are many di�erent
ways of choosing such splitting point. One can take
0 or the median value as the splitting point, or one
can search for the splitting point such that the result-
ing partition has the best Ncut(A;B) value. We take
the latter approach in our work. Currently, the search
is done by checking l evenly spaced possible splitting
points, and computing the best Ncut among them.
In our experiments, the values in the eigenvectors are
usually well separated, and this method of choosing a
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Figure 3: (a) Point set generated by two Poisson processes,
with densities of 2.5 and 1.0 on the left and right cluster respec-
tively, (b) 4 and � indicates the partition of point set in (a).
Parameter settings: �X = 5; r = 3.

splitting point is very reliable even with a small l.
After the graph is broken into two pieces, we can

recursively run our algorithm on the two partitioned
parts. Or equivalently, we could take advantage of
the special properties of the other top eigenvectors as
explained in previous section to subdivide the graph
based on those eigenvectors. The recursion stops once
the Ncut value exceeds certain limit.

We also impose a stability criterion on the parti-
tion, rather analogous to a localization criterion in
edge detection. In edge detection, we can distinguish
a real edge from a region of high shading gradient by
the criterion that varying the position of a true edge
changes its strength, while in a smoothly shaded re-
gion varying the position of the putative edge does
not e�ect its strength. In the current context, we
regard a cut as unstable if varying the set of graph
edges forming the cut, the Ncut value does not change
much. To compute this stability measure, we vary the
value of splitting point around the optimal value, and
induce two di�erent partitions, P1 = (A1; B1) and
P2 = (A2; B2). The stability measure is the ratio
�cut(P1;P2)
�D(P1;P2) , where �D(P1; P2) =

P
i2(A1=A2) di

Our grouping algorithm can be summarized as fol-
lows:
1. Given a set of features, set up a weighted graph

G = (V;E), compute the weight on each edge,
and summarize the information intoW, and D.

2. Solve (D�W)x = �Dx for eigenvectors with
the smallest eigenvalues.

3. Use the eigenvector with second smallest eigen-
value to bipartition the graph by �nding the split-
ting point such that Ncut is maximized,

4. Decide if the current partition should be sub-
divided by checking the stability of the cut, and
make sure Ncut is below pre-speci�ed value,

5. Recursively repartition the segmented parts if
necessary.

The number of groups segmented by this method is
controlled directly by the maximum allowed Ncut.

4 Experiments
We have applied our grouping algorithm to monoc-

ular image segmentation based on brightness, color,
or texture information. In each case, we construct the
graph G = (V;E) by taking each pixel as a node, and
de�ne the edge weight wij between node i and j as

a b c d

Figure 4: (a) A synthetic image showing three image patchs
forming a junction. Image intensity varies from 0 to 1, and
Gaussian noise with � = 0:1 is added. (b)-(d) shows the top
three components of the partition.

a b c d
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Figure 5: (a) shows a 80x100 baseball scene, image intensity is
normalized to lie within 0 and 1. (b)-(h) shows the components
of the partition with Ncut value less than 0.04. Parameter
setting: �I = 0.01, �X = 4.0, r = 5.

the product of a feature similarity term and spatial
proximitiy term:

wij = e
�kF (i)�F (j)k2

�I �

8<
:

e
�kX (i)�X (j)k2

�X if
kX(i) �X(j)k2 < r

0 otherwise

whereX(i) is the spatial location of node i, and F (i) is
the feature vector based on intensity, color, or texture
information at that node de�ned as:

� F (i) = 1, in the case of segmenting point sets,

� F (i) = I(i), the intensity value, for segmenting
brightness images,

� F (i) = [v; v � s � sin(h); v � s � cos(h)] (i), where
h; s; v are the HSV values, for color segmentation,

� F (i) = [jI � f1j; :::; jI � fnj] (i), where the fi are
DOOG �lters at various scales and orientations as
used in[12], in the case of texture segmentation.

Note that the weight wij = 0 for any pair of nodes i
and j that are more than r pixels apart.

We �rst tested our grouping algorithm on spatial
point sets similar to the one shown in �gure (2). Fig-
ure (3) shows the point set and the segmentation re-
sult. As we can see from the �gure, the normalized
cut criterion is indeed able to partition the point set
in a desirable way as we have argued in section (2).
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Figure 6: (a) shows a 126x106 weather radar image. (b)-(g)
show the components of the partition with Ncut value less than
0.08. Parameter setting: �I = 0:005, �x = 15:0, r = 10

a b c
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Figure 7: (a) shows a 77x107 color image. (b)-(e) show the
components of the partition with Ncut value less than 0.04.
Parameter settings: �I = 0.01, �X = 4.0, r = 5.

Figures (4), (5), and (6) shows the result of our
segmentation algorithm on various brightness images.
Figure (4) is an synthetic image with added noise.
Figure (5) and (6) are natural images. Note that the
\objects" in �gure (6) have rather ill-de�ned boundary
which would make edge detection perform poorly. Fig-
ure (7) shows the segmentation on a color image, re-
produced in gray scale in these proceedings. The orig-
inal image and many other examples can be found at
web site http://www.cs.berkeley.edu/~jshi/Grouping.

Note that in all these examples the algorithm is
able to extract the major components of scene, while
ignoring small intra-component variation. As desired,
recursive partitioning can be used to further decom-
pose each piece.

Finally, we conclude with preliminary results on
texture segmentation for a natural image of a ze-
bra against a background, see �gure (8). Note that
the measure we have used is orientation-variant, and
therefore parts of the zebra skin with di�erent stripe
orientation should be marked as seperate regions.

Note that in these examples, we have considered
segmentation based on brightness, color, and texture
in isolation. Clearly these can be combined, as also

a

Figure 8: (a) shows an image of zebra. The remaining images
show the major components of the partition. The texture fea-
tures used corresponde to convolutions with DOOG �lters at 6
orientations and 5 scales.

with disparity and motion infomation. Preliminary
work in this direction may be found in[15].

5 Related graph partition algorithms
The idea of using eigenvalue problems for �nding

partitions of graphs originated in the work of Donath
& Ho�man[4], and Fiedler[6]. Fiedler suggested that
the eigenvector with the second smallest eigenvalue of
the system (D�W)x = �x could be used to split a
graph. In fact the second smallest eigenvalue is called
the Fiedler value, and corrsponding eigenvector the
Fiedler vector. This spectral partitioning idea has
been revived and further developed by several other
researchers, and recently popularized by the work of
[1], particularly in the area of parallel scienti�c com-
puting.

In applications to several di�erent areas, many au-
thors have noted that the spectral partition method
indeed provides good partitions of graphs [1]. Most
of the theoretical work done in this area has been fo-
cused on the connection between the ratio of cut and
the Fiedler value. A ratio of cut of a partition of V ,

P = (A; V � A) is de�ned as cut(A;V�A)
min(jAj;jV�Aj) . It was

shown that if the Fiedler value is small, partitioning
graph based on the Fiedler vector will lead to good
ratio of cut[16]. Our derivation in section 2.1 can be



adapted (by replacing the matrix D in the denom-
inators by the identity matrix I) to show that the
Fiedler vector is a real valued solution to the prob-

lem of minA�V
cut(A;V�A)

jAj + cut(V�A;A)
jV�Aj , which we can

call the average cut.
Although average cut looks similar to the normal-

ized cut, average cut does not have the important
property of having a simple relationship to the aver-
age association, which can be analogously de�ned as
asso(A;A)

jAj
+ asso(V�A;V�A)

jV�Aj
: Consequently, one can not

simultaneously minimize the disassociation across the
partitions, while maximizing the association within
the groups. When we applied both techniques to the
image segmentation problem, we found that the nor-
malized cut produces better results in practice.

The generalized eigenvalue approach was �rst ap-
plied to graph partitioning by [5] for dynamically bal-
ancing computational load in a parallel computer.
Their algorithm is motivated by [10]'s paper on repre-
senting a hypergraph in a Euclidean Space.

In the computer vision community, there are
a few related approaches for image segmentation.
Wu&Leahy[18] use theminimum cut criterion for their
segmentation. Cox et.al. [3] seek to minimize the ratio
cut(A;V�A)
weight(A) ; A � V , where weight(A) is some function

of the set A. When weight(A) is taken to the be the
sum of the elements in A, we see that this criterion
becomes one of the terms in the de�nition of average
cut above. Cox et. al. use an e�cient discrete al-
gorithm to solve their optimization problem assuming
the graph is planar.

Sarkar & Boyer[14] use the eigenvector with the
largest eigenvalue of the systemWx = �x for �nding
the most coherent region in an edge map. Although
their eigensystem is not directly related to the graph
partitioning problem, using a similar derivation as in
section (2.1), we can see that their system approxi-

mates minA�V
asso(A;A)

jAj .

6 Conclusion
In this paper, we developed a grouping algorithm

based on the view that perceptual grouping should be
a process that aims to extract global impressions of
a scene, and that provides a hierarchical description
of it. By treating the grouping problem as a graph
partitioning problem, we proposed the normalized cut
criteria for segmenting the graph. Normalized cut is
an unbiased measure of disassociation between sub-
groups of a graph, and it has the nice property that
minimizing normalized cut leads directly to maximiz-
ing the normalized association which is an unbiased
measure for total association within the sub-groups.
In �nding an e�cient algorithm for computing the
minimum normalized cut, we showed that a general-
ized eigenvalue system provides a real valued solution
to our problem.

A computational method based on this idea has
been developed, and applied to segmentation of
brightness, color, and texture images. Results of ex-
periments on real and synthetic images are very en-
couraging, and illustrate that the normalized cut cri-

terion does indeed satisfy our initial goal of extracting
the \big picture" of a scene.
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