Announcements

• Add through registration system
• Project 1 is out today
 – help session at the end of class

Image Segmentation

Today’s Readings

• Intelligent Scissors

From images to objects

What Defines an Object?

• Subjective problem, but has been well-studied
• Gestalt Laws seek to formalize this
 – proximity, similarity, continuation, closure, common fate
 – see notes by Steve Joordens, U. Toronto

Extracting objects

How could this be done?
Image Segmentation

Many approaches proposed
 • color cues
 • region cues
 • contour cues

We will consider a few of these

Today:
 • Intelligent Scissors (contour-based)

Intelligent Scissors

Approach answers a basic question
 • Q: how to find a path from seed to mouse that follows object boundary as closely as possible?
 • A: define a path that stays as close as possible to edges

Basic Idea
 • Define edge score for each pixel
 – edge pixels have low cost
 • Find lowest cost path from seed to mouse

Questions
 • How to define costs?
 • How to find the path?
Path Search (basic idea)

Graph Search Algorithm

- Computes minimum cost path from seed to all other pixels

How does this really work?

Treat the image as a graph

Graph

- node for every pixel \(p \)
- link between every adjacent pair of pixels, \(p,q \)
- cost \(c \) for each link

Note: each link has a cost

- this is a little different than the figure before where each pixel had a cost

Defining the costs

Treat the image as a graph

Want to hug image edges: how to define cost of a link?

- the link should follow the intensity edge
 - want intensity to change rapidly \(\perp \) to the link
- \(c \approx \) [difference of intensity \(\perp \) to link]

Defining the costs

\(c \) can be computed using a cross-correlation filter

- assume it is centered at \(p \)

Also typically scale \(c \) by it’s length

- set \(c = (\text{max}\{\text{filter response}\}) \cdot \text{length}(c) \)
- where \(\text{max} \) = maximum [filter response] over all pixels in the image
Defining the costs

\[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
\end{array} \]

\[H_w \]

\[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
\end{array} \]

\[H_r \]

\(c \) can be computed using a cross-correlation filter

- assume it is centered at \(p \)

Also typically scale \(c \) by its length

- set \(c = (max(\text{filter response})) \times \text{length}(c) \)
 - where \(max \) = maximum filter response over all pixels in the image

Dijkstra’s shortest path algorithm

Algorithm

1. init node costs to \(\infty \), set \(p = \text{seed point}, \ cost(p) = 0 \)
2. expand \(p \) as follows:
 - for each of \(p \)’s neighbors \(q \) that are not expanded
 - set \(\text{cost}(q) = \min(\text{cost}(p) + c_{pq}, \text{cost}(q)) \)
 - if \(q \)’s cost changed, make \(q \) point back to \(p \)
 - put \(q \) on the ACTIVE list (if not already there)
3. set \(r = \text{node with minimum cost on the ACTIVE list} \)
4. repeat Step 2 for \(p = r \)
Dijkstra’s shortest path algorithm

Algorithm
1. init node costs to ∞, set $p = $ seed point, cost(p) = 0
2. expand p as follows:
 for each of p’s neighbors q that are not expanded
 » set cost(q) = min(cost(p) + c_{pq}, cost(q))
 » if q’s cost changed, make q point back to p
 » put q on the ACTIVE list (if not already there)
3. set $r = $ node with minimum cost on the ACTIVE list
4. repeat Step 2 for $p = r$

Properties
- It computes the minimum cost path from the seed to every node in the graph. This set of minimum paths is represented as a tree
- Running time, with N pixels:
 - $O(N^2)$ time if you use an active list
 - $O(N \log N)$ if you use an active priority queue (heap)
 - takes $< \text{second for a typical (640x480) image}$
- Once this tree is computed once, we can extract the optimal path from any point to the seed in $O(N/2)$ time.
 - it runs in real time as the mouse moves
- What happens when the user specifies a new seed?

Results

[Image of results]
demo