![](v3_space.gif) |
![](v3_space.gif) |
![](v3_space.gif) |
![](v3_space.gif) |
![](v3_space.gif) |
![](v3_space.gif) |
![](v3_space.gif) |
![](v3_space.gif) |
![](v3_space.gif) |
![](v3_space.gif) |
![](v3_space.gif) |
![](v3_space.gif) |
![](v3_space.gif) |
![](v3_space.gif) |
![](v3_space.gif) |
![](v3_space.gif) |
![](v3_space.gif) |
![](v3_space.gif) |
![](v3_space.gif) |
![](v3_space.gif) |
Things to take
away from this lecture
|
|
|
|
• |
What is an edge
and where does it come from
|
|
|
• |
Edge detection
by differentiation
|
|
|
|
• |
Image gradients
|
|
|
|
– |
continuous and
discrete
|
|
|
|
– |
filters (e.g.,
Sobel operator)
|
|
|
|
• |
Effects of noise
on gradients
|
|
|
|
• |
Derivative
theorem of convolution
|
|
|
|
• |
Derivative of
Gaussian (DoG) operator
|
|
|
|
• |
Laplacian
operator
|
|
|
|
– |
Laplacian of
Gaussian (LoG)
|
|
|
|
• |
Canny edge
detector (basic idea)
|
|
|
|
– |
Effects of
varying sigma parameter
|
|
|
|
• |
Approximating an
LoG by subtraction
|
|
|
|
• |
Hough Transform
|
|