
Intelligent Scissors for Image Composition

Eric N. Mortensen1      William A. Barrett2

Brigham Young University
on-
are
r

ta-

-
ng
 as

 of

ge
r,
lly
.

a-
y
-

n

rs
x-

n
al
l
ge
ry
r,

al

be
 a

on

ph

m
mal
c-
e
h-
-

s
ts.
ee
Abstract
We present a new, interactive tool calledIntelligent Scissors

which we use for image segmentation and composition.  Fully au
mated segmentation is an unsolved problem, while manual trac
is inaccurate and laboriously unacceptable.  However, Intellige
Scissors allow objects within digital images to be extracted quick
and accurately using simple gesture motions with a mouse.  Wh
the gestured mouse position comes in proximity to an object ed
a live-wire boundary “snaps” to, and wraps around the object o
interest.

Live-wire boundary detection formulates discrete dynamic pr
gramming (DP) as a two-dimensional graph searching problem.  
provides mathematically optimal boundaries while greatly reducin
sensitivity to local noise or other intervening structures.  Robu
ness is further enhanced withon-the-fly training which causes the
boundary to adhere to the specific type of edge currently being f
lowed, rather than simply the strongest edge in the neighborho
Boundary cooling automatically freezes unchanging segments an
automates input of additional seed points. Cooling also allows t
user to be much more free with the gesture path, thereby increas
the efficiency and finesse with which boundaries can be extracte

Extracted objects can be scaled, rotated, and composited us
live-wire masks andspatial frequency equivalencing.  Frequency
equivalencing is performed by applying a Butterworth filter whic
matches the lowest frequency spectra to all other image com
nents.  Intelligent Scissors allow creation of convincing compos
tions from existing images while dramatically increasing the spe
and precision with which objects can be extracted.

1. Introduction
Digital image composition has recently received much attentio

for special effects in movies and in a variety of desktop applic
tions.  In movies, image composition, combined with other digit
manipulation techniques, has also been used to realistically ble
old film into a new script.  The goal of image composition is to com
bine objects or regions from various still photographs or mov
frames to create a seamless, believable, image or image sequ
which appears convincing and real.  Fig. 9(d) shows a believa
composition created by combining objects extracted from thr
images, Fig. 9(a-c).  These objects were digitally extracted a
combined in a few minutes using a new, interactive tool calledIntel-
ligent Scissors.

When using existing images, objects of interest must be extrac
and segmented from a surrounding background of unpredicta
complexity.  Manual segmentation is tedious and time consumin
lacking in precision, and impractical when applied to long imag

1enm@cs.byu.edu, Dept. of Comp. Sci., BYU, Provo, UT  84602 (801)378-7605
2barrett@cs.byu.edu, Dept. of Comp. Sci., BYU, Provo, UT  84602 (801)378-7430
y
h-
),
to-
ing
nt
ly
en

ge,
f

o-
DP
g

st-

ol-
od.
d
he
ing
d.

ing

h
po-
i-

ed

n
a-
al
nd
-

ie
ence
ble
ee
nd

ted
ble
g,
e

sequences. Further, due to the wide variety of image types and c
tent, most current computer based segmentation techniques 
slow, inaccurate, and require significant user input to initialize o
control the segmentation process.

This paper describes a new, interactive, digital image segmen
tion tool called “Intelligent Scissors” which allows rapid object
extraction from arbitrarily complex backgrounds. Intelligent Scis
sors boundary detection formulates discrete dynamic programmi
(DP) as a two-dimensional graph searching problem.  Presented
part of this tool areboundary cooling andon-the-fly training, which
reduce user input and dynamically adapt the tool to specific types
edges.  Finally, we presentlive-wire masking andspatial frequency
equivalencing for convincing image compositions.

2. Background
Digital image segmentation techniques are used to extract ima

components from their surrounding natural background.  Howeve
currently available computer based segmentation tools are typica
primitive and often offer little more advantage than manual tracing

Region based magic wands, provided in many desktop applic
tions, use an interactively selected seed point to “grow” a region b
adding adjacent neighboring pixels.  Since this type of region grow
ing does not provide interactive visual feedback, resulting regio
boundaries must usually be edited or modified.

Other popular boundary definition methods use active contou
or snakes[1, 5, 8, 15] to improve a manually entered rough appro
imation.  After being initialized with a rough boundary approxima-
tion, snakes iteratively adjust the boundary points in parallel in a
attempt to minimize an energy functional and achieve an optim
boundary.  The energy functional is a combination of interna
forces, such as boundary curvature, and external forces, like ima
gradient magnitude.  Snakes can track frame-to-frame bounda
motion provided the boundary hasn’t moved drastically.  Howeve
active contours follow a pattern of initialization followed by energy
minimization; as a result, the user does not know what the fin
boundary will look like when the rough approximation is input. If
the resulting boundary is not satisfactory, the process must 
repeated or the boundary must be manually edited.  We provide
detailed comparison of snakes and Intelligent Scissors in secti
3.6.

Another class of image segmentation techniques use a gra
searching formulation of DP (or similar concepts) to find globally
optimal boundaries [2, 4, 10, 11, 14].  These techniques differ fro
snakes in that boundary points are generated in a stage-wise opti
cost fashion whereas snakes iteratively minimize an energy fun
tional for all points on a contour in parallel (giving the appearanc
of wiggling).  However, like snakes, these graph searching tec
niques typically require a boundary template--in the form of a man
ually entered rough approximation, a figure of merit, etc.--which i
used to impose directional sampling and/or searching constrain
This limits these techniques to  a boundary search with one degr
of freedom within a window about the two-dimensional boundar
template.  Thus, boundary extraction using previous graph searc
ing techniques is non-interactive (beyond template specification
losing the benefits of further human guidance and expertise.

Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.



k,
ct

w

x-

e
ry

s

n
-
e

a
n

d

:

.

n

-
s

-

The most important difference between previous boundary fin
ing techniques and Intelligent Scissors presented here lies not in
boundary defining criteria per se´, but in themethod of interaction.
Namely, previous methods exhibit a pattern of boundary approx
mation followed by boundary refinement, whereas Intelligent Sci
sors  allow the user tointeractively select the most suitable
boundary from a set ofall optimal boundaries emanating from a
seed point.  In addition, previous approaches do not incorporate 
the-fly training or cooling, and are not as computationally efficien
Finally, it appears that the problem of automated matching of sp
tial frequencies for digital image composition has not bee
addressed previously.

3. Intelligent Scissors
Boundary definition via dynamic programming can be formu

lated as a graph searching problem [10] where the goal is to find 
optimal path between a start node and a set of goal nodes. 
applied to image boundary finding, the graph search consists
finding the globally optimal path from a start pixel to a goal pixel-
in particular, pixels represent nodes and edges are created betw
each pixel and its 8 neighbors.  For this paper, optimality is defin
as the minimum cumulative cost path from a start pixel to a go
pixel where the cumulative cost of a path is the sum of the loc
edge (or link) costs on the path.

3.1. Local Costs
Since a minimum cost path should correspond to an image co

ponent boundary, pixels (or more accurately, links between neig
boring pixels) that exhibit strong edge features should have lo
local costs and vice-versa.  Thus, local component costs are crea
from the various edge features:

The local costs are computed as a weighted sum of these compo
functionals.  Lettingl(p,q) represents the local cost on the directe
link from pixelp to a neighboring pixelq, the local cost function is

(1)

where eachω is the weight of the corresponding feature function
(Empirically, weights ofωZ = 0.43,ωD = 0.43, andωG = 0.14 seem
to work well in a wide range of images.)

The laplacian zero-crossing is a binary edge feature used for e
localization [7, 9]. Convolution of an image with a laplacian kerne
approximates the 2nd partial derivative of the image.  The laplacian
image zero-crossing corresponds to points of maximal (or minima
gradient magnitude.  Thus, laplacian zero-crossings repres
“good” edge properties and should therefore have a low local co
If IL(q) is the laplacian of an imageI at pixelq, then

(2)

However, application of a discrete laplacian kernel to a digit
image produces very few zero-valued pixels.  Rather, a zero-cro
ing is represented by two neighboring pixels that change from po
itive to negative.  Of the two pixels, the one closest to zero is us
to represent the zero-crossing.  The resulting feature cost conta
single-pixel wide cost “canyons” used for boundary localization.

Image Feature Formulation

Laplacian Zero-Crossing fZ
Gradient Magnitude fG
Gradient Direction fD

l p q,( ) ω
Z

fZ q( )⋅ ω
D

f D p q,( )⋅ ω
G

fG q( )⋅+ +=

f Z q( )
0 ;���i f � I L q( ) 0=

1 ;���i f � I L q( ) 0≠
{=
d-
 the

i-
s-

on-
t.
a-
n

-
the
 As
 of
-
een

ed
al
al

m-
h-
w
ted

nent
d

.

dge
l

l)
ent
st.

al
ss-
s-
ed
ins

Since the laplacian zero-crossing creates a binary feature,fZ(q)
does not distinguish between strong, high gradient edges and wea
low gradient edges.  However, gradient magnitude provides a dire
correlation between edge strength and local cost.  IfIx andIy repre-
sent the partials of an imageI in x andy respectively, then the gra-
dient magnitudeG is approximated with

.

The gradient is scaled and inverted so high gradients produce lo
costs and vice-versa.  Thus, the gradient component function is

(3)

giving an inverse linear ramp function.  Finally, gradient magnitude
costs are scaled by Euclidean distance.  To keep the resulting ma
imum gradient at unity,fG(q) is scaled by 1 ifq is a diagonal neigh-
bor top and by 1/√2 if q is a horizontal or vertical neighbor.

The gradient direction adds a smoothness constraint to th
boundary by associating a high cost for sharp changes in bounda
direction.  The gradient direction is the unit vector defined byIx and
Iy.  LettingD(p) be the unit vector perpendicular (rotated 90 degree
clockwise) to the gradient direction at pointp (i.e., forD(p) = (Iy(p),
-Ix(p))), the formulation of the gradient direction feature cost is

(4)

where

are vector dot products and

(5)

is the bidirectional link or edge vector between pixelsp and q.
Links are either horizontal, vertical, or diagonal (relative to the
position ofq in p’s neighborhood) and point such that the dot prod-
uct of D(p) andL(p, q) is positive, as noted in (5).  The neighbor-
hood link direction associates a high cost to an edge or link betwee
two pixels that have similar gradient directions but are perpendicu
lar, or near perpendicular, to the link between them.  Therefore, th
direction feature cost is low when the gradient direction of the two
pixels are similar to each other and the link between them.

3.2. Two-Dimensional Dynamic Programming
As mentioned, dynamic programming can be formulated as 

directed graph search for an optimal path.  This paper utilizes a
optimal graph search similar to that presented by Dijkstra [6] an
extended by Nilsson [13]; further, this technique builds on and
extends previous boundary tracking methods in 4 important ways

1. It imposes no directional sampling or searching constraints

2. It utilizes a new set of edge features and costs: laplacia
zero-crossing, multiple gradient kernels.

3. The active list is sorted with an O(N) sort forN nodes/pixels.

4. No a priori goal nodes/pixels are specified.

First, formulation of boundary finding as a 2-D graph search elimi
nates the directed sampling and searching restrictions of previou
implementations, thereby allowing boundaries of arbitrary com

G I x
2

I y
2+=

fG

m ax G( ) G−
m ax G( )

1
G

m ax G( )
−= =

f D p q,( )
1

π
dp p q,( )[ ]co s 1− dq p q,( )[ ]co s 1−+{ }=

dp p q,( ) D ' p( ) L p q,( )⋅=

dq p q,( ) L p q,( ) D ' q( )⋅=

L p q,( )
q p ��� i f � D ' p( ) q p−( ) 0≥⋅;−
p q ��� i f � D ' p( ) q p−( ) 0<⋅;−

{=



u-

t-
ts
),

e

ry

d-
t

plexity to be extracted.  Second, the edge features used here
more robust and comprehensive than previous implementations:
maximize over different gradient kernels sizes to encompass 
various edge types and scales while simultaneously attempting
balance edge detail with noise suppression [7], and we use the la
cian zero-crossing for boundary localization and fine detail live
wire “snapping”.  Third, the discrete, bounded nature of the loc
edge costs permit the use of a specialized sorting algorithm t
inserts points into a sorted list (called the active list) in consta
time.  Fourth, the live-wire tool is free to define a goal pixel inter
actively, at any “free” point in the image, after minimum cost path
are computed toall pixels.  The latter happens fast enough that th
free point almost always falls within an expanding cost wavefro
and interactivity is not impeded.

The Live-Wire 2-D dynamic programming (DP) graph searc
algorithm is as follows:

Algorithm:  Live-Wire 2-D DP graph search.

Input:
s {Start (or seed) pixel.}
l( q, r ) {Local cost function for link between pixels q and r.}

Data Structures:
L {List of active pixels sorted by total cost (initially empty).}
N( q) {Neighborhood set of q (contains 8 neighbors of pixel).}
e( q) {Boolean function indicating if q has been expanded/processed.}
g( q) {Total cost function from seed point to q.}

Output:
p {Pointers from each pixel indicating the minimum cost path.}

Algorithm:
g( s) ←0;  L ←s ; {Initialize active list with zero cost seed pixel.}
while  L ≠∅ do begin {While still points to expand:}

q←min(L); {Remove minimum cost pixel q from active list.}
e( q) ←TRUE; {Mark q as expanded (i.e., processed).}
for each r ∈N( q) such that  not e( r ) do begin

gtmp←g( q)+l( q, r ); {Compute total cost to neighbor.}
if r ∈L and  g tmp<g( r ) then {Remove higher cost neighbor’s }

r ←L; {  from list.}
if r ∉L then begin {If neighbor not on list, }

g( r ) ←gtmp; {  assign neighbor’s total cost, }
p( r ) ←q; {  set (or reset) back pointer, }
L←r ; {  and place on (or return to) }

end {  active list.}
end

end

Notice that since the active list is sorted, when a new, lower cum
lative cost is computed for a pixel already on the list then that po
must be removed from the list in order to be added back to the 
with the new lower cost.  Similar to adding a point to the sorted lis
this operation is also performed in constant time.

Figure 1 demonstrates the use of the 2-D DP graph search al
rithm to create a minimum cumulative cost path map (with corr
sponding optimal path pointers).  Figure 1(a) is the initial local co
map with the seed point circled.  For simplicity of demonstratio
the local costs in this example are pixel based rather than link ba
and can be thought of as representing the gradient magnitude c
feature.  Figure 1(b) shows a portion of the cumulative cost a
pointer map after expanding the seed point (with a cumulative co
of zero).  Notice how the diagonal local costs have been scaled
Euclidean distance (consistent with the gradient magnitude co
feature described previously).  Though complicating the examp
weighing by Euclidean distance is necessary to demonstrate that
cumulative costs to points currently on the active list can change
even lower cumulative costs are computed from as yet unexpand
neighbors.  This is demonstrated in Figure 1(c) where two poin
 are
 we
the
 to
pla-
-

al
hat
nt
-
s
e
nt

h

u-
int
list
t,

go-
e-
st
n
sed
ost

nd
st

 by
st

le,
 the
 if
ed
ts

have now been expanded--the seed point and the next lowest cum
lative cost point on the active list.  Notice how the points diagonal
to the seed point have changed cumulative cost and direction poin
ers.  The Euclidean weighting between the seed and diagonal poin
makes them more costly than non-diagonal paths.  Figures 1(d
1(e), and 1(f) show the cumulative cost/direction pointer map at
various stages of completion.  Note how the algorithm produces a
“wavefront” of active points emanating from the initial start point,
called the seed point, and that the wavefront grows out faster wher
there are lower costs.

3.3. Interactive “Live-Wire” Segmentation Tool
Once the optimal path pointers are generated, a desired bounda

segment can be chosen dynamically via a “free” point.  Interactive
movement of the free point by the mouse cursor causes the boun
ary to behave like a live-wire as it adapts to the new minimum cos
path by following the optimal path pointers from the free point back

45 41 35 31 29 35 33 34 36 40 50

38 29 23 22 24 29 37 38 42 39 43

28 18 16 21 28 37 46 49 47 40 35

18 12 16 27 38 53 59 53 39 33 31

14 8 13 20 29 35 49 54 35 28 32

14 6 6 12 14 22 28 35 27 25 31

18 7 2 9 5 9 14 21 18 23 32

16 4 0 1 6 12 13 15 19 27 39

18 13 7 6 14 17 18 17 24 30 45

11 13 12 9 5 8 3 1 2 4 10

14 11 7 4 2 5 8 4 6 3 8

11 6 3 5 7 9 12 11 10 7 4

7 4 6 11 13 18 17 14 8 5 2

6 2 7 10 15 15 21 19 8 3 5

8 3 4 7 9 13 14 15 9 5 6

11 5 2 8 3 4 5 7 2 5 9

12 4 2 1 5 6 3 2 4 8 12

10 9 7 5 9 8 5 3 7 8 15

(a)

(e)

(f)

Figure 1: (a) Initial local cost matrix.  (b) Seed point (shaded)
expanded.  (c) 2 points (shaded) expanded.  (d) 5 points (shaded)
expanded.  (e) 47 points expanded.  (f) Finished total cost and path
matrix with two of many paths (free points shaded) indicated.

(c) (d)

41 35 31 29 35

38 29 23 22 24 29

28 18 16 21 28 37

18 12 16 27 38

14 8 13 20 29 35 52 35 28 32

14 6 6 12 14 22 28 35 27 25 31

18 7 2 9 5 9 14 21 18 23 32

16 4 0 1 6 12 13 15 19 27 40

18 13 7 6 14 17 18 17 24 30

(b)

7 2 9 5

4 0 1 6

13 7 6 14

7 2 11

4 0 1

13 7 7

6 6 12 14 23

20 7 2 9 5 9

16 4 0 1 6 13

18 13 7 6 14



te
e

re

d

n
).

l
ge

t.
to the seed point.  By constraining the seed point and free points
lie near a given edge, the user is able to interactively “snap” a
“wrap” the live-wire boundary around the object of interest.  Figur
2 demonstrates how a live-wire boundary segment adapts 
changes in the free point (cursor position) by latching onto mo
and more of an object boundary.  Specifically, note the live-wir
segments corresponding to user-specified free point positions
timest0, t1, andt2.  Although Fig. 2 only shows live-wire segments
for three discrete time instances, live-wire segments are actua
updated dynamically and interactively (on-the-fly) with each move
ment of the free point.

When movement of the free point causes the boundary to digr
from the desired object edge, interactive input of a new seed po
prior to the point of departure reinitiates the 2-D DP bounda
detection.  This causes potential paths to be recomputed from 
new seed point while effectively “tieing off” the boundary com-
puted up to the new seed point.

Note again that optimal paths are computed from the seed po
to all points in the image (since the 2-D DP graph search produc
a minimum cost spanning tree of the image [6]).  Thus, by selecti
a free point with the mouse cursor, the interactive live-wire tool 
simply selecting an optimal boundary segment from a large colle
tion of optimal paths.

Since each pixel (or free point) defines only one optimal path 
a seed point, a minimum of two seed points must be placed
ensure a closed object boundary.  The path map from the first s
point of every object is maintained during the course of an objec
boundary definition to provide a closing boundary path from th
free point.  The closing boundary segment from the free point to t
first seed point expedites boundary closure.

Placing seed points directly on an object’s edge is often difficu
and tedious.  If a seed point is not localized to an object edge th
spikes results on the segmented boundary at those seed points (s

Figure 2: Image demonstrating how the live-wire segment adapts and
snaps to an object boundary as the free point moves (via cursor move
ment).  The path of the free point is shown in white.  Live-wire segmen
from previous free point positions (t0, t1, and t2) are shown in green.

(a) (b)
Figure 3: Comparison of live-wire without (a) and with (b) cooling.
Withot cooling (a), all seed points must be placed manually on the
object edge.  With cooling (b), seed points are generated automaticall
as the live-wire segment freezes.
 to
nd
e
to

re
e
 at

lly
-

ess
int

ry
the

int
es
ng
is
c-

to
 to
eed
t’s
e
he

lt
en
ince

-
ts

y

the boundary is forced to pass through the seed points).  To facilita
seed point placement, a cursor snap is available which forces th
mouse pointer to the maximum gradient magnitude pixel within a
user specified neighborhood.  The neighborhood can be anywhe
from 1×1 (resulting in no cursor snap) to 15×15 (where the cursor
can snap as much as 7 pixels in bothx andy).  Thus, as the mouse
cursor is moved by the user, it snaps or jumps to a neighborhoo
pixel representing a “good” static edge point.

3.4. Path Cooling
Generating closed boundaries around objects of interest ca

require as few as two seed points (for reasons given previously
Simple objects typically require two to five seed points but complex
objects may require many more.  Even with cursor snap, manua
placement of seed points can be tedious and often requires a lar
portion of the overall boundary definition time.

(a)

(b)

Figure 4: Comparison of live-wire (a) without and (b) with dynamic
training.  (a) Without training, the live-wire segment snaps to nearby
strong edges.  (b) With training, it favors edges with similar characteris-
tics as those just learned. (c) The static gradient magnitude cost map
shows that without training, high gradients are favored since they map
to low costs.  However, with training, the dynamic cost map (d) favors
gradients similar to those sampled from the previous boundary segmen

MG

nG
0

0

C
os

t

Gradient Magnitude

MG

nG
0

0

C
os

t

Gradient Magnitude

Static Cost Map Dynamic Cost Map

(c) (d)



g
re
ng
e

e.,
 1

r-
e

re-
re

n
es
 to

he
-

is-
e
-
a-
 on
-
ry

tic

rs
-

s

o

ts

ds

o

 of

not

e
-
c-

la-
-

the
Automatic seed point generation relieves the user from prec
manual placement of seed points by automatically selecting a pi
on the current active boundary segment to be a new seed po
Selection is based on “path cooling” which in turn relies on pa
coalescence. Though a single minimum cost path exists from ea
pixel to a given seed point, many paths “coalesce” and share p
tions of their optimal path with paths from other pixels.  Due t
Bellman’s Principle of Optimality [3], if any two optimal paths
from two distinct pixels share a common point or pixel, then the tw
paths are identical from that pixel back to the seed point. This is p
ticularly noticeable if the seed point is placed near an object ed
and the free point is moved away from the seed point but rema
in the vicinity of the object edge.  Though a new optimal path 
selected and displayed every time the mouse cursor moves, 
paths are typically identical near the seed point and object edg
and only change local to the free point.  As the free point moves f
ther and farther away from the seed point, the portion of the acti
live-wire boundary segment that does not change becomes long
New seed points are generated at the end of a stable segment 
that has not changed recently).  Stability is measured by time 
milliseconds) on the active boundary and path coalescence (num
of times the path has been redrawn from distinct free points).

This measure of stability provides the live-wire segment with 
sense of “cooling”.  The longer a pixel is on a stable section of t
live-wire boundary, the cooler it becomes until it eventually freeze
and automatically produces a new seed point.

Figure 3 illustrates the benefit of path cooling.  In Fig. 3(a), th
user must place each seed point manually on the object bound
However, with cooling (Fig. 3(b)), only the first seed point (and la
free point) need to be specified manually; the other seed points w
generated automatically via cooling.

3.5. Interactive Dynamic Training
On occasion, a section of the desired object boundary may ha

a weak gradient magnitude relative to a nearby strong gradie
edge.  Since the nearby strong edge has a relatively lower cost,
live-wire segment snaps to the strong edge rather than the des
weaker edge.  This can be seen in Fig. 4(a).  The desired bound
is the woman’s (Harriet’s) cheek.  However, since part of it is s
close to the high contrast shoulder of the man (Ozzie), the live-w
snaps to the shoulder.

Training allows dynamic adaptation of the cost function based 
a sample boundary segment.  Training exploits an object’s boun
ary segment that is already considered to be good and is perform
dynamically as part of the boundary segmentation process.  A
result, trained features are updated interactively as an object bou
ary is being defined.  On-the-fly training eliminates the need for
separate training phase and allows the trained feature cost functi
to adaptwithin the object being segmented as well as betwee
objects in the image.  Fig. 4(b) demonstrates how a trained live-w
segment latches onto the edge that is similar to the previous train
segment rather that the nearby stronger edge.

To facilitate training and trained cost computation, a gradie
magnitude feature map or image is precomputed by scaling the m
imized gradient magnitude image,G', into an integer range of size
nG (i.e., from 0 tonG - 1).  The actual feature cost is determined b
mapping these feature values through a look-up table which co
tains the scaled (weighted) cost for each value.  Fig 4(c) illustra
edge cost based on gradient magnitude without training.  Note t
with training (Fig. 4(d)) edge cost plummets for gradients that a
specific to the object of interest’s edges.

Selection of a “good” boundary segment for training is mad
interactively using the live-wire tool.  To allow training to adapt to
slow (or smooth) changes in edge characteristics, the trained gra
ent magnitude cost function is based only on the most recent
ise
xel
int.
th
ch
or-
o

o
ar-
ge
ins
is
the
es

ar-
ve
er.

(i.e.,
(in
ber

a
he
s

e
ary.
st
ere

ve
nt

 the
ired
ary
o
ire

on
d-
ed

s a
nd-
 a
ons
n
ire
ing

nt
in-

y
n-

tes
hat
re

e

di-
 or

closest portion of the current defined object boundary.  A trainin
length,t, specifies how many of the most recent boundary pixels a
used to generate the training statistics.  A monotonically decreasi
weight function (either linearly or Gaussian based) determines th
contribution from each of the closestt pixels.  This permits adaptive
training with local dependence to prevent trained feature from
being too subject to old edge characteristics.  The closest pixel (i.
the current active boundary segment endpoint) gets a weight of
and the point that ist pixels away, along the boundary from the cur-
rent active endpoint, gets a minimal weight (which can be dete
mined by the user).  The training algorithm samples th
precomputed feature maps along the closestt pixels of the edge seg-
ment and increments the feature histogram element by the cor
sponding pixel weight to generate a histogram for each featu
involved in training.

After sampling and smoothing, each feature histogram is the
scaled and inverted (by subtracting the scaled histogram valu
from its maximum value) to create the feature cost map needed
convert feature values to trained cost functions.

Since training is based on learned edge characteristics from t
most recent portion of an object’s boundary, training is most effec
tive for those objects with edge properties that are relatively cons
tent along the object boundary (or, if changing, at least chang
smoothly enough for the training algorithm to adapt).  In fact, train
ing can be counter-productive for objects with sudden and/or dr
matic changes in edge features.  However, training can be turned
and off interactively throughout the definition of an object bound
ary so that it can be used (if needed) in a section of the bounda
with similar edge characteristics and then turned off before a dras
change occurs.

3.6 Comparison with Snakes
Due to the recent popularity of snakes and other active contou

models and since the interactive boundary wrapping of the live
wire may seem similar to the “wiggling” of snakes, we highlight
what we feel are the similarities and their corresponding difference
between snakes and Intelligent Scissors.

Similarities (compare with corresponding differences below):

1. The gradient magnitude cost in Intelligent Scissors is similar t
the edge energy functional used in snakes.

2. Both methods employ a smoothing term to minimize the effec
of noise in the boundary.

3. Snakes and live-wire boundaries are both attracted towar
strong edge features.

4. Both techniques attempt to find globally optimal boundaries t
try to overcome the effects of noise and edge dropout.

5. Snakes and Intelligent Scissors both require interaction as part
the boundary segmentation process.

Differences (compare with corresponding similarities above):

1. The laplacian zero-crossing binary cost feature seems to have 
been used previously in active contours models1 (or DP bound-
ary tracking methods for that matter).

2. The active contour smoothing term is internal (i.e., based on th
contour’s point positions) whereas the smoothing term for live
wire boundaries is computed from external image gradient dire
tions2(next page).

1. Kass et al. [8] did use a squared laplacian energy functional to show the re
tionship of scale-space continuation to the Marr-Hildreth edge detection theory.  How
ever, the squared laplacian does not represent a binary condition, nor could it since 
variational calculus minimization used in [8] required that all functionals be differen-
tiable.



-

-
b-

l-

rs
a-

-
is
t

a
l

d

r-
t
o

te
ll

,
t
i-

e

o

er
e

3. Snakes are typically attracted to edge features only within t
gravity of an edge’s gradient energy valley whereas the live-wi
boundary can snap to strong edge features from arbitrary d
tances (since the 2-D DP’s search window is the entire image

4. Snakes are globally optimal over the entire contour whereas li
wire boundaries are piece-wise optimal (i.e., optimal betwe
seed points).  We feel this creates a desirable balance betw
global optimality and local control.  This piece-wise optimality
also allows for path cooling and intra-object on-the-fly training

5. Finally, snakes refine (and interactively “nudge” by placin
springs, etc.) a single rough boundary approximation where t
live-wire tool interactivelyselects an optimal boundary segment
from potentiallyall possible minimum cost paths.

Interactive optimal 2-D path selection is what makes Intellige
Scissors work and is the key difference between Intelligent Sciss
and all previous techniques.  Snakes are interactively initializ
with an approximate boundary contour (often requiring sever
manually placed points); this single contour is then iterative
adjusted in an attempt to minimize an energy functional.  The liv
wire tool, on the other hand, is interactively initialized with just 
single seed point and it then generates, at interactive speeds, all 
sible optimal paths from the seed point toevery other point in the
image, thus, allowing the user to interactively select the desir
optimal boundary segment.  As a result, Intelligent Scissors ty
cally require less time and effort to segment an object than it tak
to manually input an initial approximation to the object boundary

Actually, the live-wire tool is much more similar to previous
stage-wise optimal boundary tracking approaches than it is 
snakes, since Intelligent Scissors were developed as an interac
2-D extension to previous optimal edge tracking methods rath
than an improvement on active contours.

4. Image Composition with Intelligent Scissors
As mentioned, composition artists need an intelligent, interacti

tool to facilitate image component boundary definition.  Since Inte
ligent Scissors can quickly segment object from an image, it ser
as a tool for cut and paste operations.  After object boundaries h
been extracted, object can be copied from the image and placed
a buffer (i.e., clipboard) for future processing and placement in
another image, or the same image if desired.

The cut object can be transformed--i.e., rotated, scaled, and tra
lated, (RST)--before combination with the destination image.  Th
is done using an interactive graphical tool with “handles” for RS
control.  The tool specifies a 2-D RST transformation matrix,M.
The source image is then bilinearly interpolated through the mat
to paste the cut object into the destination image.

Image composition often requires blending an object from o
image into another image such that the cut-out object is not in 
foreground.  This requires the composition artist to “slip” the cu
out object behind some scene components while leaving it in fro
of other components. This operation can again be performed us
the live-wire tool to create a composition mask1. Scene components
can be cut out of an image to create a mask such that any addit
or changes to the scene will not affect masked pixels.

4.1. Edge Filtering
As described, live-wire boundaries are limited by the pixel res

2. Admittedly, the gradient direction cost used in Intelligent Scissors is more
susceptible to noise in areas of low contrast (since it computes a smoothness cos
based only on two points and one link).  However, it is possible to extend the gradi
direction term to include 3 pixels and 2 links without significant loss of computation
efficiency.

1. Similar in concept to an optical mask used in motion picture special effect
he
re
is-
).

ve-
en
een

.

g
he

nt
ors
ed
al
ly
e-
a
pos-

ed
pi-
es

.

to
tive
er

ve
l-

ves
ave
 into
to

ns-
is
T

rix

ne
the
t-
nt
ing

ions

o-

t
ent
al

s.

lution of the image.  This may produce jaggies along object bound
aries in a resulting composition.  However, subpixel accuracy can
be obtained by exploiting the signed output of the laplacian opera
tor.  That is, the position of the object edge can be estimated to su
pixel accuracy by using a (linearly) weighted combination of the
laplacian pixel values on either side of the zero-crossings.

Since the live-wire boundary will not always correspond to a
zero-crossing, jaggies can also be reduced by appropriate edge fi
tering, similar to anti-aliasing.  Edge filtering is also desirable
because real world images are acquired using finite image detecto
and, as a result, pixels on or near an object boundary share inform
tion (i.e., color) from the object and the background.

One approach to edge filtering is to perform a local post-smooth
ing of the image around the pasted object boundary.  However, th
does not account for the fact that the edge pixels of the cut objec
very likely contain some background information from the original
image. This is most noticeable when an object is composited into 
scene with a different background color than the object’s origina
background color.  A more general solution would determine how
much of each edge pixel corresponds to the actual object color an
weight them accordingly when combining into another image.

4.2. Spatial Frequency and Contrast Matching
Once the object of interest has been segmented from the su

rounding background we can scale it, rotate it, color it, or paste i
onto another (destination) image.  When pasting, it is desirable t
perform image composition “seamlessly” in order to make it believ-
able.  That is, we should not be able to detect where the pas
occurred.  However, the source and the destination images wi
often have differing spatial frequencies or contrast due to differ-
ences in focus or lighting when the images were acquired.  Thus
equivalencing of spatial frequencies and normalization of contras
is sometimes desirable in order to produce a convincing compos
tion.

Equivalencing of spatial frequencies is performed by matching
the spectral content of the cut piece and the destination image in th
vicinity where it is to be pasted.  Convincing composition often
requires the spectra of the object and the destination image t
match.  This is accomplished by low-pass filtering the spectrum
with the higher frequency content to match that of the other.  The
spectrum with the higher frequency content is determined by
parameter fitting of a Butterworth low-pass filter (BLPF) to both
spectra.  Parameters corresponding to the spectrum with the low
frequency content are used to low-pass filter the spectrum of th
other image.

The BLPFB(u, v, d0, n) is given by

whered0 is the distance of the cutoff frequency from the origin and
n is the filter order.

Equivalencing of spatial frequencies is performed by first com-
puting the fourier transforms,S(u, v) andI(u, v) of the source image
S(x, y) and the destination imageI(x, y).  We then compute the log
power spectras(u, v) andi(u, v):

By varying the two parametersd0 andn, a least squares fit can be
used to create a normalized Butterworth filterB(u, v, d0', n') (where

B u v d0 n, , ,( )
1

1
u2 v2+

d0

2n

+

=

s u v,( ) S u v,( )[ ]lo g 2=

i u v,( ) I u v,( )[ ]lo g 2=



e

y

to
n-

t

t,
-
ixel
g

pt
ve
us

rt,

e

c-
e
e

:
o

)
-
f
,

d0' andn' are the fit parameters) matched to the spatial frequen
characteristics ofi(u, v).  If i(u, v) demonstrates lower spatial fre-
quency content thans(u, v), the spatial frequencies between the two
images can be equivalenced by fittingB(u, v, d0', n') to s(u, v).  The
equivalenced result using the inverse Fourier transform

is then pasted ontoI(x, y).  Prior to pasting, the colors in the source
image are scaled to the range ofI(x, y) to account for differences in
contrast.

5. Results
Figures 5, 6, and 7 show the boundaries defined using Intellige

Scissors on a variety of image types.  Fig. 5 is an artificial test ima
that exhibits gaussian edge blurring and point noise typical of som
imaging hardware.   Fig. 6 is the desktop scene used in Figure
and 3.  Fig. 7 (a CT image of a lumbar spine) demonstrates the li
wire’s application to medical imaging.  The boundary definition
times (for a trained user) for each displayed object boundary a
given in the caption of each respective figure.

Figure 8 graphically compares the live-wire boundary definitio
times and boundary accuracy with manual tracing.  These resu
show the average time and accuracy from a study where 8 untrai
users1 were asked to define the boundaries of five objects (the tw
objects in Fig. 5, the paper clip holder and pocket knife in Fig. 
and the outer boundary of the spinal vertebrae in Fig. 7).

Figures 9(a-c) demonstrates Intelligent Scissors application 
color images and show the boundaries defined using Intellige
Scissors for the image composition in Fig. 9(d).  Objects we
scaled, rotated, and (in the case of Fig. 9(a)) flipped to produce 
final composition in Fig. 9(d).  Note also that live-wire masking wa
performed on some of the foreground (grass).

Preprocessing requires 36 convolutions for color images (fro
3×3, 5×5, 7×7, and 9×9 kernels), a gradient orientation calculation
a maximum gradient neighborhood search, and creation of a lo

1.   Each user spent a few minutes becoming familiar with the live-wire tool a
well as a manual tracing tool and then were asked to define the boundary of 5 obje
Each boundary was defined multiple times by each user with both Intelligent Sciss
and manual tracing (to also measure intra- and inter-user reproducibility--not show

S′ x y,( ) F
1−

B u v d0′ n ′,, ,( ) S u v,( )⋅[ ]=

Figure 8: Average timing and accuracy comparison between manually
traced and live-wire boundaries for 8 users.  Boundary times are for
individual objects where accuracy measurements are over all objects.

0

5

10

15

20

25

A
ve

ra
ge

 T
im

e
(in

 s
ec

on
ds

)

30

40

50

60

35

45

55

65

Polygon Curve Holder Knife Spine
Object

Boundary Definition Time

Legend
Live-Wire

Hand Traced

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 1 2 3 4
Distance(in Pixels)

Legend

Live-Wire

Hand Traced

P
er

ce
nt

ag
e(

of
 P

ix
el

s≤
 D

is
ta

nc
e 

fr
om

 “
Id

ea
l” 

B
ou

nd
ar

y)

Accuracy
cy

nt
ge
e

s 2
ve-

re

n
lts

ned
o

6,

to
nt

re
the
s

m
,
cal

s
cts
ors
n).

cost map.  For color images, we maximize feature values over th
three color bands rather than averaging.

Previously, dynamic programming approaches to boundar
detection were typically computationally expensive.  However, by
formulating DP as a graph search and restricting the local costs 
integer values within a range, the 2-D DP algorithm can take adva
tage of an O(N) sort forN points.  As mentioned, adding points to
the sorted active list and removing points from it requires constan
time.  As a result, the algorithm’s computational complexity forN
image pixels is O(N).  This can be seen by examining the algorithm
in a worst case situation. As a pixel is removed from the active lis
it is expanded by computing the cumulative cost to all of its neigh
bors that have not already been expanded.  In the worst case, a p
has its cumulative cost computed by all of its 8 neighbors, resultin
in 8N cumulative cost computations forN pixels.  Obviously, not
every point can be expanded after all of its neighbors have. Exce
for the seed point, every point that has a cumulative cost must ha
at least one neighboring point that has already been expanded.  Th
the cumulative cost is not recomputed for those neighbors.  In sho
it can be shown that at most only 4N cumulative cost computations
are performed, resulting in an O(N) algorithm.

6.Conclusions and Future Work
Intelligent Scissors provide an accurate and efficient interactiv

tool for object extraction and image composition. In fact, and in
sharp contrast to tedious manual boundary definition, object extra
tion using the live-wire is almost as much fun as the final result (th
composition).  Intelligent Scissors are intuitive to use and can b
applied to existing black and white or color images of arbitrary
complexity. There are many rich extensions of this work, including
(1) making use of the weighted zero-crossings in the Laplacian t
perform subpixel edge filtering and anti-aliasing,  (2) use of multi-
ple layered (multiplane) masks,  (3) making spatial frequency
equivalencing locally adaptive,  (4) varying the light source over
the object using directional gradient shading (artificial or borrowed
to provide consistent lighting in the composition, and, most impor
tantly  (5) extension of the 2-D DP graph search and application o
the live-wire snap and training tools to moving objects and moving
multiplane masks for composition of image sequences.

References
[1] A. A. Amini, T. E. Weymouth, and R. C. Jain, “Using Dynamic

Programming for Solving Variational Problems in Vision,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 12, no. 2, pp. 855-866, Sept. 1990.

[2] D. H. Ballard, and C. M. Brown,Computer Vision.  Engle-
wood Cliffs, NJ: Prentice Hall, 1982.

[3] R. Bellman and S. Dreyfus,Applied Dynamic Programming.
Princeton, NJ: Princeton University Press, 1962.

[4]  Y. P. Chien and K. S. Fu, “A Decision Function Method for
Boundary Detection,”Computer Graphics and Image Pro-
cessing, vol. 3, no. 2, pp. 125-140, June 1974.

[5] D. Daneels, et al., “Interactive Outlining: An Improved
Approach Using Active Contours,” inSPIE Proceedings of
Storage and Retrieval for Image and Video Databases, vol
1908, pp. 226-233, Feb. 1993.

[6] E. W. Dijkstra, “A Note on Two Problems in Connexion with
Graphs,”Numerische Mathematik, vol. 1, pp. 269-270, 1959.

[7] M. M. Fleck, “Multiple Widths Yield Reliable Finite Differ-
ences,”IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 14, no. 4, pp. 412-429, April 1992.

[8] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active



Contour Models,” inProceedings of the First International
Conference on Computer Vision, London, England, pp. 259-
68, June 1987.

[9] D. Marr and E. Hildreth, “A Theory of Edge Detection,” in
Proceedings of the Royal Society of London--Series B: Biolo
ical Sciences, vol. 207, no. 1167, pp. 187-217, Feb. 1980.

[10] A. Martelli, “An Application of Heuristic Search Methods to
Edge and Contour Detection,”Communications of the ACM,
vol. 19, no. 2, pp. 73-83, Feb. 1976.

[11] U. Montanari, “On the Optimal Detection of Curves in Noisy
Pictures,”Communications of the ACM, vol. 14, no. 5, pp.
335-45, May 1971.

[12] E. N. Mortensen, B. S. Morse, W. A. Barrett, and J. K. Udup
“Adaptive Boundary Dectection Using ‘Live-Wire’ Two-
Dimensional Dynamic Programming,” inIEEE Proceedings
of Computers in Cardiology, pp. 635-638, Oct. 1992.

[13] N. J. Nilsson,Principles of Artificial Intelligence.  Palo Alto,
CA: Tioga,  1980.

[14] D. L. Pope, D. L. Parker, D. E. Gustafson, and P. D. Clayto
"Dynamic Search Algorithms in Left Ventricular Border Rec-
ognition and Analysis of Coronary Arteries," inIEEE Pro-
ceedings of Computers in Cardiology, pp. 71-75, Sept. 1984.

[15] D. J. Williams and M. Shah, “A Fast Algorithm for Active
Contours and Curvature Estimation,”CVGIP: Image Under-
standing, vol. 55, no. 1, pp. 14-26, Jan. 1992.

Figure 5: Test image exhibiting edge blurring and point noise.  Bound-
ary definition times--polygon: 4.3 sec and curve: 8.3 sec.

Figure 6: Desktop scene.  Boundary definition times--block: 2.4 sec;
paper clip holder: 3.6 sec; pocket knife: 4.6 sec; liqud paper bottle: 5.1
sec; and spoon: 9.8 sec.

Figure 7: Spinal vertebrae.  Boundary definition time--5.9 sec.
g-

a,

n,

(a)

(b)

(c)

(d)
Figure 9: Images used in a composition. (a-c) Live-wire boundaries
used for segmentation.  (d) Final composition: “Millennium.”


