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PREFACE

The goal of computer vision is to model and automate the process of visual recogni-
tion, a term we interpret broadly as “perceiving distinctions between objects with
important differences between them.” In our view, this includes telling fish and
bicycles apart in a photograph as well as separating flying birds from their back-
ground in a video clip. A mobile robot that distinguishes a traversable rubble path
from impenetrable bushes performs recognition; so does a user interface telling what
a gesturing (and possibly frustrated) operator wants his computer to do.
Vision1 as a field is an intellectual frontier. Like any frontier, it is exciting and

disorganised; there is often no reliable authority to appeal to — many useful ideas
have no theoretical grounding, and some theories are useless in practice; developed
areas are widely scattered, and often one looks completely inaccessible from the
other. Nevertheless, we have attempted in this book to present a fairly orderly
picture of the field. We see computer vision as an enterprise that uses statistical
methods to disentangle data using models constructed with the aid of geometry,
physics and learning theory. Thus vision relies on a solid understanding of the
physical process of image formation (Part I of this book) to draw simple inferences
from individual pixel values (Part III), combine the information available in multiple
images into a coherent whole (Part IV), impose some order on groups of pixels to
separate them from each other or infer shape information (Part V), and recognize
three-dimensional objects (Part VII).
Computer vision has a wide variety of applications, old (e.g., mobile robot nav-

igation, industrial inspection and military intelligence) and new (e.g., human com-
puter interaction, image retrieval in digital libraries, medical image analysis and the
realistic rendering of synthetic scenes in computer graphics). We discuss several of
these applications in Chapters 22, 23 and 21. Our intention is that readers willing
to pass over the occasional detail may consult these application chapters at any
point of their progress through the book.
While the study of computer vision does not appear to require deep mathematics,

it does require facility with an awful lot of different mathematical ideas. We have

1We will often affectionately refer to “computer vision” as just “vision”, and apologize for this
abuse to scientists who study animal and human vision.
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xxii Preface

tried to make the book self-contained, in the sense that readers with the level of
mathematical sophistication of an engineering senior should be comfortable with
the material of the book, and should not need to refer to other texts. We have also
tried to keep the mathematics to the necessary minimum — after all, this book is
about computer vision, not applied mathematics.
We have chosen to include the relevant notions of geometry, probability theory

and statistics, physics and learning theory in the main body of the book rather than
in an appendix since we believe they will be better appreciated and understood in
context. Thus these concepts are introduced as needed in the course of regular
chapters, except for probability theory, presented on its own in Chapter 7. In all
cases, they are linked with concrete vision problems, such as structure from motion,
reconstruction, segmentation, fitting and the like.
This book covers what we feel a computer vision professional ought to know.

Realistically, a reader who goes from cover to cover will hopefully be well informed, if
exhausted; there is too much in this book to cover in a one-semester class. Somewhat
ambitiously, we have aimed this book at the senior student taking an introductory
course, at the graduate student with either a passing interest for vision or a real
dedication to conduct research in the field, and at the computer vision practicioner.
We have tried to structure this book so that instructors can choose areas ac-

cording to taste; a few possibilities are suggested below.

Basic Syllabuses

One-Semester Introductory Class

This one-semester introduction to computer vision is designed for seniors or first-
year graduate students in computer science, electrical engineering, or other engi-
neering or science disciplines. The students receive a broad presentation of the field,
including application areas such as digital libraries and HCI. Although the hardest
theoretical material in differential geometry and probability theory is omitted, there
is a thorough treatment of the basic geometry and physics of image formation. Note
that this syllabus assumes that only parts of certain chapters be covered (e.g., only
the introduction and Section 1 of Chapter 1, etc.).
One-semester syllabus (15 weeks):
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1. Chapter 2 Radiometry
2. Chapter 3 Sources, Shadows and Shading
3. Chapter 4 Colour
4. Chapter 1 Cameras
5. Chapter 8 and Chapter 9 Linear Filters and Edge Detection
6. Chapter 11 Texture
7. Chapter 22 Digital Libraries
8. Chapter 12 The Geometry of Multiple Views
9. Chapter 13 Stereopsis
10. Chapter 16 and Chapter 17 Segmentation and Fitting
11. Chapter 19 Tracking Using Linear Dynamic Models
12. Chapter 24 Correspondence and Pose
13. Chapter 25 Template Matching
14. Chapter 26 Recognition by Relations between Templates
15. Chapter 29 Toward Category-Level Recognition
and the enterprising may wish to read some of the other chapters on their own time.

Two-Semester Graduate Course

The whole book can be covered in two (rather intense) semesters. The first two
parts of the book cover image formation and early vision from a single image, and
contain most of the theoretical material, including some physics and geometric op-
tics, rudiments of differential geometry and elements of probability theory (as well
as some applications of course). They deserve a full semester. The remaining three
parts cover multi-image early vision, including stereopsis and motion analysis, as
well as mid-level vision, including shape representation and segmentation, and high-
level vision, including various approaches to object recognition.

First Semester (15 weeks):
Part I Image Formation
Part II Early Vision: One Image
Second Semester: (15 weeks):
Part III Early Vision: Multiple Images
Part IV Mid-Level Vision
Part V High-Level Vision

Reference Book

Of course, prospective (or active) computer vision professionals should read every
word, do all the exercises, and report any bugs found for the second edition (of
which it is probably a good idea to plan buying a copy!).



xxiv Preface

Specialized Syllabuses

It is also possible to select certain parts of the book for particular audiences, for
examples engineers interested in the applications of computer vision, or computer
graphics enthusiasts. Below are a few possibilities.

Applications of Vision

1. Chapter 4;

2. Section 3.4;

3. Section 1.1;

4. Section ??;

5. Chapter 22;

6. Chapter 8;

7. Chapter 9;

8. (possibly Chapter 11, if time allows);

9. Chapter 12;

10. Chapter 23;

11. Chapter 19;

12. Chapter 20;

13. Chapter 24;

14. Chapter 21.

Emphasis on Physics and Mathematics

1. Chapter 2;

2. Chapter 3;

3. Chapter 4;

4. Chapter 1;

5. Chapter 27;

6. Chapter 8

7. Chapter 7;
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8. Chapter 12;

9. Chapter 13

10. Chapter 14;

11. Chapter 15;

12. Chapter 18;

13. Chapter 19;

and one of Chapter 20, Chapter 23 or Chapter 26.

Non-Vision Grad Students Interested in Applications of Computer Science

1. Chapter 2

2. Chapter 4;

3. Section 3.4;

4. Section 1.1;

5. Section ??;

6. Chapter 27;

7. Chapter 8

8. Chapter 7;

9. Chapter 12;

10. Chapter 13;

11. Chapter 22;

12. Chapter 21;

13. Chapter 19;

14. Chapter 23;

15. Chapter 24.
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For Cognitive Scientists or AI Students

1. Chapter 4;

2. Section 3.4;

3. Section 1.1;

4. Section ??;

5. Chapter 27;

6. Chapter 8;

7. Chapter 9;

8. Chapter 10;

9. Chapter 7;

10. Chapter 16;

11. Chapter 18;

12. Chapter 24;

13. Chapter 29;

For Computer Graphics Students

Graphics students should know the image formation process rather well.

1. Chapter 2;

2. Chapter 3;

3. Chapter 4;

4. Chapter 1;

5. Chapter 27;

6. Chapter 8

7. Chapter 10;

8. Chapter 11;

9. Chapter 7;

10. Chapter 12;

11. Chapter 13
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12. Chapter 14;

13. Chapter 15;

14. Chapter 19;

15. Chapter 20;

16. Chapter 23.
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Part I

IMAGE FORMATION

1





Chapter 1

CAMERAS

There are many types of imaging devices, from animal eyes to video cameras and
radio telescopes. They may, or may not, be equipped with lenses: for example the
first models of the camera obscura (literally, dark chamber) invented in the sixteenth
century did not have lenses, but used instead a pinhole to focus light rays onto a wall
or a translucent plate and demonstrate the laws of perspective discovered a century
earlier by Brunelleschi. Of course pinholes have many limitations (we will come
back to those in a minute) and they were replaced as early as 1550 by more and
more sophisticated lenses. The modern photographic or digital camera is essentially
a camera obscura capable of recording the amount of light striking every small area
of its backplane (Figure 1.1).

            

Figure 1.1. Image formation on the backplate of a photographic camera. Reprinted
from [Navy, 1969], Figure 4-1.

The imaging surface of a camera is in general a rectangle, but the shape of the
human retina is much closer to a spherical surface, and panoramic cameras may be
equipped with cylindrical retinas as well. Indeed, as will be seen later in this chapter,
spherical retinas are in some sense “better behaved” geometrically than planar ones:
for example, a solid of revolution such as a vase will project onto a bi-laterally

3
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symmetric figure in the former case, but not in the latter one. Imaging sensors
have other characteristics as well: they may record a spatially discrete picture (like
our eyes, with their rods and cones, 35mm cameras, with their grain, and digital
cameras, with their rectangular picture elements, or pixels), or a continuous one (in
the case of old-fashioned television tubes for example). The signal that an imaging
sensor records at a point on its retina may itself be discrete or continuous, and it
may consist of a single number (black-and-white camera), a few values (e.g., the R G
B intensities for a colour camera, or the responses of the three types of cones for the
human eye), many numbers (e.g., the responses of hyperspectral sensors) or even a
continuous function of wavelength (which is essentially the case for spectrometers).
Examining these characteristics is the subject of this chapter.

1.1 Pinhole Cameras

1.1.1 Perspective Projection

Imagine taking a box, using a pin to prick a small hole in the center of one of its
sides, and then replacing the opposite side with a translucent plate. If you hold
that box in front of you in a dimly lit room, with the pinhole facing some light
source, say a candle, you will see an inverted image of the candle appearing on the
translucent plate (Figure 1.2). This image is formed by light rays issued from the
scene facing the box. If the pinhole were really reduced to a point (which is of
course physically impossible), exactly one light ray would pass through each point
in the plane of the plate (or image plane), the pinhole, and some scene point.

pinhole

image
plane

virtual
image

Figure 1.2. The pinhole imaging model.

In reality, the pinhole will have a finite (albeit small) size, and each point in the
image plane will collect light from a cone of rays subtending a finite solid angle, so
this idealized and extremely simple model of the imaging geometry will not strictly
apply. In addition, real cameras are normally equipped with lenses, which further
complicates things. Still, the pinhole perspective (also called central perspective)
projection model, first proposed by Brunelleschi at the beginning of the fifteenth
century, is mathematically convenient and, despite its simplicity, it often provides
an acceptable approximation of the imaging process. Perspective projection creates
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inverted images, and it is sometimes convenient to consider instead a virtual image
associated with a plane lying in front of the pinhole, at the same distance from it
as the actual image plane (Figure 1.2). This virtual image is not inverted but is
otherwise strictly equivalent to the actual one. Depending on the context, it may
be more convenient to think about one or the other. Figure 1.3(a) illustrates an
obvious effect of perspective projection: the apparent size of objects depends on
their distance: for example, the images B′ and C ′ of the posts B and C have the
same height, but A and C are really half the size of B. Figure 1.3(b) illustrates
another well known effect: the projections of two parallel lines lying in some plane
Π appear to converge on a horizon line H formed by the intersection of the image
plane with the plane parallel to Π and passing through the pinhole. Note that the
line L in Π that is parallel to the image plane has no image at all.

(a) ddd

O

A

B

B’
C’

A’C

(b) Π

H

L

O

Figure 1.3. Perspective effects: (a) far objects appear smaller than close ones: the
distance d from the pinhole O to the plane containing C is half the distance from O to the
plane containing A and B; (b) the images of parallel lines intersect at the horizon (after
[Hilbert and Cohn-Vossen, 1952], Figure 127). Note that the image plane is behind the
pinhole in (a) (physical retina), and in front of it in (b) (virtual image plane). Most of
the diagrams in this chapter and in the rest of this book will feature the physical image
plane, but a virtual one will also be used when appropriate, as in (b).
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These properties are of course easy to prove in a purely geometric fashion. As
usual however, it is often convenient (if not quite as elegant) to reason in terms
of reference frames, coordinates and equations. Consider for example a coordinate
system (O, i, j,k) attached to a pinhole camera, whose origin O coincides with the
pinhole, and vectors i and j form a basis for a vector plane parallel to the image
plane Π′, itself located at a positive distance f ′ from the pinhole along the vector k
(Figure 1.4). The line perpendicular to Π′ and passing through the pinhole is called
the optical axis, and the point C ′ where it pierces Π′ is called the image center.
This point can be used as the origin of an image plane coordinate frame, and it
plays an important role in camera calibration procedures.

P

O

f’

k

i

jΠ’

C’

P’

Figure 1.4. The perspective projection equations are derived in this section from the
colinearity of the point P , its image P ′ and the pinhole O.

Let P denote a scene point with coordinates (x, y, z) and P ′ denote its image
with coordinates (x′, y′, z′). Since P ′ lies in the image plane, we have z′ = f ′. Since

the three points P , O and P ′ are colinear, we have
−−→
OP

′
= λ
−−→
OP for some number

λ, so 

x′ = λx
y′ = λy
f ′ = λz

⇐⇒ λ =
x′

x
=
y′

y
=
f ′

z
,

and therefore 

x′ = f ′

x

z
,

y′ = f ′
y

z
.

(1.1.1)

1.1.2 Affine Projection

As noted in the previous section, pinhole perspective is only an approximation
of the geometry of the imaging process. This section discusses a class of coarser
approximations, called affine projection models, that are also useful on occasion.
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We focus on two specific affine models, namely weak-perspective and orthographic
projections. A third one, the paraperspective model, will be introduced in Chapter
14, where the name affine projection will also be justfied.
Consider the fronto-parallel plane Π0 defined by z = z0 (Figure 1.5). For any

point P in Π0 we can rewrite the perspective projection equation (1.1.1) as{
x′ = −mx
y′ = −my

where m = −
f ′

z0
. (1.1.2)

Π0

Π’

O

-z 0

Q’

P’
Q

P

i

k

j
f’

Figure 1.5. Weak-perspective projection: all line segments in the plane Π0 are projected
with the same magnification.

Physical constraints impose that z0 be negative (the plane must be in front
of the pinhole), so the magnification m associated with the plane Π0 is positive.
This name is justified by the following remark: consider two points P and Q in Π0
and their images P ′ and Q′ (Figure 1.5); obviously, the vectors

−−→
PQ and

−−−→
P ′Q′ are

parallel, and we have |
−−−→
P ′Q′| = m|

−−→
PQ|. This is the dependence of image size on

object distance noted earlier.
When the scene depth is small relative to the average distance from the camera,

the magnification can be taken to be constant. This projection model is called weak
perspective, or scaled orthography.
When it is a priori known that the camera will always remain at a roughly

constant distance from the scene, we can go further and normalize the image coor-
dinates so that m = −1. This is orthographic projection, defined by{

x′ = x,
y′ = y,

(1.1.3)

with all light rays parallel to the k axis and orthogonal to the image plane Π′

(Figure 1.6).
Although weak-perspective projection is an acceptable model for many imaging

conditions, assuming pure orthographic projection is usually unrealistic.
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O

k

i

j
’Π

QQ’

P’ P

Figure 1.6. Orthographic projection. Unlike other geometric models of the image for-
mation process, orthographic projection does not involve a reversal of image features. Ac-
cordingly, the magnification is taken to be negative, which is a bit unnatural but simplifies
the projection equations.

1.1.3 Spherical Projection

The imaging surface, or retina, used in both perspective and affine projection models
is a plane. One can of course imagine retinas with other simple shapes, such as
cylinders or spheres for example. Here we consider spherical cameras where light
rays passing through a pinhole form images on a spherical surface centered at the
pinhole.
This model is particularly interesting because of its symmetry: consider for

example a sphere observed by conventional perspective and orthographic cameras,
as well as a spherical perspective camera (Figure 1.7). The outline of the sphere
in the two perspective images is the intersection of the retina and a double cone
tangent to the sphere with its apex located at the pinhole. Because of the symmetry
of the problem, this viewing cone is circular, and it grazes the sphere along a circle.
In the planar perspective case however, the shape of the outline will depend on the
orientation of the image plane (Figure 1.7, left): if this plane is perpendicular to
the line joining the center of the sphere to the pinhole, the outline will be a circle,
but in all other cases it will be a non-circular conic section,1 usually an ellipse. In
the spherical projection case, there is no plane orientation to account for, and the
outline is always, by symmetry, a circle. Spheres also have circular outlines under
orthographic projection. In this case, the tangent cone degenerates into a cylinder
that intersects the image plane along a circle since its axis is always orthogonal to
that plane.
In a sense, spherical perspective cameras are “better” than their planar coun-

terparts since the pictures they record only depend on the position of the pinhole.

1Indeed, quadratic curves such as circles, ellipses, parabolas and hyperbolas are called conic
sections because they are the various curves that you obtain when you intersect a circular cone
with a plane.
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Π

Π’

Figure 1.7. Different pictures of a sphere. Left: planar perspective projection. The
shape of the sphere’s silhouette depends on the orientation of the image plane: for a plane
such as Π, which is orthogonal to the the line passing through the sphere center and
the pinhole, the silhouette is a circle. For oblique planes such as Π′, it is an ellipse (or
possibly another conic section) instead. Middle: orthographic projection. Right: spherical
perspective projection. The silhouette is always a circle under these two models.

At the same time, they accurately capture the dependency of image size on object
distance, and in that sense are also “better” than affine cameras. One could object
that real cameras have planar retinas, but it is in fact easy to calibrate a planar
perspective camera so it simulates a spherical one. A drawback of spherical cameras
is that they map straight lines onto circles, which at times complicates calculations.
In reality these are not serious problems, and spherical camera models have their
role to play in computer vision. Indeed, they have proven useful in the study of
shape (e.g., solids of revolution project onto bi-lateral symmetries under spherical
perspective projection) and the analysis of motion (e.g., to recover the shape of
smooth objects from sequences of pictures).
Let us close this section by noting that, although the eye has a (roughly) spheri-

cal retina, it does not obey the projection model described above since its “pinhole”
(the pupil) is not located at the center of the corresponding sphere center (more on
this soon).

1.2 Cameras with Lenses

Most real cameras are equipped with lenses. There are two main reasons for this:
the first one is to gather light, since a single ray of light would otherwise reach each
point in the image plane under ideal pinhole projection. Real pinholes have a finite
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size of course, so each point in the image plane is illuminated by a cone of light
rays subtending a finite solid angle. The larger the hole, the wider the cone and the
brighter the image, but a large pinhole gives blurry pictures (Figure 1.8). Shrinking
the pinhole produces sharper images but reduces the amount of light reaching the
image plane, and may introduce diffraction effects. Keeping the picture in sharp
focus while gathering light from a large area is the second main reason for using a
lens.

Figure 1.8. Images of some text obtained with shrinking pinholes: large pinholes give
bright but fuzzy images but pinholes that are too small also give blurry images because of
diffraction effects. Reprinted from [Hecht, 1987], Figure 5.108.

Ignoring diffraction, interferences and other physical optics phenomena, the be-
havior of lenses is dictated by the laws of geometric optics (Figure 1.9): (1) light
travels in straight lines (light rays) in homogeneous media; (2) when a ray is reflected
from a surface, this ray, its reflection and the surface normal are coplanar, and the
angles between the normal and the two rays are complementary; and (3) when a
ray passes from one medium to another, it is refracted, i.e., its direction changes:
according to Descartes’ law, if r1 is the ray incident to the interface between two
transparent materials with indices of refraction n1 and n2, and r2 is the refracted
ray, then r1, r2 and the normal to the interface are coplanar, and the angles α1 and
α2 between the normal and the two rays are related by

n1 sinα1 = n2 sinα2. (1.2.1)
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n

r

1α

α2

2

1

n2

α1

1r r’1

Figure 1.9. Reflection and refraction at the interface between two homogeneous media
with indices of refraction n1 and n2.

In this chapter, we will only consider the effects of refraction and ignore those of
reflection. In other words, we will concentrate on lenses as opposed to catadioptric
optical systems (e.g., telescopes) that may include both reflective (mirrors) and
refractive elements. Tracing light rays as they travel through a lens is simpler when
the angles between these rays and the refracting surfaces of the lens are assumed
to be small, and the next section discusses this case.

1.2.1 First-Order Geometric Optics

We consider in this section first-order (or paraxial) geometric optics, where the an-
gles between all light rays going through a lens and the normal to the refractive
surfaces of the lens are small. In addition, we assume that the lens is rotation-
ally symmetric about a straight line, called its optical axis, and that all refractive
surfaces are spherical. The symmetry of this setup allows us to determine the pro-
jection geometry by considering lenses with circular boundaries lying in a plane that
contains the optical axis.
Let us consider an incident light ray passing through a point P1 on the optical

axis and refracted at the point P of the circular interface of radius R separating two
transparent media with indices of refraction n1 and n2 (Figure 1.10). Let us also
denote by P2 the point where the refracted ray intersects the optical axis a second
time (the roles of P1 and P2 are completely symmetrical), and by C the center of
the circular interface.
Let α1 and α2 respectively denote the angles between the two rays and the chord

joining C to P . If β1 (resp. β2) is the angle between the optical axis and the line
joining P1 (resp. P2) to P , the angle between the optical axis and the line joining
C to P is, as shown by Figure 1.10, γ = α1 − β1 = α2 + β2. Now, let us denote by
h the distance between P and the optical axis, and by R the radius of the circular
interface. If we assume all angles are small and thus, to first order, equal to their
sines and tangents, we have

α1 = γ + β1 ≈ h(
1

R
+
1

d1
) and α2 = γ − β2 ≈ h(

1

R
−
1

d2
).
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Figure 1.10. Paraxial refraction: a light ray passing through the point P is refracted
at the point P1 where it intersects a circular interface. The refracted ray intersects the
optical axis in P2. The center of the interface is at the point C of the optical axis, and its
radius is R. The angles α1, β1, α2 and β2 are all assumed to be small.

Writing the Snell law (1.2.1) for small angles yields the paraxial refraction equa-
tion:

n1α1 ≈ n2α2 ⇐⇒
n1

d1
+
n2

d2
=
n2 − n1

R
. (1.2.2)

Note that the relationship between d1 and d2 depends on R, n1 and n2 but not
on β1 or β2. This is the main simplification introduced by the paraxial assumption.
It is easy to see that (1.2.2) remains valid when some (or all) of the values of d1, d2
and R becomes negative, corresponding to the points P1, P2 or C switching sides.
Of course, real lenses are bounded by at least two refractive surfaces. The

corresponding ray paths can be constructed iteratively using the paraxial refraction
equation. The next section illustrates this idea in the case of thin lenses.

1.2.2 Thin Lenses: Geometry

Let us now consider a lens with two spherical surfaces of radius R and index of
refraction n. We will assume that this lens is surrounded by vacuum (or, to an
excellent approximation, by air), with an index of refraction equal to 1, and that
it is thin, i.e., that a ray entering the lens and refracted at its right boundary is
immediately refracted again at the left boundary.
Consider a point P located at (negative) depth z and distance y from the optical

axis, and let r0 denote a ray passing through P and intersecting the optical axis in
P0 at (negative) depth z0 and the lens in Q at a distance h from the optical axis
(Figure 1.11).
Before constructing the image of P , let us first determine the image P ′0 of P0

on the optical axis: after refraction at the right circular boundary of the lens, r0 is
transformed into a new ray r1 intersecting the optical axis at the point P1 whose



Section 1.2. Cameras with Lenses 13

1r 0r’
P1
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Q
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z’ 0-z

Figure 1.11. Image formation in the case of a thin lens. The ray r1 is dashed to
indicate that it will never actually reach the point P1 since it will be refracted by the left
boundary of the lens before that. Note that the z axis is oriented from right to left to
ensure consistency with the previous figures, thus P and P0 have negative depths z and
z0.

depth z1 verifies, according to (1.2.2),

1

− z0
+
n

z1
=
n− 1

R
.

The ray r1 is immediately refracted at the left boundary of the lens, yielding a
new ray r′0 that intersects the optical axis in P

′
0. The paraxial refraction equation

can be rewritten in this case as

n

− z1
+
1

z′0
=
1− n

− R
,

and adding these two equation yields:

1

z′0
−
1

z0
=
1

f
, where f =

R

2(n− 1)
. (1.2.3)

Let r denote the ray passing through P and the center O of the lens, and let
P ′ denote the intersection of r and r0, located at depth z

′ and at a distance −y′ of
the optical axis (Figure 1.11). We have the following relations among the sides of
similar triangles: 



y

h
=
z − z0
− z0

= (1 −
z

z0
),

− y′

h
=
z′ − z′0
z′0

= −(1 −
z′

z′0
),

y′

z′
=
y

z
.

(1.2.4)

Combining (1.2.4) and (1.2.3) to eliminate h, y and y′ finally yields

1

z′
−
1

z
=
1

f
. (1.2.5)
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In particular, all rays passing through the point P are focused by the thin lens
on the point P ′. Note that the equations relating the positions of P and P ′ are
exactly the same as under pinhole perspective projection if we take z′ = f ′ since P
and P ′ lie on a ray passing through the center of the lens, but that points located
at a distance −z from O will only be in sharp focus when the image plane is located
at a distance z′ from O on the other side of the lens that satisfies (1.2.5).
The distance f is called the focal length of the lens, and (1.2.5) is called the thin

lens equation. Letting z → −∞ shows that f is the distance between the center of
the lens and the plane where objects such as stars, that are effectively located at
z = −∞, will focus. The two points F and F ′ located at distance f from the lens
center on the optical axis are called the focal points of the lens (Figure 1.12).

O
F’ F

z’ -z

ff
-y’

y

P’

P

Figure 1.12. The focal points of a thin lens.

The equations relating the positions of P and P ′ are exactly the same as under
pinhole perspective projection since these two points lie on a ray passing through
the center of the lens, but points located at a distance −z from O will only be
in sharp focus when the image plane is located at the distance z′ from O on the
other side of the lens that satisfies (1.2.5). In practice, objects within some range
of distances (called depth of field or depth of focus) will be in acceptable focus. As
shown in the exercises, the depth of field increases with the f number of the lens,
i.e., the ratio between the focal length of the lens and its diameter.
Note that the field of view of a camera, i.e., the portion of scene space that

actually projects onto the retina of the camera, is not defined by the focal length
alone but also depends on the effective area of the retina (e.g., the area of film that
can be exposed in a photographic camera, or the area of the CCD sensor in a digital
camera, Figure 1.13).
When the focal length is (much) shorter than the effective diameter of the retina,

we have a wide-angle lens, with rays that can be off the optical axis by more
than 45◦. Telephoto lenses have a small field of view and produce pictures closer
to affine ones. In addition, specially designed telecentric lenses offer a very good
approximation of orthographic projection, and they prove useful in many situations,
including part inspection.
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φ
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f

Figure 1.13. The field of view of a camera. It can be defined as 2φ, where φ
def
= arctan d

2f
,

d is the diameter of the sensor (film or CCD chip) and f is the focal length of the camera.

1.2.3 Thin Lenses: Radiometry

Let us now consider an image patch δA′ centered in P ′ where a lens concentrates
the light radiating from a scene patch δA centered in P (Figure 1.14). If δω denotes
the solid angle subtended by δA (or δA′) from the center O of the lens, we have


δω =

δA′ cosα

|
−−→
OP

′
|2
=
δA′ cosα

(z′/ cosα)2
,

δω =
δA cos β

|
−−→
OP |2

=
δA cos β

(z/ cosα)2
,

and it follows that

δA

δA′
=
cosα

cosβ
(
z

z′
)2.

α

P

P’
δω

β

Ω
d

z’ -z

Figure 1.14. Object radiance and image irradiance.



16 Cameras Chapter 1

Now, the area of a lens with diameter d is π4d
2, and if Ω denotes the solid angle

subtended by the lens from P , we have

Ω =
π

4

d2 cosα

(z/ cosα)2
=
π

4
(
d

z
)2 cos3 α.

Let L be the object radiance, the power δP emitted from the patch δA and
falling on the lens is

δP = LΩδA cos β =
π

4
(
d

z
)2LδA cos3 α cos β.

This power is concentrated by the lens on the patch δA′ of the image plane. If
E denotes the image irradiance, we have

E =
δP

δA′
=
π

4
(
d

z
)2L
δA

δA′
cos3 α cosβ,

and substituting the value of δA/δA′ in this equation finally yields

E = [
π

4
(
d

z′
)2 cos4 α]L. (1.2.6)

This relationship is important for several reasons: first, it shows that the image
irradiance is proportional to the object radiance. In other words, what we measure
(E) is proportional to what we are interested in (L)! Second, the irradiance is pro-
portional to the area of the lens and inversely proportional to the distance between
its center and the image plane. The quantity a = d/f is the relative aperture and
is the inverse of the f number defined earlier. Equation (1.2.6) shows that E is
proportional to a2 when the lens is focused at infinity (z′ = f in this case). Finally,
the irradiance is proportional to cos4 α and falls off as the light rays deviate from
the optical axis. For small values of α, this effect is hardly noticeable for both
people and image analysis algorithms, since the former are remarkably insensitive
to smooth brightness gradients, and the latter are usually more susceptible to vi-
gnetting, a phenomenon that will be introduced shortly and dominates the cos4 α
fall-off in most imaging situations.

1.2.4 Real Lenses

A more realistic model of simple optical systems is the thick lens. The equations
describing its behavior are easily derived from the paraxial refraction equation, and
they are the same as the pinhole perspective and thin lens projection equations,
except for an offset (Figure 1.15): if H and H ′ denote the principal points of the
lens, then (1.2.5) holds when −z (resp. z′) is the distance between P (resp. P ′)
and the plane perpendicular to the optical axis and passing through H (resp. H ′).
In this case the only undeflected ray is along the optical axis.
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Figure 1.15. A simple thick lens with two spherical surfaces.

Simple lenses suffer from a number of aberrations. To understand why, let us
remember first that the paraxial refraction equation (1.2.2) is only an approxima-
tion, valid when the angle α between each ray along the optical path and the optical
axis of the length is small and sinα ≈ α. This corresponds to a first-order Taylor
expansion of the sine function. For larger angles, additional terms yield a better
approximation:

sinα = α−
α3

3!
+
α5

5!
−
α7

7!
+ . . .

In particular, it is easy to show that a third-order Taylor expansion yields the
following refinement of the paraxial equation:

n1

d1
+
n2

d2
=
n2 − n1

R
+ h2

[
n1

2d1
(
1

R
+
1

d1
)2 +

n2

2d2
(
1

R
−
1

d2
)2

]
,

where h denotes, as in Figure 1.10, the distance between the optical axis and the
point where the incident ray intersects the interface. In particular, rays striking the
interface farther from the optical axis are focused closer to the interface.
The same phenomenon occurs for a lens and it is the source of two types of

spherical aberrations (Figure 1.16(a)): consider a point P on the optical axis and
its paraxial image P ′. The distance between P ′ and the intersection of the optical
axis with a ray issued from P and refracted by the lens is called the longitudinal
spherical aberration of that ray. Note that if an image plane Π′ was erected in
P , the ray would intersect this plane at some distance from the axis, called the
transverse spherical aberration of that ray. Together, all rays passing through P
and refracted by the lens form a circle of confusion centered in P as they intersect
Π′. The size of that circle will change if we move Π′ along the optical axis. The
circle with minimum diameter is called the circle of least confusion, and it is not
(in general) located in P ′.
Besides spherical aberration, there are four other types of primary aberrations

caused by the differences between first- and third-order optics, namely coma, astig-
matism, field curvature and distortion. A precise definition of these aberrations is
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(a)

d’
PP’

Π’

(b)

(c)

            

Figure 1.16. Aberrations. (a) Spherical aberration: the grey region is the paraxial zone
where the rays issued from P intersect at its paraxial image P ′. If an image plane Π′ is
erected in P ′, the image of P ′ in that plane will form a circle of confusion of diameter C′.
The focus plane yielding the circle of least confusion is indicated by a dashed line. (b)
Distortion: from left to right, the nominal image of a fronto-parallel square, pincushion
distortion, and barrel distortion. (c) Chromatic aberration: the index of refraction of
a transparent medium depends on the wavelength (or colour) of the incident light rays.
Here, a prism decomposes white light into a palette of colours. Reprinted from [Navy,
1969], Figure 3-17.

beyond the scope of this book. Suffice to say that, like spherical aberration, they
degrade the image by blurring the picture of every object point. Distortion, on the
other hand, plays a different role and changes the shape of the image as a whole
(Figure 1.16(b)). This effect is due to the fact that different areas of a lens have
slightly different focal lengths. The aberrations mentioned so far are monochro-
matic, i.e., they are independent of the response of the lens to various wavelengths.
However, the index of refraction of a transparent medium depends on wavelength
(Figure 1.16(c)), and it follows from the thin lens equation (1.2.5) that the focal
length depends of wavelength as well. This causes the phenomenon of chromatic
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aberration: refracted rays corresponding to different wavelengths will intersect the
optical axis at different points (longitudinal chromatic aberration) and form differ-
ent circles of confusion in the same image plane (transverse chromatic aberration).
Aberrations can be minimized by aligning several simple lenses with well-chosen

shapes and refraction indices, separated by appropriate stops. These compound
lenses can still be modelled by the thick lens equations. Figure 1.17 shows the
general configuration of a few well-known photographic lenses.

Figure 1.17. Photographics lenses. Reprinted from [Montel, 1972], p. 54.

These complex lenses suffer from one more defect relevant to machine vision:
light beams emanating from object points located off-axis are partially blocked by
the various apertures (including the individual lens components themselves) po-
sitioned inside the lens to limit aberrations. This phenomenon, called vignetting,
causes the irradiance to drop in the image periphery. As noted earlier, vignetting
normally causes a larger drop in brightness than the cos4 α effect there, and may
pose problems to automated image analysis programs. It is not quite as impor-
tant in photography, thanks to the human eye’s remarkable insensitivity to smooth
brightness gradients. Speaking of which, it is time to look at this extraordinary
organ in a bit more detail..

Figure 1.18. Vignetting effect in a two-lens system. The shaded part of the beam never
reaches the second lens. Additional apertures and stops in a lens further contribute to
vignetting.
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Human Vision: The Structure of the Eye

Here we give a (very brief) overview of the anatomical structure of the eye. It is largely
based on the presentation in [Wandell, 1995], and the interested reader is invited to read
this excellent book for more details. Figure 1.19 (left) is a sketch of the section of an
eyeball through its vertical plane of symmetry, showing the main elements of the eye: the
iris and the pupil, that control the amount of light penetrating the eyeball; the cornea and
the crystalline lens, that together refract the light to create the retinal image; and finally
the retina, where the image is formed.
The human eyeball, despite its globular shape, is functionally similar to a camera with

a field of view covering a 160◦ (width) × 135◦ (height) area, and like any other optical
system, it suffers from various types of geometric and chromatic aberrations. Several
models of the eye obeying the laws of first-order geometric optics have been proposed,
and Figure 1.19(right) shows one of them, Helmoltz’s schematic eye. There are only three
refractive surfaces, with an infinitely thin cornea and a homogeneous lens. The constants
given in Figure 1.19 are for the eye focusing at infinity (unacommodated eye). This model
is of course only an approximation of the real optical characteristics of the eye.

            

20mm 15mm
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Figure 1.19. Left: the main components of the human eye. Reprinted from [Thompson
et al., 1966], Figure 11-2. Right: Helmoltz’s schematic eye as modified by Laurance (after
[Driscoll and Vaughan, 1978], Section 2, Figure 1). The distance between the pole of the
cornea and the anterior principal plane is 1.96mm, and the radii of the cornea, anterior
and posterior surfaces of the lens are respectively 8mm, 10mm and 6mm.

Let us have a second look at the components of the eye, one layer at a time: the
cornea is a transparent, highly curved, refractive window through which light enters the
eye before being partially blocked by the coloured and opaque surface of the iris. The
pupil is an opening at the center of the iris whose diameter varies from about 1 to 8mm
in response to illumination changes, dilating in low light to increase the amount of energy
that reaches the retina, and contracting in normal lighting conditions to limit the amount
of image blurring due to spherical aberration in the eye. The refracting power (reciprocal
of the focal length) of the eye is in large part an effect of refraction at the the air-cornea
interface, and it is fine-tuned by deformations of the crystalline lens that accommodates to
bring objects into sharp focus. In healthy adults, it varies between 60 (unaccommodated
case) and 68 diopters (1diopter=1m−1), corresponding to a range of focal lengths between
15 and 17mm. The retina itself is a thin, layered membrane populated by two types of
photoreceptors, the rods and the cones, that respond to light in the 330-730nm wavelength
(violet to red) range. As mentioned in Chapter 4, there are three types of cones with
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different spectral sensitivities, and these play a key role in the perception of colour. There
are about 100 million rods and 5 million cones in a human eye. Their spatial distribution
varies across the retina: the macula lutea is a region in the center of the retina where the
concentration of cones is particularly high and images are sharply focused whenever the eye
fixes its attention on an object (Figure 1.19). The highest concentration of cones occurs in
the fovea, a depression in the middle of the macula lutea where it peaks at 1.6×105/mm2,
with the centers of two neighboring cones separated by only half a minute of visual angle
(Figure 1.20). Conversely, there are no rods in the center of the fovea, but the rod density
increases toward the periphery of the visual field. There is also a blind spot on the retina,
where the ganglion cell axons exit the retina and form the optic nerve.

            

            

Figure 1.20. Rods and cones. Left: the distribution of rods and cones across the retina.
Right: (A) cones in the fovea; (B) rods and cones in the periphery. Note that the size of
the cones increases with eccentricity and that the presence of the rods disrupts the regular
arrangement of the cones. Reprinted from [Wandell, 1995], Figures 3.1 and 3.4.

The rods are extremely sensitive photoreceptors, capable of responding to a single
photon, but they yield relatively poor spatial detail despite their high number because
many rods converge to the same neuron within the retina. In contrast, cones become
active at higher light levels, but the signal output by each cone in the fovea is encoded by
several neurons, yielding a very high resolution in that area. More generally, the area of
the retina influencing a neuron’s response is traditionally called its receptive field, although
this term now also characterizes the actual electrical response of neurons to light patterns.
Of course, much more could (and should) be said about the human eye, for example

how our two eyes verge and fixate on targets, cooperate in stereo vision, etc.. Besides,
vision only starts with this camera of our mind, which leads to the fascinating (and still
largely unsolved) problem of deciphering the role of the various portions of our brain in
human vision. We will come back to various aspects of this endeavor later in this book.
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1.3 Sensing

What differentiates a camera (in the modern sense of the world) from the portable
camera obscura of the seventeenth century is its ability to record the pictures that
form on its backplane. Although it had been known since at least the middle ages
that certain silver salts rapidly darken under the action of sun light, it was only
in 1816 that Niepce obtained the first true photographs by exposing paper treated
with silver chloride to the light rays striking the image plane of a camera obscura,
then fixing the picture with nitric acid. These first images were negatives, and
Niepce soon switched to other photosensitive chemicals in order to obtain positive
pictures. The earliest photographs have been lost, and the first one to have been
preserved is “la table servie” (the set table) reproduced in Figure 1.21.

            

Figure 1.21. The first photograph on record, “la table servie”, obtained by Nicéphore
Niepce in 1822. Reprinted from [Montel, 1972], p. 9.

Niepce invented photography, but Daguerre would be the one to popularize it.
After the two became associates in 1826, Daguerre went on to develop his own
photographic process, using mercury fumes to amplify and reveal the latent image
formed on an iodized plating of silver on copper, and “Daguerréotypes” were an
instant success when Arago presented Daguerre’s process at the French Academy
of Sciences in 1839, three years after Niepce’s death. Other milestones in the long
history of photography include the introduction of the wet-plate negative/positive
process by Legray and Archer in 1850, that required the pictures to be developed
on the spot but produced excellent negatives; the invention of the gelatin process
by Maddox in 1870, that eliminated the need for immediate development; the in-
troduction in 1889 of the photographic film (that has replaced glass plates in most
modern applications) by Eastman; and the invention by the Lumière brothers of
cinema in 1895 and colour photography in 1908.
The invention of television in the 1920s by people like Baird, Farnsworth, and

Zworykin was of course a major impetus for the development of electronic sensors.
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The vidicon is a common type of television vacuum tube. It is a glass envelope with
an electron gun at one end and a faceplate at the other. The back of the faceplate
is coated with a thin layer of photoconductor material laid over a transparent film
of positively charged metal. This double coating forms the target. The tube is
surrounded by focusing and deflecting coils that are used to repeatedly scan the
target with the electron beam generated by the gun. This beam deposits a layer
of electrons on the target to balance its positive charge. When a small area of
the faceplate is struck by light, electrons flow through, locally depleting the charge
of the target. As the electron beam scans this area, it replaces the lost electrons,
creating a current proportional to the incident light intensiy. The current variations
are then transformed into a video signal by the vidicon circuitry.

1.3.1 CCD cameras

Let us now turn to charge-coupled-device (or CCD) cameras, that were proposed
in 1970 and have replaced vidicon cameras in most modern applications, from con-
sumer camcorders to special-purpose cameras geared toward microscopy or astron-
omy applications. A CCD sensor uses a rectangular grid of electron-collection sites
laid over a thin silicon wafer to record a measure of the amount of light energy
reaching each of them (Figure 1.22). Each site is formed by growing a layer of
silicon dioxide on the wafer then depositing a conductive gate structure over the
dioxide. When photons strike the silicon, electron-hole pairs are generated (photo-
conversion), and the electron are captured by the potential well formed by applying
a positive electrical potential to the corresponding gate. The electrons generated at
each site are collected over a fixed period of time T .
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Array of
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Figure 1.22. A CCD Device.

At this point, the charges stored at the individual sites are moved using charge
coupling: charge packets are transfered from site to site by manipulating the gate
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potentials, preserving the separation of the packets. The image is read out of the
CCD one row at a time, each row being transfered in parallel to a serial output
register with one element in each column. Between two row reads, the register
transfers its charges one at a time to an output amplifier that generates a signal
proportional to the charge it receives. This process continues until the entire image
has been read out. It can be repeated 30 times per second (television rate) for
video applications, or at a much slower pace, leaving ample time (seconds, minutes,
even hours) for electron collection in low-light-level applications such as astronomy.
It should be noted that the digital output of most CCD cameras is transformed
internally into an analog video signal before being passed to a frame grabber that
will construct the final digital image.
Consumer-grade colour CCD cameras essentially use the same chips as black-

and-white cameras, except for the fact that successive rows or columns of sensors
are made sensitive to red, green or blue light, often using a filter coating that blocks
the complementary light. Other filter patterns are possible, including mosaics of
2×2 blocks formed by two green, one red, and one blue receptors (Bayer patterns).
The spatial resolution of single-CCD cameras is of course limited, and higher-quality
cameras use a beam splitter to ship the image to three different CCDs via colour
filters. The individual colour channels are then either digitized separately (RGB
output), or combined into a composite colour video signal (NTSC output in the
United States, SECAM or PAL in Europe and Japan) or into a component video
format separating colour and brightness information.

1.3.2 Sensor Models

For simplicity, we restrict our attention in this section to black-and-white CCD cam-
eras: colour cameras can be treated in a similar fashion by considering each colour
channel separately and taking explicitly into account the effect of the associated
filter response.
The number I of electrons recorded at the cell located at row r and column c of

a CCD array can be modelled as

I(r, c) = T

∫
λ

∫
u∈S(r, c)

E(p, λ)R(p)q(λ)dp dλ,

where T is the electron-collection time and the integral is calculated over the spatial
domain S(r, c) of the cell and the range of wavelengths to which the CCD has a
non-zero response. In this integral, E is the irradiance, R is the spatial response of
the site, and q is the quantum efficiency of the device, i.e., the number of electrons
generated per unit of incident light energy. In general, both E and q depend on the
light wavelength λ, and E and R depend on the point location p within S(r, c).
The output amplifier of the CCD transforms the charge collected at each site into

a measurable voltage. In most cameras, this voltage is then transformed into a low-
pass-filtered2 video signal by the camera electronics, with a magnitude proportional
2That is, roughly speaking, spatially or temporally averaged, more on this later.
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to I. The analog image can be once again transformed into a digital one using a
frame grabber, that spatially samples the video signal and quantizes the brightness
value at each image point, or pixel (from picture element).
There are several physical phenomena that alter the ideal camera model pre-

sented earlier: blooming occurs when the light source illuminating a collection site
is so bright that the charge stored at that site overflows into adjacent ones. It
can be avoided by controlling the illumination, but other factors such as fabrica-
tion defects, thermal and quantum effects, and quantization noise are inherent to
the imaging process. As shown below, these factors are appropriately captured by
simple statistical models.
Quantum physics effects introduce an inherent uncertainty in the photo-conver-

sion process at each site (shot noise). More precisely, the number of electrons
generated by this process can be modeled by a random integer variable NI (r, c)
obeying a Poisson distribution with mean β(r, c)I(r, c), where β(r, c) is a number
between 0 and 1 that reflects the variation of the spatial response and quantum
efficiency across the image and also accounts for bad pixels. Electrons freed from
the silicon by thermal energy add to the charge of each collection site. Their con-
tribution is called dark current and it can be modeled by a random integer variable
NDC(r, c) whose mean µDC(r, c) increases with temperature. The effect of dark
current can be controlled by cooling down the camera. Additional electrons are
introduced by the CCD electronics (bias), and their number can also be modeled
by a Poisson-distributed random variable NB(r, c) with mean µB(r, c). The output
amplifier adds read-out noise that can be modelled by a real-valued random variable
R obeying a Gaussian distribution with mean µR and standard deviation σR.
There are other sources of uncertainty (e.g., charge transfer efficiency) but they

can often be neglected. Finally, the discretization of the analog voltage by the frame
grabber introduces both geometric effects (line jitter), that can be corrected via
calibration, and a quantization noise that can be modeled as a zero-mean random
variable Q(r, c) with a uniform distribution in the [−1

2
δ, 1
2
δ] interval and a variance

of 112δ
2, where δ is the quantization step. This yields the following composite model

for the digital signal D(r, c):

D(r, c) = γ(NI (r, c) +NDC(r, c) +NB(r, c) +R(r, c)) +Q(r, c),

where γ is the combined gain of the amplifier and camera circuitry. The statistical
properties of this model can be estimated via radiometric camera calibration: for
example, dark current can be estimated by taking a number of sample pictures in
a dark environment (I = 0), etc.

1.4 Notes

The classical textbook by Hecht [1987] is an excellent introduction to geometric
optics, and it includes a detailed discussion of paraxial optics as well as the various
aberrations briefly mentioned in this chapter. See also [Driscoll and Vaughan, 1978],
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as well as [Navy, 1969] that provides a very accessible and colourful alternative. The
application of spherical projection models to shape and motion analysis is discussed
in [Cipolla and Blake, 1992; Nalwa, 1987] for example. Vignetting is discussed in
[Horn, 1986; Russ, 1995].
Wandell [1995] gives an excellent treatment of image formation in the human

visual system. The Helmoltz schematic model of the eye is detailed in [Driscoll and
Vaughan, 1978].
CCD devices were introduced in [Boyle and Smith, 1970; Amelio et al., 1970].

Scientific applications of CCD cameras to microscopy and astronomy are discussed
in [Aikens et al., 1989; Janesick et al., 1987; Snyder et al., 1993; Tyson, 1990].
The statistical sensor model presented in this chapter is based on [Snyder et al.,
1993], with an additional term for the quantization noise taken from [Healey and
Kondepudy, 1994]. These two papers contains very interesting applications of sensor
modeling to image restoration in astronomy and radiometric camera calibration in
machine vision.
Given the fundamental importance of the notions introduced in this chapter, the

main equations derived in its course have been collected in Table 1.1 for reference.

Perspective
projection



x′ = f ′

x

z

y′ = f ′
y

z

x, y: world coordinates (z < 0)
x′, y′: image coordinates
f ′: pinhole-to-retina distance

Weak-perspective
projection



x′ = −mx
y′ = −my

m = −
f ′

z0

x, y: world coordinates
x′, y′: image coordinates
f ′: pinhole-to-retina distance
z0: reference-point depth (< 0)
m: magnification (> 0)

Orthographic
projection

{
x′ = x
y′ = y

x, y: world coordinates
x′, y′: image coordinates

Snell’s
law

n1 sinα1 = n2 sinα2
n1, n2: refraction indices
α1, α2: normal-to-ray angles

Paraxial
refraction

n1
d1
+
n2
d2
=
n2 − n1
R

n1, n2: refraction indices
d1, d2: point-to-interface distances
R: interface radius

Thin lens
equation

1

z′
−
1

z
=
1

f

z: object-point depth (< 0)
z′: image-point depth (> 0)
f : focal length

Image
irradiance

E = [
π

4
(
d

z′
)2 cos4 α]L

E: image irradiance
L: scene radiance
d: lens diameter
α: optical-axis-to-ray angle
z′: image-point depth

Table 1.1. Reference card: camera models.
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1.5 Assignments

Exercises

1. Derive the perspective equation projections for a virtual image located at a
distance f ′ in front of the pinhole.

2. Prove geometrically that the projections of two parallel lines lying in some
plane Π appear to converge on a horizon line H formed by the intersection of
the image plane with the plane parallel to Π and passing through the pinhole.

3. Prove the same result algebraically, using the perspective projection equation
(1.1.1). You can assume for simplicity that the plane Π is orthogonal to the
image plane.

4. What is the image of a circle under perspective projection? What about
orthographic projection? You do not need to write any equation. Instead,
reason in terms of viewing cones and use drawings, as was done to predict the
shape of the outline of a sphere earlier in this chapter (Figure 1.7).

5. Consider a camera equipped with a thin lens, with its image plane at position
z′ and the plane of scene points in focus at position z. Show that the diameter
of the blur circle obtained by imaging a point located at position z + δz on
the optical axis is equal to d|δz′|/z′, where d is the lens diameter and z′ + δz′

is the position where the point would be in focus. Use this result to show that
the depth of field, i.e., the distance between the near and far planes that will
keep the diameter of the blur circles below some threshold ε, is given by

D = 2εfz(z + f)
d

f2d2 − ε2z2
,

and conclude that, for a fixed focal length, the depth of field increases as the
lens diameter decreases and thus the f number increases.

6. Give a geometric construction of the image P ′ of a point P given the two focal
points F and F ′ of a thin lens.

7. Derive the thick lens equations in the case where both spherical boundaries
of the lens have the same radius.

8. Derive the relationship between the scene radiance and image irradiance for
a pinhole camera with a pinhole of diameter d.

9. Derive the relationship beetween the scene radiance and image irradiance for
a spherical camera with a pinhole of diameter d.



Chapter 2

RADIOMETRY —
MEASURING LIGHT

In this chapter, we introduce a vocabulary with which we can describe the behaviour
of light. There are no vision algorithms, but definitions and ideas that will be useful
later on. Some readers may find more detail here than they really want; for their
benefit, sections 2.4, 2.5 and 2.6 give quick definitions of the main terms we use
later on.

2.1 Light in Space

The measurement of light is a field in itself, known as radiometry. We need a
series of units that describe how energy is transferred from light sources to surface
patches, and what happens to the energy when it arrives at a surface. The first
matter to study is the behaviour of light in space.

2.1.1 Foreshortening

At each point on a piece of surface is a hemisphere of directions, along which light
can arrive or leave (figure 2.1). Two sources that generate the same pattern on this
input hemisphere must have the same effect on the surface at this point (because
an observer at the surface can’t tell them apart). This applies to sources, too;
two surfaces that generate the same pattern on a source’s output hemisphere must
receive the same amount of energy from the source.
This means that the orientation of the surface patch with respect to the direction

in which the illumination is travelling is important. As a source is tilted with respect
to the direction in which the illumination is travelling, it “looks smaller” to a patch
of surface. Similarly, as a patch is tilted with respect to the direction in which the
illumination is travelling, it “looks smaller” to the source.
The effect is known as foreshortening. Foreshortening is important, because

from the point of view of the source a small patch appears the same as a large patch
that is heavily foreshortened, and so must receive the same energy.

28
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θ

φ

dφ

dθ

Figure 2.1. A point on a surface sees the world along a hemisphere of directions centered
at the point; the surface normal is used to orient the hemisphere, to obtain the θ, φ
coordinate system that we use consistently from now on to describe angular coordinates
on this hemisphere. Usually in radiation problems we compute the brightness of the surface
by summing effects due to all incoming directions, so that the fact we have given no clear
way to determine the direction in which φ = 0 is not a problem.

2.1.2 Solid Angle

The pattern a source generates on an input hemisphere can be described by the
solid angle that the source subtends. Solid angle is defined by analogy with angle
on the plane.
The angle subtended on the plane by an infinitesimal line segment of length dl at

a point p can be obtained by projecting the line segment onto the unit circle whose
center is at p; the length of the result is the required angle in radians (see Figure 2.2).
Because the line segment is infinitesimally short, it subtends an infinitesimally small
angle which depends on the distance to the center of the circle and on the orientation
of the line:

dφ =
dl cos θ

r

and the angle subtended by a curve can be obtained by breaking it into infinitesimal
segments and summing (integration!).
Similarly, the solid angle subtended by a patch of surface at a point x is obtained

by projecting the patch onto the unit sphere whose center is at x; the area of the
result is the required solid angle, whose unit is now steradians. Solid angle is
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usually denoted by the symbol ω. Notice that solid angle captures the intuition in
foreshortening — patches that “look the same” on the input hemisphere subtend
the same solid angle.

N

θ

dl

dφ

r

dA

r

θ

Figure 2.2. Top: The angle subtended by a curve segment at a particular point is
obtained by projecting the curve onto the unit circle whose center is at that point, and
then measuring the length of the projection. For a small segment, the angle is (1/r)dl cos θ.
Bottom: A sphere, illustrating the concept of solid angle. The small circles surrounding
the coordinate axes are to help you see the drawing as a 3D surface. An infinitesimal patch
of surface is projected onto the unit sphere centered at the relevant point; the resulting
area is the solid angle of the patch. In this case, the patch is small, so that the angle is
(1/r2)dA cos θ.

If the area of the patch dA is small (as suggested by the infinitesimal form), then
the infinitesimal solid angle it subtends is easily computed in terms of the area of
the patch and the distance to it as

dω =
dA cos θ

r2

where the terminology is given in Figure 2.2.
Solid angle can be written in terms of the usual angular coordinates on a sphere

(illustrated in Figure 2.2). From figure 2.1 and the expression for the length of
circular arcs, we have that infinitesimal steps (dθ, dφ) in the angles θ and φ cut out
a region of solid angle on a sphere given by:

dω = sin θdθdφ

Both of these expressions are worth remembering, as they turn out to be useful for
a variety of applications.
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2.1.3 Radiance

The distribution of light in space is a function of position and direction. For exam-
ple, consider shining a torch with a narrow beam in an empty room at night — we
need to know where the torch is shining from, and in what direction it is shining.
The effect of the illumination can be represented in terms of the power an infinitesi-
mal patch of surface would receive if it were inserted into space at a particular point
and orientation. We will use this approach to obtain a unit of measurement.

Definition of Radiance

The appropriate unit for measuring the distribution of light in space is radiance,
which is defined as:

the amount of energy travelling at some point in a specified direction,
per unit time, per unit area perpendicular to the direction of travel, per
unit solid angle (from [Sillion, 1994])

The units of radiance are watts per square meter per steradian (Wm−2sr−1). It
is important to remember that the square meters in these units are foreshortened,
i.e. perpendicular to the direction of travel. This means that a small patch viewing a
source frontally collects more energy than the same patch viewing a source radiance
along a nearly tangent direction — the amount of energy a patch collects from a
source depends both on how large the source looks from the patch and on how large
the patch looks from the source.
Radiance is a function of position and direction (the torch with a narrow beam

is a good model to keep in mind — you can move the torch around, and point the
beam in different directions). The radiance at a point in space is usually denoted
L(x, direction), where x is a coordinate for position — which can be a point in
free space or a point on a surface — and we use some mechanism for specifying
direction.
One way to specify direction is to use (θ, φ) coordinates established using some

surface normal. Another is to write x1 → x2, meaning the direction from point
x1 to x2. We shall use both, depending on which is convenient for the problem at
hand.

Radiance is Constant Along a Straight Line

For the vast majority of important vision problems, it is safe to assume that light
does not interact with the medium through which it travels — i.e. that we are in a
vacuum. Radiance has the highly desirable property that, for two points p1 and p2
(which have a line of sight between them), the radiance leaving p1 in the direction
of p2 is the same as the radiance arriving at p2 from the direction of p1.
The following proof may look vacuous at first glance; it’s worth studying care-

fully, because it is the key to a number of other computations. Figure 2.3 shows
a patch of surface radiating in a particular direction. From the definition, if the
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Figure 2.3. Light intensity is best measured in radiance, because radiance does not go
down along straight line paths in a vacuum (or, for reasonable distances, in clear air). This
is shown by an energy conservation argument in the text, where one computes the energy
transferred from a patch dA1 to a patch dA2

radiance at the patch is L(x1, θ, φ), then the energy transmitted by the patch into
an infinitesimal region of solid angle dω around the direction θ, φ in time dt is

L(x1, θ, φ)(cos θ1dA1)(dω)(dt),

(i.e. radiance times the foreshortened area of the patch times the solid angle into
which the power is radiated times the time for which the power is radiating).
Now consider two patches, one at x1 with area dA1 and the other at x2 with

area dA2 (see Figure 2.3). To avoid confusion with angular coordinate systems,
write the angular direction from x1 to x2 as x1 → x2. The angles θ1 and θ2 are as
defined in figure 2.3.
The radiance leaving x1 in the direction of x2 is L(x1,x1 → x2) and the radiance

arriving at x2 from the direction of x1 is L(x2,x1 → x2).
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This means that, in time dt, the energy leaving x1 towards x2 is

d3E1→2 = L(x1,x1 → x2) cos θ1dω2(1)dA1dt

where dω2(1) is the solid angle subtended by patch 2 at patch 1 (energy emitted
into this solid angle arrives at 2; all the rest disappears into the void). The notation
d3E1→2 implies that there are three infinitesimal terms involved.
From the expression for solid angle above,

dω2(1) =
cos θ2dA2
r2

Now the energy leaving 1 for 2 is:

d3E1→2 = L(x1,x1 → x2) cos θ1dω2(1)dA1dt

= L(x1,x1 → x2)
cos θ1 cos θ2dA2dA1dt

r2

Because the medium is a vacuum, it does not absorb energy, so that the energy
arriving at 2 from 1 is the same as the energy leaving 1 in the direction of 2. The
energy arriving at 2 from 1 is:

d3E1→2 = L(x2,x1 → x2) cos θ2dω1(2)dA2dt

= L(x2,x1 → x2)
cos θ2 cos θ1dA1dA2dt

r2

which means that L(x2,x1 → x2) = L(x1, θ, φ), so that radiance is constant along
(unoccluded) straight lines.

2.2 Light at Surfaces

When light strikes a surface, it may be absorbed, transmitted, or scattered; usually,
a combination of these effects occur. For example, light arriving at skin can be
scattered at various depths into tissue and reflected from blood or from melanin in
there; can be absorbed; or can be scattered tangential to the skin within a film of
oil and then escape at some distant point.
The picture is complicated further by the willingness of some surfaces to absorb

light at one wavelength, and then radiate light at a different wavelength as a result.
This effect, known as fluorescence, is fairly common: scorpions fluoresce visible
light under x-ray illumination; human teeth fluoresce faint blue under ultraviolet
light (nylon underwear tends to fluoresce, too, and false teeth generally do not
— the resulting embarrassments led to the demise of uv lights in discotheques);
and laundry can be made to look bright by washing powders that fluoresce under
ultraviolet light. Furthermore, a surface that is warm enough emits light in the
visible range.
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2.2.1 Simplifying Assumptions

It is common to assume that all effects are local, and can be explained with a
macroscopic model with no fluorescence or emission. This is a reasonable model for
the kind of surfaces and decisions that are common in vision. In this model:

• the radiance leaving a point on a surface is due only to radiance arriving at
this point (although radiance may change directions at a point on a surface,
we assume that it does not skip from point to point);

• we assume that all light leaving a surface at a given wavelength is due to light
arriving at that wavelength;

• we assume that the surfaces do not generate light internally, and treat sources
separately.

2.2.2 The Bidirectional Reflectance Distribution Function

We wish to describe the relationship between incoming illumination and reflected
light. This will be a function of both the direction in which light arrives at a surface
and the direction in which it leaves.

Irradiance

The appropriate unit for representing incoming power which is irradiance, defined
as:

incident power per unit area not foreshortened.

A surface illuminated by radiance Li(x, θi, φi) coming in from a differential region
of solid angle dω at angles (θi, φi) receives irradiance

Li(x, θi, φi) cos θidω

where we have multiplied the radiance by the foreshortening factor and by the solid
angle to get irradiance. The main feature of this unit is that we could compute
all the power incident on a surface at a point by summing the irradiance over the
whole input hemisphere — which makes it the natural unit for incoming power.

The BRDF

The most general model of local reflection is the bidirectional reflectance dis-
tribution function, usually abbreviated BRDF. The BRDF is defined as

the ratio of the radiance in the outgoing direction to the incident irra-
diance (after [Sillion, 1994])
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so that, if the surface of the preceding paragraph was to emit radiance Lo(x, θo, φo),
its BRDF would be:

ρbd(θo, φo, θi, φi) =
Lo(x, θo, φo)

Li(x, θi, φi) cos θidω

The BRDF has units of inverse steradians (sr−1), and could vary from 0 (no light
reflected in that direction) to infinity (unit radiance in an exit direction resulting
from arbitrary small radiance in the incoming direction). The BRDF is symmetric
in the incoming and outgoing direction, a fact known as the Helmholtz reciprocity
principle.

Properties of the BRDF

The radiance leaving a surface due to irradiance in a particular direction is easily
obtained from the definition of the BRDF:

Lo(x, θo, φo) = ρbd(θo, φo, θi, φi)Li(x, θi, φi) cos θidω

More interesting is the radiance leaving a surface due to its irradiance (whatever
the direction of irradiance). We obtain this by summing over contributions from all
incoming directions:

Lo(x, θo, φo) =

∫
Ω

ρbd(θo, φo, θi, φi)Li(x, θi, φi) cos θidω

where Ω is the incoming hemisphere. From this we obtain the fact that the BRDF
is not an arbitrary symmetric function in four variables.
To see this, assume that a surface is subjected to a radiance of 1/ cos θi Wm

−2sr−1.
This means that the total energy arriving at the surface is:∫

Ω

1

cos θ
cos θdω =

∫ 2π
0

∫ π
2

0

sin θdθdφ

= 2π

We have assumed that any energy leaving at the surface leaves from the same
point at which it arrived, and that no energy is generated within the surface. This
means that the total energy leaving the surface must be less than or equal to the
amount arriving. So we have

2π ≥

∫
Ωo

Lo(x, θo, φo) cos θodωo

=

∫
Ωo

∫
Ωi

ρbd(θo , φo, θi, φi)Li(x, θi, φi) cos θidωidωo

=

∫
Ωo

∫
Ωi

ρbd(θo , φo, θi, φi)dωidωo

=

∫ 2π
0

∫ π
2

0

∫ 2π
0

∫ π
2

0

ρbd(θo, φo, θi, φi) sin θidθidφi sin θodθodφo
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What this tells us is that, although the BRDF can be large for some pairs of
incoming and outgoing angles, it can’t be large for many.

2.3 Important Special Cases

Radiance is a fairly subtle quantity, because it depends on angle. This generality
is sometimes essential — for example, for describing the distribution of light in
space in the torch beam example above. As another example, fix a compact disc
and illuminate its underside with a torch beam. The intensity and colour of light
reflected from the surface depends very strongly on the angle from which the surface
is viewed and on the angle from which it is illuminated. The CD example is worth
trying, because it illustrates how strange the behaviour of reflecting surfaces can
be; it also illustrates how accustomed we are to dealing with surfaces that do not
behave in this way. For many surfaces — cotton cloth is one good example — the
dependency of reflected light on angle is weak or non-existent, so that a system of
units that are independent of angle is useful.

2.3.1 Radiosity

If the radiance leaving a surface is independent of exit angle, there is no point in
describing it using a unit that explicitly depends on direction. The appropriate unit
is radiosity, defined as

the total power leaving a point on a surface per unit area on the surface
(from [Sillion, 1994])

Radiosity, which is usually written as B(x) has units watts per square meter
(Wm−2). To obtain the radiosity of a surface at a point, we can sum the radiance
leaving the surface at that point over the whole exit hemisphere. Thus, if x is a
point on a surface emitting radiance L(x, θ, φ), the radiosity at that point will be:

B(x) =

∫
Ω

L(x, θ, φ) cos θdω

where Ω is the exit hemisphere and the term cos θ turns foreshortened area into
area (look at the definitions again!); dω can be written in terms of θ, φ as above.

The Radiosity of a Surface with Constant Radiance

One result to remember is the relationship between the radiosity and the radi-
ance of a surface patch where the radiance is independent of angle. In this case
Lo(x, θo, φo) = Lo(x). Now the radiosity can be obtained by summing the radiance
leaving the surface over all the directions in which it leaves:

B(x) =

∫
Ω

Lo(x) cos θdω
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= Lo(x)

∫ π
2

0

∫ 2π
0

cos θ sin θdφdθ

= πLo(x)

2.3.2 Directional Hemispheric Reflectance

The BRDF is also a subtle quantity, and BRDF measurements are typically difficult,
expensive and not particularly repeatable. This is because surface dirt and aging
processes can have significant effects on BRDFmeasurements; for example, touching
a surface will transfer oil to it, typically in little ridges (from the fingertips) which
can act as lenses and make significant changes in the directional behaviour of the
surface.
The light leaving many surfaces is largely independent of the exit angle. A

natural measure of a surface’s reflective properties in this case is the directional-
hemispheric reflectance, usually termed ρdh, defined as:

the fraction of the incident irradiance in a given direction that is reflected
by the surface, whatever the direction of reflection (after [Sillion, 1994])

The directional hemispheric reflectance of a surface is obtained by summing the
radiance leaving the surface over all directions, and dividing by the irradiance in
the direction of illumination, which gives:

ρdh(θi, φi) =

∫
Ω
Lo(x, θo, φo) cos θodωo

Li(x, θi, φi) cos θidωi

=

∫
Ω

{
Lo(x, θo, φo) cos θo
Li(x, θi, φi) cos θidωi

}
dωo

=

∫
Ω

ρbd(θo, φo, θi, φi) cos θodωo

This property is dimensionless, and its value will lie between 0 and 1.
Directional hemispheric reflectance can be computed for any surface. For some

surfaces, it will vary sharply with the direction of illumination. A good example is
a surface with fine, symmetric triangular grooves which are black on one face and
white on the other. If these grooves are sufficiently fine, it is reasonable to use a
macroscopic description of the surface as flat, and with a directional hemispheric
reflectance that is large along a direction pointing towards the white faces and small
along that pointing towards the black.

2.3.3 Lambertian Surfaces and Albedo

For some surfaces the directional hemispheric reflectance does not depend on illu-
mination direction. Examples of such surfaces include cotton cloth, many carpets,
matte paper and matte paints. A formal model is given by a surface whose BRDF
is independent of outgoing direction (and, by the reciprocity principle, of incom-
ing direction as well). This means the radiance leaving the surface is independent
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of angle. Such surfaces are known as ideal diffuse surfaces or Lambertian
surfaces (after George Lambert, who first formalised the idea).
It is natural to use radiosity as a unit to describe the energy leaving a Lam-

bertian surface. For Lambertian surfaces, the directional hemispheric reflectance is
independent of direction. In this case the directional hemispheric reflectance is of-
ten called their diffuse reflectance or albedo and written ρd. For a Lambertian
surface with BRDF ρbd(θo , φo, θi, φi) = ρ, we have:

ρd =

∫
Ω

ρbd(θo, φo, θi, φi) cos θodωo

=

∫
Ω

ρ cos θodωo

= ρ

∫ π
2

0

∫ 2π
0

cos θo sin θodθodφo

= πρ

This fact is more often used in the form

ρbrdf =
ρd

π

a fact that is useful, and well worth remembering.
Because our sensations of brightness correspond (roughly!) to measurements of

radiance, a Lambertian surface will look equally bright from any direction, whatever
the direction along which it is illuminated. This gives a rough test for when a
Lambertian approximation is appropriate.

2.3.4 Specular Surfaces

A second important class of surfaces are the glossy or mirror-like surfaces, often
known as specular surfaces (after the Latin word speculum, a mirror). An ideal
specular reflector behaves like an ideal mirror. Radiation arriving along a particular
direction can leave only along the specular direction, obtained by reflecting the
direction of incoming radiation about the surface normal. Usually some fraction
of incoming radiation is absorbed; on an ideal specular surface, the same fraction
of incoming radiation is absorbed for every direction, the rest leaving along the
specular direction. The BRDF for an ideal specular surface has a curious form
(exercises), because radiation arriving in a particular direction can leave in only
one direction.

Specular Lobes

Relatively few surfaces can be approximated as ideal specular reflectors. A fair
test of whether a flat surface can be approximated as an ideal specular reflector is
whether one could safely use it as a mirror. Good mirrors are suprisingly hard to
make; up until recently, mirrors were made of polished metal. Typically, unless the
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Figure 2.4. Specular surfaces commonly reflect light into a lobe of directions around
the specular direction, where the intensity of the reflection depends on the direction, as
shown on the left. Phong’s model is used to describe the shape of this lobe, in terms of
the offset angle from the specular direction.

metal is extremely highly polished and carefully maintained, radiation arriving in
one direction leaves in a small lobe of directions around the specular direction. This
results in a typical blurring effect. A good example is the bottom of a flat metal pie
dish. If the dish is reasonably new, one can see a distorted image of one’s face in
the surface but it would be difficult to use as a mirror; a more battered dish reflects
a selection of distorted blobs.
Larger specular lobes mean that the specular image is more heavily distorted

and is darker (because the incoming radiance must be shared over a larger range of
outgoing directions). Quite commonly it is possible to see only a specular reflection
of relatively bright objects, like sources. Thus, in shiny paint or plastic surfaces,
one sees a bright blob — often called a specularity— along the specular direction
from light sources, but few other specular effects. It is not often necessary to model
the shape of the specular lobe. When the shape of the lobe is modelled, the most
common model is the Phong model, which assumes that only point light sources
are specularly reflected. In this model, the radiance leaving a specular surface is
proportional to cosn(δθ) = cosn(θo−θs), where θo is the exit angle, θs is the specular
direction and n is a parameter. Large values of n lead to a narrow lobe and small,
sharp specularities and small values lead to a broad lobe and large specularities
with rather fuzzy boundaries.

2.3.5 The Lambertian + Specular Model

Relatively few surfaces are either ideal diffuse or perfectly specular. Very many
surfaces can be approximated has having a surface BRDF which is a combination
of a Lambertian component and a specular component, which usually has some
form of narrow lobe. Usually, the specular component is weighted by a specular
albedo. Again, because specularities tend not to be examined in detail, the shape
of this lobe is left unspecified. In this case, the surface radiance (because it must
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now depend on direction) in a given direction is typically approximated as:

L(x, θo, φo) = ρd(x)

∫
Ω

L(x, θi, φi) cos θidω + ρs(x)L(x, θs, φs) cos
n(θs − θo)

where θs, φs give the specular direction and ρs is the specular albedo. As we shall
see, it is common not to reason about the exact magnitude of the specular radiance
term.
Using this model implicitly excludes “too narrow” specular lobes, because most

algorithms expect to encounter occasional small, compact specularities from light
sources. Surfaces with too narrow specular lobes (mirrors) produce overwhelm-
ing quantities of detail in specularities. Similarly, “too broad” lobes are excluded
because the specularities would be hard to identify.
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2.4 Quick Reference: Radiometric Terminology for Light

Term Definition Units Application

Radiance the quantity of energy trav-
elling at some point in a
specified direction, per unit
time, per unit area perpen-
dicular to the direction of
travel, per unit solid angle.

wm2sr−1 representing light travelling
in free space; representing
light reflected from a surface
when the amount reflected
depends strongly on direc-
tion

Irradiance total incident power per unit
surface area

wm−2 representing light arriving at
a surface

Radiosity the total power leaving a
point on a surface per unit
area on the surface

wm−2 representing light leaving a
diffuse surface
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2.5 Quick Reference: Radiometric Properties of Surfaces

Term Definition Units Application

BRDF the ratio of the radiance sr−1 representing reflection
(Bidirectional in the outgoing direction off general surfaces
Reflectance to the incident irradiance where reflection depends
Distribution strongly on direction
Function)

Directional the fraction of the unitless representing reflection
Hemispheric incident irradiance in off a surface where
Reflectance a given direction that direction is

is reflected by the unimportant
surface, whatever the
direction of reflection

Albedo Directional hemispheric unitless representing a
reflectance of a diffuse diffuse surface

surface
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2.6 Quick Reference: Important Types of Surface

Term Definition Examples

Diffuse surface; A surface whose BRDF is Cotton cloth; many rough
Lambertian surface constant surfaces; many paints

and papers; surfaces whose
apparent brightness doesn’t
change with viewing direction

Specular surface A surface that behaves like Mirrors; polished metal
a mirror

Specularity Small bright patches on
a surface that result from
specular components of

the BRDF
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2.7 Comments

We strongly recommend François Sillion’s excellent book [Sillion, 1994], for its very
clear account of radiometric calculations. There are a variety of more detailed
publications for reference [Nayar et al., 1991b; ?] Our discussion of reflection is
thoroughly superficial. The specular plus diffuse model appears to be originally due
to Cook, Torrance and Sparrow [Cook and Torrance, 1987; Torrance and Sparrow,
1967]. A variety of modifications of this model appear in computer vision and
computer graphics. Reflection models can be derived by combining a statistical
description of surface roughness with electromagnetic considerations (e.g. [Beckman
and Spizzichino, 1987]) or by adopting scattering models (e.g. [?], where a surface
is modelled by colourant particles embedded in a matrix, and a scattering model
yields an approximate BRDF).
Top of the list of effects we omitted to discuss is off-specular glints (e.g. [Tor-

rance and Sparrow, 1967]), followed by specular backscatter. Off-specular glints
commonly arise in brushed surfaces, where there is a large surface area oriented at
a substantial angle to the macroscopic surface normal. This leads to a second spec-
ular lobe, due to this region. These effects can confuse algorithms that reason about
shape from specularities, if the reasoning is close enough. Specular backscatter oc-
curs when a surface reflects light back in the source direction — usually for a similar
reason that off-specular glints occur. Again, the effect is likely to confuse algorithms
that reason about shape from specularities. Some classes of reflectance models
that incorporate these properties are described in [Tagare and de Figueiredo, 1991;
Tagare and de Figueiredo, 1989].
It is commonly believed that rough surfaces are Lambertian. This belief has a

substantial component of wishful thinking, because rough surfaces often have local
shadowing effects that make the radiance reflected quite strongly dependent on
the illumination angle. For example, a stucco wall illuminated at a near grazing
angle shows a clear pattern of light and dark regions where facets of the surface
face toward the light or are shadowed. If the same wall is illuminated along the
normal, this pattern largely disappears. Similar effects at a finer scale are averaged
to endow rough surfaces with measurable departures from a Lambertian model (for
details, see [Oren and Nayar, 1995; Oren and Nayar, 1993; Oren and Nayar, 1994;
Wolff et al., 1998; Koenderink et al., 1999; Nayar and Oren, 1995; Nayar and Oren,
1993]).
Another example of an object that does not support a simple macroscopic surface

model is a field of flowers. A distant viewer should be able to abstract this field as a
“surface”; however, doing so leads to a surface with quite strange properties. If one
views such a field along a normal direction, one sees mainly flowers; a tangential
view reveals both stalks and flowers, meaning that the colour changes dramatically
(the effect is explored in [Leung and Malik, 1997]).
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2.8 Assignments

Exercises

1. How many steradians in a hemisphere?

2. We have proven that radiance does not go down along a straight line in a
non-absorbing medium, which makes it a useful unit. Show that if we were to
use power per square meter of foreshortened area (which is irradiance), the
unit must change with distance along a straight line. How significant is this
difference?

3. An absorbing medium: assume that the world is filled with an isotropic
absorbing medium. A good, simple model of such a medium is obtained by
considering a line along which radiance travels. If the radiance along the line
is N at x, it will be N − (αdx)N at x+ dx.

• Write an expression for the radiance transferred from one surface patch
to another in the presence of this medium.

• Now qualitatively describe the distribution of light in a room filled with
this medium, for α small and large positive numbers. The room is a
cube, and the light is a single small patch in the center of the ceiling.
Keep in mind that if α is large and positive, very little light will actually
reach the walls of the room.

4. Identify common surfaces that are neither Lambertian nor specular, using
the underside of a CD as a working example. There are a variety of im-
portant biological examples, which are often blue in colour. Give at least
two different reasons that it could be advantageous to an organism to have a
non-Lambertian surface.

5. Show that for an ideal diffuse surface the directional hemispheric reflectance
is constant; now show that if a surface has constant directional hemispheric
reflectance, it is ideal diffuse.

6. Show that the BRDF of an ideal specular surface is

ρbd(θo, φo, θi, φi) = ρs(θi){2δ(sin
2 θo − sin

2 θi)}{δ(φo − φπ)}

where ρs(θi) is the fraction of radiation that leaves.

7. Why are specularities brighter than diffuse reflection?

8. A surface has constant BRDF. What is the maximum possible value of this
constant? Now assume that the surface is known to absorb 20% of the radia-
tion incident on it (the rest is reflected); what is the value of the BRDF?

9. The eye responds to radiance. Explain why Lambertian surfaces are often
referred to as having a brightness that is independent of viewing angle.
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10. Show that the solid angle subtended by a sphere of radius ε at a point a
distance r away from the center of the sphere is approximately π( ε

r
)2, for

r� ε.



Chapter 3

SOURCES, SHADOWS AND
SHADING

We shall start by describing the basic radiometric properties of various light sources.
We shall then develop models of source geometries and discuss the radiosity and the
shadows that result from these sources. The purpose of all this physics is to establish
a usable model of the shading on a surface; we develop two kinds of model in some
detail. We show that, when one of these models applies, it is possible to extract a
representation of the shape and albedo of an object from a series of images under
different lights. Finally, we describe the effects that result when surfaces reflect
light onto one another.

3.1 Radiometric Properties of Light Sources

Anything that emits light is a light source. To describe a source, we need a descrip-
tion of the radiance it emits in each direction. Typically, emitted radiance is dealt
with separately from reflected radiance. Together with this, we need a description
of the geometry of the source, which has profound effects on the spatial variation of
light around the source and on the shadows cast by objects near the source. Sources
are usually modelled with quite simple geometries, for two reasons: firstly, many
synthetic sources can be modelled as point sources or line sources fairly effectively;
secondly, sources with simple geometries can still yield surprisingly complex effects.
We seldom need a complete description of the spectral radiance a source emits

in each direction. It is more usual to model sources as emitting a constant radiance
in each direction, possibly with a family of directions zeroed (like a spotlight). The
proper quantity in this case is the exitance, defined as

the internally generated energy radiated per unit time and per unit area
on the radiating surface (after [Sillion, 1994])

Exitance is similar to radiosity, and can be computed as

E(x) =

∫
Ω

Le(x, θo, φo) cos θodω

47
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In the case of a coloured source, one would use spectral exitance or spectral
radiance as appropriate. Sources can have radiosity as well as exitance, because
energy may be reflected off the source as well as generated within it.

3.2 Qualitative Radiometry

We should like to know how “bright” surfaces are going to be under various lighting
conditions, and how this “brightness” depends on local surface properties, on surface
shape, and on illumination. The most powerful tool for analysing this problem is to
think about what a source looks like from the surface. In some cases, this technique
us to give qualitative descriptions of “brightness” without knowing what the term
means.
Recall from section 2.1.1 and figure 2.1 that a surface patch sees the world

through a hemisphere of directions at that patch. The radiation arriving at the
surface along a particular direction passes through a point on the hemisphere. If
two surface patches have equivalent incoming hemispheres, they must have the
same incoming radiation, whatever the outside world looks like. This means that
any difference in “brightness” between patches with the same incoming hemisphere
is a result of different surface properties.

infinite
plane

infinitely
high
wall

Overcast
sky

A
B C A

B

C

Figure 3.1. A geometry in which a qualitative radiometric solutions can be obtained by
thinking about what the world looks like from the point of view of a patch. We wish to
know what the brightness looks like at the base of two different infinitely high walls. In
this geometry, an infinitely high matte black wall cuts off the view of the overcast sky —
which is a hemisphere of infinite radius and uniform “brightness”. On the right, we show
a representation of the directions that see or do not see the source at the corresponding
points, obtained by flattening the hemisphere to a circle of directions (or, equivalently, by
viewing it from above). Since each point has the same input hemisphere, the brightness
must be uniform.

Lambert determined the distribution of “brightness” on a uniform plane at the
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base of an infinitely high black wall illuminated by an overcast sky (see Figure 3.1).
In this case, every point on the plane must see the same hemisphere — half of its
viewing sphere is cut off by the wall, and the other half contains the sky, which is
uniform— and the plane is uniform, so every point must have the same “brightness”.

infinite
plane

infinitely
high
wall

Overcast
sky

p

brightest

darker

Figure 3.2. We now have a matte black, infinitely thin, half-infinite wall on an infi-
nite white plane. This geometry also sees an overcast sky of infinite radius and uniform
“brightness”. In the text, we show how to determine the curves of similar “brightness”
on the plane. These curves are shown on the right, depicted on an overhead view of the
plane; the thick line represents the wall. Superimposed on these curves is a representation
of the input hemisphere for some of these isophotes. Along these curves, the hemisphere
is fixed (by a geometrical argument), but they change as one moves from curve to curve.

A second example is somewhat trickier. We now have an infinitely thin black
wall that is infinitely long only in one direction, on an infinite plane (Figure 3.2). A
qualitative description would be to find the curves of equal “brightness” look like.
It is fairly easy to see that all points on any line passing through the point p in
Figure 3.2 see the same input hemisphere, and so must have the same “brightness”.
Furthermore, the distribution of “brightness” on the plane must have a symmetry
about the line of the wall — we expect the brightest points to be along the extension
of the line of the wall, and the darkest to be at the base of the wall.

3.3 Sources and their Effects

There are three main types of geometrical source models: point sources, line sources
and area sources. In this section, we obtain expressions for radiosity sources of these
types produce at a surface patch. These expressions could be obtained by thinking
about the limiting behaviour of various nasty integrals. Instead, we obtain them by
thinking about the appearance of the source from the patch.
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radius=ε

d>>ε

∆ω
approx
π (ε/d)2

Constant
radiance patch
due to source

Figure 3.3. A surface patch sees a distant sphere of small radius; the sphere produces a
small illuminated patch on the input hemisphere of the sphere. In the text, by reasoning
about the scaling behaviour of this patch as the distant sphere moves further away or gets
bigger, we obtain an expression for the behaviour of the point source.

3.3.1 Point Sources

A common approximation is to consider a light source as a point. It is a natural
model to use, because many sources are physically small compared to the environ-
ment in which they stand. We can obtain a model for the effects of a point sources
by modelling the source as a very small sphere which emits light at each point on
the sphere, with an exitance that is constant over the sphere.
Assume that a surface patch is viewing a sphere of radius ε, at a distance r away,

and that ε � r. We assume the sphere is far away from the patch relative to its
radius (a situation that almost always applies for real sources). Now the solid angle
that the source subtends is Ωs. This will behave approximately proportional to

ε2

r2
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The pattern of illumination that the source creates on the hemisphere will
(roughly) scale, too. As the sphere moves away, the rays leaving the surface patch
and striking the sphere move closer together (roughly) evenly, and the collection
changes only slightly (a small set of new rays is added at the rim — the contribution
from these rays must be very small, because they come from directions tangent to
the sphere). In the limit as ε tends to zero, no new rays are added.
The radiosity due to the source is obtained by integrating this pattern, times

cos θi over the patch of solid angle. As ε tends to zero, the patch shrinks and the
cos θi is close to constant. If ρ is the surface albedo, all this means the expression
for radiosity due to the point source will be

ρ
( ε
r

)2
E cos θ

where E is a term in the exitance of the source, integrated over the small patch.
We don’t need a more detailed expression for E (to determine one, we would need
to actually do the integral we have shirked).

A Nearby Point Source

The angle term can be written in terms of N(x) (the unit normal to the surface)
and S(x) (a vector from x to the source, whose length is E) to yield the standard
nearby point source model:

ρd(x)
N(x) · S(x)

r(x)2

This is an extremely convenient model, because it gives an explicit relationship
between radiosity and shape (the normal term). In this model, S is usually called
the source vector. It is common (and incorrect!) to omit the dependency on
distance to the source from this model.

A Point Source at Infinity

The sun is far away; as a result, the terms 1/r(x)2 and S(x) are essentially constant.
In this case, the point source is referred to as being a point source at infinity.
If all the surface patches we are interested in are close together with respect to
the distance to the source, r(x) = r0 + ∆r(x) where r0 � ∆r(x). Furthermore,
S(x) = S0 +∆S(x), where | S0 |�| ∆S(x) |. We now have that:

N · S(x)

r(x)2
=
N · (S0 +∆S(x))

(r0 +∆r(x))
2 =

N · S0
r20

[
1− 2

(N ·∆S(x))∆rx

r0
+ . . .

]
≈
N ·S0
r20

so that our model for the radiosity due to a point source at infinity becomes:

B(x) = ρd(x)(N · S)
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Choosing a Point Source Model

A point source at infinity is a good model for the sun, for example, because the solid
angle that the sun subtends is small and essentially constant, wherever it appears in
the field of view (this test means that our approximation step is valid). Usually, we
do not care about the structure of the term S, which is again known as the source
vector. If we use linear sensors with an unknown gain, for example, we can roll
the source intensity and the unknown gain into this term.
As you should expect from the derivation, this is a poor model when the distance

between objects is similar in magnitude to the distance to the source. In this case,
we cannot use the series approximation to pretend that the radiosity due to the
source does not go down with distance to the source.
The heart of the problem is easy to see if we consider what the source looks

like from different surface patches. It must look bigger to nearer surface patches
(however small its radius); this means that the radiosity due to the source must go
up. If the source is sufficiently distant — for example, the sun — we can ignore this
effect because the source does not change in apparent size for any plausible motion.
However, for configurations like a light bulb in the center of a room the solid

angle subtended by the source goes up as the inverse square of the distance, meaning
that the radiosity due to the source will do so, too. The correct model to use in
this case is the point source of Section 3.3.1. The difficulty with this model is
that radiosity changes very sharply over space, in a way that is inconsistent with
experience. For example, if a point source is placed at the center of a cube, then
the radiosity in the corners is roughly a ninth that at the center of each face — but
the corners of real rooms are nowhere near as dark as that. The explanation must
wait until we have discussed shading models.

3.3.2 Line Sources

A line source has the geometry of a line — a good example is a single fluorescent
light bulb. Line sources are not terribly common in natural scenes or in synthetic
environments, and we will discuss them only briefly. Their main interest is as an
example for radiometric problems; in particular, the radiosity of patches reasonably
close to a line source changes as the reciprocal of distance to the source (rather than
the square of the distance). The reasoning is more interesting than the effect. We
model a line source as a thin cylinder with diameter ε. Assume for the moment that
the line source is infinitely long, and that we are considering a patch that views the
source frontally, as in Figure 3.4.
Figure 3.4 sketches the appearance of the source from the point of view of patch

1; now move the patch closer, and consider patch 2 — the width of the region on
the hemisphere corresponding to the source changes, but not the length (because
the source is infinitely long). In turn, because the width is approximately ε/r, the
radiosity due to the source must go down with the reciprocal of distance. It is easy
to see that with a source that is not infinitely long, this applies as long as the patch
is reasonably close.
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Figure 3.4. The radiosity due to a line source goes down as the reciprocal of distance,
for points that are reasonably close to the source. On the left, two patches viewing an
infinitely long, narrow cylinder with constant exitance along its surface and diameter ε.
On the right, the view of the source from each patch, drawn as the underside of the input
hemisphere seen from below. Notice that the length of the source on this hemisphere does
not change, but the width does (as ε/r). This yields the result.

3.3.3 Area Sources

Area sources are important, for two reasons. Firstly, they occur quite commonly in
natural scenes — an overcast sky is a good example — and in synthetic environ-
ments — for example, the fluorescent light boxes found in many industrial ceilings.
Secondly, a study of area sources will allow us to explain various shadowing and
interreflection effects. Area sources are normally modelled as surface patches whose
emitted radiance is independent of position and of direction — they can be described
by their exitance.
An argument similar to that used for line sources shows that, for points not

too distant from the source, the radiosity due to an area source does not change
with distance to the source. This explains the widespread use of area sources in
illumination engineering — they generally yield fairly uniform illumination. For
our applications, we need a more exact description of the radiosity due to an area
source, so we will need to write out the integral.

The Exact Radiosity due to an Area Source

Assume we have a diffuse surface patch which is illuminated by an area source with
exitance E(u). We use u as a coordinate on the source, and instead of writing
angles in coordinates, we write u→ x for the direction from u to x (more notation
is illustrated in Figure 3.5). The radiosity on the surface is obtained by summing the
incoming radiance over all incoming directions. This integral can be transformed
into an integral over the source (by turning the angle to a source point into a
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coordinate on the source). The process looks like:

B(x) = ρd(x)

∫
Ω

Li(x,u→ x) cos θidω

= ρd(x)

∫
Ω

Le(u,u→ x) cos θidω

= ρd(x)

∫
Ω

(
1

π
E(u)) cos θidω

= ρd(x)

∫
Source

(
1

π
E(u)) cos θi(cos θs

dAu
r2
)

= ρd(x)

∫
Source

E(u)
cos θi cos θs
πr2

dAu

The transformation works because radiance is constant along straight lines and
because E(u) = 1/πLe(u). This transformation is very useful, because it means
we do not have to worry about consistent angular coordinate systems, but these
integrals are still almost always impossible to do in closed form (but see exercise ).

3.4 Local Shading Models

We have studied the physics of light because we want to know how bright things
will be, and why, in the hope of extracting object information from these models.
Currently, we know the radiosity at a patch due to a source but this is not a shading
model. Radiance could arrive at surface patches in other ways (it could, for example,
be reflected from other surface patches); we need to know which components to
account for.
This topic is fraught with all the difficulties involved in choosing a model. The

easiest model to manipulate is a local shading model, which models the radiosity
at a surface patch as the sum of the radiosity due to sources and sources alone.
This model will support a variety of algorithms and theories (see section 3.5). Un-
fortunately, this model often produces wildly inaccurate predictions. Even worse,
there are is little reliable information about when this model is safe to use.
An alternate model is to account for all radiation (section 3.6). This takes into

account radiance arriving from sources, and that arriving from radiating surfaces.
This model is physically accurate, but usually very hard to manipulate.

3.4.1 Local Shading Models for Point Sources

The local shading model for a set of point sources is:

B(x) =
∑

s∈sources visible from x

Bs(x)
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Figure 3.5. A diffuse source illuminates a diffuse surface. The source has exitance
E(u) and we wish to compute the radiosity on the patch due to the source. We do this
by transforming the integral of incoming radiance at the surface into an integral over the
source area. This transformation is convenient, because it avoids us having to use different
angular domains for different surfaces; however, it still leads to an integral that is usually
impossible in closed form.

where Bs(x) is the radiosity due to source s. This expression is fairly innocuous; but
notice that if all the sources are point sources at infinity, the expression becomes:

B(x) =
∑

s∈sources visible from x

ρd(x)N (x) · Ss

so that if we confine our attention to a region where all points can see the same
sources, we could add all the source vectors to obtain a single virtual source that
had the same effects. The relationship between shape and shading is pretty direct
here — the radiosity is a measurement of one component of the surface normal.
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Point
Source

Self Shadow
Boundary

Cast
Shadow
Boundary

Figure 3.6. Shadows cast by point sources on planes are relatively simple. Self shadow
boundaries occur when the surface turns away from the light and cast shadow boundaries
occur when a distant surface occludes the view of the source.

For point sources that are not at infinity the model becomes:

B(x) =
∑

s∈sources visible from x

ρd(x)
N (x) · S(x)

rs(x)2

where rs(x) is the distance from the source to x; the presence of this term means
that the relationship between shape and shading is somewhat more obscure.

The Appearance of Shadows

In a local shading model, shadows occur when the patch can not see one or more
sources. In this model, point sources produce a series of shadows with crisp bound-
aries; shadow regions where no source can be seen are particularly dark. Shadows
cast with a single source can be very crisp and very black, depending on the size
of the source and the albedo of other nearby surfaces (which reflect light, whether
we model the effect or not!). It was a popular 19’th century pastime to cast such
shadows onto paper, and then draw them, yielding the silhouettes which are still
occasionally to be found in antiques shops.
The geometry of the shadow cast by a point source on a plane is analogous to the

geometry of viewing in a perspective camera (Figure 3.6). Any patch on the plane
is in shadow if a ray from the patch to the source passes through an object. This
means that there are two kinds of shadow boundary. At self shadow boundaries,
the surface is turning away from the light, and a ray from the patch to the source is
tangent to the surface. At cast shadow boundaries, from the perspective of the
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patch, the source suddenly disappears behind an occluding object. Shadows cast
onto curved surfaces can have extremely complex geometries, however.
If there are many sources, the shadows will be less dark (except at points where

no source is visible) and there can be very many qualitatively distinct shadow
regions (each source casts its own shadow — some points may not see more than
one source). One example of this effect occurs in televised soccer matches — because
the stadium has multiple bright distant point-like illuminants spaced evenly around
the perimeter of the stadium, there is a set of shadows radiating evenly around each
player’s feet. These shadows typically become brighter or darker as the player moves
around, usually because the illumination due to other sources and to interreflections
in the region of the shadow increases or decreases.

3.4.2 Area Sources and their Shadows

The local shading model for a set of area sources is significantly more complex,
because it is possible for patches to see only a portion of a given source. The model
becomes:

B(x) =
∑

s∈all sources

{∫
visible component of source s

Radiosity due to source

}

=
∑

s∈all sources

∫
visible component of source s

{
E(u)

cos θu cos θs
πr2

dAu

}

using the terminology of Figure 3.5; usually, we assume that E is constant over the
source.
Area sources do not produce dark shadows with crisp boundaries. This is be-

cause, from the perspective of a viewing patch, the source appears slowly from
behind the occluding object (think of an eclipse of the moon — it is an exact anal-
ogy). It is common to distinguish between points in the umbra (a Latin word,
meaning “shadow”) — which cannot see the source at all — and points in the
penumbra (a compound of Latin words, meaning “almost shadow”) — which see
part of the source. The vast majority of indoor sources are area sources of one form
or another, so the effects are quite easy to see; hold an arm quite close to the wall
(for reasons we will discuss below) and look at the shadow it casts — there is a
dark core, which gets larger as the arm gets closer to the wall; this is the umbra —
surrounded by a lighter region with a fuzzier boundary (the penumbra). Figure 3.7
illustrates the geometry.

3.4.3 Ambient Illumination

One problem with local shading models should be apparent immediately; they pre-
dict that some shadow regions are arbitrarily dark, because they cannot see the
source. This prediction is inaccurate in almost every case, because shadows are
illuminated by light from other diffuse surfaces. This effect can be very significant.
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1 2 3

1 2 3

Figure 3.7. Area sources generate complex shadows with smooth boundaries, because,
from the point of view of a surface patch, the source disappears slowly behind the occluder.
Regions where the source cannot be seen at all are known as the umbra; regions where
some portion of the source is visible are known as the penumbra. A good model is to
imagine lying with your back to the surface, looking at the world above. At point 1, you
can see all of the source; at point 2, you can see some of it; and at point 3 you can see
none of it.

In rooms with light walls and area sources, it is possible to see shadows only by
holding objects close to the wall or close to the source. This is because a patch on
the wall sees all the other walls in the room; and until an object is close to the wall,
it blocks out only a very small fraction of each patches visual hemisphere.
For some environments, the total irradiance a patch obtains from other patches

is roughly constant and roughly uniformly distributed across the input hemisphere.
This must be true for the interior of a sphere with a constant distribution of radiosity
(by symmetry), and (by accepting a model of a cube as a sphere) is roughly true
for the interior of a room with white walls. In such an environment it is sometimes
possible to model the effect of other patches by adding an ambient illumination
term to each patch’s radiosity. There are two strategies for determining this term.
Firstly, if each patch sees the same proportion of the world (for example, the interior
of a sphere), we can add the same constant term to the radiosity of each patch. The
magnitude of this term is usually guessed.
Secondly, if some patches see more or less of the world than others (this happens

if regions of the world occlude a patch’s view, for example, a patch at the bottom



Section 3.5. Application: Photometric Stereo 59

1

View from 1
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View from 1
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Figure 3.8. Ambient illumination is a term added to the radiosity predictions of local
shading models to model the effects of radiosity from distant, reflecting surfaces. In a world
like the interior of a sphere or of a cube (the case on the left), where a patch sees roughly
the same thing from each point, a constant ambient illumination term is often acceptable.
In more complex worlds, some surface patches see much less of the surrounding world than
others. For example, the patch at the base of the groove on the right sees relatively little
of the outside world, which we model as an infinite polygon of constant exitance; its input
hemisphere is shown below.

of a groove), this can be taken into account. To do so, we need a model of the
world from the perspective of the patch under consideration. A natural strategy is
to model the world as a large, distant polygon of constant radiosity, where the view
of this polygon is occluded at some patches (see Figure 3.8). The result is that the
ambient term is smaller for patches that see less of the world. This model is often
more accurate than adding a constant ambient term. Unfortunately, it is much
more difficult to extract information from this model, possibly as difficult as for a
global shading model.

3.5 Application: Photometric Stereo

We will reconstruct a patch of surface from a series of pictures of the surface, taken
under different illuminants. First, we need a camera model. For simplicity, we
choose a camera situated so that the point (x, y, z) in space is imaged to the point
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(x, y) in the camera (the method we describe will work for the other camera models
described in chapter 1).
In this case, to measure the shape of the surface we need to obtain the depth

to the surface. This suggests representing the surface as (x, y, f(x, y)) — a rep-
resentation known as a Monge patch, after a French military engineer who first
used it (figure 3.9). This representation is attractive, because we can determine a
unique point on the surface by giving the image coordinates. Notice that to obtain
a measurement of a solid object, we would need to reconstruct more than one patch,
because we need to observe the back of the object.

x

y

height

Image
Plane

direction
of projection

Figure 3.9. A Monge patch is a representation of a piece of surface as a height function.
For the photometric stereo example, we assume that an orthographic camera — one that
maps (x, y, z) in space to (x, y) in the camera — is viewing a Monge patch. This means
that the shape of the surface can be represented as a function of position in the image.

Photometric stereo is a method for recovering a representation of the Monge
patch from image data. The method involves reasoning about the image intensity
values for several different images of a surface in a fixed view, illuminated by different
sources. This method will recover the height of the surface at points corresponding
to each pixel; in computer vision circles, the resulting representation is often known
as a height map, depth map or dense depth map.
Fix the camera and the surface in position, and illuminate the surface using a

point source that is far away compared to the size of the surface. We adopt a local
shading model and assume that there is no ambient illumination— more about this
later — so that the radiosity at a point x on the surface is

B(x) = ρ(x)N(x) · S1

where N is the unit surface normal and S1 is the source vector. We can write
B(x, y) for the radiosity of a point on the surface, because there is only one point
on the surface corresponding to the point (x, y) in the camera. Now we assume that
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the response of the camera is linear in the surface radiosity, and so have that the
value of a pixel at (x, y) is

I(x, y) = kB(x)

= kB(x, y)

= kρ(x, y)N (x, y) · S1

= g(x, y) · V 1

where g(x, y) = ρ(x, y)N (x, y) and V 1 = kS1, where k is the constant connecting
the camera response to the input radiance.

Figure 3.10. Five synthetic images of a sphere, all obtained in an orthographic view
from the same viewing position. These images are shaded using a local shading model
and a distant point source. This is a convex object, so the only view where there is no
visible shadow occurs when the source direction is parallel to the viewing direction. The
variations in brightness occuring under different sources code the shape of the surface.

In these equations, g(x, y) describes the surface and V 1 is a property of the
illumination and of the camera. We have a dot-product between a vector field g(x, y)
and a vector V 1 which could be measured; with enough of these dot-products, we
could reconstruct g, and so the surface.
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3.5.1 Normal and Albedo from Many Views

Now if we have n sources, for each of which V i is known, we stack each of these V i
into a known matrix V, where

V =



V T1
V T2
. . .

V Tn




For each image point, we stack the measurements into a vector

i(x, y) = {I1(x, y), I2(x, y), . . . , In(x, y)}
T

Notice we have one vector per image point; each vector contains all the image
brightnesses observed at that point for different sources. Now we have

i(x, y) = Vg(x, y)

and g is obtained by solving this linear system — or rather, one linear system per
point in the image. Typically, n > 3 so that a least squares solution is appropriate.
This has the advantage that the residual error in the solution provides a check on
our measurements.
The difficulty with this approach is that substantial regions of the surface may

be in shadow for one or the other light (see figure 3.10). There is a simple trick that
deals with shadows. If there really is no ambient illumination, then we can form a
matrix from the image vector and multiply both sides by this matrix; this will zero
out any equations from points that are in shadow. We form

I(x, y) =



I1(x, y) . . . 0 0
0 I2(x, y) . . . 0
. . .
0 0 . . . In(x, y)




and
Ii = IVg(x, y)

and I has the effect of zeroing the contributions from shadowed regions, because
the relevant elements of the matrix are zero at points that are in shadow. Again,
there is one linear system per point in the image; at each point, we solve this linear
system to recover the g vector at that point. Figure 3.11 shows the vector field
g(x, y) recovered from the images of figure 3.10.

Measuring Albedo

We can extract the albedo from a measurement of g, because N is the unit normal.
This means that | g(x, y) |= ρ(x, y). This provides a check on our measurements
as well. Because the albedo is in the range zero to one, any pixels where | g | is
greater than one are suspect — either the pixel is not working, or V is incorrect.
Figure 3.12 shows albedo recovered using this method for the images of figure 3.10.



Section 3.5. Application: Photometric Stereo 63

0
5

10
15

20
25

30
35

0

5

10

15

20

25

30

35

-10

0

10

20

Figure 3.11. The vector field g(x, y) recovered from the input data of 3.10, mapped
onto the recovered surface (this just makes the vectors more visible. The vector field is
shown for every 16’th pixel in each direction, to reduce the complexity of the plot and
make the structure clear.

Recovering Normals

We can extract the surface normal from g, because the normal is a unit vector

N(x, y) =
g(x, y)

|g(x, y) |

Figure 3.13 shows normal values recovered for the images of figure 3.10.

3.5.2 Shape from Normals

The surface is (x, y, f(x, y)), so the normal as a function of (x, y) is

N(x, y) =
1√

1 + ∂f
∂x

2
+ ∂f∂y

2

{
∂f

∂x
,
∂f

∂y
, 1

}T

To recover the depth map, we need to determine f(x, y) from measured values of
the unit normal.
Assume that the measured value of the unit normal at some point (x, y) is

(a(x, y), b(x, y), c(x, y)). Then we have that

∂f

∂x
=
a(x, y)

c(x, y)
and

∂f

∂y
=
b(x, y)

c(x, y)
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Figure 3.12. The magnitude of the vector field g(x, y) recovered from the input data
of 3.10 represented as an image — this is the reflectance of the surface.

We have another check on our data set, because

∂2f

∂x∂y
=
∂2f

∂y∂x

so that we expect that

∂
(
a(x,y)
c(x,y)

)
∂y

−
∂
(
b(x,y)
c(x,y)

)
∂x

should be small at each point; in principle it should be zero, but we would have
to estimate these partial derivatives numerically, and so should be willing to ac-
cept small values. This test is known as a test of integrability, which in vision
applications always boils down to checking that first partials are equal.

Shape by Integration

Assuming that the partial derivatives pass this sanity test, we can reconstruct the
surface up to some constant depth error. The partial derivative gives the change
in surface height with a small step in either the x or the y direction. This means
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Figure 3.13. The normal field recovered from the surface of figure 3.10.

we can get the surface by summing these changes in height along some path. In
particular, we have that

f(x, y) =

∮
C

(
∂f

∂x
,
∂f

∂y

)
· dl+ c

where C is a curve starting at some fixed point and ending at (x, y) and c is a
constant of integration, which represents the (unknown) height of the surface at
the start point. The recovered surface does not depend on the choice of curve
(exercises).
For example, we can reconstruct the surface at (u, v) by starting at (0, 0), sum-

ming the y-derivative along the line x = 0 to the point (0, v), and then summing
the x-derivative along the line y = v to the point (u, v)

f(u, v) =

∫ v
0

∂f

∂y
(0, y)dy +

∫ u
0

∂f

∂x
(x, v)dx+ c

This is the integration path given in algorithm 1. Any other set of paths would
work as well, though it is probably best to use many different paths and average,
so as to spread around the error in the derivative estimates. Figure 3.14 shows the
reconstruction obtained for the data of figure 3.10 and figure 3.11.
Another approach to recovering shape is to choose the function f(x, y) whose

partial derivatives most look like the measured partial derivatives. We explore this
approach for a similar problem in section 4.5.2.
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Obtain many images in a fixed view under different illuminants

Determine the matrix V from source and camera information

Create arrays for albedo, normal (3 components),

p (measured value of ∂f
∂x
) and

q (measured value of ∂f
∂y)

For each point in the image array

Stack image values into a vector i
Construct the diagonal matrix I
Solve IVg = Ii
to obtain g for this point

albedo at this point is | g |
normal at this point is

g
|g|

p at this point is N1
N3

q at this point is N2
N3

end

Check: is (∂p
∂y
− ∂q
∂x
)2 small everywhere?

top left corner of height map is zero

for each pixel in the left column of height map

height value=previous height value + corresponding q value

end

for each row

for each element of the row except for leftmost

height value = previous height value + corresponding p value

end

end

Algorithm 3.1: Photometric Stereo

3.6 Interreflections: Global Shading Models

As we indicated above, local shading models can be quite misleading. In the real
world, each surface patch is illuminated not only by sources, but also by other
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Figure 3.14. The height field obtained by integrating this normal field using the method
described in the text.

surface patches. This leads to a variety of complex shading effects, which are still
quite poorly understood. Unfortunately, these effects occur widely, and it is still not
yet known how to simplify interreflection models without losing essential qualitative
properties.
For example, Figure 3.15 shows views of the interior of two rooms. One room

has black walls and contains black objects. The other has white walls, and contains
white objects. Each is illuminated (approximately!) by a distant point source.
Given that the intensity of the source is adjusted appropriately, the local shading
model predicts that these pictures would be indistinguishable. In fact, the black
room has much darker shadows and much more crisp boundaries at the creases of the
polyhedra than the white room. This is because surfaces in the black room reflect
less light onto other surfaces (they are darker) whereas in the white room, other
surfaces are significant sources of radiation. The sections of the camera response to
the radiosity (these are proportional to radiosity for diffuse surfaces) shown in the
figure are hugely different qualitatively. In the black room, the radiosity is constant
in patches as a local shading model would predict, whereas in the white room slow
image gradients are quite common — these occur in concave corners, where object
faces reflect light onto one another.
This effect also explains why a room illuminated by a point light source does

not show the very sharp illumination gradients that a local shading model predicts
(recall section 3.3.1). The walls and floor of the room reflect illumination back, and
this tends to light up the corners, which would otherwise be dark.
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Figure 3.15. The column on the left shows data from a room with matte black walls
and containing a collection of matte black polyhedral objects; that on the right shows
data from a white room containing white objects. The images are qualitatively different,
with darker shadows and crisper boundaries in the black room, and bright reflexes in the
concave corners in the white room. The graphs show sections of the image intensity along
the corresponding lines in the images. Figure from “Mutual Illumination,” by D.A. Forsyth
and A.P. Zisserman, Proc. CVPR, 1989, c© 1989 IEEE

3.6.1 An Interreflection Model

It is quite well understood how to predict the radiosity on a set of diffuse surface
patches. The total radiosity of a patch will be its exitance — which will be zero for
all but sources — plus all the radiosity due to all the other patches it can see:

B(u) = E(u) + Bincoming(u)

From the point of view of our patch, there is no distinction between energy
leaving another patch due to exitance and that due to reflection. This means we
can take the expression for an area source, and use it to obtain an expression for
Bincoming(u). In particular, from the perspective of our patch, every other patch
in the world that it can see is an area source, with exitance B(v). This means that
we can rework equation 3.5 to get

Bincoming(u) = ρd(u)

∫
world

visible(u, v)B(v)
cos θu cos θv
πd2uv

dAv (3.6.1)

= ρd(u)

∫
world

visible(u, v)K(u, v)B(v)dAv (3.6.2)

where the terminology is that of Figure 3.16 and

visible(u, v) =

{
1 if u can see v,
0 if u can’t see v
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Figure 3.16. Terminology for expression derived in the text for the interreflection kernel.

visible(u, v)K(u, v) is usually referred to as the interreflection kernel. This
means that our model is:

B(u) = E(u) + ρd(u)

∫
world

visible(u, v)K(u, v)B(v)dAv

In particular, the solution appears inside the integral. Equations of this form are
known as Fredholm integral equations of the second kind. This particular equation
is a fairly nasty sample of the type, because the interreflection kernel is generally
not continuous and may have singularities. Solutions of this equation can yield
quite good models of the appearance of diffuse surfaces and the topic supports a
substantial industry in the computer graphics community (good places to start for
this topic are [Cohen and Wallace, 1993; Sillion, 1994]).

3.6.2 Solving for Radiosity

We will sketch one approach to solving for radiosity, to illustrate the methods.
Subdivide the world into small, flat patches and approximate the radiosity as being
constant over each patch. This approximation is reasonable, because we could
obtain a very accurate representation by working with small patches. Now we
construct a vector B, which contains the value of the radiosity for each patch. In
particular, the i’ th component of B is the radiosity of the i’th patch.
We write the incoming radiosity at the i’th patch due to radiosity on the j’th
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Illumination from
an infinitely distant
point source, in this
direction

Figure 3.17. The model described in the text produces quite accurate qualitative predic-
tions for interreflections. The top figure shows a concave right angled groove, illuminated
by a point source at infinity where the source direction is parallel to the one face. On the
left of the bottom row, a series of predictions of the radiosity for this configuration. These
predictions have been scaled to lie on top of one another; the case ρ→ 0 corresponds to the
local shading model. On the right, an observed image intensity for an image of this form
for a corner made of white paper, showing the roof-like gradient in radiosity associated
with the edge. A local shading model predicts a step. Figure from “Mutual Illumination,”
by D.A. Forsyth and A.P. Zisserman, Proc. CVPR, 1989, c© 1989 IEEE

patch as Bj→i:

Bj→i(x) = ρd(x)

∫
patch j

visible(x, v)K(x, v)dAvBj

where x is a coordinate on the i’th patch and v is a coordinate on the j’th patch.
Now this expression is not a constant, and so we must average it over the i’th patch
to get

Bj→i =
1

Ai

∫
patch i

ρd(x)

∫
patch j

visible(x, v)K(x, v)dAvdAxBj

where Ai is the area of the i’th patch. If we insist that the exitance on each patch
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is constant, too, we obtain the model:

Bi = Ei +
∑
all j

Baverage incoming at i from j

= Ei +
∑
all j

KijBj ,

where

Kij =
1

Ai

∫
patch i

ρd(x)

∫
patch j

visible(x, v)K(x, v)dAvdAx

This is a system of linear equations in Bi (although an awfully big one — Kij
could be a million by a million matrix), and as such can in principle be solved. The
tricks that are necessary to solve the system efficiently, quickly and accurately are
well beyond our scope; Sillion and Puech’s book is an excellent account [Sillion,
1994] as is the book of Cohen [Cohen, 1964].

3.6.3 The qualitative effects of interreflections

We should like to be able to extract shape information from radiosity. This is
relatively easy to do with a local model (see section 3.5 for some details), but
the model describes the world poorly, and very little is known about how severely
this affects the resulting shape information. Extracting shape information from
an interreflection model is difficult, for two reasons. Firstly, the relationship —
which is governed by the interreflection kernel — between shape and radiosity is
complicated. Secondly, there are almost always surfaces that are not visible, but
radiate to the objects in view. These so-called “distant surfaces” mean it is hard to
account for all radiation in the scene using an interreflection model, because some
radiators are invisible and we may know little or nothing about them.
All this suggests that understanding qualitative, local effects of interreflection

is important; armed with this understanding, we can either discount the effects of
interreflection or exploit them. This topic remains largely an open research topic,
but there are some things we can say.

Smoothing and Regional Properties

Firstly, interreflections have a characteristic smoothing effect. This is most obvi-
ously seen if one tries to interpret a stained glass window by looking at the pattern
it casts on the floor; this pattern is almost always a set of indistinct coloured blobs.
The effect is seen most easily with the crude model of Figure 3.18. The geometry
consists of a patch with a frontal view of an infinite plane which is a unit distance
away and carries a radiosity sinωx. There is no reason to vary the distance of the
patch from the plane, because interreflection problems have scale invariant solutions
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Figure 3.18. A small patch views a plane with sinusoidal radiosity of unit amplitude.
This patch will have a (roughly) sinusoidal radiosity due to the effects of the plane. We refer
to the amplitude of this component as the gain of the patch. The graph shows numerical
estimates of the gain for patches at ten equal steps in slant angle, from 0 to π/2, as a
function of spatial frequency on the plane. The gain falls extremely fast, meaning that
large terms at high spatial frequencies must be regional effects, rather than the result of
distant radiators. This is why it is hard to determine the pattern in a stained glass window
by looking at the floor at foot of the window. Figure from “Shading Primitives: Finding
Folds and Shallow Grooves,” J. Haddon and D.A. Forsyth, Proc. Int. Conf. Computer
Vision, 1998 c© 1998 IEEE

— this means that the solution for a patch two units away can be obtained by read-
ing our graph at 2ω. The patch is small enough that its contribution to the plane’s
radiosity can be ignored. If the patch is slanted by σ with respect to the plane, it
carries radiosity that is nearly periodic, with spatial frequency ω cosσ. We refer to
the amplitude of the component at this frequency as the gain of the patch, and plot
the gain in Figure 3.18. The important property of this graph is that high spatial
frequencies have a difficult time jumping the gap from the plane to the patch. This
means that shading effects that have a high spatial frequency and a high amplitude
generally cannot come from distant surfaces (unless they are abnormally bright).
The extremely fast fall-off in amplitude with spatial frequency of terms due to

distant surfaces means that, if one observes a high amplitude term at a high spatial
frequency, it is very unlikely to have resulted from the effects of distant, passive
radiators (because these effects die away quickly). There is a convention — which
we shall see in section 4.5.2 — that classifies effects in shading as due to reflectance
if they are fast (“edges”) and the dynamic range is relatively low, and due to
illumination otherwise. We can expand this convention. There is a mid range of
spatial frequencies that are largely unaffected by mutual illumination from distant
surfaces, because the gain is small. Spatial frequencies in this range cannot be
“transmitted” by distant passive radiators unless these radiators have improbably
high radiosity. As a result, spatial frequencies in this range can be thought of as
regional properties, which can result only from interreflection effects within a
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Illumination from
an infinitely distant
point source, in this
direction

Figure 3.19. Reflexes at concave edges are a common qualitative result of interreflec-
tions. The figure on the top shows the situation here; a concave right-angled groove,
illuminated by a point light source at infinity, whose source vector is along the angle bisec-
tor. The graph on the left shows the intensity predictions of an interreflection model for
this configuration; the case ρ→ 0 is a local shading model. The graphs have been lined up
for easy comparison. As the surface’s albedo goes up, a roof like structure appears. The
graph on the right shows an observation of this effect in an image of a real scene. Figure
from “Mutual Illumination,” by D.A. Forsyth and A.P. Zisserman, Proc. CVPR, 1989,
c© 1989 IEEE

region.
The most notable regional properties are probably reflexes, small bright patches

that appear mainly in concave regions (illustrated in Figure 3.19 and Figure 3.20).
A second important effect is colour bleeding, where a coloured surface reflects
light onto another coloured surface. This is a common effect that people tend not
to notice unless they are consciously looking for it. It is quite often reproduced by
painters.
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Figure 3.20. Reflexes occur quite widely; they are usually caused by a favourable view
of a large reflecting surface. In the geometry shown on the left, the shadowed region
of the cylindrical bump sees the plane background at a fairly favourable angle — if the
background is large enough, near half the hemisphere of the patch at the base of the bump
is a view of the plane. This means there will be a reflex with a large value attached to
the edge of the bump, and inside the cast shadow region (which a local model predicts
as black). There is another reflex on the other side, too, as the series of solutions (again,
normalised for easy comparison) in the center show. On the right, an observation of this
effect in a real scene. Figure from “Mutual Illumination,” by D.A. Forsyth and A.P.
Zisserman, Proc. CVPR, 1989, c© 1989 IEEE

3.7 Notes

Shading models are handled in a quite unsystematic way in the vision literature.
The point source approximation is widely abused; you should use it with care and
inspect others’ use of it with suspicion. We believe we are the first to draw the
distinction between (a) the physical effects of sources and (b) the shading model.

3.7.1 Local Shading Models

The great virtue of local shading models is that the analysis is simple. The primary
characteristic of a local shading model is that the radiosity of a surface patch is
a function of the normal alone. This means that one can avoid the abstraction
of reflectance and sources, and instead simply code the properties of surface and
source as a reflectance map. The reflectance map is a function that takes a
representation of the normal, and returns the radiosity to be expected at a point
with that normal.
Horn started the systematic study of shading in computer vision, with important

papers on recovering shape from a local shading model using a point source [Horn,
1970a; Horn, 1970b; Horn, 1975], with a more recent account in [Horn, 1990]. The
methods discussed have largely fallen into disuse (at least partially because they
appear to be unable to cope with the difficulties created by a global shading model),
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so we do not survey the vast literature here. A comprehensive summary is in [Horn
and Brooks, 1989]. Shape and albedo are ambiguous; with appropriate changes in
albedo, surfaces of different shape can generate the same image [Belhumeur et al.,
1997; Belhumeur et al., 1999; Kriegman and Belhumeur, 1998].
Because the surface normal is the key in local shading models, such models

typically yield very elegant links between surface shading and curvature [Koenderink
and van Doorn, 1980].

3.7.2 Interreflections

The effects of global shading are often ignored in the shading literature, which causes
a reflex response of hostility in one of the authors. The reason to ignore interreflec-
tions is that they are extremely hard to analyse, particularly from the perspective
of inferring object properties given the output of a global shading model. If inter-
reflection effects do not change the output of a method much, then it is probably
all right to ignore them. Unfortunately, this line of reasoning is seldom pursued,
because it is quite difficult to show that a method is stable under interreflections.
The spatial frequency issues discussed above comes from [Haddon and Forsyth,
1998a], following an idea of Koenderink [Koenderink and van Doorn, 1983]. Apart
from this, there is not much knowledge about the overall properties of interreflected
shading, which is an important gap in our knowledge. An alternative strategy
is to iteratively reestimate shape, using a rendering model [Nayar et al., 1990b;
Nayar et al., 1991a].
Horn is also the first author to indicate the significance of global shading effects

(in [Horn, 1977]). In [Koenderink and van Doorn, 1983], Koenderink notes that
the radiosity under a global model is obtained by taking the radiosity under a local
model, and applying a linear operator. One then studies that operator; in some
cases, its eigenfunctions (often called geometrical modes) are very informative.
Forsyth and Zisserman then demonstrated a variety of the qualitative effects due to
interreflections [Forsyth and Zisserman, 1989; Forsyth and Zisserman, 1990; Forsyth
and Zisserman, 1991].

3.7.3 Photometric Stereo

In its original form, photometric stereo is due to Woodham. There are a number of
variants of this very useful idea [Woodham, 1979; Horn et al., 1978; Woodham, 1980;
Woodham, 1994; Woodham, 1989; Woodham et al., 1991].
There are a variety of variations on photometric stereo. One interesting idea

is to illuminate the surface with three lights of different colours (and in different
positions) and use a colour image. For an appropriate choice of colours, this is
equivalent to obtaining three images, so the measurement process is simplified.
Generally, photometric stereo is used under circumstances where the illumina-

tion is quite easily controlled, so that it is possible to ensure that there is no ambient
illumination in the image. It is relatively simple to insert ambient illumination into
the formulation given above; we extend the matrix V by attaching a column of ones.
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In this case, g(x, y) becomes a four dimensional vector, and the fourth component
is the ambient term. However, this approach does not guarantee that the ambient
term is constant over space; instead, we would have to check that this term was
constant, and adjust the model if it is not.
Photometric stereo depends only on adopting a local shading model. This model

need not be a Lambertian surface illuminated by a distant point source. If the
radiosity of the surface is a known function of the surface normal satisfying a small
number of constraints, photometric stereo is still possible. This is because the
intensity of a pixel in a single view determines the normal up to a one parameter
family. This means that two views determine the normal. The simplest example of
this case occurs for a surface of known albedo illuminated by a distant point source.
In fact, if the radiosity of the surface is a k-parameter function of the surface

normal, photometric stereo is still possible. The intensity of the pixel in a single
view determines the normal up to a k+1 parameter family, and k+1 views give the
normal. For this approach to work, the radiosity needs to be given by a function for
which our arithmetic works — if the radiosity of the surface is a constant function
of the surface normal, it isn’t possible to infer any constraint on the normal from
the radiosity. One can then recover shape and reflectance map simultaneously
(e.g. [Tagare and de Figueiredo, 1992; Tagare and de Figueiredo, 1992; Tagare
and de Figueiredo, 1993; Nayar et al., 1990a; Nayar et al., 1989; Mukawa, 1990;
Garcia-Bermejo et al., 1996])

3.7.4 Alternative Shading Representations

Instead of trying to extract shape information from the shading signal, one might
try to match it to a collection of different possible examples. This suggests studying
what kinds of shaded view a surface can generate. The collection of available shad-
ings is notably limited [Belhumeur and Kriegman, 1996; Belhumeur and Kriegman,
1998]. A knowledge of the structure of this collection is valuable because it makes
it possible to understand how to compare shaded images without being confused
by changes in illumination. Illumination changes are a particular problem in face
finding and recognition applications [Phillips and Vardi, 1996; Adini et al., 1994;
Adini et al., 1997]; knowing the possible variations in illumination seems to help [Ja-
cobs et al., 1998; Georghiades et al., 1998; Georghiades et al., 2000].
Another possibility is to extend the notion of qualitative analysis of interreflec-

tions to obtain a shading primitive — a shading pattern that is characteristic
and stably linked to a shape pattern. For example, narrow grooves and deep holes
in surfaces are dark and cylinders have a characteristic extended pattern of shad-
ing. Very few such primitives are known: some appear to be useful [Haddon and
Forsyth, 1998a; Haddon and Forsyth, 1998c].
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3.8 Assignments

3.8.1 Exercises

1. What shapes can the shadow of a sphere take, if it is cast on a plane, and the
source is a point source?

2. We have a square area source and a square occluder, both parallel to a plane.
The source is the same size as the occluder, and they are vertically above one
another, with their centers aligned.

• What is the shape of the umbra?

• What is the shape of the outside boundary of the penumbra?

3. We have a square area source and a square occluder, both parallel to a plane.
The edge length of the source is now twice that of the occluder, and they are
vertically above one another, with their centers aligned.

• What is the shape of the umbra?

• What is the shape of the outside boundary of the penumbra?

4. We have a square area source and a square occluder, both parallel to a plane.
The edge length of the source is now half that of the occluder, and they are
vertically above one another, with their centers aligned.

• What is the shape of the umbra?

• What is the shape of the outside boundary of the penumbra?

5. A small sphere casts a shadow on a larger sphere. Describe the possible
shadow boundaries that occur.

6. Explain why it is difficult to use shadow boundaries to infer shape, particularly
if the shadow is cast onto a curved surface.

7. An infinitesimal patch views a circular area source of constant exitance frontally
along the axis of symmetry of the source. Compute the radiosity of the patch,
due to the source exitance E(u) as a function of the area of the source and
the distance between the center of the source and the patch. You may have
to look the integral up in tables — if you don’t, you’re entitled to feel pleased
with yourself — but this is one of few cases that can be done in closed form.
It will be easier to look up if you transform it to get rid of the cosine terms.

8. As in Figure 3.18, a small patch views an infinite plane at unit distance. The
patch is sufficiently small that it reflects a trivial quantity of light onto the
plane. The plane has radiosity B(x, y) = 1 + sin ax. The patch and the plane
are parallel to one another. We will move the patch around parallel to the
plane, and consider its radiosity at various points.
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• Show that if one translates the patch, its radiosity varies periodically
with its position in x.

• Fix the patches center at (0, 0); determine a closed form expression for
the radiosity of the patch at this point, as a function of a. You’ll need a
table of integrals for this.

9. If one looks across a large bay in the daytime, it is often hard to distinguish
the mountains on the opposite side; near sunset, they are clearly visible. This
phenomenon has to do with scattering of light by air — a large volume of air
is actually a source. Explain what is happening. We have modelled air as a
vacuum, and asserted that no energy is lost along a straight line in a vacuum.
Use your explanation to give an estimate of the kind of scales over which that
model is acceptable.

10. Read the book “Colour and light in nature”, by Lynch and Livingstone, pub-
lished by Cambridge University Press, 1995.

3.8.2 Programming Assignments

• An area source can be approximated as a grid of point sources. The weakness
of this approximation is that the penumbra contains quantization errors, which
can be quite offensive to the eye.

1. Explain.

2. Render this effect for a square source and a single occluder, casting a
shadow onto an infinite plane. For a fixed geometry, you should find
that as the number of point sources goes up, the quantization error goes
down.

3. This approximation has the unpleasant property that it is possible to pro-
duce arbitrarily large quantization errors with any finite grid, by chang-
ing the geometry. This is because there are configurations of source and
occluder that produce very large penumbrae. Use a square source and a
single occluder casting a shadow onto an infinite plane, to explain this
effect.

• Make a world of black objects and another of white objects (paper, glue and
spraypaint are useful here) and observe the effects of interreflections. Can you
come up with a criterion that reliably tells, from an image which is which?
(if you can, publish it; the problem looks easy, but isn’t).

• (This exercise requires some knowledge of numerical analysis.) Do the nu-
merical integrals required to reproduce Figure 3.18. These integrals aren’t
particularly easy: if one uses coordinates on the infinite plane, the size of the
domain is a nuisance, and if one converts to coordinates on the view hemispher
of the patch, the frequency of the radiance becomes infinite at the boundary
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of the hemisphere. The best way to estimate these integrals is using a Monte
Carlo method on the hemisphere. You should use importance sampling, be-
cause the boundary contributes rather less to the integral than the top.

• Set up and solve the linear equations for an interreflection solution for the
interior of a cube with a small square source in the center of the ceiling.

• Implement a photometric stereo system.

1. How accurate are its measurements (i.e. how well do they compare with
known shape information)? do interreflections affect the accuracy?

2. How repeatable are its measurements (i.e. if you obtain another set
of images, perhaps under different illuminants, and recover shape from
those, how does the new shape compare with the old)?

3. Compare the minimization approach to reconstruction with the integra-
tion approach; which is more accurate, or more repeatable and why?
Does this difference appear in experiment?

4. One possible way to improve the integration approach is to obtain depths
by integrating over many different paths, and then average these depths
(you need to be a little careful about constants here). Does this improve
the accuracy or repeatability of the method?



Chapter 4

COLOUR

Colour is a rich and complex experience, usually caused by the vision system re-
sponding differently to different wavelengths of light (other causes include pressure
on the eyeball and dreams). While the colour of objects seems to be a useful cue in
identifying them, it is currently difficult to use.
We will first describe the physical causes of colour; we then study human colour

perception, which will yield methods for describing colours; finally, we discuss how
to extract information about the colour of the surfaces we are looking at from the
colour of image pixels, which are affected by both surface colour and illuminant
colour.

4.1 The Physics of Colour

We will extend our radiometric vocabulary to describe energy arriving in different
quantities at different wavelengths and then describe typical properties of coloured
surfaces and coloured light sources.

4.1.1 Radiometry for Coloured Lights: Spectral Quantities

All of the physical units we have described can be extended with the phrase “per
unit wavelength” to yield spectral units. These allow us to describe differences in
energy, in BRDF or in albedo with wavelength. We will ignore interactions, such as
flourescence, where energy changes wavelength; thus, the definitions of Chapter 2
can be extended by adding the phrase “per unit wavelength,” to obtain what are
known as spectral quantities.
Spectral radiance is usually written as Lλ(x, θ, φ), and the radiance emitted

in the range of wavelengths [λ, λ+ dλ] is Lλ(x, θ, φ)dλ. Spectral radiance has units
Watts per cubic meter per steradian (Wm−3sr−1 — cubic meters because of the
additional factor of the wavelength). For problems where the angular distribution of
the source is unimportant, spectral exitance is the appropriate property; spectral
exitance has units Wm−3.
Similarly, the spectral BRDF is the ratio of the spectral radiance in the out-

going direction to the spectral irradiance in the incident direction. Because the

80
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BRDF is defined by a ratio, the spectral BRDF will again have units sr−1.

4.1.2 The Colour of Surfaces

The colour of surfaces is a result of a large variety of mechanisms, including differen-
tial absorbtion at different wavelengths, refraction, diffraction and bulk scattering
(for more details, see, for example [Lynch and Livingston, 2001; Minnaert, 1993;
Lamb and Bourriau, 1995; Williamson and Cummins, 1983]). Usually these ef-
fects are bundled into a macroscopic BRDF model, which is typically a Lambertian
plus specular approximation; the terms are now spectral reflectance (sometimes
abbreviated to reflectance) or (less commonly) spectral albedo. Figures 4.1
and 4.2 show examples of spectral reflectances for a number of different natural
objects.
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Figure 4.1. Spectral albedoes for a variety of natural surfaces, measured by Esa Koivisto,
Department of Physics, University of Kuopio, Finland. On the left, albedoes for a series
of different natural surfaces — a colour name is given for each. On the right, albedoes for
different colours of leaf; again, a colour name is given for each. These figures were plotted
from data available at http://www.it.lut.fi/research/color/lutcs database.html.

The colour of the light returned to the eye is affected both by the spectral
radiance (colour!) of the illuminant and by the spectral reflectance (colour!) of the
surface. If we use the Lambertian plus specular model, we have:

E(λ) = ρdh(λ)S(λ) × geometric terms + specular terms

where E(λ) is the spectral radiosity of the surface, ρdh(λ) is the spectral reflectance
and S(λ) is the spectral irradiance. The specular terms have different colours de-
pending on the surface — i.e. we now need a spectral specular albedo.

Colour and Specular Reflection

Generally, metal surfaces have a specular component that is wavelength dependent
— a shiny copper penny has a yellowish glint. Surfaces that do not conduct — di-
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Figure 4.2. More spectral albedoes for a variety of natural surfaces, measured by Esa
Koivisto, Department of Physics, University of Kuopio, Finland. On the left, albedoes
for a series of different red flowers. Each is given its Finnish name. On the right, albe-
does for green leaves; again, each is given its Finnish name. You should notice that
these albedoes don’t vary all that much. This is because there are relatively few mecha-
nisms that give rise to colour in plants. These figures were plotted from data available at
http://www.it.lut.fi/research/color/lutcs database.html.

electric surfaces— have a specular component that is independent of wavelength
— for example, the specularities on a shiny plastic object are the colour of the light.
Section 4.4.3 describes how these properties can be used to find specularities, and
to find image regions corresponding to metal or plastic objects.

4.1.3 The Colour of Sources

Building a light source usually involves heating something until it glows. There is
an idealisation of this process, which we study first. We then describe the spectral
power distribution of daylight, and discuss a number of artificial light sources.

Black Body Radiators

A body that reflects no light — usually called a black body— is the most efficient
radiator of illumination. A heated black body emits electromagnetic radiation. It
is a remarkable fact that the spectral power distribution of this radiation depends
only on the temperature of the body. It is possible to build quite good black bodies
by obtaining a hollow piece of metal and looking into the cavity through a tiny hole
— very little of the light getting into the hole will return to the eye. The spectral
power distribution of a hot black body can be measured by heating a cavity like this.
If we write T for the temperature of the body in Kelvins, h for Planck’s constant,
k for Boltzmann’s constant, c for the speed of light and λ for the wavelength, we
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have that

E(λ) ∝
1

λ5
1

(exp(hc/kλ)− 1

This means that there is one parameter family of light colours corresponding to
black body radiators — the parameter being the temperature — and so we can talk
about the colour temperature of a light source. This is the temperature of the
black body that looks most similar. At relatively low temperatures, black bodies
are red, passing through orange to a pale yellow-white to white as the temperature
increases (figure 4.9 shows this locus).

The Sun and the Sky

The most important natural light source is the sun. The sun is usually modelled as
a distant, bright point. Daylight is sunlight that has been subjected to scattering
in the atmosphere. A patch of surface outdoors during the day is illuminated both
by light that comes directly from the sun and by light from the sun that has been
scattered by the air; the presence of clouds or snow can add other, important,
phenomena. The colour of daylight varies with time of day (figure 4.3) and time of
year. These effects have been widely studied.
The sky is another important natural light source. A crude geometrical model

is a hemisphere with constant exitance. The assumption that exitance is constant
is poor, however, because the sky is substantially brighter at the horizon than at
the zenith. The sky is bright because light from the sun is scattered by the air.
The natural model is to consider air as emitting a constant amount of light per
unit volume; this means that the sky is brighter on the horizon than at the zenith,
because a viewing ray along the horizon passes through more sky.
For clear air, the intensity of radiation scattered by a unit volume depends on

the fourth power of the frequency; this means that light of a long wavelength can
travel very much further before being scattered than light of a short wavelength
(this is known as Rayleigh scattering). This means that, when the sun is high in
the sky, blue light is scattered out of the ray from the sun to the earth — meaning
that the sun looks yellow — and can scatter from the sky into the eye — meaning
that the sky looks blue. There are standard models of the spectral radiance of
the sky at different times of day and latitude, too. Surprising effects occur when
there are fine particles of dust in the sky (the larger particles cause very much more
complex scattering effects, usually modelled rather roughly by the Mie scattering
model [Lynch and Livingston, 2001; Minnaert, 1993]) — one author remembers
vivid sunsets in Johannesburg caused by dust in the air from mine dumps, and
there are records of blue and even green moons caused by volcanic dust in the air.

Artificial Illumination

Typical artificial light sources are commonly of a small number of types.

• An incandescent light contains a metal filament which is heated to a high
temperature. The spectrum roughly follows the black-body law, meaning that
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Figure 4.3. There are significant variations in the relative spectral power of day-
light measured at different times of day and under different conditions. The fig-
ure shows a series of seven different daylight measurements, made by Jussi Parkki-
nen and Pertti Silfsten, of daylight illuminating a sample of barium sulphate
(which gives a very high reflectance white surface). Plot from data obtainable at
http://www.it.lut.fi/research/color/lutcs database.html.

incandescent lights in most practical cases have a reddish tinge, because the
melting temperature of the element limits the colour temperature of the light
source.

• Fluorescent lights work by generating high speed electrons that strike gas
within the bulb; this in turn releases ultraviolet radiation, which causes phos-
phors coating the inside of the bulb to fluoresce. Typically the coating consists
of three or four phosphors, which fluoresce in quite narrow ranges of wave-
lengths. Most fluorescent bulbs generate light with a bluish tinge, but bulbs
that mimic natural daylight are increasingly available (figure 4.4).

• In some bulbs, an arc is struck in an atmosphere consisting of gaseous metals
and inert gases. Light is produced by electrons in metal atoms dropping from
an excited state, to a lower energy state. Typical of such lamps is strong radi-
ation at a small number of wavelengths, which correspond to particular state
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transitions. The most common cases are sodium arc lamps, and mercury
arc lamps. Sodium arc lamps produce a yellow-orange light extremely effi-
ciently, and are quite commonly used for freeway lighting. Mercury arc lamps
produce a blue-white light, and are often used for security lighting.

Figure 4.4 shows a sample of spectra from different light bulbs.
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Figure 4.4. There is a variety of illuminant models; the graph shows the relative
spectral power distribution of two standard CIE models, illuminant A — which mod-
els the light from a 100W Tungsten filament light bulb, with colour temperature 2800K
— and illuminant D-65 — which models daylight. Figure plotted from data available at
http://www-cvrl.ucsd.edu/index.htm.The relative spectral power distribution of four
different lamps from the Mitsubishi Electric corp, measured by ****, data from *****.
Note the bright, narrow bands that come from the flourescing phosphors in the fluorescent
lamp.

4.2 Human Colour Perception

To be able to describe colours, we need to know how people respond to them. Hu-
man perception of colour is a complex function of context; illumination, memory,
object identity and emotion can all play a part. The simplest question is to un-
derstand which spectral radiances produce the same response from people under
simple viewing conditions (section 4.2.1). This yields a simple, linear theory of
colour matching which is accurate and extremely useful for describing colours. We
sketch the mechanisms underlying the transduction of colour in section 4.2.2.

4.2.1 Colour Matching

The simplest case of colour perception is obtained when only two colours are in
view, on a black background. In a typical experiment a subject sees a coloured
light — the test light — in one half of a split field. The subject can then adjust
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Figure 4.5. Human perception of colour can be studied by asking observers to mix
coloured lights to match a test light, shown in a split field. The drawing shows the outline
of such an experiment. The observer sees a test light T , and can adjust the amount of
each of three primaries in a mixture that is displayed next to the test light. The observer
is asked to adjust the amounts so that the mixture looks the same as the test light. The
mixture of primaries can be written as w1P1+w2P2+w3P3; if the mixture matches the test
light, then we write T = w1P1+w2P2+w3P3. It is a remarkable fact that for most people
three primaries are sufficient to achieve a match for many colours, and for all colours if
we allow subtractive matching (i.e. some amount of some of the primaries is mixed with
the test light to achieve a match). Some people will require fewer primaries. Furthermore,
most people will choose the same mixture weights to match a given test light.

a mixture of lights in the other half to get it to match. The adjustments involve
changing the intensity of some fixed number of primaries in the mixture. In this
form, a large number of lights may be required to obtain a match, but many different
adjustments may yield a match.
Write T for the test light, an equals sign for a match, the weights — which

are non-negative — as wi, and the primaries Pi. A match can then written in an
algebraic form as:

T = w1P1 +w2P2 + . . .

meaning that test light T matches the particular mixture of primaries given by
(w1, w2, . . .). The situation is simplified if subtractive matching is allowed: in
subtractive matching, the viewer can add some amount of some primaries to the
test light instead of to the match. This can be written in algebraic form by allowing
the weights in the expression above to be negative.

Trichromacy

It is a matter of experimental fact that for most observers only three primaries are
required to match a test light. There are some caveats. Firstly, subtractive matching
must be allowed, and secondly, the primaries must be independent — meaning that
no mixture of two of the primaries may match a third. This phenomenon is known as
the the principle of trichromacy. It is often explained by assuming that there are
three distinct types of colour transducer in the eye; recently, evidence has emerged
from genetic studies to support this view [Nathans et al., 1986b; Nathans et al.,
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1986a]. Given the same primaries and the same test light, most observers will
select the same mixture of primaries to match that test light. This phenomenon
is usually explained by assuming that the three distinct types of colour transducer
are common to most people. Again, there is now some direct evidence from genetic
studies to support this view [Nathans et al., 1986b; Nathans et al., 1986a].

Grassman’s Laws

Under the circumstances we have described, matching is (to a very accurate ap-
proximation) linear. This yields Grassman’s laws.
Firstly, if we mix two test lights, then mixing the matches will match the result,

that is, if
Ta = wa1P1 +wa2P2 +wa3P3

and
Tb = wb1P1 +wb2P2 + wb3P3

then
Ta + Tb = (wa1 + wb1)P1 + (wa2 +wb2)P2 + (wa3 +wb3)P3

Secondly, if two test lights can be matched with the same set of weights, then
they will match each other, that is, if

Ta = w1P1 +w2P2 +w3P3

and
Tb = w1P1 +w2P2 + w3P3

then
Ta = Tb

Finally, matching is linear: if

Ta = w1P1 +w2P2 +w3P3

then
kTa = (kw1)P1 + (kw2)P2 + (kw3)P3

for non-negative k.

Exceptions

Given the same test light and the same set of primaries, most people will use the
same set of weights to match the test light. This, trichromacy and Grassman’s laws
are about as true as any law covering biological systems can be. The exceptions
include:

• people with aberrant colour systems as a result of genetic ill-fortune (who may
be able to match everything with fewer primaries);
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• people with aberrant colour systems as a result of neural ill-fortune (who may
display all sorts of effects, including a complete absence of the sensation of
colour);

• some elderly people (whose choice of weights will differ from the norm, because
of the development of macular pigment in the eye);

• very bright lights (whose hue and saturation look different from less bright
versions of the same light);

• and very dark conditions (where the mechanism of colour transduction is
somewhat different than in brighter conditions).

4.2.2 Colour Receptors

Trichromacy suggests that there are profound constraints on the way colour is trans-
duced in the eye. One hypothesis that satisfactorily explains this phenomenon is
to assume that there are three distinct types of receptor in the eye that mediate
colour perception. Each of these receptors turns incident light into neural signals.
It is possible to reason about the sensitivity of these receptors from colour matching
experiments. If two test lights that have different spectra look the same, then they
must have the same effect on these receptors.

The Principle of Univariance

The principle of univariance states that the activity of these receptors is of one
kind — i.e. they respond strongly or weakly, but do not, for example, signal the
wavelength of the light falling on them. Experimental evidence can be obtained by
carefully dissecting light sensitive cells and measuring their responses to light at
different wavelengths, or by reasoning backward from colour matches. Univariance
is a powerful idea, because it gives us a good and simple model of human reaction
to coloured light: two lights will match if they produce the same receptor responses,
whatever their spectral radiances.
Because the system of matching is linear, the receptors must be linear. Let us

write pk for the response of the k’th receptor, σk(λ) for its sensitivity, E(λ) for the
light arriving at the receptor and Λ for the range of visible wavelengths. We can
obtain the overall response of a receptor by adding up the response to each separate
wavelength in the incoming spectrum so that

pk =

∫
Λ

σk(λ)E(λ)dλ

Rods and Cones

Anatomical investigation of the retina shows two types of cell that are sensitive
to light, differentiated by their shape. The light sensitive region of a cone has a
roughly conical shape, whereas that in a rod is roughly cylindrical. Cones largely
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dominate colour vision and completely dominate the fovea. Cones are somewhat
less sensitive to light than rods are, meaning that in low light, colour vision is poor
and it is impossible to read (one doesn’t have sufficient spatial precision, because
the fovea isn’t working).
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Figure 4.6. There are three types of colour receptor in the human eye, usually called
cones. These receptors respond to all photons in the same way, but in different amounts.
The figure shows the log of the relative spectral sensitivities of the three kinds of colour
receptor in the human eye. The first two receptors —sometimes called the red and green
cones respectively, but more properly named the long and medium wavelength receptors —
have peak sensitivities at quite similar wavelengths. The third receptor has a very different
peak sensitivity. The response of a receptor to incoming light can be obtained by summing
the product of the sensitivity and the spectral radiance of the light, over all wavelengths.
Figures plotted from data available at http://www-cvrl.ucsd.edu/index.htm.

Studies of the genetics of colour vision support the idea that there are three
types of cone, differentiated by their sensitivity (in the large; there is some evidence
that there are slight differences from person to person within each type). The
sensitivities of the three different kinds of receptor to different wavelengths can
be obtained by comparing colour matching data for normal observers with colour
matching data for observers lacking one type of cone. Sensitivities obtained in this
fashion are shown in Figure 4.6. The three types of cone are properly called S
cones, M cones and L cones (for their peak sensitivity being to short, medium
and long wavelength light respectively). They are occasionally called blue, green
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and red cones; this is bad practice, because the sensation of red is definitely not
caused by the stimulation of red cones, etc.

4.3 Representing Colour

Describing colours accurately is a matter of great commercial importance. Many
products are closely associated with very specific colours — for example, the golden
arches; the colour of various popular computers; the colour of photographic film
boxes — and manufacturers are willing to go to a great deal of trouble to ensure
that different batches have the same colour. This requires a standard system for
talking about colour. Simple names are insufficient, because relatively few people
know many colour names, and most people are willing to associate a large variety
of colours with a given name.
Colour matching data yields simple and and highly effective linear colour spaces

(section 4.3.1). Specific applications may require colour spaces that emphasize
particular properties (section 4.3.2) or uniform colour spaces, which capture the
significance of colour differences (section 4.3.2).

4.3.1 Linear Colour Spaces

There is a natural mechanism for representing colour: first, agree on a standard
set of primaries, and then describe any coloured light by the three values of the
weights that people would use to match the light using those primaries. In principle,
this is easy to use — to describe a colour, we set up and perform the matching
experiment and transmit the match weights. Of course, this approach extends
to give a representation for surface colours as well if we use a standard light for
illuminating the surface (and if the surfaces are equally clean, etc.).
Performing a matching experiment each time we wish to describe a colour can

be practical. For example, this is the technique used by paint stores; you take
in a flake of paint, and they’ll mix paint, adjusting the mixture until a colour
match is obtained. Paint stores do this because complicated scattering effects within
paints mean that predicting the colour of a mixture can be quite difficult. However,
Grassman’s laws mean that mixtures of coloured lights — at least those seen in
a simple display — mix linearly, which means that a much simpler procedure is
available.

Colour Matching Functions

When colours mix linearly, we can construct a simple algorithm to determine which
weights would be used to match a source of some known spectral radiance, given a
fixed set of primaries. The spectral radiance of the source can be thought of as a
weighted sum of single wavelength sources. Because colour matching is linear, the
combination of primaries that matches a weighted sum of single wavelength sources
is obtained by matching the primaries to each of the single wavelength sources, and
then adding up these match weights.
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If we have a record of the weight of each primary required to match a single-
wavelength source — a set of colour matching functions — we can obtain the
weights used to match an arbitrary spectral radiance. The colour matching func-
tions — which we shall write as f1(λ), f2(λ) and f3(λ) — can be obtained from a
set of primaries P1, P2 and P3 by experiment. Essentially, we tune the weight of
each primary to match a unit radiance source at every wavelength. We then obtain
a set of weights, one for each wavelength, for matching a unit radiance source U(λ).
We can write this process as

U(λ) = f1(λ)P1 + f2(λ)P2 + f3(λ)P3

i.e. at each wavelength λ, f1(λ), f2(λ) and f3(λ) give the weights required to match
a unit radiance source at that wavelength.
The source — which we shall write S(λ) — is a sum of a vast number of single

wavelength sources, each with a different intensity. We now match the primaries
to each of the single wavelength sources, and then add up these match weights,
obtaining

S(λ) = w1P1 +w2P2 + w3P3

=

{∫
Λ

f1(λ)S(λ)dλ

}
P1 +

{∫
Λ

f2(λ)S(λ)dλ

}
P2 +

{∫
Λ

f3(λ)S(λ)dλ

}
P3
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Figure 4.7. On the left, colour matching functions for the primaries for the RGB
system. The negative values mean that subtractive matching is required to match
lights at that wavelength with the RGB primaries. On the right, colour matching
functions for the CIE X, Y and Z primaries; the colourmatching functions are every-
where positive, but the primaries are not real. Figures plotted from data available at
http://www-cvrl.ucsd.edu/index.htm.
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General Issues for Linear Colour Spaces

Linear colour naming systems can be obtained by specifying primaries — which
imply colour matching functions – or by specifying colour matching functions —
which imply primaries. It is an inconvenient fact of life that, if the primaries are
real lights, at least one of the colour matching functions will be negative for some
wavelengths. This is not a violation of natural law — it just implies that subtractive
matching is required to match some lights, whatever set of primaries is used. It is
a nuisance though.
One way to avoid this problem is to specify colour matching functions that are

everywhere positive (which guarantees that the primaries are imaginary, because
for some wavelengths their spectral radiance will be negative).
Although this looks like a problem — how would one create a real colour with

imaginary primaries? — it isn’t, because colour naming systems are hardly ever
used that way. Usually, we would simply compare weights to tell whether colours
are similar or not, and for that purpose it is enough to know the colour match-
ing functions. A variety of different systems have been standardised by the CIE
(the commission international d’éclairage, which exists to make standards on such
things).

The CIE XYZ Colour Space

The CIE XYZ colour space is one quite popular standard. The colour matching
functions were chosen to be everywhere positive, so that the coordinates of any real
light are always positive. It is not possible to obtain CIE X, Y, or Z primaries
because for some wavelengths the value of their spectral radiance is negative. How-
ever, given colour matching functions alone, one can specify the XYZ coordinates
of a colour and hence describe it.
Linear colour spaces allow a number of useful graphical constructions which are

more difficult to draw in three-dimensions than in two, so it is common to intersect
the XYZ space with the plane X + Y + Z = 1 (as shown in Figure 4.8) and draw
the resulting figure, using coordinates

(x, y) = (
X

X + Y + Z
,

Y

X + Y + Z
)

This space is shown in figure 4.9 and in figure 4.10. CIE xy is widely used in
vision and graphics textbooks and in some applications, but is usually regarded by
professional colorimetrists as out of date.

The RGB Colour Spaces

Colour spaces are normally invented for practical reasons, and so a wide variety
exist. The RGB colour space is a linear colour space that formally uses single
wavelength primaries (645.16 nm for R, 526.32nm for G and 444.44nm for B — see
Figure 4.7). Informally, RGB uses whatever phosphors a monitor has as primaries.
Available colours are usually represented as a unit cube — usually called the RGB



Section 4.3. Representing Colour 93

X

Z

Y

X+Y+Z=1

X
Y

Z

y=Y/(X+Y+Z)x=X/(X+Y+Z)

Figure 4.8. The volume of all visible colours in CIE XYZ coordinate space is a cone
whose vertex is at the origin. Usually, it is easier to suppress the brightness of a colour —
which we can do because to a good approximation perception of colour is linear — and we
do this by intersecting the cone with the plane X + Y + Z = 1 to get the CIE xy space
shown in figures 4.9 and 4.10

cube — whose edges represent the R, G, and B weights. The cube is drawn in
figure 4.12.

CMY and Black

Intuition from one’s finger-painting days suggests that the primary colours should
be red, yellow and blue, and that red and green mix to make yellow. The reason
this intuition doesn’t apply to monitors is that it is about pigments — which mix
subtractively — rather than about lights. Pigments remove colour from incident
light which is reflected from paper. Thus, red ink is really a dye that absorbs green
and blue light — incident red light passes through this dye and is reflected from
the paper.
Colour spaces for this kind of subtractive matching can be quite complicated.

In the simplest case, mixing is linear (or reasonably close to linear) and the CMY
space applies. In this space, there are three primaries: cyan (a blue-green colour);
magenta (a purplish colour) and yellow. These primaries should be thought of as
subtracting a light primary from white light; cyan is W − R (white-red); magenta
is W − G (white-green) and yellow is W − B (white-blue). Now the appearance
of mixtures may be evaluated by reference to the RGB colour space. For example
cyan and magenta mixed give

(W −R) + (W −G) = R+G+B −R−G = B
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Figure 4.9. The figure shows a constant brightness section of the standard 1931 standard
CIE xy colour space. This space has two coordinate axes. The curved boundary of the
figure is often known as the spectral locus — it represents the colours experienced when
lights of a single wavelength are viewed. The figure shows a locus of colours due to black-
body radiators at different temperatures, and a locus of different sky colours. Near the
center of the diagram is the neutral point, the colour whose weights are equal for all three
primaries. CIE selected the primaries so that this light appears achromatic. Generally,
colours that lie further away from the neutral point are more saturated — the difference
between deep red and pale pink — and hue — the difference between green and red — as
one moves around the neutral point.

that is, blue. Notice that W +W = W because we assume that ink cannot cause
paper to reflect more light than it does when uninked. Practical printing devices
use at least four inks (cyan, magenta, yellow and black), because: mixing colour
inks leads to a poor black; it is difficult to ensure good enough registration between
the three colour inks to avoid coloured haloes around text; and colour inks tend
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Figure 4.10. The figure shows a constant brightness section of the standard 1931
standard CIE xy colour space, with colour names marked on the diagram. Generally,
colours that lie further away from the neutral point are more saturated — the difference
between deep red and pale pink — and hue — the difference between green and red — as
one moves around the neutral point.

to be more expensive than black inks. Getting really good results from a colour
printing process is still difficult: different inks have significantly different spectral
properties; different papers have different spectral properties, too; and inks can mix
non-linearly.

4.3.2 Non-linear Colour Spaces

The coordinates of a colour in a linear space may not necessarily encode properties
that are common in language or are important in applications. Useful colour terms
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A

B
C

D

Figure 4.11. The linear model of the colour system allows a variety of useful construc-
tions. If we have two lights whose CIE coordinates are A and B all the colours that can
be obtained from non-negative mixtures of these lights are represented by the line segment
joining A and B. In turn, given B, C and D, the colours that can by obtained by mixing
them lie in the triangle formed by the three points. This is important in the design of
monitors — each monitor has only three phosphors, and the more saturated the colour
of each phosphor the bigger the set of colours that can be displayed. This also explains
why the same colours can look quite different on different monitors. The curvature of the
spectral locus gives the reason that no set of three real primaries can display all colours
without subtractive matching.

include: hue — the property of a colour that varies in passing from red to green;
saturation— the property of a colour that varies in passing from red to pink; and
brightness (sometimes called lightness or value) — the property that varies in
passing from black to white. For example, if we are interested in checking whether
a colour lies in a particular range of reds, we might wish to encode the hue of the
colour directly.
Another difficulty with linear colour spaces is that the individual coordinates

do not capture human intuitions about the topology of colours; it is a common
intuition that hues form a circle, in the sense that hue changes from red, through
orange to yellow and then green and from there to cyan, blue, purple and then red
again. Another way to think of this is to think of local hue relations: red is next to
purple and orange; orange is next to red and yellow; yellow is next to orange and
green; green is next to yellow and cyan; cyan is next to green and blue; blue is next
to cyan and purple; and purple is next to blue and red. Each of these local relations
works, and globally they can be modelled by laying hues out in a circle. This means
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that no individual coordinate of a linear colour space can model hue, because that
coordinate has a maximum value which is far away from the minimum value.

Hue, Saturation and Value

A standard method for dealing with this problem is to construct a colour space
that reflects these relations by applying a non-linear transformation to the RGB
space. There are many such spaces. One, called HSV space (for hue, saturation
and value) is obtained by looking down the center axis of the RGB cube. Because
RGB is a linear space, brightness — called value in HSV — varies with scale out
from the origin, and we can “flatten” the RGB cube to get a 2D space of constant
value, and for neatness deform it to be a hexagon. This gets the structure shown
in figure 4.12, where hue is given by an angle that changes as one goes round the
neutral point and saturation changes as one moves away from the neutral point.

R

G

B

Green

Yellow

Red

Magenta

Blue

Cyan

Hue
(angle)

Saturation

Value

Red (0  )
o

Green (120  )o

Blue (240  )o

Figure 4.12. On the left, we see the RGB cube; this is the space of all colours that can
be obtained by combining three primaries (R, G, and B — usually defined by the colour
response of a monitor) with weights between zero and one. It is common to view this cube
along its neutral axis — the axis from the origin to the point (1, 1, 1) — to see a hexagon,
shown in the middle. This hexagon codes hue (the property that changes as a colour is
changed from green to red) as an angle, which is intuitively satisfying. On the right, we
see a cone obtained from this cross-section, where the distance along a generator of the
cone gives the value (or brightness) of the colour, angle around the cone gives the hue and
distance out gives the saturation of the colour.

There are a variety of other possible changes of coordinate from between linear
colour spaces, or from linear to non-linear colour spaces (Fairchild’s book [Fairchild,
1998] is a good reference). There is no obvious advantage to using one set of
coordinates over another (particularly if the difference between coordinate systems
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is just a one-one transformation) unless one is concerned with coding and bit-rates,
etc. or with perceptual uniformity.

Uniform Colour Spaces

Usually, one cannot reproduce colours exactly. This means it is important to know
whether a colour difference would be noticeable to a human viewer; it is generally
useful to be able to compare the significance of small colour differences1 .
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Figure 4.13. This figure shows variations in colour matches on a CIE x, y space. At the
center of the ellipse is the colour of a test light; the size of the ellipse represents the scatter
of lights that the human observers tested would match to the test colour; the boundary
shows where the just noticeable difference is. The ellipses in the figure on the left have
been magnified 10x for clarity, and on the right they are plotted to scale. The ellipses
are known as MacAdam ellipses, after their inventor. Notice that the ellipses at the top
are larger than those at the bottom of the figure, and that they rotate as they move up.
This means that the magnitude of the difference in x, y coordinates is a poor guide to the
difference in colour. Ellipses plotted using data from Macadam’s paper of 1942 [MacAdam,
1942].

Just noticeable differences can be obtained by modifying a colour shown to
an observer until they can only just tell it has changed in a comparison with the
original colour. When these differences are plotted on a colour space, they form the
boundary of a region of colours that are indistinguishable from the original colours.
Usually, ellipses are fitted to the just noticeable differences. It turns out that in CIE
xy space these ellipses depend quite strongly on where in the space the difference

1It is usually dangerous to try and compare large colour differences; consider trying to answer
the question “is the blue patch more different from the yellow patch than the red patch is from
the green patch?”
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occurs, as the Macadam ellipses in Figure 4.13 illustrate.
This means that the size of a difference in (x, y) coordinates, given by (∆x)2 +

(∆y)2), is a poor indicator of the significance of a difference in colour (if it was a
good indicator, the ellipses representing indistinguishable colours would be circles).
A uniform colour space is one in which the distance in coordinate space is a fair
guide to the significance of the difference between two colours — in such a space, if
the distance in coordinate space was below some threshold, then a human observer
would not be able to tell the colours apart.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
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Figure 4.14. This figure shows the CIE 1976 u’, v’ space, which is obtained by a
projective transformation of CIE x, y space. The intention is to make the MacAdam
ellipses uniformly circles — this would yield a uniform colour space. A variety of non-
linear transforms can be used to make the space more uniform (see [Fairchild, 1998] for
details)

A more uniform space can be obtained from CIE XYZ by using a projective
transformation to skew the ellipses; this yields the CIE u’v’ space, illustrated in
Figure 4.14. The coordinates are:

(u′, v′) = (
4X

X + 15Y + 3Z
,

9Y

X + 15Y + 3Z
)

Generally, the distance between coordinates in u’, v’ space is a fair indicator
of the significance of the difference between two colours. Of course, this omits
differences in brightness. CIE LAB is now almost universally the most popular
uniform colour space. Coordinates of a colour in LAB are obtained as a non-linear
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mapping of the XYZ coordinates:

L∗ = 116

(
Y

Yn

) 1
3

− 16

a∗ = 500

[(
X

Xn

) 1
3

−

(
Y

Yn

) 1
3

]

b∗ = 200

[(
Y

Yn

) 1
3

−

(
Z

Zn

) 1
3

]

(here Xn, Yn and Zn are the X, Y , and Z coordinates of a reference white patch).
The reason to care about the LAB space is that it is substantially uniform. In some
problems, it is important to understand how different two colours will look to a
human observer, and differences in LAB coordinates give a good guide.

4.3.3 Spatial and Temporal Effects

Predicting the appearance of complex displays of colour — i.e. a stimulus that is
more interesting than a pair of lights — is difficult. If the visual system has been
exposed to a particular illuminant for some time, this causes the colour system to
adapt, a process known as chromatic adaptation. Adaptation causes the colour
diagram to skew, in the sense that two observers, adapted to different illuminants,
can report that spectral radiosities with quite different chromaticities have the same
colour. Adaptation can be caused by surface patches in view. Other mechanisms
that are significant are assimilation — where surrounding colours cause the colour
reported for a surface patch to move towards the colour of the surrounding patch
— and contrast — where surrounding colours cause the colour reported for a
surface patch to move away from the colour of the surrounding patch. These effects
appear to be related to coding issues within the optic nerve, and colour constancy
(section 4.5).

4.4 A Model for Image Colour

To interpret the colour values reported by a camera, we need some understanding
of what cameras do, and of what physical effects we wish to model. Our model will
support several quite simple and powerful inference algorithms.

4.4.1 Cameras

Most colour cameras contain a single imaging device. At each sensory element there
is one of three filters to give it the desired spectral sensitivity function (roughly, red,
green and blue). These filters are arranged in a mosaic; a variety of different patterns
is used. The output of the CCD is then processed to reconstruct full red, green and
blue images. Of course, some signal information is lost in this process; what is lost
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depends very strongly on the details of the camera and the mosaic. Typically, these
losses do not affect the perceived quality of the image to a viewer, but they can
significantly affect various spatial computations — for example, the ability of an
edge detector to localize an edge (because the spatial resolution in intensity may
not be what it seems to be).
It is desirable to have the system of CCD element and filter have a spectral sen-

sitivity that is within a linear transform of the CIE XYZ colour matching functions.
This property would mean that the camera would match colours in the same way
that people did. The requirement seems to be quite hard to meet in practice, as
experimental evidence suggests that most cameras don’t really have this desirable
property.
CCD’s are intrinsically linear devices. However, most users are used to film,

which tends to compress the incoming dynamic range (brightness differences at the
top end of the range are reduced, as are those at the bottom end of the range).
The output of a linear device tends to look too harsh (the darks are too dark and
the lights are too light), so that manufacturers apply various forms of compression
to the output. The most common is called gamma correction. This is a form
of compression that was originally intended to account for non-linearities within
monitors. Typically, the intensity of a monitor goes as V γin, where Vin is the input
voltage at the electron gun (γ = 2.2 for CRT monitors). In most computer display
devices, the voltage supplied to the electron gun is a linear function of the value
in the framebuffer; this means that, if we desire an intensity I, the value to use in
the framebuffer is proportional to I1/γ . Typically, cameras are gamma corrected,
meaning that one can take the value reported by a camera and put it directly in
the framebuffer to get the right intensity; this means that the output of the camera
is not a linear function of the input.
There was a time when CCD cameras came with a separate box of control

electronics, which had a switch which turned off the non-linearities; those happy
days are now past. Typically, the input-output relationship of a camera will need
to be calibrated, because there are a variety of possible non-linearities (e.g. []).
Extremists occasionally tinker with the camera electronics, a solution not for the
faint of heart. In what follows, we assume that the input-output relationship of the
camera is known and linear.

4.4.2 A Model for Image Colour

The colour of light arriving at a camera is determined by two factors: firstly, the
spectral reflectance of the surface that the light is leaving, and secondly, the spectral
radiance of the light falling on that surface. If a patch of perfectly diffuse surface
with diffuse spectral reflectance ρ(λ) is illuminated by a light whose spectrum is
E(λ), the spectrum of the reflected light will be ρ(λ)E(λ) (multiplied by some
constant to do with surface orientation, which we have already decided to ignore).
Thus, if a linear photoreceptor of the k’th type sees this surface patch, its response
will be: pk =

∫
Λ
σk(λ)ρ(λ)E(λ)dλ where Λ is the range of all relevant wavelengths
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Figure 4.15. If a patch of perfectly diffuse surface with diffuse spectral reflectance ρ(λ)
is illuminated by a light whose spectrum is E(λ), the spectrum of the reflected light will
be ρ(λ)E(λ) (multiplied by some constant to do with surface orientation, which we have
already decided to ignore). Thus, if a linear photoreceptor of the k’th type sees this surface
patch, its response will be: pk =

∫
Λ
σk(λ)ρ(λ)E(λ)dλ where Λ is the range of all relevant

wavelengths and σk(λ) is the sensitivity of the k’th photoreceptor.

and σk(λ) is the sensitivity of the k’th photoreceptor.
The colour of the light falling on surfaces can vary very widely — from blue

fluorescent light indoors, to warm orange tungsten lights, to orange or even red light
at sunset — so that the colour of the light arriving at the camera can be quite a
poor representation of the colour of the surfaces being viewed (figures 4.16, 4.17, 4.18
and 4.19)
By suppressing details in the physical models of Chapters 3 and above, we can

model the value at a camera pixel as:

C(x) = gd(x)d(x) + gs(x)s(x) + i(x)

In this model

• d(x) is the image colour of an equivalent flat frontal surface viewed under the
same light;

• gd(x) is a term that varies over space and accounts for the change in brightness
due to the orientation of the surface;

• s(x) is the image colour of the specular reflection from an equivalent flat
frontal surface;

• gs(x) is a term that varies over space and accounts for the change in the
amount of energy specularly reflected;
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Figure 4.16. Light sources can have quite widely varying colours. This figure
shows the colour of the four light sources of figure 4.4, compared with the colour of
a uniform spectral power distribution, plotted in CIE x, y coordinates.

• and i(x) is a term that accounts for coloured interreflections, spatial changes
in illumination, and the like.

We are primarily interested in information that can be extracted from colour at
a local level, and so we are ignoring the detailed structure of the terms gd(x) and
i(x). Nothing is known about how to extract information from i(x); all evidence
suggests that this is very difficult. The term can sometimes be quite small with
respect to other terms and usually changes quite slowly over space. We shall ignore
this term, and so must assume that it is small (or that its presence does not disrupt
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Figure 4.17. Surfaces have significantly different colours when viewed under dif-
ferent lights. These figures show the colours taken on by the blue flower and the
violet flower of figure 4.1, when viewed under the four different sources of figure 4.4
and under a uniform spectral power distribution.
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Figure 4.18. Surfaces have significantly different colours when viewed under dif-
ferent lights. These figures show the colours taken on by the yellow flower and the
orange flower of figure 4.1, when viewed under the four different sources of figure 4.4
and under a uniform spectral power distribution.
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Figure 4.19. Surfaces have significantly different colours when viewed under dif-
ferent lights. These figures show the colours taken on by the white petal figure 4.1
and one of the leaves of figure 4.2, when viewed under the four different sources of
figure 4.4 and under a uniform spectral power distribution.

our algorithms too severely).
Specularities are small and bright, and can be found using these properties

(section 4.4.3).

4.4.3 Application: Finding Specularities

Specularities can have quite strong effects on the appearance of an object. Typically,
they appear as small, bright patches, often called highlights. Highlights have a
substantial effect on human perception of a surface properties; the addition of small,
highlight-like patches to a figure makes the object depicted look glossy or shiny.
Specularities are often sufficiently bright to saturate the camera, so that the colour
can be hard to measure. However, because the appearance of a specularity is quite
strongly constrained, there are a number of effective schemes for marking them, and
the results can be used as a shape cue.
The dynamic range of practically available albedoes is relatively small. Surfaces

with very high or very low albedo are difficult to make. Uniform illumination is
common, too, and most cameras are reasonably close to linear within their operating
range. This means that very bright patches cannot be due to diffuse reflection; they
must be either sources (of one form or another — perhaps a stained glass window
with the light behind it) or specularities. Furthermore, specularities tend to be
small. Thus, looking for small very bright patches can be an effective way of finding
specularities [Brelstaff and Blake, 1988].
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In colour images, specularities produce quite characteristic effects if they occur
on dielectric materials (those that do not conduct electricity). This link to con-
ductivity occurs because electric fields cannot penetrate conductors (the electrons
inside just move around to cancel the field), so that light striking a metal surface
can be either absorbed or specularly reflected. Dull metal surfaces look dull because
of surface roughness effects and shiny metal surfaces have shiny patches that have
a characteristic colour because the conductor absorbs energy in different amounts
at different wavelengths. However, light striking a dielectric surface can penetrate
it.
Many dielectric surfaces can be modelled as a clear matrix with randomly em-

bedded pigments; this is a particularly good model for plastics and for some paints.
In this model, there are two components of reflection that correspond to our spec-
ular and diffuse notions: body reflection, which comes from light penetrating the
matrix, striking various pigments and then leaving; and surface reflection, which
comes from light specularly reflected from the surface. Assuming the pigment is
randomly distributed (and small, and not on the surface, etc.) and the matrix is
reasonable, we have that the body reflection component will behave like a diffuse
component with a spectral albedo that depends on the pigment and the surface
component will be independent of wavelength.
Assume we are looking at a single object dielectric object with a single colour.

We expect that the interreflection term can be ignored, and our model of camera
pixel brightnesses becomes

p(x) = gd(x)d+ gs(x)s

where s is the colour of the source and d is the colour of the diffuse reflected light,
gd(x) is a geometric term that depends on the orientation of the surface and gs(x)
is a term that gives the extent of the specular reflection. If the object is curved,
then gs(x) is small over much of the surface, and large only around specularities;
and gd(x) varies more slowly with the orientation of the surface. We now map
the colours produced by this surface in receptor response space, and look at the
structures that appear there (Figure 4.20).
The term gd(x)d will produce a line that should extend to pass through the

origin, because it represents the same vector of receptor responses multiplied by
a constant that varies over space. If there is a specularity, then we expect to see
a second line, due to gs(x)s. This will not, in general, pass through the origin
(because of the diffuse term). This is a line, rather than a planar region, because
gs(x) is large over only a very small range of surface normals, and we expect that,
because the surface is curved, this corresponds to a small region of surface. The
term gd(x) should be approximately constant in this region. We expect a line,
rather than an isolated pixel value, because we expect surfaces to have (possibly
narrow) specular lobes, meaning that the specular coefficient has a range of values.
This second line may collide with a face of the colour cube and get clipped.
The resulting dog-leg pattern leads pretty much immediately to a specularity

marking algorithm — find the pattern, and then find the specular line. All the
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Figure 4.20. Assume we have a picture of a single uniformly coloured surface. Our
model of reflected light should lead to a gamut that looks like the drawing. We are
assuming that reflected light consists of the diffuse term plus a specular term, and the
specular term is the colour of the light source. Most points on the surface do not have a
significant specular term, and instead are brighter or darker versions of the same diffuse
surface colour. At some points, the specular term is large, and this leads to a “dog-leg” in
the gamut, caused by adding the diffuse term to the source term. If the diffuse reflection
is very bright, one or another colour channel might saturate (point T); similarly, if the
specular reflection is very bright one or another colour channel might saturate (point “S”).

pixels on this line are specular pixels, and the specular and diffuse components can
be estimated easily. For the approach to work effectively, we need to be confident
that only one object is represented in the collection of pixels. This is helped by using
local image windows as illustrated by Figure 4.21. The observations underlying the
method hold even if the surface is not monochrome — a coffee mug with a picture
on it, for example — but finding the resulting structures in the colour space now
becomes something of a nuisance, and to our knowledge has not been demonstrated.
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Figure 4.21. The linear clusters produced by specularities on plastic objects can be
found by reasoning about windows of image pixels. In a world of plastic objects on a black
background, a background window produces a region of pixels that are point-like in colour
space — all pixels have the same colour. A window that lies along the body produces
a line-like cluster of points in colour space, because the intensity varies but the colour
does not. At the boundary of a specularity, windows produce plane-like clusters, because
points are a weighted combination of two different colours (the specular and the body
colour). Finally, at interior of a specular region, the windows can produce volume-like
clusters, because the camera saturates, and the extent of the window can include both
the boundary style window points and the saturated points. Whether a region is line-like,
plane-like or volume like can be determined easily by looking at the eigenvalues of the
covariance of the pixels.

4.5 Surface Colour from Image Colour

It would be attractive to have a colour constancy algorithm that could take an
image, discount the effect of the light, and report the actual colour of the surfaces
being viewed. Colour constancy is an interesting subproblem that has the flavour
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of a quite general vision problem: we are determining some parameters of the
world from ambiguous image measurements; we need to use a model to disentangle
these measurements; and we should like to be able to report some representation
of the uncertainty resulting from that measurement (perhaps confidence intervals;
the covariance of the posterior; or a series of representative solutions).

4.5.1 Surface Colour Perception in People

There is some form of colour constancy algorithm in the human vision system.
People are often unaware of this, and inexperienced photographers are sometimes
surprised that a scene photographed indoors under fluorescent lights has a blue cast,
while the same scene photographed outdoors may have a warm orange cast.
It is common to distinguish between colour constancy — which is usually thought

of in terms of intensity independent descriptions of colour like hue and saturation
— and lightness constancy, the skill that allows humans to report whether a
surface is white, grey or black (the lightness of the surface) despite changes in the
intensity of illumination (the brightness). Colour constancy is neither perfectly
accurate, nor unavoidable. Humans can report:

• the colour a surface would have in white light (often called surface colour);

• colour of the light arriving at the eye, a skill that allows artists to paint
surfaces illuminated by coloured lighting;

• and sometimes, the colour of the light falling on the surface.

All of these reports could be by-products of a colour constancy process.
The colorimetric theories of Section 4.3 can predict the colour an observer will

perceive when shown an isolated spot of light of a given power spectral distribution.
The human colour constancy algorithm appears to obtain cues from the structure of
complex scenes, meaning that predictions from colorimetric theories can be wildly
inaccurate if the spot of light is part of a larger, complex scene. Edwin Land’s
demonstrations [Land and McCann, 1971a] (which are illustrated in Figure 4.22)
give convincing examples of this effect. It is surprisingly difficult to predict what
colours a human will see in a complex scene [Helson, 23; Helson, 26; Judd, 1940a;
Helson, 1934; Fairchild, 1998]; this is one of the many difficulties that make it hard
to produce really good colour reproduction systems.
Human competence at colour constancy is surprisingly poorly understood. The

main experiments on humans [McCann et al., 1976; Arend and Reeves, 1986] do
not explore all circumstances and it is not known, for example, how robust colour
constancy is or the extent to which high-level cues contribute to colour judgements.
Little is known about colour constancy in other animals — except that goldfish
have it [Ingle, 1985]. Colour constancy clearly sometimes fails — otherwise there
would be no film industry — but the circumstances under which it fails are not
well understood. There is a large body of data on surface lightness perception for
achromatic stimuli. Since the brightness of a surface varies with its orientation as
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Figure 4.22. Land showed an audience a quilt of rectangles of flat coloured papers - since
known as a Mondrian, for a purported resemblance to the work of that artist - illuminated
using three slide projectors, casting red, green and blue light respectively. He used a
photometer to measure the energy leaving a particular spot in three different channels,
corresponding to the three classes of receptor in the eye. He recorded the measurement,
and asked the audience to name the patch - say the answer was “red” (on the left). Land
then adjusted the slide projectors so that some other patch reflected light that gave the
same photometer measurements, and asked the audience to name that patch. The reply
would describe the patch’s colour in white light - if the patch looked blue in white light, the
answer would be “blue” (on the right). In later versions of this demonstration, Land put
wedge-shaped neutral density filters into the slide-projectors, so that the colour of the light
illuminating the quilt of papers would vary slowly across the quilt. Again, although the
photometer readings vary significantly from one end of a patch to another, the audience
sees the patch as having a constant colour.

well as with the intensity of the illuminant, one would expect that human lightness
constancy would be poor: it is in fact extremely good over a wide range of illuminant
variation [Jacobsen and Gilchrist, 1988].

4.5.2 Inferring Lightness

There is a lot of evidence that human lightness constancy involves two processes:
one compares the brightness of various image patches, and uses this comparison to
determine which patches are lighter and which darker; the second establishes some
form of absolute standard to which these comparisons can be referred (e.g. [?]). We
will describe lightness algorithms first, because they tend to be simpler than colour
constancy algorithms.

A Simple Model of Image Brightness

The radiance arriving at a pixel depends on the illumination of the surface being
viewed, its BRDF, its configuration with respect to the source and the camera
responses. The situation is considerably simplified by assuming that the scene is
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plane and frontal; that surfaces are Lambertian; and that the camera responds
linearly to radiance.
This yields a model of the camera response C at a pointX as the product of an

illumination term, an albedo term and a constant that comes from the camera gain

C(x) = kcI(x)ρ(x)

If we take logarithms, we get

logC(x) = log kc + log I(x) + log ρ(x)

We now make a second set of assumptions:

• Firstly, we assume that albedoes change only quickly over space — this means
that a typical set of albedoes will look like a collage of papers of different
greys. This assumption is quite easily justified: firstly, there are relatively
few continuous changes of albedo in the world (the best example occurs in
ripening fruit); and secondly, changes of albedo often occur when one object
occludes another (so we would expect the change to be fast). This means that
spatial derivatives of the term logρ(x) are either zero (where the albedo is
constant) or large (at a change of albedo).

• Secondly, illumination changes only slowly over space. This assumption is
somewhat realistic: for example, the illumination due to a point source will
change relatively slowly unless the source is very close — so the sun is a source
that is particularly good for this example; as another example, illumination
inside rooms tends to change very slowly, because the white walls of the room
act as area sources. This assumption fails dramatically at shadow boundaries
however; we will have to see these as a special case, and assume that either
there are no shadow boundaries, or that we know where they are.

Recovering Lightness from the Model

It is relatively easy to build algorithms that use our model. The earliest algorithm,
Land’s Retinex algorithm [Land and McCann, 1971a], has fallen into disuse. A nat-
ural approach is to differentiate the log transform, throw away small gradients, and
then “integrate” the results [Horn, 1974]. There is a constant of integration missing,
so lightness ratios are available, but absolute lightness measurements are not. Fig-
ure 4.23 illustrates the process for a one-dimensional example, where differentiation
and integration are easy.
This approach can be extended to two dimensions as well. Differentiating and

thresholding is easy: at each point, we estimate the magnitude of the gradient, and
if the magnitude is less than some threshold, we set the gradient vector to zero,
else we leave it alone. The difficulty is in integrating these gradients to get the
log albedo map. The thresholded gradients may not be the gradients of an image,
because the mixed second partials may not be equal (integrability again; compare
with section 3.5.2).



112 Colour Chapter 4

log ρ log I log p

dlog ρ
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which is
log ρ + constant

Figure 4.23. The lightness algorithm is easiest to illustrate for a 1D image. In the
top row, the graph on the left shows log ρ(x); that on the center log I(x) and that on the
right their sum which is logC. The log of image intensity has large derivatives at changes
in surface reflectance and small derivatives when the only change is due to illumination
gradients. Lightness is recovered by differentiating the log intensity, thresholding to dispose
of small derivatives, and then integrating, at the cost of a missing constant of integration.

The problem can be rephrased as a minimization problem: choose the log albedo
map whose gradient is most like the thresholded gradient. This is a relatively simple
problem, because computing the gradient of an image is a linear operation. The
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x-component of the thresholded gradient is scanned into a vector p and the y-
component is scanned into a vector q. We write the vector representing log-albedo
as l. Now the process of forming the x derivative is linear, and so there is some
matrix Mx such that Mxl is the x derivative; for the y derivative, we write the
corresponding matrixMy.

Form the gradient of the log of the image

At each pixel, if the gradient magnitude is below

a threshold, replace that gradient with zero

Reconstruct the log-albedo by solving the minimization

problem described in the text

Obtain a constant of integration

Add the constant to the log-albedo, and exponentiate

Algorithm 4.1: Determining the Lightness of Image Patches

The problem becomes to find the vector l that minimizes

| Mxl− p |
2 + | Myl − q |

2

This is a quadratic minimisation problem, and the answer can be found by a linear
process. Some special tricks are required, because adding a constant vector to l
cannot change the derivatives, so the problem does not have a unique solution. We
explore the minimisation problem in the exercises.
The constant of integration needs to be obtained from some other assumption.

There are two obvious possibilities:

• we can assume that the brightest patch is white;

• we can assume that the average lightness is constant.

We explore the consequences of these models in the exercises.

Finite-Dimensional Linear Models

Now the model of image colour in section 4.4.2 is

C(x) = gd(x)d(x) + gs(x)s(x) + i(x)

We decided to ignore the interreflection term i(x). In principle, we could use the
methods of section 4.4.3 to generate new images without specularities. This brings
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us to the term gd(x)d(x). Assume that gd(x) is a constant, so we are viewing a
flat, frontal surface.
The resulting term, d(x), models the world as a collage of flat, frontal diffuse

coloured surfaces. We shall assume that there is a single illuminant that has a
constant colour over the whole image. This term is a conglomeration of illuminant,
receptor and reflectance information. It is impossible to disentangle completely in
a realistic world. However, current algorithms can make quite usable estimates of
surface colour from image colours, given a well populated world of coloured surfaces
and a reasonable illuminant.
The term d(x) results from interactions between the spectral irradiance of the

source, the spectral albedo of the surfaces, and the camera sensitivity. We need a
model to account for these interactions. Recall from section 4.4.2 that iff a patch
of perfectly diffuse surface with diffuse spectral reflectance ρ(λ) is illuminated by a
light whose spectrum is E(λ), the spectrum of the reflected light will be ρ(λ)E(λ)
(multiplied by some constant to do with surface orientation, which we have already
decided to ignore).
Thus, if a linear photoreceptor of the k’th type sees this surface patch, its re-

sponse will be:

pk =

∫
Λ

σk(λ)ρ(λ)E(λ)dλ

where Λ is the range of all relevant wavelengths and σk(λ) is the sensitivity of the
k’th photoreceptor (figure 4.15).
This response is linear in the surface reflectance and linear in the illumination,

which suggests using linear models for the families of possible surface reflectances
and illuminants. A finite-dimensional linear model models surface spectral
albedoes and illuminant spectral irradiance as a weighted sum of a finite number of
basis functions. We need not use the same bases for reflectances and for illuminants.
If a finite-dimensional linear model of surface reflectance is a reasonable descrip-

tion of the world, any surface reflectance can be written as

ρ(λ) =

n∑
j=1

rjφj(λ)

where the φj(λ) are the basis functions for the model of reflectance, and the rj vary
from surface to surface.
Similarly, if a finite-dimensional linear model of the illuminant is a reasonable

model, any illuminant can be written as

E(λ) =

m∑
i=1

eiψi(λ)

where the ψi(λ) are the basis functions for the model of illumination.
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When both models apply, the response of a receptor of the k’th type is:

pk =

∫
σk(λ)


 n∑
j=1

rjφj(λ)


(

m∑
i=1

eiψi(λ)

)
dλ

=

m,n∑
i=1,j=1

eirj

(∫
σk(λ)φj(λ)ψi(λ)

)
dλ

=

m,n∑
i=1,j=1

eirjgijk

where we expect that the gijk =
∫
σk(λ)φj(λ)ψi(λ)dλ are known, as they are compo-

nents of the world model (they can be learned from observations; see the exercises).

4.5.3 Surface Colour from Finite Dimensional Linear Models

Each of the indexed terms can be interpreted as components of a vector, and we shall
use the notation p for the vector with k’th component pk, etc. We could represent
surface colour either directly by the vector of coefficients r, or more indirectly by
computing r and then determining what the surfaces would look like under white
light. The latter representation is more useful in practice; among other things, the
results are easy to interpret.

Normalizing Average Reflectance

Assume that the spatial average of reflectance in all scenes is constant and is known
(for example, we might assume that all scenes have a spatial average of reflectance
that is dull grey). In the finite-dimensional basis for reflectance we can write this
average as

n∑
j=1

rjφj(λ)

Now if the average reflectance is constant, the average of the receptor responses
must be constant too (if the imaging process is linear —see the discussion), and the
average of the response of the k’th receptor can be written as:

pk =

m,n∑
i=1,j=1

eigijkrj

If p is the vector with k’th component pk (using the notation above) and A is
the matrix with k, i’th component

n∑
j=1

rjgijk
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then we can write the above expression as:

p = Ae

For reasonable choices of receptors, the matrix A will have full rank, meaning
that we can determine e, which gives the illumination, if the finite dimensional
linear model for illumination has the same dimension as the number of receptors.
Of course, once the illumination is known, we can report the surface reflectance at
each pixel, or correct the image to look as though it were taken under white light.

Compute the average colour p for the image

Compute e from p = Ae

To obtain a version of the image under white light, ew:
Now for each pixel, compute r from pk =

∑
i=1,j=1m, neigijkrj

Replace the pixel value with pwk =
∑
i=1,j=1m, ne

w
i gijkrj

Algorithm 4.2: Colour Constancy from Known Average Reflectance

The underlying assumption that average reflectance is a known constant is dan-
gerous, however, because it is usually not even close to being true. For example, if
we assume that the average reflectance is a medium gray (a popular choice - see,
for example, [Buchsbaum, 1980; Gershon et al., 1986]), an image of a leafy forest
glade will be reported as a collection of objects of various grays illuminated by green
light. One way to try and avoid this problem is to change the average for different
kinds of scenes [Gershon et al., 1986] - but how do we decide what average to use?
Another approach is to compute an average that is not a pure spatial average; one
might, for example, average the colours that were represented by ten or more pixels,
but without weighting them by the number of pixels present.

Normalizing the Gamut

Not every possible pixel value can be obtained by taking images of real surfaces
under white light. It is usually impossible to obtain values where one channel
responds strongly and others do not - for example, 255 in the red channel and 0 in
the green and blue channels. This means that the gamut of an image - the collection
of all pixel values - contains information about the light source. For example, if one
observes a pixel that has value (255, 0, 0), then the light source is likely to be red
in colour.
If an image gamut contains two pixel values, say p1 and p2, then it must be

possible to take an image under the same illuminant that contains the value tp1 +
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Figure 4.24. This figure illustrates typical behaviour of colour constancy algorithms.
The top row shows the receptor responses plotted for a colour camera viewing a series
of chips (the colour name of the chip is labelled on the horizontal axis) under a series of
different coloured lights (R-red, G-green, B-blue, A-cyan, P-magenta, Y-yellow and W-
white), for red, green and blue receptors. Note the relatively wide smear of values for the
same chip under different illuminants. The bottom row shows algorithm output; this is
for an implementation of the gamut normalisation algorithm, due to[Forsyth, 1988]. A
measure of the success of the algorithm is the degree to which (a) the outputs are similar
for the same chip and (b) the outputs are different for different chips.

(1− t)p2 for 0 ≤ t ≤ 1 (because we could mix the colorants on the surfaces). This
means that the convex hull of the image gamut contains the illuminant information.
These constraints can be exploited to constrain the colour of the illuminant.
Write G for the convex hull of the gamut of the given image, W for the convex

hull of the gamut of an image of many different surfaces under white light, andMe
for the map that takes an image seen under illuminant e to an image seen under
white light. Then the only illuminants we need to consider are those such that
Me(G) ∈ W . This is most helpful if the family Me has a reasonable structure;
one natural example is to assume that elements ofMe are diagonal matrices.
In the case of finite dimensional linear models, Me depends linearly on e, so

that the family of illuminants that satisfy the constraint is also convex. This family
can be constructed by intersecting a set of convex hulls, each corresponding to the
family of maps that takes a hull vertex of G to some point inside W (or we could
write a long series of linear constraints on e).
Once we have formed this family, it remains to find an appropriate illuminant.

There are a variety of possible strategies: if something is known about the likeli-
hood of encountering particular illuminants, then one might choose the most likely;
assuming that most pictures contain many different coloured surfaces leads to the
choice of illuminant that makes the restored gamut the largest (which is the ap-
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Obtain the gamut W of many images of

many different coloured surfaces under white

light (this is the convex

hull of all image pixel values)

Obtain the gamut G of the image (this is the convex
hull of all image pixel values)

Obtain every element of the family of illuminant maps Me
such that MeG ∈W
this represents all possible illuminants

Choose some element of this family, and apply

it to every pixel in the image

Algorithm 4.3: Colour Constancy by Gamut Mapping

proach that generated the results of figure 4.24); or one might use other constraints
on illuminants - for example, all the illuminants must have non-negative energy at
all wavelengths - to constrain the set even further [Finlayson and Hordley, 2000].

4.6 Notes

The use of colour in computer vision is surprisingly primitive. One difficulty is
some legitimate uncertainty about what it is good for. John Mollon’s remark that
the primate colour system could be seen as an innovation of some kinds of fruiting
tree [Mollon, 1995] is one explanation, but it is not much help.
There are a number of important general resources on the use of colour. We

recommend [Lamb and Bourriau, 1995; Lynch and Livingston, 2001; Minnaert,
1993; Trussell et al., 1997; Hardin and Maffi, 1997; Williamson and Cummins, 1983].
Wyszecki and Stiles contains an enormous amount of helpful information [Wyszecki
and Stiles, 1982].

4.6.1 Trichromacy and Colour Spaces

Up until quite recently, there was no conclusive explanation of why trichromacy
applied, although it was generally believed to be due to the presence of three dif-
ferent types of colour receptor in the eye. Work on the genetics of photoreceptors
by Nathans et al. can be interpreted as confirming this hunch (see [Nathans et
al., 1986b; Nathans et al., 1986a]), though a full explanation is still far from clear
because this work can also be interpreted as suggesting many individuals have more
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than three types of photoreceptor [Mollon, 1995].
There is an astonishing number of colour spaces and colour appearance models

available. The important issue is not in what coordinate system one measures
colour, but how one counts the difference — so colour metrics may still bear some
thought.
Colour metrics are an old topic; usually, one fits a metric tensor to MacAdam el-

lipses. The difficulty with this approach is that a metric tensor carries the strong im-
plication that you can measure differences over large ranges by integration, whereas
it is very hard to see large range colour comparisons as meaningful. Another con-
cern is that the weight observers place on a difference in a Maxwellian view and the
semantic significance of a difference in image colours are two very different things.

4.6.2 Specularity Finding

The specularity finding method we describe is due to [Shafer, 1985b], with improve-
ments due to [Klinker et al., 1987a; Klinker et al., 1990; Maxwell and Shafer, 1994;
Maxwell and Shafer, 2000]. Specularities can also be detected because they are
small and bright [Brelstaff and Blake, 1988], because they differ in colour and mo-
tion from the background [Lee and Bajcsy, 1992a; Lee and Bajcsy, 1992b].

4.6.3 Lightness

Land reported a variety of colour vision experiments [Land, 1983; Land, 1959c;
Land, 1959a; Land, 1959b] There has not been much recent study of lightness
constancy algorithms. The basic idea is due to Land [Land and McCann, 1971b];
his work was formalised for the computer vision community by Horn [Horn, 1974;
Horn, 1973]; and a variation on Horn’s algorithm was constructed by Blake [Blake,
1985]. This is the lightness algorithmwe describe. It appeared originally in a slightly
different form, where it was called the Retinex algorithm [Land and McCann,
1971b]. Retinex was originally intended as a colour constancy algorithm. It is
surprisingly difficult to analyse [Brainard and Wandell, 1986].
Lightness techniques are not as widely used as they should be, particularly given

that there is some evidence they produce useful information on real images [Brel-
staff and Blake, 1987]. Classifying illumination vs albedo simply by looking at the
magnitude of the gradient is crude, and ignores important cues. One of these cues
is that very large changes must be illumination, however fast they occur. Another
is that colour changes at shadow boundaries are different from colour changes at
albedo boundaries. The question of which changes are albedo and which changes
are illuminant looks like an inference problem to us, and a do-able one at that
(it’s fairly easy to write down a likelihood model; the priors are what one worries
about). Some attempts to study this problem using a local model have been made
(for example [Freeman et al., 2000]).
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4.6.4 Colour Constancy

Finite-dimensional linear models for spectral reflectances can be supported by an
appeal to surface physics, as spectral absorbtion lines are thickened by solid state
effects. The main experimental justifications for finite-dimensional linear models
of surface reflectance are Cohen’s [Cohen, 1964] measurements of the surface re-
flectance of a selection of standard reference surfaces known as Munsell chips,
and Krinov’s [Krinov, 1947] measurements of a selection of natural objects. Cohen
[Cohen, 1964] performed a principal axis decomposition of his data, to obtain a
set of basis functions, and Maloney [Maloney, 1984] fitted weighted sums of these
functions to Krinov’s date to get good fits with patterned deviations. The first
three principal axes explained in each case a very high percentage of the sample
variance (near 99 % ), and hence a linear combination of these functions fitted all
the sampled functions rather well. More recently, Maloney [Maloney, 1986] fitted
Cohen’s basis vectors to a large set of data, including Krinov’s data, and further
data on the surface reflectances of Munsell chips, and concluded that the dimension
of an accurate model of surface reflectance was of the order of five or six.
Finite dimensional linear models are an important tool in colour constancy.

There is a very large collection of algorithms that follow rather naturally from the
approach. Some algorithms exploit the properties of the linear spaces involved [Mal-
oney, 1984; Maloney and Wandell, 1986; Wandell, 1987]. The most significant
case in colour constancy occurs when there are three classes of photoreceptor; oth-
ers have been studied [d’Zmura and Iverson, 1993a; d’Zmura and Iverson, 1993b;
d’Zmura and Iverson, 1994]. On surfaces like plastics, the specular component of
the reflected light is the same colour as the illuminant. If we can identify specu-
lar regions from such objects in the image, the colour of the illuminant is known.
This idea has been popular for a long time2. Recent versions of this idea appear
in, for example, [Flock, 1984; D’Zmura and Lennie, 1986; Klinker et al., 1987b;
Lee, 1986]. Assuming that the average colour is constant is another popular ap-
proach [Helson, 1934; Buchsbaum, 1980; Gershon, 1987].
Gamut mapping methods are due to Forsyth [Forsyth, 1988; Forsyth, 1990].

The method has been extensively enhanced (e.g. [Barnard, 2000; Finlayson and
Hordley, 2000; Finlayson and Hordley, 1999; Finlyason and Hordley, 1998]). The
structure of the family of maps associated with a change in illumination,Me, has
been studied quite extensively. The first work is due to Von Kries (who didn’t
think about it quite the way we do). He assumed that colour constancy was, in
essence, the result of independent lightness calculations in each channel, meaning
that one can rectify an image by scaling each channel independently. This practice
is known as Von Kries’ law. In our notation, the law boils down to assuming that
Me consists of diagonal matrices. Von Kries’ law has proven to be a remarkably
good law []; current best practice involves applying a linear transformation to the
channels, and then scaling the result using diagonal maps [Finlayson et al., 1994a;

2Judd [Judd, 1940b] writing in 1960 about early German work in surface colour perception
refers to it as “a more usual view”.
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Finlayson et al., 1993; Finlayson et al., 1994b].
There is surprisingly little work on colour constancy that unifies a study of the

spatial variation in illumination with solutions for surface colour, which is why we
were reduced to ignoring a number of terms in our colour model. Ideally, one would
work in shadows and surface orientation, too. Again, the whole thing looks like
an inference problem to us, but a subtle one. The main papers on this extremely
important topic are [Funt and Drew, 1988; Barnard et al., 1995; Barnard et al., 1996;
Barnard et al., 1997]. There is substantial room for research here, too.
Interreflections between coloured surfaces lead to a phenomenon often called

colour bleeding, where each surface reflects coloured light onto the other. The
phenomenon can be surprisingly large in practice. People seem to be quite good
at ignoring it entirely, to the extent that most people don’t realize that the phe-
nomenon occurs at all. Discounting colour bleeding probably using spatial cues.
Some skill is required to spot really compelling examples. The best known to the
authors is occasionally seen in Southern California, where there are many large
hedges of white oleander by the roadside. White oleander has very dark leaves and
white flowers. Occasionally, in bright sunlight, one sees a hedge with yellow olean-
der flowers; a moment’s thought attributes the colour to the yellow service truck
parked by the road reflecting yellow light onto the white flowers. One’s ability
to discount colour bleeding effects seems to have been disrupted by the very dark
leaves of the plant breaking up the spatial pattern. Colour bleeding contains cues
to surface colour that are quite difficult to disentangle (see [Drew and Funt, 1990;
Funt and Drew, 1993; Funt et al., 1991] for a study).
It is possible to formulate and attack colour constancy as an inference prob-

lem [Freeman and Brainard, 1997; Forsyth, 1999]. The advantage of this approach
is that the algorithm could report a range of possible surface colours, given data.

4.6.5 Colour in Recognition

As future chapters will show, it is quite tricky to build systems that use object
colour to help in recognition. Colour constancy is conceived of as a process that
should improve matching, because we can deal in object properties, rather than
properties of the particular view [Funt et al., 1998; Finlayson et al., 1996; Funt and
Finlayson, 1995]

Uniform colour spaces offer some help here, if we are willing to swallow a fairly
loose evolutionary argument: it is worth understanding the colour differences that
humans recognise, because they are adapted to measurements that are useful.

4.7 Assignments

Exercises

1. Sit down with a friend and a packet of coloured papers, and compare the
colour names that you use. You will need a large packet of papers — one can
very often get collections of coloured swatches for paint, or for the Pantone
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colour system very cheaply. The best names to try are basic colour names
— the terms red, pink, orange, yellow, green, blue, purple, brown, white,
gray and black, which (with a small number of other terms) have remarkable
canonical properties that apply widely across different languages (the papers
in [Hardin and Maffi, 1997] give a good summary of current thought on this
issue). You will find it surprisingly easy to disagree on which colours should
be called blue and which green, for example.

2. Derive the equations for transforming from RGB to CIE XYZ, and back. This
is a linear transformation. It is sufficient to write out the expressions for the
elements of the linear transformation — you don’t have to look up the actual
numerical values of the colour matching functions.

3. Linear colour spaces are obtained by choosing primaries and then constructing
colourmatching functions for those primaries. Show that there is a linear
transformation that takes the coordinates of a colour in one linear colour
space to those in another; the easiest way to do this is to write out the
transformation in terms of the colourmatching functions.

4. Exercise 3 means that, in setting up a linear colour space, it is possible to
choose primaries arbitrarily, but there are constraints on the choice of colour
matching functions. Why? What are these constraints?

5. Two surfaces that have the same colour under one light and different colours
under another are often referred to as metamers. An optimal colour is a
spectral reflectance or radiance that has value 0 at some wavelengths and 1
at others. Though optimal colours don’t occur in practice, they are a useful
device (due to Ostwald) for explaining various effects.

• use optimal colours to explain how metamerism occurs.

• given a particular spectral albedo, show that there are an infinite number
of metameric spectral albedoes.

• use optimal colours to construct an example of surfaces that look very
different under one light (say, red and green) and the same under another.

• use optimal colours to construct an example of surfaces that swop ap-
parent colour when the light is changed (i.e. surface one looks red and
surface two looks green under light one, and surface one looks green and
surface two looks red under light two).

6. You have to map the gamut for a printer to that of a monitor. There are
colours in each gamut that do not appear in the other. Given a monitor
colour that can’t be reproduced exactly, you could choose the printer colour
that is closest. Why is this a bad idea for reproducing images? Would it work
for reproducing “business graphics” (bar charts, pie charts, and the like which
all consist of many differernt large blocks of a single colour)?
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7. Volume colour is a phenomenon associated with translucent materials that
are coloured — the most attractive example is a glass of wine. The colouring
comes from different absorption coefficients at different wavelengths. Explain
(1) why a small glass of sufficiently deeply coloured red wine (a good Cahors,
or Gigondas) looks black (2) why a big glass of lightly coloured red wine also
looks black. Experimental work is optional.

8. (This exercise requires some knowledge of numerical analysis). In section 4.5.2,
we set up the problem of recovering the log-albedo for a set of surfaces as one
of minimizing

| Mxl− p |
2 + | Myl− q |

2

where Mx forms the x derivative of l and My forms the y derivative (i.e.
Mxl is the x-derivative).

• We asserted that Mx andMy existed. Use the expression for forward
differences (or central differences, or any other difference approximation
to the derivative) to form these matrices. Almost every element is zero.

• The minimisation problem can be written in the form

choose l to minimize (Al+ b)T (Al+ b)

Determine the values of A and b, and show how to solve this general
problem. You will need to keep in mind that A does not have full rank,
so you can’t go inverting it.

9. In section 4.5.2, we mentioned two assumptions that would yield a constant
of integration.

• Show how to use these assumptions to recover an albedo map.

• For each assumption, describe a situation where it fails, and describe the
nature of the failure. Your examples should work for cases where there
are many different albedoes in view.

10. Read the book “ Colour: Art and Science”, by Lamb and Bourriau, Cambridge
University Press, 1995.

Programming Assignments

1. Spectra for illuminants and for surfaces are available on the web (for example
http:whereisit?). Fit a finite-dimensional linear model to a set of illumi-
nants and surface reflectances using principal components analysis, render the
resulting models, and compare your rendering with an exact rendering. Where
do you get the most significant errors? why?
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2. Print a coloured image on a colour inkjet printer using different papers and
compare the result. It is particularly informative to (a) ensure that the driver
knows what paper the printer will be printing on, and compare the variations
in colours (which are ideally imperceptible) and (b) deceive the driver about
what paper it is printing on (i.e. print on plain paper and tell the driver it
is printing on photographic paper). Can you explain the variations you see?
Why is photographic paper glossy?

3. Fitting a finite-dimensional linear model to illuminants and reflectances sep-
arately is somewhat ill-advised, because there is no guarantee that the in-
teractions will be represented well (they’re not accounted for in the fitting
error). It turns out that one can obtain gijk by a fitting process that sidesteps
the use of basis functions. Implement this procedure (which is described in
detail in [Marimont and Wandell, 1992]), and compare the results with those
obtained from the previous assignment.

4. Build a colour constancy algorithm that uses the assumption that the spatial
average of reflectance is constant. Use finite-dimensional linear models. You
can get values of gijk from your solution to exercise 3.

5. We ignore colour interreflections in our surface colour model. Do an exper-
iment to get some idea of the size of colour shifts possible from colour in-
terreflections (which are astonishingly big). Humans very seldom interpret
colour interreflections as surface colour — speculate as to why this might be
the case, using the discussion of the lightness algorithm as a guide.

6. Build a specularity finder along the lines described in section 4.4.3.
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Chapter 5

GEOMETRIC CAMERA
MODELS

What is the image of a given geometric figure, for example a line, a plane, or a
sphere? Conversely, what are the constraints imposed on the position, orientation,
and parameters of a geometric figure by its picture? Answering these questions is
of course a fundamental part of three-dimensional image interpretation. We saw in
Chapter 1 that points map onto points under pinhole perspective projection, while
spheres map onto conic sections. It is geometrically obvious that lines map onto
lines, since the image of a line is simply the intersection of the retina with the plane
that contains this line and the pinhole (Figure 5.1(a)).

∆
∆

O

P’

P

’

Π’

∆

P’

P

’ Q

O

Π

Π’

Figure 5.1. Point and line projections. Left: general case; the line ∆ projects onto the
line ∆′, the grey triangle representing the plane defined by ∆ and the pinhole O. Right:
degenerate case; the line supporting the segment PQ and passing through O projects onto
the point P ′, and the plane Π passing through O projects onto the line ∆′.

In truth, things degenerate a bit for exceptional views: when a line passes
through the pinhole, its image is reduced to a point (Figure 5.1(b)), and the pro-
jection of a point coinciding with the pinhole is not uniquely defined. Likewise, the
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image of a surface patch covers in general a finite area of the image plane, but the
projection of a plane passing through the pinhole is reduced to a line. Still, almost
any small perturbation of the viewpoint restores the usual projection pattern.
By the same argument, general-viewpoint assumptions can be used to infer three-

dimensional scene information from a single image: in particular, Figure 5.1(b)
shows that two points that appear to coincide in the image usually also coincide in
space since the set of pinhole positions aligned with two distinct points has a zero
volume in the three-dimensional set of possible viewpoints.
Geometric considerations such as these are extremely important in computer

vision since they allow us to derive qualitative constraints on a scene from rather
weak assumptions on its configuration relative to the camera observing it. It is just
as important, however, to establish quantitative constraints between measurements
made in an image and the position and orientation of geometric figures measured in
some external coordinate system. This chapter introduces the necessary analytical
machinery. We start by briefly recalling elementary notions of analytical Euclidean
geometry, including homogeneous coordinates and matrix representations of geo-
metric transformations. We then introduce the various physical parameters (the
so-called intrinsic and extrinsic parameters) that relate the world and the camera
coordinate frames and derive the general form of the perspective projection equa-
tion in this setting. We conclude with some elementary notions of line geometry
that allow us to derive a similar projection equation for straight lines.

5.1 Elements of Analytical Euclidean Geometry

We assume that the reader has some familiarity with elementary Euclidean geom-
etry and linear algebra. This section discusses useful analytical concepts such as
coordinate systems, homogeneous coordinates, rotation matrices, and the like.

5.1.1 Coordinate Systems and Homogeneous Coordinates

We have already used three-dimensional coordinate systems in Chapter 1. This
section introduces them a bit more formally. We will assume throughout a fixed
system of units, say meters, or inches, so unit length is well defined.
Picking a point O in IE3 and three unit vectors i, j and k orthogonal to each

other defines an orthonormal coordinate frame (F ) as the quadruple (O, i, j,k).
The point O is the origin of the coordinate system (F ), and i, j and k are its basis
vectors. We will restrict our attention to right-handed coordinate systems, such
that the vectors i, j and k can be thought of as being attached to fingers of your
right hand, with the thumb pointing up, index pointing straight, and middle finger
pointing left as shown in Figure 5.2(a).1

1This is the traditional way of defining right-handed coordinate systems. One of the authors,
who is left-handed, has always found it a bit confusing, and prefers to identify these coordinate
systems using the fact that when one looks down the k axis at the (i, j) plane, the vector i
is mapped onto the vector j by a counterclockwise 90◦ rotation (Figure 5.2(b)). Left-handed
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Figure 5.2. A right-handed coordinate system and the Cartesian coordinates x, y, z of
a point P .

The Cartesian coordinates x, y and z of a point P in this coordinate frame are
defined as the (signed) lengths of the orthogonal projections of the vector

−−→
OP onto

the vectors i, j and k (Figure 5.2(b)), with

x =
−−→
OP · i

y =
−−→
OP · j

z =
−−→
OP · k

⇐⇒
−−→
OP = xi+ yj + zk.

The column vector

P =


xy
z


 ∈ IR3

is called the coordinate vector of the point P in (F ). We can also define the co-
ordinate vector associated with any free vector v by the lengths of its projections
onto the basis vectors of (F ), and these coordinates are of course independent of
the choice of the origin O. Let us now consider a plane Π, an arbitrary point A
in Π and a unit vector n perpendicular to the plane. The points lying in Π are
characterized by

−→
AP · n = 0.

In a coordinate system (F ) where the coordinates of the point P are x, y, z and

the coordinates of n are a, b and c, this can be rewritten as
−−→
OP ·n−

−→
OA ·n = 0 or

ax+ by + cz − d = 0, (5.1.1)

where d
def
=
−→
OA · n is independent of the choice of the point A in Π and is simply

the (signed) distance between the origin O and the plane Π (Figure 5.3)

coordinate systems correspond to clockwise rotations. Left- and right-handed readers alike may
find this characterization useful as well.
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O

A
H

n

Π

P d

Figure 5.3. The geometric definition of the equation of a plane. The distance d between
the origin and the plane is reached at the point H where the normal vector passing through
the origin pierces the plane.

At times, it is useful to use homogeneous coordinates to represent points, vectors,
and planes. We will justify formally their definition later in this book, when we
introduce affine and projective geometry in Chapters 14 and 15, but for the time
being, let us note that (5.1.1) can be rewritten as

(a, b, c,−d)



x
y
z
1


 = 0

or, more concisely, as

Π · P = 0, where Π
def
=



a
b
c
−d


 and P

def
=



x
y
z
1


 . (5.1.2)

The vector P is called the vector of homogenous coordinates of the point P in
the coordinate system (F ), and it is simply obtained by adding a fourth coordinate
equal to 1 to the ordinary coordinate vector of P . Likewise, the vector Π is the
vector of homogeneous coordinates of the plane Π in the coordinate frame (F )
and (5.1.2) is called the equation of Π in that coordinate system. Note that Π is
only defined up to scale since multiplying this vector by any nonzero constant does
not change the solutions of (5.1.2). We will use the convention that homogeneous
coordinates are only defined up to scale, whether they represent points or planes
(this may appear a bit counterintuitive for points, but it will be fully justified in
Chapter 15). To go back to the ordinary non-homogenous coordinates of points,
one just divides all coordinates by the fourth one.
Before proceeding, let us point out that, although our presentation focuses

on three-dimensional Euclidean geometry in this chapter, the concepts discussed
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throughout also apply to planar geometry: a coordinate frame (F ) is defined in the
plane by its origin o and a right-handed orthonormal basis (i, j); the Cartesian co-
ordinates of the point p in this frame are x = −→op · i and y = −→op · j, and homogeneous
coordinates can be defined as well; in particular, the equation of a line δ in the
plane is

ax+ by − d = 0⇐⇒ δ · p = 0, where δ =


 a
b
−d


 and p =


xy
1


 ,

and a, b and d denote respectively the coordinates to the unit normal to δ in (F )
and the signed distance from o to δ.
Let us go back to three-dimensional geometry, and show that homogeneous

coordinates can be used to describe more complex geometric figures than points
and planes.2 Consider for example a sphere S of radius R centered at the origin. A
necessary and sufficient condition for the point P with coordinates x, y, z to belong
to S is of course that

x2 + y2 + z2 = R2,

which is equivalent to

(x, y, z, 1)T



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −R2





x
y
z
1


 = 0.

More generally, a quadric surface is the locus of the points P whose coordinates
satisfy the equation

a200x
2+a110xy+a020y

2+a011yz+a002z
2+a101xz+a100x+a010y+a001z+a000 = 0,

and it is straightforward to check that this condition is equivalent to

P TQP = 0, where Q =



a200

1
2a110

1
2a101

1
2a100

1
2a110 a020

1
2a011

1
2a010

1
2a101

1
2a011 a002

1
2a001

1
2a100

1
2a010

1
2a001 a000


 , (5.1.3)

and P denote the homogeneous coordinate vector of P . Note that Q is a 4 × 4
symmetric matrix and, like the parameters aijk, it is only defined up to scale. An
asymmetric 4 × 4 matrix also defines a unique quadric surface, but the converse is
not true, i.e., a given quadric surface determines, up to scale of course, a unique
symmetric 4× 4 matrix, but it can be parameterized by an infinity of asymmetric
ones.

2The inquisitive reader may be wondering about lines in IE3. Their treatment is a bit more
involved and will be delayed until Section 5.3.
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5.1.2 Coordinate System Changes and Rigid Transformations

When several different coordinate systems are considered at the same time, it is
convenient to follow Craig [1989] and denote by FP (resp. Fv) the coordinate
vector of the point P (resp. vector v) in the frame (F ), i.e.,

FP = F
−−→
OP =


xy
z


⇐⇒ −−→OP = xi+ yj + zk.

Although the superscripts and subscripts preceding points, vectors and matrices
in Craig’s notation may be awkward at first, the rest of this section will, however,
clearly demonstrate their convenience. Let us now consider two coordinate systems
(A) = (OA, iA, jA,kA) and (B) = (OB , iB, jB ,kB). The rest of this section will
allow us to express BP as a function of AP . Let us suppose first that the basis
vectors of both coordinate systems are parallel to each other, i.e., iA = iB, jA = jB
and kA = kB, but the origins OA and OB are distinct (Figure 5.4).

(B)

B

B

BO

i

j

P

k

OA

i A

j
A

(A)

kA

B

Figure 5.4. Change of coordinates between two frames: pure translation.

We say in this case that the two coordinate systems are separated by a pure
translation, and we have

−−−→
OBP =

−−−−→
OBOA +

−−−→
OAP , thus

BP = AP + BOA.

When the origins of the two frames coincide, i.e., OA = OB = O, we say that
the frames are separated by a pure rotation (Figure 5.5). Let us define the rotation
matrix BAR as the 3× 3 array of numbers

B
AR

def
=


 iA · iB jA · iB kA · iB
iA · jB jA · jB kA · jB
iA · kB jA · kB kA · kB


 .
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Figure 5.5. Change of coordinates between two frames: pure rotation.

Note that the first column of BAR is formed by the coordinates of iA in the basis
(iB , jB ,kB). Likewise, the third row of this matrix is formed by the coordinates of
kB in the basis (iA, jA,kA), etc. More generally, the matrix

B
AR can be written in

a more compact fashion using a combination of three column vectors or three row
vectors:

B
AR = (

BiA
BjA

BkA ) =


 AiB

T

AjB
T

AkB
T


 ,

and it follows that ABR =
B
AR

T
.

As noted earlier, all these subscripts and superscripts may be somewhat confus-
ing at first. To keep everything straight, it is useful to remember that in a change of
coordinates, subscripts refer to the object being described, while superscripts refer
to the coordinate system in which the object is described. For example AP refers
to the coordinate vector of the point P in the frame (A), BjA is the coordinate
vector of the vector jA in the frame (B), and

B
AR is the rotation matrix describing

the frame (A) in the coordinate system (B).
Let us give an example of pure rotation: suppose that kA = kB = k, and denote

by θ the angle such that the vector iB is obtained by applying to the vector iA a
counterclockwise rotation of angle θ about k (Figure 5.6). The angle between the
vectors jA and jB is also θ in this case, and we have

B
AR =


 cos θ sin θ 0
− sin θ cos θ 0
0 0 1


 . (5.1.4)

Similar formulas can be written when the two coordinate systems are deduced
from each other via rotations about the iA or jA axes (see exercises). In general,
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Figure 5.6. Two coordinate frames separated by a rotation of angle θ about their
common k basis vector. As shown in the right of the figure, iA = ciB − sjB and iA =
siB + cjB, where c = cos θ and s = sin θ.

it can be shown that any rotation matrix can be written as the product of three
elementary rotations about the i, j and k vectors of some coordinate system.
Let us go back to characterizing the change of coordinates associated with an

arbitrary rotation matrix. Writing

−−→
OP = ( iA jA kA )


 Ax
Ay
Az


 = ( iB jB kB )


 Bx
By
Bz




in the frame (B) yields immediately

BP = BAR
AP

since the rotation matrix BBR is obviously the identity. Note how the subscript
matches the following superscript. This property remains true for more general
coordinate changes and it can be used after some practice to reconstruct the corre-
sponding formulas without calculations.
It is easy to show (see exercises) that rotation matrices are characterized by the

following properties: (1) the inverse of a rotation matrix is equal to its transpose,
and (2) its determinant is equal to 1. By definition, the columns of a rotation matrix
form a right-handed orthonormal coordinate system. It follows from properties (1)
and (2) that their rows also form such a coordinate system.
It should be noted that the set of rotation matrices, equipped with the matrix

product, forms a group, i.e., (a) the product of two rotation matrices is also a
rotation matrix (this is intuitively obvious and easily verified analytically); (b) the
matrix product is associative, i.e., (RR′)R′′ = R(R′R′′) for any rotation matrices
R, R′ andR′′; (c) there is a unit element, the 3×3 identity matrix Id, that is indeed
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a rotation matrix and verifies RId = IdR = R for any rotation matrix R; and (d)
every rotation matrix R admits an inverse R−1 = RT such that RR−1 = R−1R =
Id. This group is not, however, commutative, i.e., given two rotation matrices R
and R′, the two products RR′ and R′R are in general different.
When the origins and the basis vectors of the two coordinate systems are dif-

ferent, we say that that the frames are separated by a general rigid transformation
(Figure 5.7), and we have

BP = BAR
AP + BOA, (5.1.5)

where BAR and
BOA are defined as before. It should be clear that related formulas

express coordinate changes for the homogenous coordinate vectors of planes and
the symmetric matrices associated with quadric surfaces. Deriving them is left as
an exercise for the reader.
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A
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B

Figure 5.7. Change of coordinates between two frames: general rigid transformation.

Homogeneous coordinates can be used to rewrite (5.1.5) as a matrix product:
let us first note that matrices can be multiplied in blocks, i.e., if

A =

(
A11 A12
A21 A22

)
and B =

(
B11 B12
B21 B22

)
, (5.1.6)

where the number of columns of the sub-matrices A11 and A21 (resp. A12 and A22)
is equal to the number of rows of B11 and B12 (resp. B21 and B22), then

AB =

(
A11B11 +A12B21 A11B12 +A12B22
A21B11 +A22B21 A21B12 +A22B22

)
.



136 Geometric Camera Models Chapter 5

For example, we have(
r11 r12 r13
r21 r22 r23
r31 r32 r33

)(
c11 c12
c21 c22
c31 c32

)
=

(
r11c11 + r12c21 + r13c31 r11c12 + r12c22 + r13c32
r21c11 + r22c21 + r23c31 r21c12 + r22c22 + r23c32
r31c11 + r32c21 + r33c31 r31c12 + r32c22 + r33c32

)

=

r11 r12 r13
r21 r22 r23
r31 r32 r33

c11 c12
c21 c22
c31 c32

=



(
r11 r12 r13
r21 r22 r23

)( c11
c21
c31

) (
r11 r12 r13
r21 r22 r23

)( c12
c22
c32

)

( r31 r32 r33 )

(
c11
c21
c31

)
( r31 r32 r33 )

(
c12
c22
c32

)

 .

In particular, (5.1.6) allows us to rewrite the change of coordinates (5.1.5) as(
BP
1

)
= BAT

(
AP
1

)
, where B

AT
def
=

(
B
AR

BOA
0T 1

)
(5.1.7)

and 0 = (0, 0, 0)T . In other words, using homogeneous coordinates allows us to
write a general change of coordinates as the product of a 4 × 4 matrix and a 4-
vector. It is easy to show that the set of rigid transformations defined by (5.1.7),
equipped with the matrix product operation is also a group.
A rigid transformation maps a coordinate system onto another one. In a given

coordinate frame (F ), a rigid displacement can also be considered as a mapping
between points, i.e., a point P is mapped onto the point P ′ such that

FP ′ = R FP + t⇐⇒

(
FP ′

1

)
=

(
R t
0T 1

)(
FP
1

)
, (5.1.8)

where R is a rotation matrix and t is an element of IR3 (Figure 5.8). The set of
rigid transformations considered as mappings of IE3 onto itself and equipped with
the law of composition is once again easily shown to form a group. It is also easy
to show that rigid transformations preserve the distance between points and the
angle between vectors. On the other hand, the 4× 4 matrix associated with a rigid
transformation depends on the choice of (F ).
For example, let us consider the rotation of angle θ about the k axis of the frame

(F ). As shown in the exercises, this mapping can be represented by

FP ′ = RFP, where R =


 cos θ − sin θ 0
sin θ cos θ 0
0 0 1


 .

In particular, if (F ′) is the coordinate system obtained by applying this rotation

to (F ), we have, according to (5.1.4), F
′
P = F ′

F R
FP , and R = F ′

F R
−1
. More

generally, the matrix representing the change of coordinates between two frames is
the inverse of the matrix mapping the first frame onto the second one.
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Figure 5.8. A rigid transformation maps the point P onto the point P ′′ through a
rotation R before mapping P ′′ onto P ′ via a translation t. In the example shown in this
figure, R is a rotation of angle θ about the k axis of the coordinate system (F ).

What happens when R is replaced by an arbitrary 3 × 3 matrix A? Equation
(5.1.8) still represents a mapping between points (or a change of coordinates be-
tween frames), but this time lengths and angles may not be preserved anymore
(equivalently, the new coordinate system does not necessarily have orthogonal axes
with unit length). We say that the 4× 4 matrix

T =

(
A t
0T 1

)
represents an affine transformation. When T is allowed to be completely arbitrary,
we say that we have a projective transformation. Affine and projective transfor-
mations also form groups, and they will be given a more thorough treatment in
Chapters 14 and 15.

5.2 Geometric Camera Parameters

We saw in Chapter 1 that the coordinates (x, y, z) of a scene point P observed by
a pinhole camera are related to its image coordinates (x′, y′) by the perspective
equation (1.1.1). In reality, this equation is only valid when all distances are mea-
sured in the camera’s reference frame, and image coordinates have their origin at
the principal point where the axis of symmetry of the camera pierces its retina. In
practice, the world and camera coordinate systems are related by a set of physical
parameters, such as the focal length of the lens, the size of the pixels, the position
of the principal point, and the position and orientation of the camera.
This section identifies these parameters. We will distinguish the intrinsic pa-

rameters, that relate the camera’s coordinate system to the idealized coordinate
system used in Chapter 1, from the extrinsic parameters, that relate the camera’s
coordinate system to a fixed world coordinate system and specify its position and
orientation in space.
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We will ignore in the rest of this chapter the fact that for cameras equipped
with a lens, a point will only be in focus when its depth and the distance between
the optical center of the camera and its image plane obey the thin lens equation
(1.2.5). Likewise, the non-linear aberrations associated with real lenses are not
taken into account by (1.1.1). We will neglect these aberrations in this chapter but
will revisit radial distortion in Chapter 6 when we address the problem of estimating
the intrinsic and extrinsic parameters of a camera (a process known as geometric
camera calibration).

5.2.1 Intrinsic Parameters

It is possible to associate with a camera a normalized image plane parallel to its
physical retina but located at a unit distance from the pinhole. We attach to this
plane its own coordinate system with an origin located at the point Ĉ where the
optical axis pierces it (Figure 5.9). The perspective projection equation (1.1.1) can
be written in this normalized coordinate system as


û =

x

z

v̂ =
y

z

⇐⇒ p̂ =
1

z
( Id 0 )

(
P
1

)
, (5.2.1)

where p̂
def
= (û, v̂, 1)T is the vector of homogeneous coordinates of the projection p̂

of the point P into the normalized image plane.

0C

C
u

v

v

u

Normalized
image plane

Physical
retina

O

C

z

y

Pp
p

Pinhole

x

Figure 5.9. Physical and normalized image coordinate systems.

The physical retina of the camera is in general different (Figure 5.9): it is located
at a distance f �= 1 from the pinhole,3 and the image coordinates (u, v) of the image
3From now on we will assume that the camera is focused at infinity so the distance between

the pinhole and the image plane is equal to the focal length.
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point p are usually expressed in pixel units (instead of, say, meters). In addition,
pixels are normally rectangular instead of square, so the camera has two additional
scale parameters k and l, and 


u = kf

x

z
,

v = lf
y

z
.

(5.2.2)

Let us talk units for a second: f is a distance, expressed in meters for example,
and a pixel will have dimensions 1k ×

1
l , where k and l are expressed in pixel×m

−1.
The parameters k, l and f are not independent, and they can be replaced by the
magnifications α = kf and β = lf expressed in pixel units.
Now, in general, the actual origin of the camera coordinate system is at a cor-

ner C of the retina (e.g., in the case depicted in Figure 5.9, the lower-left corner,
or sometimes the upper-left corner, when the image coordinates are the row and
column indices of a pixel) and not at its center, and the center of the CCD matrix
usually does not coincide with the principal point C0. This adds two parameters
u0 and v0 that define the position (in pixel units) of C0 in the retinal coordinate
system. Thus, (5.2.2) is replaced by


u = α

x

z
+ u0,

v = β
y

z
+ v0.

(5.2.3)

Finally, the camera coordinate system may also be skewed, due to some manu-
facturing error, so the angle θ between the two image axes is not equal to (but of
course not very different from either) 90 degrees. In this case, it is easy to show
that (5.2.3) transforms into


u = α

x

z
− α cot θ

y

z
+ u0,

v =
β

sin θ

y

z
+ v0.

(5.2.4)

Combining (5.2.1) and (5.2.4) now allows us to write the change in coordinates
between the physical image frame and the normalized one as a planar affine trans-
formation, i.e.,

p = Kp̂, where p =


uv
1


 and K

def
=



α −α cot θ u0

0
β

sin θ
v0

0 0 1


 . (5.2.5)

Putting it all together, we obtain

p =
1

z
MP , where M

def
= (K 0 ) (5.2.6)
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and P denotes this time the homogeneous coordinate vector of P in the camera co-
ordinate system. In other words, homogeneous coordinates can be used to represent
the perspective projection mapping by the 3× 4 matrixM.
Note that the physical size of the pixels and the skew are always fixed for a

given camera and frame grabber, and they can in principle be measured during
manufacturing (this information may of course not be available, in the case of stock
film footage for example, or when the frame grabber’s digitization rate is unknown).
For zoom lenses, the focal length may vary with time, along with the image center
when the optical axis of the lens is not exactly perpendicular to the image plane.
Simply changing the focus of the camera will also affect the magnification since
it will change the lens-to-retina distance, but we will continue to assume that the
camera is focused at infinity and ignore this effect in the rest of this chapter.

5.2.2 Extrinsic Parameters

Let us now consider the case where the camera frame (C) is distinct from the world
frame (W ). Noting that

CP = (CWR
COW )

(
WP
1

)

and substituting in (5.2.6) yields

p =
1

z
MP , where M = K (R t ) , (5.2.7)

R = C
WR is a rotation matrix, t =

COW is a translation vector, and P =
WP

denotes the homogeneous coordinate vector of P in the frame (W ).
It is important to understand that the depth z in (5.2.7) is not independent of

M and P since, ifmT1 ,m
T
2 andm

T
3 denote the three rows ofM, it follows directly

from (5.2.7) that z =m3 · P . In fact, it is sometimes convenient to rewrite (5.2.7)
in the equivalent form: 


u =

m1 · P
m3 · P

,

v =
m2 · P

m3 · P
.

(5.2.8)

Conversely, it will also often prove useful to write the general perspective projection
equation as zp =MP , or even, slightly abusing the notation, as p =MP , with
the convention that a vector of homogeneous coordinates is only defined up to scale,
and the actual image coordinates of the image point p being defined as u/w and
v/w if p = (u, v, w)T . In this setting, the matrixM is also defined up to scale, with
11 free coefficients. Note that there are 5 intrinsic parameters (α, β, u0, v0 and θ)
and 6 extrinsic parameters (the three angles defining R and the three coordinates
of t), which matches the number of independent coefficients ofM.
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The matrix M can be rewritten explicitly as a function of the intrinsic and
extrinsic parameters of the camera, namely

M =



αrT1 − α cot θr

T
2 + u0r

T
3 αtx − α cot θty + u0tz

β

sin θ
rT2 + v0r

T
3

β

sin θ
ty + v0tz

rT3 tz


 , (5.2.9)

where rT1 , r
T
2 and r

T
3 denote the three rows of the matrix R and tx, ty and tz are

the coordinates of the vector t. If R is written as the product of three elementary
rotations, the vectors ri (i = 1, 2, 3) can of course be written explicitly in terms of
the corresponding three angles.
It is worth noting that the matrixM determines the coordinate vector O of the

camera’s optical center in the world coordinate system. Indeed, as shown in the
exercises, O verifies

M

(
O
1

)
= 0.

(Intuitively this is rather obvious since the optical center is the only point whose
image is not uniquely defined.) In particular, if M = (A b ), where A is a non-
singular 3× 3 matrix and b is a vector in IR3, then O = −A−1b.

5.2.3 A Characterization of Perspective Projection Matrices

We say that a 3×4 matrix that can be written (up to scale) as (5.2.7) or equivalently
(5.2.9) for some set of intrinsic and extrinsic parameters is a perspective projection
matrix. It is of practical interest to put some restrictions on the intrinsic parameters
of a camera since, as noted earlier, some of these parameters will be fixed and may
be known. In particular, we will say that a 3 × 4 matrix is a zero-skew perspective
projection matrix when it can be rewritten (up to scale) as (5.2.9) with θ = π/2,
and that it is a perspective projection matrix with zero skew and unit aspect-ratio
when it can be rewritten (up to scale) as (5.2.9) with θ = π/2 and α = β. A
camera with known non-zero skew and non-unit aspect-ratio can be transformed
into a camera with zero skew and unit aspect-ratio by an appropriate change of
image coordinates. Are arbitrary 3 × 4 matrices perspective projection matrices?
The following theorem answers this question.

Theorem 1: Let M = (A b ) be a 3 × 4 matrix and let aTi (i = 1, 2, 3) denote
the rows of the matrix A formed by the three leftmost columns of M.

• A necessary and sufficient condition forM to be a perspective projection ma-
trix is that Det(A) �= 0.

• A necessary and sufficient condition forM to be a zero-skew perspective pro-
jection matrix is that Det(A) �= 0 and

(a1 × a3) · (a2 × a3) = 0.
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• A necessary and sufficient condition forM to be a perspective projection ma-
trix with zero skew and unit aspect-ratio is that Det(A) �= 0 and{

(a1 × a3) · (a2 × a3) = 0,
(a1 × a3) · (a1 × a3) = (a2 × a3) · (a2 × a3).

The conditions of the theorem are clearly necessary: according to (5.2.7), we
haveA = KR, thus the determinants ofA and K are the same and A is non-singular.
Further, a simple calculation shows that the rows of KR in (5.2.9) satisfy the
conditions of the theorem under the various assumptions imposed by its statement.
The theorem conditions are proven to be sufficient in [Faugeras, 1993a] and in the
exercises.

5.3 Straight Lines and their Projections

We already know that straight lines project onto straight lines under perspective
projection. In this section we use elementary notions of line geometry to derive the
general equations governing this projection process.

5.3.1 Elements of Line Geometry

Let us introduce the operator “∧” that associates with two vectors a and b in IR4

their exterior product defined as the 6-vector

a ∧ b
def
=




a1b2 − a2b1
a1b3 − a3b1
a1b4 − a4b1
a2b3 − a3b2
a2b4 − a4b2
a3b4 − a4b3


 .

Note the similarity with the cross-product operator that also associates with
two vectors (3-vectors of course, instead of 4-vectors) a and b the vector formed by
all the 2× 2 minors of the matrix (a, b).
Let us assume a fixed coordinate system. Geometrically, the exterior product

associates with the homogeneous coordinate vectors of two points A and B in IE3 the
vector ∆ = (∆1,∆2,∆3,∆4,∆5,∆6)

T of Plücker coordinates of the line ∆ joining
them.4

To gain a better intuitive understanding of the situation, let us denote by O
the origin of the coordinate system and by H its projection onto ∆ (Figure 5.10),

and let us identify the vectors
−→
OA and

−−→
OB with their non-homogeneous coordinate

vectors. It is easy to verify analytically (see exercises) that
−−→
AB = −(∆3,∆5,∆6)T

and
−→
OA×

−−→
OB =

−−→
OH ×

−−→
AB = (∆4,−∆2,∆1)T .

4As for points, planes, and quadrics, it is easy to derive expressions that relate the Plücker
coordinates of lines measured in different coordinate systems (see exercises).
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∆

uB

P

HA

O

v

Figure 5.10. Geometric definition of line Plücker coordinates. In this figure u =
(∆3,∆5,∆6)

T and v = (∆4,−∆2,∆1)
T .

In turn, this implies that: (1) changing the position of A (or B) along ∆ only
changes the overall scale of∆, so Plücker coordinates are homogeneous coordinates
only defined up to scale but otherwise independent from the choice of the points
A and B along ∆; and (2) the Plücker coordinates of a line obey the quadratic
constraint

∆1∆6 −∆2∆5 +∆3∆4 = 0. (5.3.1)

It is also possible to define an inner product on the set of all lines by the formula

(∆|∆′)
def
= ∆1∆

′
6 +∆6∆

′
1 −∆2∆

′
5 −∆5∆

′
2 +∆3∆

′
4 +∆4∆

′
3.

Clearly, a 6-vector ∆ represents a line if and only if (∆|∆) = 0, and it can also
be shown that a necessary and sufficient condition for two lines to be coplanar is
that (∆|∆′) = 0.
Plücker coordinates can also be used to characterize points that lie on a line

and lines that lie in a plane: indeed, given a line L with Plücker coordinate vector
L = (l1, l2, l3, l4, l5, l6)

T and a point (resp. plane) P with homogeneous coordinate
vector P , it is possible to show that a necessary and sufficient condition for P to
lie on L (resp. for L to lie in P ) is that

LP = 0, where L
def
=



0 l6 −l5 l4
−l6 0 l3 −l2
l5 −l3 0 l1
−l4 l2 −l1 0


 . (5.3.2)

In addition, the plane Π that contains a line l and a point P not lying on this
line (resp. the point Π where the line l and the plane P intersect) has homogeneous
coordinates Π = LP . The symmetric role played by points and planes in this
section is aesthetically pleasing and not accidental: it is due to the profound duality
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of these geometric figures in projective geometry. This duality will be revisited in
much more detail in Chapter 15.

5.3.2 Projection Equations

Let us now follow Faugeras and Papadopoulo [1997] and show that the mapping
between a line with Plücker coordinate vector ∆ and its image δ with homogeneous
coordinates δ can be represented by

ρδ = M̃∆, where M̃
def
=


 (m2 ∧m3)T(m3 ∧m1)T

(m1 ∧m2)T


 , (5.3.3)

mT1 , m
T
2 and m

T
3 denote as before the rows of M and ρ is an appropriate scale

factor.
To prove this relation, let us consider a line ∆ joining two points A and B,

and denote by a and b the projections of these two points, with homogeneous
coordinates a =MA and b =MB. The points a and b lie on δ, thus if δ denote
the homogeneous coordinate vector of this line, we must have δ · a = δ · b = 0.
Hence, δ (as an element of IR3) is orthogonal to bothMA andMB and must be
parallel to their cross product. Thus we have

ρδ = (MA)× (MB) =


 (m2 ·A)(m3 ·B)− (m3 ·A)(m2 ·B)(m3 ·A)(m1 ·B)− (m1 ·A)(m3 ·B)
(m1 ·A)(m2 ·B)− (m2 ·A)(m1 ·B)


 (5.3.4)

for some scale factor ρ.
Now, as shown in the exercises, the following identity holds for any 4-vectors a,

b, c and d:
(a ∧ b) · (c ∧ d) = (a · c)(b · d)− (a · d)(b · c).

Applying this identity to (5.3.4) yields

ρδ =


 (m2 ∧m3) · (A ∧B)(m3 ∧m1) · (A ∧B)
(m1 ∧m2) · (A ∧B)


 = M̃(A ∧B),

and the result follows immediately.

5.4 Notes

The book by Craig [1989] offers a very good introduction to coordinate system
representations and kinematics. Thorough presentation of geometric camera models
can be found in the books [1993a; 2000b; 2001] for example. The characterization
of the projection of lines in an image presented in this chapter follows [Faugeras
and Papadopoulo, 1997]. The machinery introduced in this chapter, including the
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quadric surfaces introduced in Section 5.1.1, will be used in the next one to calibrate
a camera, i.e., to compute its intrinsic and extrinsic parameters from the image
positions of fiducial point and line features.
The main equations derived in this chapter have been collected in Table 5.1 for

reference.

5.5 Assignments

Exercises

1. Write formulas for the matrices ABR when (B) is deduced from (A) via a
rotation of angle θ about the axes iA, jA and kA respectively.

2. Show that rotation matrices are characterized by the following properties:
(1) the inverse of a rotation matrix is equal to its transpose, and (2) its
determinant is equal to 1.

3. Show that the set of matrices associated with rigid transformations and equipped
with the matrix product forms a group.

4. Let AT denote the matrix associated with a rigid transformation T in the
coordinate system (A), with

AT =

(
AR At
0 1

)
.

Construct the matrix BT associated with T in the coordinate system (B) as
a function of AT and the rigid transformation separating (A) and (B).

5. Show that if the coordinate system (B) is obtained by applying to the coordi-
nate system (A) the transformation associated with the 4× 4 matrix T , then
BP = T −1AP .

6. Show that the rotation of angle θ about the k axis of the frame (F ) can be
represented by

FP ′ = RFP, where R =


 cos θ − sin θ 0sin θ cos θ 0
0 0 1




7. Show that the change of coordinates associated with a rigid transformation
preserves distances and angles.

8. Show that when the camera coordinate system is skewed and the angle θ
between the two image axes is not equal to 90 degrees, then (5.2.3) transforms
into (5.2.4).
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Plane
equation

Π · P = ax + by + cz − d = 0

Quadric
surface
equation

P TQP = 0 where Q =



a200

1
2
a110

1
2
a101

1
2
a100

1
2
a110 a020

1
2
a011

1
2
a010

1
2a101

1
2a011 a002

1
2a001

1
2
a100

1
2
a010

1
2
a001 a000




Rotation
matrix

B
AR =

(
iA · iB jA · iB kA · iB
iA · jB jA · jB kA · jB
iA · kB jA · kB kA · kB

)

Change of
coordinates

BP = B
AR

AP + BOA

Matrix of
intrinsic
parameters

K =



α −α cot θ u0

0
β

sin θ
v0

0 0 1




Perspective
projection
matrix

M = K (R t )

Perspective
projection
equation

p =
1

z
MP

Exterior
product

a ∧ b =



a1b2 − a2b1
a1b3 − a3b1
a1b4 − a4b1
a2b3 − a3b2
a2b4 − a4b2
a3b4 − a4b3




Condition for
two lines to
be coplanar

(∆|∆′) = ∆1∆
′
6 +∆6∆

′
1 −∆2∆

′
5 −∆5∆

′
2 +∆3∆

′
4 +∆4∆

′
3 = 0

Condition for
a point to
lie on a line

LP = 0 where L
def
=



0 l6 −l5 l4
−l6 0 l3 −l2
l5 −l3 0 l1
−l4 l2 −l1 0




Line
projection
equation

ρδ = M̃∆ where M̃ =

(
(m2 ∧m3)

T

(m3 ∧m1)
T

(m1 ∧m2)
T

)

Table 5.1. Reference card: geometric camera models.
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9. Let O denote the coordinate vector of the optical center of a camera in some
reference frame, and let M denote the corresponding perspective projection
matrix. Show that

M

(
O
1

)
= 0.

10. Show that the conditions of Theorem 1 are necessary.

11. Show that the conditions of Theorem 1 are sufficient. Note that the statement
of this theorem is a bit different from the corresponding theorems in [Faugeras,
1993a; Heyden, 1995], where the condition Det(A) �= 0 is replaced by a3 �= 0.
But of course Det(A) �= 0 implies a3 �= 0.

12. Consider some coordinate system and the Plücker coordinate vector ∆ of the
line ∆ passing through the points A and B. Show that if O denotes the
origin of the coordinate system and H denotes its projection onto ∆, then
−−→
AB = −(∆3,∆5,∆6) and

−→
OA ×

−−→
OB =

−−→
OH ×

−−→
AB = (∆4,−∆2,∆1)T .

13. Show analytically that the following identity holds for any 4-vectors a, b, c
and d:

(a ∧ b) · (c ∧ d) = (a · c)(b · d)− (a · d)(b · c).

14. Show that
L12m3 = ρ23L23m1 = ρ31L31m2.

15. If AΠ denotes the homogenous coordinate vector of a plane Π in the coordinate
frame (A), what is the homogeneous coordinate vector BΠ of Π in the frame
(B)?

16. If AQ denotes the symmetric matrix associated with a quadric surface in the
coordinate frame (A), what is the symmetric matrix BQ associated with this
surface in the frame (B)?

17. If A∆ denotes the Plücker coordinate vector of the line ∆ in the coordinate
frame (A), what is the Plücker coordinate vector B∆ of ∆ in the frame (B)?



Chapter 6

GEOMETRIC CAMERA
CALIBRATION

This chapter addresses the problem of estimating the intrinsinc and extrinsic pa-
rameters of a camera, a process known as geometric camera calibration. We will
assume throughout that the camera observes a set of features such as points or
lines with known positions in some fixed world coordinate system (Figure 6.1): in
this context, camera calibration can be modeled as an optimization process, where
the discrepancy between the observed image features and their theoretical posi-
tions (as predicted by the perspective projection equations derived in Chapter 5) is
minimized with respect to the camera’s intrinsic and extrinsic parameters.

j
C

(C)

(W)

j

k

i i

OW

W

W

W

C

Ck
p

P

i

i

Figure 6.1. Camera calibration setup: in this example, the calibration rig is formed by
three grids drawn in orthogonal planes. Other patterns could be used as well, and they
may involve lines or other geometric figures.

We start with an overview of least-squares techniques aimed at solving this type
of optimization problems before presenting several linear and non-linear approaches
to calibration. Once a camera has been calibrated, it is possible to associate with
any image point a well-defined ray passing through this point and the camera’s

148
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optical center, and perform accurate three-dimensional measurements from digitized
pictures. An application to mobile robot localization is briefly discussed at the end
of the chapter.

6.1 Least-Squares Parameter Estimation

As already mentioned, calibrating a camera amounts to estimating the intrinsic and
extrinsic parameters that minimize the mean-squared deviation from predicted to
observed image features. This section introduces a class of optimization techniques,
known as least-squares methods, for solving this kind of problem. They will prove
useful on several other occasions in the rest of this book.

6.1.1 Linear Least-Squares Methods

Let us first consider a system of p linear equations in q unknowns:

u11x1 + u12x2 + . . .+ u1qxq = y1
u21x1 + u22x2 + . . .+ u2qxq = y2
. . .
up1x1 + up2x2 + . . .+ upqxq = yp

⇐⇒ Ux = y, (6.1.1)

where

U
def
=



u11 u12 . . . u1q
u21 u22 . . . u2q
. . . . . . . . . . . .
up1 up2 . . . upq


 , x def=



x1
x2
. . .
xq


 and y =



y1
y2
. . .
yp


 .

We know from linear algebra that (in general):

• when p < q, the set of solutions to this equation forms a (q − p)-dimensional
vector subspace of IRq ;

• when p = q, there is a unique solution;

• when p > q, there is no solution.

This statement is true when the rank (i.e., the maximum number of independent
rows or columns) of U is maximal, i.e., equal to min(p, q) (this is what we mean by
“in general”). When the rank is smaller than min(p, q), the existence of solutions
to (6.1.1) depends on the value of y and whether it belongs to the range of U , i.e.,
the subspace of IRp spanned by its columns.

Normal equations and the pseudoinverse. We will focus in the rest of this section
on the overconstrained case p > q and assume that U has maximal rank q. Since
there is no exact solution in this case, we will content ourselves with finding the
vector x that minimizes the error measure

E
def
=

p∑
i=1

(ui1x1 + . . .+ uiqxq − yi)
2 = |Ux− y|2.
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E is proportional to the mean-squared error associated with the equations, hence
the name of least-squares methods given to techniques for minimizing it.

Now, we can write E = e·e, where e
def
= Ux−y. To find the vector x minimizing

E, we write that the derivatives of this error measure with respect to the coordinates
xi (i = 1, . . . , q) of x must be zero, i.e.,

∂E

∂xi
= 2
∂e

∂xi
· e = 0 for i = 1, . . . , q.

But if the columns of U are the vectors cj = (u1j, . . . , umj)T (j = 1, . . . , q), we
have

∂e

∂xi
=
∂

∂xi




 c1 . . . cq




 x1. . .
xq


− y


 = ∂

∂xi
(x1c1 + . . .+ xqcq − y) = ci.

In particular, writing that ∂E/∂xi = 0 implies that c
T
i (Ux − y) = 0, and

stacking the constraints associated with the q coordinates of x yields the normal
equations associated with out least-squares problem, i.e.,

0 =


 cT1. . .
cTq


 (Ux− y) = UT (Ux− y)⇐⇒ UTUx = UTy.

When U has maximal rank q, the matrix UTU is easily shown to be invertible,

and the solution of the normal equations is x = U†y with U†
def
= [(UTU)−1UT ]. The

q × q matrix U† is called the pseudoinverse of U . It coincides with U−1 when the
matrix U is square and non-singular. Linear least-squares problems can be solved
without explicitly computing the pseudoinverse, using for example QR decomposi-
tion or singular value decomposition (more on the latter in Chapter 14), which are
known to be better behaved numerically.

Homogeneous systems and eigenvalue problems. Let us now consider a variant
of our original problem, where we have again a system of p linear equations in q
unknowns, but the vector y is zero, i.e.,


u11x1 + u12x2 + . . .+ u1qxq = 0
u21x1 + u22x2 + . . .+ u2qxq = 0
. . .
up1x1 + up2x2 + . . .+ upqxq = 0

⇐⇒ Ux = 0. (6.1.2)

This is a homogeneous equation in x, i.e., if x is a solution, so is λx for any
λ �= 0. When p = q and the matrix U is non-singular, (6.1.2) admits as a unique
solution x = 0. Conversely, when p ≥ q, non-trivial (i.e., non-zero) solutions may
only exist when U is singular with rank strictly smaller than q.
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In this context, minimizing the least-squares error E = |Ux|2 only makes sense
when some additional constraint is imposed on the solution x since the value x = 0
yields the zero global minimum of E. By homogeneity, we have E(λx) = λ2E(x),
and it is reasonable to choose the constraint |x|2 = 1, which avoids the trivial
solution and forces the uniqueness of the result.
The error E can be rewritten as |Ux|2 = xT (UTU)x. The q × q matrix UTU is

by construction symmetric positive semidefinite (i.e., its eigenvalues are all positive
or zero), thus can be diagonalized in an orthonormal basis of eigenvectors ei (i =
1, . . . , q) associated with the eigenvalues 0 ≤ λ1 ≤ . . . ≤ λq . Now we can write
any unit vector as x = µ1e1 + . . . + µqeq for some µi (i = 1, . . . , q) such that
µ21 + . . .+ µ

2
q = 1. In particular,

E(x) −E(e1) = xT (UTU)x− eT1 (U
TU)e1 = λ1µ21 + . . .+ λqµ

2
q − λ1

≥ λ1(µ
2
1 + . . .+ µ

2
q − 1) = 0.

It follows that the unit vector x minimizing E is the eigenvector e1 associated
with the minimum eigenvalue of UTU , and the corresponding minimum value of E is
λ1. Various methods are available for computing the eigenvectors and eigenvalues of
a symmetric matrix, including Jacobi transformations and reduction to tridiagonal
form followed by QR decomposition. Singular value decomposition can also be
used to compute the eigenvectors and eigenvalues without actually constructing the
matrix UTU .

Example: fitting a line to points in a plane. Consider n points pi (i = 1, . . . , n)
in a plane, with coordinates (xi, yi) in some fixed coordinate system (Figure 6.2).
What is the straight line that best fits these points? To answer this question, we
must first quantify how well a line δ fits a set of points, or equivalently, define some
error function E measuring the discrepancy between this line and the points. The
best-fitting line can then be found by minimizing E.
A reasonable choice for the error function is the mean-squared distance between

the points and the line (Figure 6.2). We saw in Chapter 5 that the equation of a line
with unit normal n = (a, b)T lying at a distance d from the origin is ax + by = d.
It is in fact easy to show that the perpendicular distance between a point with
coordinates (x, y)T and this line is |ax+ by − d|. We can therefore use

E(a, b, d) =

n∑
i=1

(axi + byi − d)
2

as our error measure, and the line-fitting problem reduces to the minimization of E
with respect to a, b and d under the constraint a2 + b2 = 1. Differentiating E with
respect to d shows that, at a minimum of this function, we must have

0 =
∂E

∂d
= −2

n∑
i=1

(axi + byi − d),
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a
b

x

y

d

n=

δ

Figure 6.2. The line that best fits n points in the plane can be defined as the line δ that
minimizes the mean-squared perpendicular distance to these points, i.e., in this diagram,
the mean-squared length of the short parallel line segments joining δ to the points.

and therefore

d = ax̄+ bȳ, where x̄ =
1

n

n∑
i=1

xi and ȳ =
1

n

n∑
i=1

yi, (6.1.3)

and the two scalars x̄ and ȳ are simply the coordinates of the center of mass of the
input points. Substituting this expression for d in the definition of E yields

E =

n∑
i=1

[a(xi − x̄) + b(yi − ȳ)]
2 = |Un|2 where U =


 x1 − x̄ y1 − ȳ
. . . . . .
xn − x̄ yn − ȳ


 ,

and our original problem finally reduces to minimizing |Un|2 with respect to n under
the constraint |n|2 = 1. We recognize a homogeneous linear last-squares problem,
whose solution is the unit eigenvector associated with the minimum eigenvalue of the
2×2 matrix UTU . Once a and b have been computed, the value of d is immediately
obtained from (6.1.3).
Note that UTU is easily shown to be equal to


n∑
i=1

x2i − nx̄
2

n∑
i=1

xiyi − nx̄ȳ

n∑
i=1

xiyi − nx̄ȳ
n∑
i=1

y2i − nȳ
2


 ,

i.e., the matrix of second moments of inertia of the points pi. In fact, the line best
fitting these points in the sense defined in this section is simply their axis of least
inertia as defined in elementary mechanics.
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6.1.2 Non-Linear Least-Squares Methods

Let us now consider a general system of p equations in q unknowns:

f1(x1, x2, . . . , xq) = 0
f2(x1, x2, . . . , xq) = 0
. . .
fp(x1, x2, . . . , xq) = 0

⇐⇒ f(x) = 0, (6.1.4)

where fi denotes, for i = 1, . . . , p, a differentiable function from IR
p to IR, f =

(f1, . . . , fp)
T , and, as before, x = (x1, . . . , xq)

T . When

fi(x1, x2, . . . , xq) = ai1x1 + ai2x2 + . . .+ aiqxq − yi,

we have of course exactly the same situation as in (6.1.1) (or (6.1.2) when yi = 0). In
general, however, the functions fi can be arbitrary. This time, we have (in general):

• when p < q, the set of solutions of (6.1.4) forms a (q − p)-dimensional subset
of IRq ;

• when p = q, there is a finite set of solutions;

• when p > q, there is no solution.

We have emphasized above the main differences with the linear case: in general,
the dimension of the solution set will still be q − p in the underconstrained case,
but this set will not form a vector space anymore. Its structure will depend on
the nature of the functions fi. Likewise, there will usually be a finite number of
solutions instead of a unique one in the case p = q. A precise definition of the
“general” conditions that a family of functions fi (i = 1, . . . , p) has to satisfy for
the above statement to be true is unfortunately beyond the scope of this book.
There is no general method for finding all the solutions of (6.1.4) when p = q or

for finding the global minimum of the least-squares error

E(x)
def
= |f(x)|2 =

p∑
i=1

f2i (x)

when p > q. Instead, we present below a number of iterative methods that linearize
the problem in hope of finding at least one suitable solution. They all rely on the
following first-order Taylor expansion of the functions fi in the neighborhood of a
point x:

fi(x+ δx) = fi(x) + δx1
∂fi
∂x1
(x) + . . .+ δxq

∂fi
∂xq
(x) + O(|δx|2)

≈ fi(x) +∇fi(x) · δx,
(6.1.5)

where ∇fi(x)
def
= (
∂fi
∂x1
, . . . ,

∂fi
∂xq
)T is called the gradient of fi at the point x, and

we have neglected the second-order term O(|δx|2).
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It follows immediately from (6.1.5) that, to first order,

f(x+ δx) ≈ f(x) + Jf (x)δx, (6.1.6)

where the p× q matrix

Jf (x)
def
=


∇fT1 (x). . .
∇fTp (x)


 =



∂f1
∂x1
(x) . . .

∂f1
∂xq
(x)

. . . . . . . . .
∂fp
∂x1
(x) . . .

∂fp
∂xq
(x)




is called the Jacobian of f .

Newton’s method: square systems of non-linear equations. As mentioned ear-
lier, (6.1.4) admits (in general) a finite number of solutions when p = q. Although
there is no general method for finding all of these solutions when f is arbitrary,
(6.1.6) can be used as the basis for a simple iterative algorithm for finding one of
these solutions: given some current estimate x of the solution, the idea is to com-
pute a perturbation δx of this estimate such that f(x+ δx) ≈ 0, or, according to
(6.1.6),

Jf (x)δx = −f (x).

When the Jacobian is non-singular, δx is easily found as the solution of this
q × q system of linear equations, and the process is repeated until convergence.
Newton’s method converges very rapidly once close to a solution: it has a

quadratic convergence rate, i.e., the error at step k+1 is proportional to the square
of the error at step k. When started far from a solution, Newton’s method as
presented here may be unreliable. Various strategies can be used to improve its
robustness, but their discussion is beyond the scope of this book.

Newton’s method: overconstrained systems of non-linear equations. When p
is greater than q, we seek a local minimum of the least-squares error E. Newton’s
method can be adapted to this case by noting that such a minimum is a zero of the
error’s gradient. More precisely, we introduce

F (x)
def
=
1

2
∇E(x)

and use Newton’s method to find the desired minimum as a solution of the q × q
system of non-linear equations F (x) = 0.
Differentiating E shows that

F (x) =




p∑
i=1

∂fi
∂x1
(x)fi(x)

. . .
p∑
i=1

∂fi
∂xq
(x)fi(x)


 = J Tf (x)f(x), (6.1.7)
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and differentiating this expression shows in turn that the Jacobian of F is equal to


p∑
i=1

[
∂2fi

∂x21
fi + (

∂fi

∂x1
)2]

p∑
i=1

[
∂2fi

∂x1x2
fi +

∂fi

∂x1

∂fi

∂x2
] . . .

p∑
i=1f

[
∂2fi

∂x1xq
fi +

∂fi

∂x1

∂fi

∂xq
]

p∑
i=1

[
∂2fi

∂x1x2
fi +

∂fi

∂x1

∂fi

∂x2
]

p∑
i=1

[
∂2fi

∂x22
fi + (

∂fi

∂x2
)2] . . .

p∑
i=1

[
∂2fi

∂x2xq
fi +

∂fi

∂x2

∂fi

∂xq
]

. . . . . . . . . . . .

p∑
i=1

[
∂2fi

∂x1xq
fi +

∂fi

∂x1

∂fi

∂xq
]

p∑
i=1

[
∂2fi

∂x2xq
fi +

∂fi

∂x2

∂fi

∂xq
] . . .

p∑
i=1

[
∂2fi

∂x2q
fi + (

∂fi

∂xq
)2]



,

where the x argument has been dropped for conciseness.
If we now define the Hessian of fi (i = 1, . . . , p) as the q × q matrix of second

derivatives

Hfi(x)
def
=




∂2fi

∂x21
(x)

∂2fi

∂x1x2
(x) . . .

∂2fi

∂x1xq
(x)

∂2fi

∂x1x2
(x)

∂2fi

∂x22
(x) . . .

∂2fi

∂x2xq
(x)

. . . . . . . . . . . .

∂2fi

∂x1xq
(x)

∂2fi

∂x2xq
(x) . . .

∂2fi

∂x2q
(x)



,

we can rewrite the Jacobian of F as

JF (x) = J
T
f (x)Jf (x) +

p∑
i=1

fi(x)Hfi(x) (6.1.8)

and find δx as the solution of JF (x)δx = −F (x). Equivalently, combining (6.1.7)
and (6.1.8) shows that δx is the solution of

[J Tf (x)Jf (x) +
p∑
i=1

fi(x)Hfi (x)]δx = −J
T
f (x)f (x). (6.1.9)

The Gauss-Newton and Levenberg-Marquardt algorithms. Newton’s method re-
quires computing the Hessians of the functions fi, which may be difficult and/or
expensive. We discuss here two other approaches to non-linear least-squares that
do not involve the Hessians. Let us first consider the Gauss-Newton algorithm: in
this approach, we use again a first-order Taylor expansion of f to minimize E, but
this time we seek the value of δx that minimizes E(x+ δx) for a given value of x.
Substituting (6.1.6) into (6.1.4) yields

E(x+ δx) = |f(x+ δx)|2 ≈ |f(x) + Jf (x)δx|
2.
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At this point we are back in the linear least-squares setting, and the adjustment
δx can be computed as the solution of

J †f (x)δx = −f (x),

or equivalently, according to the definition of the pseudoinverse,

J Tf (x)Jf (x)δx = −J
T
f (x)f(x). (6.1.10)

Comparing (6.1.9) and (6.1.10), we see that the Gauss-Newton algorithm can be
thought of as an approximation of Newton’s method where the term involving the
Hessians Hfi has been neglected. This is justified when the values of the functions fi
at a solution (the residuals) are small since the matrices Hfi are multiplied by these
residuals in (6.1.9). In this case, the performance of the Gauss-Newton algorithm is
comparable to that of Newton’s method, with (nearly) quadratic convergence close
to a solution. When the residuals at the solution are too large, however, it may
converge slowly or not at all.
When (6.1.10) is replaced by

[J Tf (x)Jf (x) + µId]δx = −J
T
f (x)f(x), (6.1.11)

where the parameter µ is allowed to vary at each iteration, we obtain the Levenberg-
Marquardt algorithm, popular in computer vision circles. This technique can once
again be seen as a variant of Newton’s method, where the term involving the Hes-
sians is this time approximated by a multiple of the identity matrix. The Levenberg-
Marqardt algorithm has convergence properties comparable to its Gauss-Newton
cousin, but it is more robust: for example, unlike that algorithm, it can be used
when the Jacobian Jf does not have maximal rank and its pseudoinverse does not
exist.

6.2 A Linear Approach to Camera Calibration

It is now time to go back to geometric camera calibration. We assume in this section
that a calibration rig is observed by a camera, and that the image positions (ui, vi) of
n points Pi (i = 1, . . . , n) with known homogeneous coordinate vectors P i have been
found in a picture of the rig, either automatically or by hand. We decompose the
calibration process into (1) the computation of the perspective projection matrixM
associated with the camera in this coordinate system, followed by (2) the estimation
of the intrinsic and extrinsic parameters of the camera from this matrix. Degenerate
point configurations for which the first step of this process may fail are identified
in Section 6.2.3.
As will be shown shortly, writing that the points pi are the perspective images of

the points Pi imposes a set of n linear constraints on the 11 independent coefficients
of the corresponding projection matrix. When n > 11, these equations do not, in
general, admit a common root, but the techniques introduced in Section 6.1.1 can
be used to effectively construct their “solution” in the least-squares sense.
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6.2.1 Estimation of the Projection Matrix

Let us assume that our camera has non-zero skew. According to Theorem 1 from
Chapter 5, the matrixM is not singular, but otherwise arbitrary. Substituting the
corresponding values in (5.2.8) and clearing the denominators yields two equations
in m1, m2 and m3, namely{

(m1 − uim3) · P i = 0,
(m2 − vim3) · P i = 0.

Collecting the constraints associated with all points yields a system of 2n ho-
mogeneous linear equations in the twelve coefficients of the matrixM, namely,

Pm = 0, (6.2.1)

where

P
def
=



P T1 0T −u1P

T
1

0T P T1 −v1P
T
1

. . . . . . . . .
P Tn 0T −unP

T
n

0T P Tn −vnP
T
n


 and m

def
=


m1m2
m3


 = 0.

When n ≥ 6, homogeneous linear least-squares can be used to compute the value
of the unit vector m (hence the matrixM) that minimizes |Pm|2 as the solution
of an eigenvalue system.

6.2.2 Estimation of the Intrinsic and Extrinsic Parameters

Once the projection matrix M has been estimated, its expression in terms of the
camera intrinsic and extrinsic parameters (Equation (5.2.9) in Chapter 5) can be
used to recover these parameters as follows: we write as beforeM = (A b ) with
aT1 , a

T
2 and a

T
3 denoting the rows of A, and obtain

ρ (A b ) = K (R t )⇐⇒ ρ


aT1aT2
aT3


 =



αrT1 − α cot θr

T
2 + u0r

T
3

β

sin θ
rT2 + v0r

T
3

rT3


 ,

where ρ is an unknown scale factor, introduced here to account for the fact that the
recovered matrixM has unit Frobenius form since |M| = |m| = 1.
In particular, using the fact that the rows of a rotation matrix have unit length

and are perpendicular to each other yields immediately

ρ = ε/|a3|,
r3 = ρa3,
u0 = ρ

2(a1 · a3),
v0 = ρ

2(a2 · a3),

(6.2.2)
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where ε = ∓1.
Since θ is always in the neighborhood of π/2 with a positive sine, we have



ρ2(a1 × a3) = −αr2 − α cot θr1,

ρ2(a2 × a3) =
β

sin θ
r1,

and



ρ2|a1 × a3| =

|α|

sin θ
,

ρ2|a2 × a3| =
|β|

sin θ
,

(6.2.3)

thus: 

cos θ = −

(a1 × a3) · (a2 × a3)

|a1 × a3||a2 × a3|
,

α = ρ2|a1 × a3| sin θ,
β = ρ2|a2 × a3| sin θ,

(6.2.4)

since the sign of the magnification parameters α and β is normally known in advance
and can be taken to be positive.
We can now compute r1 and r2 from the second equation in (6.2.3) as

 r1 =
ρ2 sin θ

β
(a2 × a3) =

1

|a2 × a3|
(a2 × a3),

r2 = r3 × r1.
(6.2.5)

Note that there are two possible choices for the matrix R depending on the
value of ε. The translation parameters can now be recovered by writing Kt = ρb
and hence t = ρK−1b. In practical situations, the sign of tz is often known in
advance (this corresponds to knowing whether the origin of the world coordinate
system is in front or behind the camera), which allows the choice of a unique solution
for the calibration parameters.

6.2.3 Degenerate Point Configurations

We now examine the degenerate configurations of the points Pi (i = 1, . . . , n) that
may cause the failure of the camera calibration process. We focus on the (ideal)
case where the data points pi (i = 1, . . . , n) can be measured with zero error, and
identify the nullspace of the matrix P, i.e., the subspace of IR12 formed by the
vectors l such that Pl = 0.
Let l be such a vector. Introducing the vectors formed by successive quadruples

of its coordinates, i.e., λ = (l1, l2, l3, l4)
T , µ = (l5, l6, l7, l8)

T and ν = (l9, l10, l11, l12)
T

allows us to write

0 = Pl =



P T1 0T −u1P

T
1

0T P T1 −v1P
T
1

. . . . . . . . .
P Tn 0T −unP

T
n

0T P Tn −vnP
T
n




λµ
ν


 =



P T1 λ− u1P

T
1 ν

P T1 µ− v1P
T
1 ν

. . .
P Tnλ− unP

T
nν

P Tnµ− vnP
T
nν


 . (6.2.6)
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Combining the projection equation (5.2.8) with (6.2.6) yields

P Ti λ−

mT1 P i

mT3 P i
P Ti ν = 0,

P Ti µ−
mT2 P i

mT3 P i
P Ti ν = 0,

for i = 1, . . . , n.

We finally obtain after clearing the denominators and rearranging the terms:{
P Ti (m3λ

T −m1νT )P i = 0,
P Ti (m3µ

T −m2νT )P i = 0,
for i = 1, . . . , n. (6.2.7)

As expected, the vector l associated with λ = m1, µ = m2 and ν = m3 is a
solution of these equations. Are there other solutions?
Let us first consider the case where the points Pi (i = 1, . . . , n) all lie in some

plane Π, i.e., according to (5.1.2),Π ·P i = 0 for some 4-vectorΠ. Clearly, choosing
(λ,µ, ν) equal to (Π, 0, 0), (0,Π, 0), or (0, 0,Π), or any linear combination of these
vectors will yield a solution of (6.2.7). In other words, the nullspace of P contains
the four-dimensional vector space spanned by these vectors and m. In practice,
this means that the fiducial points Pi should not all lie in the same plane.
In general, for a given non-zero value of the vector l, the points Pi that satisfy

(6.2.7) must lie on the curve where the two quadric surfaces defined by the cor-
responding equations intersect. A closer look at (6.2.7) reveals that the straight
line where the planes defined by m3 · P = 0 and ν · P = 0 intersect lies on both
quadrics. It can be shown that the intersection curve of these two surfaces consists
of this line and of a twisted cubic curve Γ passing through the origin. A twisted
cubic is entirely determined by six points lying on it, and it follows that seven points
chosen at random will not fall on Γ. Since, in addition, this curve passes through
the origin, choosing n ≥ 6 random points will in general guarantee that the matrix
P has rank 11 and that the projection matrix can be recovered in a unique fashion.

6.3 Taking Radial Distortion into Account

We have assumed so far that our camera is equipped with a perfect lens. As shown
in Chapter 1, real lenses suffer from a number of aberrations. In this section we
show how to account for radial distortion, a type of aberration that depends on
the distance separating the optical axis from the point of interest. We will assume
that the image center is known so that we can take u0 = v0 = 0 and model the
projection process as

p =
1

z


 1/λ 0 0
0 1/λ 0
0 0 1


MP , (6.3.1)

where λ is a polynomial function of the squared distance d2 between the image
center and the image point p. In most applications, it is sufficient to use a low-degree
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polynomial, e.g., λ = 1 +
∑q
p=1 κpd

2p, with q ≤ 3, and the distortion coefficients

κp (p = 1, . . . , q) are normally assumed to be small. Note that d
2 is naturally

expressed in terms of the normalized image coordinates of the point p, i.e., d2 =
û2 + v̂2. Substituting u0 = 0 and v0 = 0 in (5.2.5) allows us, after some algebraic
manipulation, to rewrite d2 as a function of u and v instead, namely

d2 =
u2

α2
+
v2

β2
+ 2
uv

αβ
cos θ. (6.3.2)

Using (6.3.2) to write λ as an explicit function of u and v in (6.3.1) yields highly
non-linear constraints on the q+11 camera parameters. Although these parameters
can in principle all be found using the general non-linear least-squares techniques
introduced in the next section, we will prefer here a two-stage approach tailored to
the calibration problem: eliminating λ from (6.3.1) will first allow us to use linear
least squares to estimate 9 of the camera parameters. The q+2 remaining ones will
then be computed from (6.3.1) and (6.3.2) by a simple non-linear process.

6.3.1 Estimation of the Projection Matrix

Geometrically, radial distortion changes the distance between the image center and
the image point p but it does not affect the direction of the vector joining these two
points. This is the radial alignment constraint introduced by Tsai [1987a], and it
can be expressed algebraically by writing

λ

(
u
v

)
=



m1 · P

m3 · P
m2 · P

m3 · P


 =⇒ v(m1 · P ) − u(m2 · P ) = 0. (6.3.3)

Given n fiducial points, we obtain n linear equations in the eight coefficients of
the vectors m1 and m2, namely

Qn = 0, where Q
def
=


 v1P T1 −u1P

T
1

. . . . . .
vnP

T
n −unP

T
n


 and n =

(
m1
m2

)
. (6.3.4)

Note the similarity with the previous case. When n ≥ 8, the system of equations
(6.3.4) is in general overconstrained, and a solution with unit norm can be found
using linear least squares.

6.3.2 Estimation of the Intrinsic and Extrinsic Parameters

Once m1 and m2 have been estimated, we can define as before the corresponding
values of a1, a2 and write

ρ

(
aT1
aT2

)
=


αrT1 − α cot θrT2 + u0rT3β

sin θ
rT2 + v0r

T
3


 .
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Calculating the norm and the dot product of the vectors a1 and a2 immediately
yields the aspect ratio and the skew of the camera as

β

α
=
|a2|

|a1|
and cos θ = −

a1 · a2

|a1||a2|
. (6.3.5)

Using the fact that rT2 is the second row of a rotation matrix, and thus has unit
norm, now yields

α = ερ|a1| sin θ and β = ερ|a2| sin θ, (6.3.6)

where, as before, ε = ∓1. We obtain after some simple algebraic manipulation that

r1 =

ε

sin θ
(
1

|a1|
a1 +

cos θ

|a2|
a2),

r2 =
ε

|a2|
a2.

Using these equations and r3 = r1×r2 allows us to recover the rotation matrixR
up to a twofold ambiguity. Two of the translation parameters can also be recovered
by writing 

αtx − α cot θtyβ

sin θ
ty


 = ρ( b1

b2

)
,

where b1 and b2 are the first two coordinates of the vector b, which in turn allows
us to compute thes parameters tx and ty as


tx =

ε

sin θ
(
b1
|a1|
+
b2 cos θ

|a2|
),

ty =
εb2
|a2|
.

On the other hand, without further constraints, it is impossible to recover tz and
the absolute scale of the magnification parameters, or equivalently, the value of ρ,
from the values of m1 and m2 only. To estimate these parameters, it is necessary
to go back to the original projection equations: we rewrite the left side of (6.3.3) as{

(m1 − λum3) · P = 0,
(m2 − λvm3) · P = 0,

(6.3.7)

Here m1 and m2 are known, and according to (5.2.9), m
T
3 = ( r

T
3 tz ), where

r3 is also known. Now, combining the expression for d
2 given in (6.3.2) with the

expressions for α, β and cos θ given in (6.3.5) and (6.3.6) yields

d2 =
1

ρ2
|ua2 − va1|

2

|a1 × a2|
2 ,
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and substituting this value in (6.3.7) yields a non-linear equation in ρ, tz, and the
distortion parameters κp (p = 1, . . . , q). Given enough data points, the non-linear
least-squares techniques that have been presented in Section 6.1.2 can be used to
solve for these parameters. These methods are iterative and require initial guesses
for all unknowns. Here, a reasonable estimate for ρ and tz can be found using linear
least squares by first assuming that λ = 1. Likewise, zero values are reasonable
initial guesses for the distortion parameters. As before, the twofold ambiguity can
be resolved when the sign of tz is known in advance.

6.3.3 Degenerate Point Configurations

Let us determine the degenerate point configurations for which the vectors m1 and
m2 cannot be uniquely determined. Given a vector l in the nullspace, we define the
vectors λ = (l1, l2, l3, l4)

T and µ = (l5, l6, l7, l8)
T , and write

0 = Ql =


 v1P T1 −u1P

T
1

. . . . . .
vnP

T
n −unP

T
n


(
λ
µ

)
=


 v1P T1 λ− u1P T1 µ. . .
vnP

T
nλ− unP

T
nµ


 .

Taking into account the values of ui and vi yields, after rearranging the terms
and clearing the denominators,

P Ti (m2λ
T −m1µ

T )P i = 0 for i = 1, . . . , n. (6.3.8)

The vector l associated with λ =m1 and µ =m2 is of course a solution of these
equations (in the noise-free case, i.e., when all image positions are exact). When
the points Pi (i = 1, . . . , n) all lie in some plane Π, or equivalently, Π · P i = 0
for some 4-vector Π, we can choose (λ,µ) equal to (Π, 0), (0,Π), or any linear
combination of these two vectors, and construct a solution of (6.3.8). The nullspace
of Q contains the three-dimensional vector space spanned by these vectors and l.
Thus, as before, points that all lie in the same plane cannot not be used in this
calibration method.
More generally, for a given value of λ and µ, the points Pi will form a degenerate

configuration when they lie on the quadric surface defined by (6.3.8). Note that this
surface contains the four straight lines defined by λ·P = µ·P = 0, λ·P =m1 ·P =
0, µ · P =m2 · P = 0 and m1 · P =m2 · P = 0, and it must therefore consist of
two planes, or be a cone, a hyperboloid of one sheet or a hyperbolic paraboloid. In
any case, for a large enough number of points in general position, there will be a
unique solution to our least-squares problem.

6.4 Using Straight Lines for Calibration

Points are not the only geometric image features that constrain the camera parame-
ters. We show in this section that straight lines can also be used to perform camera
calibration.



Section 6.4. Using Straight Lines for Calibration 163

We proved in Chapter 5 that the Plücker coordinate vector of a line ∆ and the
homogeneous coordinate vector of its image δ are related by

ρδ = M̃∆, where M̃
def
=


 (m2 ∧m3)T(m3 ∧m1)T

(m1 ∧m2)T


 .

We can eliminate the unknown scale factor ρ by using once again the fact that the
cross product of two parallel vectors is zero, thus δ × M̃∆ = 0. This linear vector
equation in the components of M̃ is equivalent to two independent scalar equations.
Since the 3×6 matrix M̃ is only defined up to scale, its 17 independent coefficients
can thus be estimated as before via linear least squares (ignoring the non-linear
constraints imposed by the fact that the rows of M̃ are Plücker coordinates) when
n ≥ 9.
Once M̃ is known, we can recover M as well through linear least squares.

Indeed, the vectorsmi (i = 1, 2, 3) can be thought of as the homogeneous coordinate
vectors of three projection planes Πi (Figure 6.3). These planes intersect at the
optical center O of the camera since the homogeneous coordinate vector of this
point satisfies the equation MO = 0. Likewise, it is easy to show that Π3 is
parallel to the image plane, that Π3 and Π1 intersect along a line L31 parallel to
the u = 0 coordinate axis of the image plane, that Π2 and Π3 intersect along a
line L23 parallel to its v = 0 coordinate axis, and that the line L12 formed by the
intersection of Π1 and Π2 is simply the optical axis.

Π
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L

Π

Π

L
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v
1 3

2

31

23

12L

Figure 6.3. The three projection planes Π1, Π2 and Π3 and the lines L12, L23 and L31
where they intersect.

Now, we can write that L12 lies in the plane Π1 as L12m1 = 0, where L12 is
the 4× 4 matrix associated with L12 and defined by Equation (5.3.2) in Chapter 5.
Five more homogeneous constraints on the vectors mi (i = 1, 2, 3) are obtained by
appropriate permutations of the indices. In addition, we must have

ρ12L12m3 = ρ23L23m1 = ρ31L31m2 = 0
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for some non-zero scalars ρ12, ρ23 and ρ31 since, each matrix product in this equation
gives the homogeneous coordinate vector of the optical point. In fact, it is easy to
show that the three scale factors can be taken equal to each other, which yields
three homogeneous vector equations in mi (i = 1, 2, 3):

L12m3 = ρ23L23m1 = ρ31L31m2.

Putting it all together, we obtain 6×3+3×4 = 30 homogeneous (scalar) linear
equations in the coefficients ofM, whose solution can once again be found via linear
least squares (at most 11 of the 30 equations are independent in the noise-free case).
Once M is known, the intrinsic and extrinsic parameters can be computed

as before. We leave to the reader the task of characterizing the degenerate line
configurations for which the proposed method fails.

6.5 Analytical Photogrammetry

All of the methods presented so far ignore some of the constraints associated with
the calibration process: for example, the camera skew was assumed to be arbitrary
instead of (very close to) zero in Section 6.2, and the quadratic constraints associated
with Plücker coordinates were ignored in Section 6.4. We present in this section a
non-linear approach to camera calibration that takes into account all the relevant
constraints.
This approach is borrowed from photogrammetry, an engineering field whose

aim is to recover quantitative geometric information from one or several pictures,
with applications in cartography, military intelligence, city planning, etc. For many
years, photogrammetry relied on a combination of geometric, optical, and mechani-
cal methods to recover three-dimensional information from pictures, but the advent
of computers in the fifties has made a purely computational approach to this prob-
lem feasible. This is the domain of analytical photogrammetry, where the intrinsic
parameters of a camera define its interior orientation, while the extrinsinc param-
eters define its exterior orientation.
In this setting, we assume once again that we observe n fiducial points Pi (i =

1, . . . , n) whose positions in some world coordinate system are known, and minimize
the mean-squared distance between the measured positions (ui, vi) of their images
and the positions (ũi, ṽi) predicted by the perspective projection equation with
respect to a vector of camera parameters ξ = (ξ1, . . . , ξq)

T (q ≥ 11) that may
include various distortion coefficients in addition to the usual intrinsic and extrinsic
parameters.
The least-squares error can be written as

E(ξ) =

n∑
i=1

[(ũi(ξ)− ui)
2 + (ṽi(ξ) − vi)

2],

where

ũi(ξ)
def
=
m1(ξ) · P i

m3(ξ) · P i
and ṽi(ξ)

def
=
m2(ξ) ·P i

m3(ξ) ·P i
.
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Contrary to the cases studied so far, the dependency of each error term on the
unknown parameters ξ is not linear. Instead, it involves a combination of polynomial
and trigonometric functions, and minimizing the overall error measure involves the
use of the non-linear least squares algorithms discussed in Section 6.1.2. To follow
the notation introduced in that section, we rewrite our error function as

E(ξ) = |f(ξ)|2 =
2n∑
j=1

f2j (ξ), where

{
f2i−1(ξ) = ũi(ξ) − ui
f2i(ξ) = ṽi(ξ)− vi

for i = 1, . . . , n.

The Gauss-Newton and Levenberg-Marquard techniques described in Section
6.1.2 require the gradient of the functions fj , and Newton’s method requires both
their gradient and their Hessian. Here we will only calculate the gradient, or equiv-
alently, the Jacobian of f . Let us drop the ξ argument for conciseness, and define
x̃i = m1 · P i, ỹi = m2 · P i and z̃i = m3 · P i (i = 1, . . . , n), so ũi = x̃i/z̃i and
ṽi = ỹi/z̃i. We have

∂f2i−1
∂ξj

=
∂ũi
∂ξj
=
1

zi

∂x̃i
∂ξj
−
x̃i
z̃2i

∂z̃i
∂ξj
=
1

z̃i
(
∂

∂ξj
(m1 ·P i)− ũi

∂

∂ξj
(m3 · P i)),

∂f2i
∂ξj

=
∂ṽi
∂ξj
=
1

z̃i

∂ỹi
∂ξj
−
ỹi
z̃2i

∂z̃i
∂ξj
=
1

z̃i
(
∂

∂ξj
(m2 · P i)− ṽi

∂

∂ξj
(m3 ·P i)),

which is easily rewritten as

∂f2i−1
∂ξj
∂f2i
∂ξj


 = 1z̃i

(
P Ti 0T −ũiP

T
i

0T P Ti −ṽiP
T
i

)
Jm,

where m is as before the vector of IR12 associated with M, and Jm denotes its
Jacobian with respect to ξ.
We finally obtain the Jacobian of f as

Jf =




1

z̃1
P T1 0T −

ũ1
z̃1
P T1

0T
1

z̃1
P T1 −

ṽ1
z̃1
P T1

. . . . . . . . .
1

z̃n
P Tn 0T −

ũn
z̃n
P Tn

0T
1

z̃n
P Tn −

ṽn
z̃n
P Tn



Jm.

In this expression, ũi, ṽi, z̃i and P i depend on the point considered, but Jm
only depends on the intrinsic and extrinsic parameters of the camera. Note that this
method requires an explicit parameterization of the matrix R. Such a parameteri-
zation in terms of three elementary rotations about coordinate axes was mentioned
in Chapter 5. Many others parameterizations can be used as well, including Euler
angles, the Rodrigues formula, and quaternions (see the exercises and Chapter 21).



166 Geometric Camera Calibration Chapter 6

6.6 An Application: Mobile Robot Localization

The calibration methods presented in this chapter can be used in a variety of ap-
plications, from metrology to stereo vision and object localization in robotic tasks.
Here we briefly describe the non-linear approach to camera calibration proposed
by Devy et al. [1997] and its application to mobile robot localization. Unlike the
techniques discussed so far, this method uses several images (up to 20 in the ex-
periments presented here) of a planar rectangular grid to calibrate a static camera
(Figure 6.4(a)). One of these pictures is taken with the grid lying on the ground,
and it is used to define the world coordinate system. After a rough manual localiza-
tion, the corners of the grid are found in each picture with a precision of 1/10pixel
using a parametric model of the grey-level surface in the neighborhood of a corner.
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Figure 6.4. Calibration experiments. Left: one of the 20 input pictures; note the strong
radial distortion. Right: average and maximum reprojections errors (in pixels) in the 20
images. Calibration and localization software courtesy of Michel Devy. Experiments and
photographs courtesy of Fred Rothganger.

The imaging geometry is modeled as in Section 6.3 with three radial distortion
coefficients and zero skew. The calibration algorithm recovers a single set of intrinsic
parameters, and one set of extrinsic parameters per input image. An initial guess for
the intrinsic parameters can be obtained from information supplied by the camera
and frame-grabber manufacturers. An initial guess for the extrinsic parameters
can be obtained for each image using a variant of Tsai’s algorithm [Tsai, 1987a]:
briefly, the projection matrix is estimated via linear least squares by choosing the z
coordinate axis of the world reference frame perpendicular to the calibration grid;
accordingly, Equation (6.3.4) now becomes

Q′n′ = 0, where Q′ =


 v1x1 v1y1 v1 −u1x1 −u1y1 −u1
. . . . . . . . . . . . . . . . . .
vnxn vnyn vn −unxn −u1yn −un




and n′ = (m11, m12, m14, m21, m22, m24)
T .
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Note that explicitly imposing that zi = 0 avoids the degeneracies encountered
by the previously discussed algorithms for coplanar points. Once n′ is known, since
the intrinsic parameters are assumed to be (roughly) known, it is a simple matter
to compute the extrinsic parameters (see exercises). Once initial guesses for both
the intrinsic and extrinsic parameters are available, non-linear optimization (in this
case the Levenberg-Marquardt algorithm) can be used to minimize as usual the
mean-squared distance between predicted and observed image features.
Figure 6.4 and Table 6.1 show the result of experiments conducted with a

576 × 768 camera equipped with a 4.5mm lens. A plot of the errors found when
reprojecting the corners of the calibration grid model into the 20 images is shown
in Figure 6.4(b). The recovered intrinsic parameters are given in Table 6.1.

Magnifications α 564.88
β -573.81

Image u0 283.00
center v0 369.77
Radial κ1 -0.3575
distortion κ2 0.1922
coefficients κ3 -0.0603

Table 6.1. The intrinsic parameters recovered from 20 images.

Once the camera is calibrated, it can be used to monitor the position and orien-
tation of mobile robots in the coordinate system attached to the ground reference
image. Each robot carries an array of infrared LEDs forming a distinctive pattern
(Figure 6.5(a)). During localization experiments, the camera is equipped with an
infrared filter that effectively blocks out all incoming light except for that from the
LEDs (Figure 6.5(b)). Each robot is identified using a simple pattern matching
algorithm, and its position and orientation is deduced from the image position of
the LEDs and the camera parameters. With the camera mounted 4m above the
ground, typical localization errors within the entire field of view of the camera are
below 2cm in position and 1◦ in orientation, with maximum errors that may reach
5cm and 5◦.

6.7 Notes

The linear calibration technique described in Section 6.2 is detailed in [Faugeras,
1993a]. Its variant that takes radial distortion into account is adapted from Tsai
[1987a]. The book of Haralick and Shapiro [1992] presents a concise introduction
to analytical photogrammetry. The Manual of Photogrammetry is of course the
gold standard, and newcomers to this field (like the authors of this book) will
probably find the ingenious mechanisms and rigorous methods described in the
various editions of this book fascinating [Thompson et al., 1966; Slama et al., 1980].
We will come back to photogrammetry in the context of multiple images in Chapter
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Figure 6.5. Mobile robot localization. Left: a photograph of the three mobile robots
used in localization experiments. Right: the same view after the cameras has been
equipped with an infrared filter.

12. General optimization techniques are discussed in [Luenberger, 1984; Bertsekas,
1995; Heath, 1997] for example. An excellent survey and discussion of least-squares
methods in the context of analytical photogrammetry can be found in [Triggs et al.,
2000].
The output of least-squares methods admits a statistical interpretation in maximum-

likelihood terms when the coordinates of the data points are modeled as random
variables obeying a normal distribution. We will come back to this interpretation
in Chapter 17, where we will also revisit the problem of fitting a straight line to a
set of points in the plane.
Extensive sets of routines for linear and non-linear least-squares are available in

MATLAB as well as in public-domain libraries such as LINPACK, LAPACK and
MINPACK that can be downloaded from the Netlib repository (http://www.netlib.org/).

6.8 Assignments

Exercises

1. Show that the 2 × 2 matrix UTU involved in the line-fitting example from
Section 6.1.1 is the matrix of second moments of inertia of the points pi
(i = 1, . . . , n).

2. Extend the line-fitting method presented in Section 6.1.1 to the problem of
fitting a plane to n points in IE3.

3. Derive an expression for the Hessian of the functions f2i−1(ξ) = ũi(ξ) − ui
and f2i(ξ) = ṽi(ξ)− vi (i = 1, . . . , n) introduced in Section 6.5.

4. Euler angles. Show that the rotation obtained by first rotating about the z
axis of some coordinate frame by an angle α, then rotating about the y axis
of the new coordinate frame by an angle β and finally rotating about the z
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axis of the resulting frame by an angle γ can be represented in the original
coordinate system by
 cosα cos β cos γ − sinα sin γ − cosα cos β sin γ − sinα cos γ cosα sinβ
sinα cosβ cos γ + cosα sin γ − sinα cosβ sin γ + cosα cos γ sinα sinβ

− sinβ cos γ sinβ sin γ cosβ


 .

5. The Rodrigues formula. Consider a rotation R of angle θ about the axis u (a
unit vector). Show that

Rx = cos θx+ sin θu × x+ (1 − cos θ)(u · x)u.

Hint: A rotation leaves the projection of a vector x onto the direction u of
its axis invariant, and applies a planar rotation of angle θ to the projection of
x into the plane orthogonal to u.

6. Use the Rodrigues formula to show that the matrix associated with R is
 u2(1− c) + c uv(1− c)−ws uw(1− c) + vs
uv(1− c) + ws v2(1− c) + c vw(1 − c) − us
uw(1− c) − vs vw(1− c) + us w2(1− c) + c


 .

where c = cos θ and s = sin θ.

7. Assuming that the intrinsic parameters of a camera are known, show how to
compute its extrinsic parameters once the vector n′ is known.

Hint: Use the fact that the rows of a rotation matrix have unit norm.

Programming Assignments

Note: Data for the assignments below are available in the CD companion to this
book.

1. Use linear least-squares to fit a plane to n data points (xi, yi, zi)
T (i = 1, . . . , n)

in IR3.

2. Use linear least-squares to fit a conic section defined by

ax2 + bxy + cy2 + dx+ ey + f = 0

to n data points (xi, yi)
T (i = 1, . . . , n) in IR2.

3. Implement the linear calibration algorithm presented in Section 6.2.

4. Implement the calibration algorithm that takes into account radial distortion
and that was presented in Section 6.3.

5. Implement the line-based calibration algorithm from Section 6.4.

6. Implement the non-linear calibration algorithm from Section 6.5.



Chapter 7

AN INTRODUCTION TO
PROBABILITY

As the previous chapters have illustrated, it is often quite easy to come up with
physical models that determine the effects that result from various causes — we
know how image intensity is determined, for example. The difficulty is that effects
could have come from various causes and we would like to know which — for exam-
ple, is the image dark because the light level is low, or because the surface has low
albedo? Ideally, we should like to take our measurements and determine a reason-
able description of the world that generated them. Accounting for uncertainty is a
crucial component of this process, because of the ambiguity of our measurements.
This process of accountancy needs to take into account reasonable preferences about
the state of the world — for example, it is less common to see very dark surfaces
under very bright lights than it is to see a range of albedoes under a reasonably
bright light.
Probability is the proper mechanism for accounting for uncertainty. Axiomatic

probability theory is gloriously complicated, and we don’t attempt to derive the
ideas in detail. Instead, this chapter will first review the basic ideas of probability.
We then describe techniques for building probabilistic models and for extracting
information from a probabilistic model, all in the context of quite simple examples.
In chapters 19, 20, 25 and 26, we show some substantial examples of probabilistic
methods; there are other examples scattered about the text by topic.
Discussions of probability are often bogged down with waffle about what prob-

ability means, a topic that has attracted a spectacular quantity of text. Instead,
we will discuss probability as a modelling technique with certain formal, abstract
properties — this means we can dodge the question of what the ideas mean and
concentrate on the far more interesting question of what they can do for us.
We will develop probability theory in discrete spaces first, because it is possible

to demonstrate the underpinning notions without much notation (section 7.1). We
then pass to continuous spaces (section 7.2). Section 7.3 describes the important
notion of a random variable, and section 7.4 describes some common probability
models. Finally, in section 7.5, we get to probabilistic inference, which is the main

170
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reason to study probability.

7.1 Probability in Discrete Spaces

Generally, a probability model is used to compare various kinds of experimental
outcomes. We assume that we can distinguish between these outcomes, which are
usually called events. Now if it is possible to tell whether an event has occurred,
it is possible to tell if it has not occurred, too. Furthermore, if it is possible to tell
that two events have occurred independently, then it is possible to tell if they have
occurred simultaneously.
This motivates a formal structure. We take a discrete space, D, which could be

infinite and which represents the world in which experiments occur. Now construct
a collection of subsets of D, which we shall call F , each of which represents an
event. This collection must have the following properties:

• The empty set is in F and so is D.

• Closure under complements: if S1 ∈ F then S1 = D − S1 ∈ F — i.e. if it is
possible to tell whether an event has occurred, it is possible to tell if it has
not occurred, too.

• Closure under intersection: if S1 ∈ F and S2 ∈ F , then S1 ∩ S2 ∈ F — i.e.
if it is possible to tell that two events have occurred independently, then it is
possible to tell if they have occurred simultaneously.

The elements of F correspond to the events. Note that we can we can tell whether
any logical combinations of events has occurred, too, because a logical combination
of events corresponds to set unions, negations or intersections.

Given a coin that is flipped once,

D = {heads, tails}

There are only two possible sets of events in this case:

{∅, D}

(which implies we flipped the coin, but can’t tell what happened!) and

{∅, D, {heads}, {tails}}

Example 7.1: The space of events for a single toss of a coin.
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Given two coins that are flipped,

D = {hh, ht, tt, th}

There are rather more possible sets of events in this case. One useful one would
be

F =




∅, D,
{hh}, {ht}, {tt}, {th},
{hh, ht}, {hh, th}, {hh, tt}, {ht, th},
{ht, tt}, {th, tt}, {hh, ht, th}, {hh, ht, tt},
{hh, th, tt}, {ht, th, tt}




which would correspond to all possible cases. Another (perhaps less useful)
structure would be:

F = {∅, D, {hh, ht}, {th, tt}}

which implies that we cannot measure the state of the second coin

Example 7.2: Two possible spaces of events for a single flip each of two coins.

7.1.1 Probability: the P-function

Now we construct a function P , which takes elements of F to the unit interval. We
require that P has some important properties:

• P is defined for every element of F

• P (∅) = 0

• P (D) = 1

• for A ∈ F and B ∈ F , P (A ∪B) = P (A) + P (B)− P (A ∩B)

which we call the axiomatic properties of probability. Note that 0 ≤ P (A) ≤ 1 for all
A ∈ F , because the function takes elements of F to the unit interval. We call the
collection of D, P and F a probability model. We call P (A) the probability
of the event A — because we are still talking about formal structures, there
is absolutely no reason to discuss what this means; it’s just a name. Rigorously
justifying the properties of P is somewhat tricky. It can be helpful to think of P as
a function that measures the size of a subset of D — the whole of D has size one,
and the size of the union of two disjoint sets is the sum of their sizes.
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In example 1, for the first structure on D, there is only one possible choice of
P ; for the second, there is a one parameter family of choices, we could choose
P (heads) to be an arbitrary number in the unit interval, and the choice of
P (tails) follows.

Example 7.3: The possible P functions for the flip of a single coin.

In example 2, there is a three-parameter family of choices for P in the case of
the first event structure shown in that example — we can choose P (hh), P (ht)
and P (th), and all other values will be given by the axioms. For the second
event structure in that example, P is the same as that for a single coin (because
we can’t tell the state of one coin).

Example 7.4: The P functions for two coins, each flipped once.

7.1.2 Conditional Probability

If we have some element A of F where P (A) �= 0 — and this constraint is important
— then the collection of sets

FA = {u∩A|u ∈ F}

has the same properties as F , only now its domain of definition is A (i.e. ∅ ∈ FA,
A ∈ FA, and FA is closed under complement and intersection). Now for any C ∈ F
we can define a P function for the component of C that lies in FA. We write

PA(C) =
P (C ∩A)

P (A)

This works because C ∩ A is in FA, and P (A) is non-zero. In particular, this
function satisfies the axiomatic properties of probability on its domain, FA. We call
this function the conditional probability of C, given A; it is usually written
as P (C|A). If we adopt the metaphor that P measures the size of a set, then the
conditional probability measures the size of the set C ∩A relative to A. Notice that

P (A ∩ C) = P (A|C)P (C) = P (C|A)P (A)

an important fact that you should memorize. It is often written as

P (A,C) = P (A|C)P (C) = P (C|A)P (A)

where P (A,C) is often known as the joint probability for the events A and C.
Assume that we have a collection of n sets Ai, such that Aj ∩Ak = ∅ for every

j �= k and A =
⋃
iAi. The analogy between probability and size motivates the

result that

P (B|A) =
n∑
i=1

P (B|Ai)P (Ai)
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a fact well worth remembering. In particular, if A is the whole domain D, we have
the useful fact that for n disjoint sets Ai, such that D =

⋃
iAi,

P (B) =

n∑
i=1

P (B|Ai)P (Ai)

7.1.3 Choosing P

We have a formal structure — to use it, we need to choose values of P that have
useful semantics. There are a variety of ways of doing this, and it is essential to
understand that there is no canonical choice. The choice of P is an essential part of
the modelling process. A bad choice will lead to an unhelpful or misleading model,
and a good choice may lead to a very enlightening model. There are some strategies
that help in choosing P .

Symmetry

Many problems have a form of symmetry that means we have no reason to distin-
guish between certain sets of events. In this case, it is natural to choose P to reflect
this fact.

Assume we have a single coin which we will flip, and we can tell the difference
between heads and tails. Then

F = {∅, D, {heads}, {tails}}

is a reasonable model to adopt. Now this coin is symmetric — there is no reason
to distinguish between the heads side and the tails side from a mechanical
perspective. Furthermore, the operation of flipping it subjects it to mechanical
forces that do not favour one side over the other. In this case, we have no reason
to believe that there is any difference between the outcomes, so it is natural to
choose

P (heads) = P (tails)

Example 7.5: Choosing the P function for a single coin flip using symmetry.

Independence

In many probability models, events do not depend on one another. This is reflected
in the conditional probability. If there is no interaction between events A and B,
then P (A|B) cannot depend on B. This means that P (A|B) = P (A), a property
known as independence. In turn, ifA and B are independent, we have P (A∩B) =
P (A|B)P (B) = P (A)P (B). This property is important, because it reduces the
number of parameters that must be chosen in building a probability model.
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Assume we have a die that we believe to be fair, in the sense that it has been
manufactured to have the symmetries of a cube. This means that there is no
reason to distinguish between any of the six events defined by distinct faces
pointing up. We can therefore choose a P function that has the same value
for each of these events. A more sophisticated user of a die labels each vertex
of each face, and throws the die onto ruled paper; each face then has four
available states, corresponding to the vertex that is furthest away from the
thrower. Again, we have no reason to distinguish between the states, so we can
choose a P function that has the same value for each of the 24 possible states
that can result.

Example 7.6: Choosing the P function for a roll of a die using symmetry.

A more subtle version of this property is conditional independence. Formally,
A and B are conditionally independent given C if

P (A,B, C) = P (A,B|C)P (C) = P (A|C)P (B|C)P (C)

Like independence, conditional independence simplifies modelling by (sometimes
substantially) reducing the number of parameters that must be chosen in construct-
ing a model.

Frequency:

Data reflecting the relative frequency of events can be easily converted into a form
that satisfies the axioms for P , as example 9 indicates.
An interpretation of probability as frequency is consistent, in the sense that

if we make repeated, independent trials of a probability model where P has been
allocated using frequency data, then the events with the highest probability —
which will be long sequences of outcomes — will be those that show the outcomes
with about the right frequency. Example 10 illustrates this effect for repeated flips
of a single coin.
Saying that the relative frequency of an event is f means that, in a very large

number of independent trials (say, N), we expect that the event occurs in about
fN of those trials. Now for large n, the expression(

n
k

)
pk(1− p)n−k

(which is what we obtained for the probability of a sequence of trials showing k heads
and n−k tails in example 10) has a substantial peak at p = k

n . This peak gets very
narrow and extremely pronounced as n → ∞. This effect is extremely important,
and is consistent with an interpretation of probability as relative frequency:

• firstly, because it means that we assign a high probability to long sequences
of coin flips where the event occurs with the “right” frequency
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We adopt the first of the two event structures given for the two coins in exam-
ple 2 (this is where we can tell the state of both coins). Now we assume that
neither coin knows the other’s intentions or outcome.
This assumption restricts our choice of probability model quite considerably
because it enforces a symmetry. Let us choose

P ({hh, ht}) = p1h

and
P ({hh, th}) = p2h

Now let us consider conditional probabilities, in particular

P ({hh, ht}|{hh, th})

(which we could interpret as the probability that the first coin comes up heads
given the second coin came up heads). If the coins cannot communicate, then
this conditional probability should not depend on the conditioning set, which
means that

P ({hh, ht}|{hh, th}) = P ({hh, ht})

In this case, we know that

P ({hh}) = P ({hh, ht}|{hh, th})P ({hh, th}) = P ({hh, ht})P ({hh, th}) = p1hp2h

Similar reasoning yields P (A) for all A ∈ F , so that our assumption that the
two coins are independent means that there is now only a two parameter family
of probability models to choose from — one parameter describes the first coin,
the other describes the second.

Example 7.7: Choosing the P function for a single flip each of two coins using the
idea of independence.

• and secondly, because the probability assigned to these long sequences can
also be interpreted as a frequency — essentially, this interpretation means
that long sequences where the events occur with the “right” frequency occur
far more often than other such sequences (see figure 7.1).

All this means that, if we choose a P function for a coin flip — or some other
experiment — on the basis of sufficiently good frequency data, then we are very
unlikely to see long sequences of coin flips — or repetitions of the experiment —
that do not show this frequency.
This interpretation of probability as frequency is widespread, and common. One

valuable advantage of the interpretation is that it simplifies estimating probabilities
for some sorts of models. For example, given a coin, one could obtain P (heads)
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Both I and my neighbour have a lawn; each lawn has its own sprinkler system.
There are two reasons that my lawn could be wet in the morning — either it
rained in the night, or my sprinkler system came on. There is no reason to
believe that the neighbour’s sprinkler system comes on at the same times or on
the same days as mine does. Neither sprinkler system is smart enough to know
whether it has rained. Finally, if it rains, both lawns are guaranteed to get wet;
however, if the sprinkler system comes on, there is some probability that the
lawn will not get wet (perhaps a jammed nozzle).
A reasonable model has five binary variables (my lawn is wet or not; the neigh-
bour’s lawn is wet or not; my sprinkler came on or not; the neighbour’s sprinkler
came on or not; and it rained or not). D has 32 elements, and the event space is
too large to write out conveniently. If there was no independence in the model,
specifying P could require 31 parameters.
However, if I know it did not rain in the night, then the state of my lawn is
independent of the state of the neighbour’s lawn, because the two sprinkler
systems do not communicate. Our joint probability function is

P (W, Wn, S, Sn, R) = P (W, S|R)P (Wn, Sn|R)P (R)

We know that P (W = true, S|R = true) = P (S) (this just says that if it rains,
the lawn is going to be wet); a similar observation applies to the neighbour’s
lawn. The rain and the sprinklers are independent and there is a symmetry —
both my neighbour’s lawn and mine behave in the same way. This means that,
in total, we need only 5 parameters to specify this model.
Notice that in this case, independence is a model; it is possible to think of any
number of reasons that the sprinkler systems might well display quite similar
behaviour, even though they don’t communicate (the neighbour and I might
like the same kind of plants; there could be laws restricting when the sprinklers
come on; etc.). This means that, like any model, we will need to look for
evidence that tends either to support or to discourage our use of the model.
One form that this evidence very often takes is the observation that the model
is good at predicting what happened in the past.

Example 7.8: Simplifying a model using conditional independence: the case of
rain, sprinklers and lawns.

by flipping the coin many times and measuring the relative frequency with which
heads appear.

Subjective probability

It is not always possible to use frequencies to obtain probabilities. There are circum-
stances in which we would like to account for uncertainty but cannot meaningfully
speak about frequencies. For example, it is easy to talk about the probability it
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Assume that, in the past, we have flipped the single coin described above many
times, and observed that for 51% of these flips it comes up heads, and for 49%
it comes up tails. We could choose

P ({heads}) = 0.51 and P ({tails}) = 0.49

This choice is a sensible choice, as example 10 indicates.

Example 7.9: Choosing a P function for a single coin flip using frequency infor-
mation.

Now consider a single coin that we flip many times, and where each flip is
independent of the other. We set up an event structure that does not reflect
the order in which the flips occur. For example, for two flips, we would have:

{∅, D, {hh}, {tt}, {ht, th}, {hh, tt}, {hh, ht, th}, {tt, ht, tt}}

We assume that P ({hh}) = p2; a simple computation using the idea of inde-
pendence yields that P ({ht, th}) = 2p(1 − p) and P (tt) = (1 − p)2. We can
generalise this result, to obtain

P (k heads and n− k tails in n flips) =

(
n
k

)
pk(1− p)n−k

Example 7.10: The probability of various frequencies in repeated coin flips

will rain tomorrow, but hard to interpret this use of the term as a statement about
frequency1 . An alternative source of P is to regard probability as encoding degree
of belief. In this approach, which is usually known as subjective probability, one
chooses P to reflect reasonable beliefs about the situation that applies.
Subjective probability must still satisfy the axioms of probability. It is simply

a way of choosing free parameters in a probability model without reference to fre-
quency. The attractive feature of subjective probability is that it emphasizes that
a choice of probability model is a modelling exercise — there are few circumstances
where the choice is canonical. One natural technique to adopt is to choose a func-
tion P that yields good behaviour in practice, an approach known as learning and
discussed in chapter ??.

1One dodge is to assume that there are a very large set of equivalent universes which are the
same today. In some of these worlds, it rains tomorrow and in others it doesn’t; the frequencywith
which it rains tomorrow is the probability. This philosophical fiddle isn’t very helpful in practice,
because we can’t actually measure that frequency by looking at these alternative worlds.
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Figure 7.1. We assume that a single flip of a coin has a probability 0.5 of coming up
heads. If we interpret probability as frequency, then long sequences of coin flips should
almost always have heads appearing about half the time. This plot shows the width of the
interval about 0.5 that contains 95% of the probability for various numbers of repeated
coin flips. Notice that as the sequence gets longer, the interval gets narrower — one is
very likely to observe a frequency of heads in the range [0.43, 0.57] for 170 flips of a coin
with probability 0.5 of coming up heads.

7.2 Probability in Continuous Spaces

Much of the discussion above transfers quite easily to a continuous space, as long
as we are careful about events. The difficulty is caused by the “size” of continuous
spaces — there are an awful lot of numbers between 1.0 and 1.00000001, one for each
number between 1.0 and 2.0. For example, if we are observing noise — perhaps by
measuring the voltage across the terminals of a warm resistor — the noise will very
seldom take the value 1 exactly. It is much more helpful to consider the probability
that the value is in the range 1 to 1 + δ, for δ a small step.

7.2.1 Event Structures for Continuous Spaces

This observation justifies using events that look like intervals or boxes for continuous
spaces. Given a space D, our space of events will be a set F with the following
properties:

• The empty set is in F and so is D.

• Closure under finite intersections: if Si is a finite collection of subsets, and
each Si ∈ F then ∩iSi ∈ F .
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A friend with a good reputation for probity and no obvious need for money
draws a coin from a pocket, and offers to bet with you on whether it comes up
heads or tails — your choice of face. What probability do you ascribe to the
event that it comes up heads?
Now an acquaintance draws a coin from a pocket and offers a bet: he’ll pay
you 15 dollars for your stake of one dollar if the coin comes up heads. What
probability do you ascribe to the event that it comes up heads?
Finally you encounter someone in a bar who (it emerges) has a long history
of disreputable behaviour and an impressive conviction record. This person
produces a coin from a pocket and offers a bet: you pay him 1000 dollars for
his stake of one dollar if it lands on its edge and stands there. What probability
do you ascribe to the event that it lands on its edge and stands there?
You have to choose your answer for these cases — that’s why it’s subjective —
but you could lose a lot of money learning that the answer in the second case
is going to be pretty close to zero and in the third case is pretty close to one.

Example 7.11: Assigning P functions to two coins from two different sources,
using subjective probability.

• Closure under finite unions: if Si is an finite collection of subsets, and each
Si ∈ F then ∪iSi ∈ F .

• Closure under complements: if S1 ∈ F then S1 = D − S1 ∈ F .

The basic axioms for P apply here too. For D the domain, and A and B events,
we have:

• P (D) = 1

• P (∅) = 0

• for any A, 0 ≤ P (A) ≤ 1

• if A ⊂ B, then P (A) ≤ P (B)

• P (A ∪B) = P (A) + P (B) − P (A ∩B)

The concepts of conditional probability, independence and conditional independence
apply in continuous spaces without modification. For example, the conditional
probability of an event given another event can be defined by

P (A ∩B) = P (A|B)P (B)

and the conditional probability can be thought of as probability restricted to the
set B. Events A and B are independent if and only if

P (A∩B) = P (A)P (B)
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and A and B are conditionally independent given C if and only if

P (A ∩B|C) = P (A|C)P (B|C)

Of course, to build a useful model we need to be more specific about what the events
should be.

7.2.2 Representing P-functions

One difficulty in building probability models on continuous spaces is expressing the
function P in a useful way — it is clearly no longer possible to write down the space
of events and give a value of P for each event. We will deal only with Rn, with
subsets of this space, or with multiple copies of this space.

The Real Line

The set of events for the real line is far too big to write down. All events look like
unions of a basic collection of sets. This basic collection consists of:

• individual points (i.e a);

• open intervals (i.e. (a, b));

• half-open intervals (i.e. (a, b] or [a, b));

• and closed intervals (i.e. [a, b]).

All of these could extend to infinity. The function P can be represented by a
function F with the following properties:

• F (−∞) = 0

• F (∞) = 1

• F (x) is monotonically increasing.

and we interpret F (x) as P ((−∞, x]). The function F is referred to as the cumu-
lative distribution function.
The value of P for all the basic sets described can be extracted from F , with

appropriate attention to limits; for example, P ((a, b]) = F (b) − F (a) and P (a) =
limε←0+(F (a+ ε)− F (a)). Notice that if F is continuous, P (a) = 0.

Higher Dimensional Spaces

In Rn, events are unions of elements of a basic collection of sets, too. This basic
collection consists of a product of n elements from the basic collection for the real
line. A cumulative distribution function can be defined in this case, too. It is
given by a function F with the property that P ({x1 ≤ u1, x2 ≤ u2, . . . xn ≤ un}) =
F (u). This function is constrained by other properties, too. However, cumulative
distribution functions are a somewhat unwieldy way to specify probability.
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7.2.3 Representing P-functions with Probability Density Func-
tions

For the examples we will deal with in continuous spaces, the usual way to specify
P is to provide a function p such that

P (event) =

∫
event

p(u)du

This function is referred to as a probability density function. Not every prob-
ability model admits a density function, but all our cases will. Note that a density
function cannot have a negative value, but that its value could be larger than one.
In all cases, probability density functions integrate to one, i.e.

P (D) =

∫
D

p(u)du = 1

and any non-negative function with this property is a probability density function.
The value of the probability density function at a point represents the probability
of the event that consists of an infinitesimal neighbourhood at that value, i.e.:

p(u1)du = P ({u ∈ [u1, u1 + du]})

Notice that this means that (unless we are willing to be rather open minded about
what constitutes a function), for a probability model on a continuous space that can
be represented using a probability density, the probability of an event that consists
of a finite union of points must be zero. For the examples we will deal with, this
doesn’t create any issues. In fact, it is intuitive, in the sense that we don’t expect
to be able to observe the event that, say, a noise voltage has value 1; instead, we
can observe the event that it lies in some tiny interval — defined by the accuracy
of our measuring equipment — about 1.
Conditional probability, independence and conditional independence are ideas

that can be translated into properties of probability density functions. In their most
useful form, they are properties of random variables.

7.3 Random Variables

Assume that we have a probability model on either a discrete or a continuous
domain, {D,F , P }. Now let us consider a function of the outcome of an experiment.
The values that this function takes on the different elements of D form a new set,
which we shall call D′. There is a structure, with the same formal properties as F
on D′ defined by the values that this function takes on different elements of F —
call this structure F ′.
This function is known as a random variable. We can talk about the probabil-

ity that a random variable takes a particular set of values, because the probability
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structure carries over. In particular, assume that we have a random variable ξ. If
A′ ∈ F ′, there is some A ∈ F such that A′ = ξ(A). This means that

P ({ξ ∈ A′}) = P (A)

The simplest random variable is given by the identity function — this means
that D′ is the same as D, and F ′ is the same as F . For example, the outcome
of a coin flip is a random variable.
Now gamble on the outcome of a coin flip: if it comes up heads, you get a dollar,
and if it comes up tails, you pay a dollar. Your income from this gamble is a
random variable. In particular, D′ = {1,−1} and F ′ = {∅, D′, {1}, {−1}}.
Now gamble on the outcome of two coin flips: if both coins come up the
same, you get a dollar, and if they come up different, you pay a dollar. Your
income from this gamble is a random variable. Again, D′ = {1,−1} and
F ′ = {∅, D′, {1}, {−1}}. In this case, D′ is not the same as D and F ′ is not the
same as F ; however, we can still speak about the probability of getting a dollar
— which is the same as P ({hh, tt}).

Example 7.12: The payoff on a gamble is a random variable.

Density functions are very useful for specifying the probability model for the
value of a random variable. However, they do result in quite curious notations
(probability is a topic that seems to encourage creative use of notation). It is com-
mon to write the density function for a random variable as p. Thus, the distribution
for λ would be written as p(λ) — in this case, the name of the variable tells you
what function is being referred to, rather than the name of the function, which
is always p. Some authors resist this convention, but its use is pretty much uni-
versal in the vision literature, which is why we adopt it. For similar reasons, we
write the probability function for a set of events as P , so that the probability of an
event P (event) (despite the fact that different sets of events may have very different
probability functions).

7.3.1 Conditional Probability and Independence

Conditional probability is a very useful idea for random variables. Assume we
have two random variables, m and n— (for example, the value I read from my rain
gauge asm and the value I read on the neighbour’s as n). Generally, the probability
density function is a function of both variables, p(m, n). Now

p(m1, n1)dmdn = P ({m ∈ [m1, m1 + dm]} and {n ∈ [n1, n1 + dm]})

= P ({m ∈ [m1, m1 + dm]} | {n ∈ [n1, n1 + dm]})P ({n ∈ [n1, n1 + dm]})

We can define a conditional probability density from this by

p(m1, n1)dmdn = P ({m ∈ [m1, m1 + dm]} | {n ∈ [n1, n1 + dm]})P ({n ∈ [n1, n1 + dm]})

= (p(m1|n1)dm)(p(n1)dn)
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Note that this conditional probability density has the expected property, that

p(m|n) =
p(m, n)

p(n)

Independence and conditional independence carry over to random variables and
probability densities without fuss.

We now consider the probability that each of two different coins comes up
heads. In this case, we have two random variables, being the probability that
the first coin comes up heads and the probability that the second coin comes
up heads (it’s quite important to understand why these are random variables
— if you’re not sure, look back at the definition). We shall write these random
variables as p1 and p2. Now the density function for these random variables is
p(p1, p2). Let us assume that there is no dependency between these coins, so
we should be able to write p(p1, p2) = p(p1)p(p2). Notice that the notation is
particularly confusing here; the intended meaning is that p(p1, p2) factors, but
that the factors are not necessarily equal. In this case, a further reasonable
modelling step is to assume that p(p1) is the same function as p(p2) (perhaps
they came from the same minting machine).

Example 7.13: Independence in random variables associated with two coins.

7.3.2 Expectations

The expected value or expectation of a random variable (or of some function
of the random variable) is obtained by multiplying each value by its probability
and summing the results — or, in the case of a continuous random variable, by
multiplying by the probability density function and integrating. The operation is
known as taking an expectation. For a discrete random variable, x, taking the
expectation of x yields:

E[x] =
∑

i∈values

xip(xi)

For a continuous random variable, the process yields

E[x] =

∫
D

xp(x)dx

often referred to as the average, or the mean in polite circles. One model for an
expectation is to consider the random variable as a payoff, and regard the expec-
tation as the average reward, per bet, for an infinite number of repeated bets. The
expectation of a general function g(x) of a random variable x is written as E[g(x)].
The variance of a random variable x is

var(x) = E[x2 − (E(x))2]
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This expectation measures the average deviance from the mean. The variance of
a random variable gives quite a strong indication of how common it is to see a
value that is significantly different from the mean value. In particular, we have the
following useful fact:

P ({| x− E[x] |≥ ε}) ≤
var(x)

ε2
(7.3.1)

The standard deviation is obtained from the variance:

sd(x) =
√
var(x) =

√
E[x2 − (E[x])2]

For a vector of random variables, the covariance is

cov(x) = E[xxt − (E[x]E[x]t)]

This matrix (look carefully at the transpose) is symmetric. Diagonal entries are
the variance of components of x, and must be non-negative. Off-diagonal elements
measure the extent to which two variables co-vary. For independent variables, the
covariance must be zero. For two random variables that generally have different
signs, the covariance can be negative.

You and an acquaintance decide to bet on the outcome of a coin flip. You will
receive a dollar from your acquaintance if the coin comes up heads, and pay
one if it comes up tails. The coin is symmetric.
This means the expected value of the payoff is

1P (heads)− 1P (tails) = 0

The variance of the payoff is one, as is the standard deviation.
Now consider the probability of obtaining 10 dollars in 10 coin flips, with a
fair coin. Our random variable x is the income in 10 coin flips. Equation 7.3.1
yields P ({| x |≥ 10}) ≤ 1

100
, which is a generous upper bound — the actual

probability is of the order of one in a thousand.

Example 7.14: The expected value of gambling on a coin flip.

Expectations of functions of random variables are extremely useful. The no-
tation for expectations can be a bit confusing, because it is common to omit the
density with respect to which the expectation is being taken, which is usually ob-
vious from the context. For example, E[x2] is interpreted as∫

D

x2p(x)dx

7.3.3 Joint Distributions and Marginalization

Assume we have a model describing the behaviour of a collection of random vari-
ables. We will proceed on the assumption that they are discrete, but (as should
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be clear by now) the discussion will work for continuous variables if summing is
replaced by integration. One way to specify this model is to give the probability
distribution for all variables, known in jargon as the joint probability distribu-
tion function— for concreteness, write this as P (x1, x2, . . .xn). If the probability
distribution is represented by its density function, the density function is usually
referred to as the joint probability density function. Both terms are often
abbreviated as “joint.”

Let us assume we have a coin which could be from one of two types; the first
type of coin is evenly balanced; the other is wildly unbalanced. We flip our coin
some number of times, observe the results, and should like to know what type
of coin we have. Assume that we flip the coin once. The set of outcomes is

D = {(heads, I), (heads, II), (tails, I), (tails, II)}

An appropriate event space is:


∅, D,
{(heads, I)}, {(heads, II)},
{(tails, I)}, {(tails, II)},

{(heads, I), (heads, II)} , {(tails, I), (tails, II),} ,
{(tails, I), (heads, I)} , {(tails, II), (heads, II)} ,

{(heads, II), (tails, I), (tails, II)}, {(heads, I), (tails, I), (tails, II)}
{(heads, I), (heads, II), (tails, II)} {(heads, I), (heads, II), (tails, I)}




In this case, assume that we know P (face, type), for each face and type. Now, for
example, the event that the coin shows heads (whatever the type) is represented
by the set

{(heads, I), (heads, II)}

We can compute the probability that the coin shows heads (whatever the type)
as follows

P ({(heads, I), (heads, II)}) = P ((heads, I) ∪ (heads, II))

= P ((heads, I)) + P ((heads, II))

We can compute the probability that the coin is of type I, etc. with similar
ease using the same line of reasoning, which applies quite generally.

Example 7.15: Marginalising out parameters for two different types of coin.

As we have already seen, the value of P for some elements of the event space
can be determined from the value of P for other elements. This means that if we
know

P ({x1 = a, x2 = b, . . . xn = n})

for each possible value of a, b, . . . , n, then we should know P for a variety of other
events. For example, it might be useful to know P ({x1 = a}).
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It should be obvious that the event structure, while useful, is getting unwieldy
as a notation. It is quite common to use a rather sketchy notation to indicate the
appropriate event. For example 15, we would write

P ({(heads, I), (heads, II)}) = P (heads)

for example. In this notation, the argument of example 15 leads to:

P (x2, . . .xn) =
∑

values of x1

P (x1, x2, . . . xn)

This operation is referred to as marginalisation.
A similar argument applies to probability density functions, but the operation is

now integration. Given a probability density function p(x1, x2, . . . , xn), we obtain

p(x2, . . .xn) =

∫
D

p(x1, x2, . . .xn)dx1

7.4 Standard Distributions and Densities

There are a variety of standard distributions that arise regularly in practice. Ref-
erences such as [Evans et al., 2000; Patel et al., 1976] give large numbers; we will
discuss only the most important cases.
The uniform distribution has the same value at each point on the domain.

This distribution is often used to express an unwillingness to make a choice or a
lack of information. On a continuous space, the uniform distribution has a density
function that has the same value at each point. Notice that a uniform density on
an infinite continuous domain isn’t meaningful, because it could not be scaled to
integrate to one.
The binomial distribution applies to situations where one has independent

identically distributed samples from a distribution with two values. For example,
consider drawing n balls from an urn containing equal numbers of black and white
balls. Each time a ball is drawn, its colour is recorded and it is replaced, so that
the probability of getting a white ball — which we denote p — is the same for each
draw. The binomial distribution gives the probability of getting k white balls(

n
k

)
pk(1− p)n−k

The mean of this distribution is np and the variance is np(1− p).
The Poisson distribution applies to spatial models that have uniformity prop-

erties. Assume that points are placed on the real line randomly in such a way that
the expected number of points in an interval is proportional to the length of the
interval. The number of points in a unit interval will have a Poisson distribution
where

P ({N = x}) =
λxe−x

x!
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(where x = 0, 1, 2 . . . and λ > 0 is the constant of proportionality). The mean of
this distribution is λ and the variance is λ

7.4.1 The Normal Distribution

The probability density function for the normal distribution for a single random
variable x is

p(x;µ, σ) =
1

√
2πσ

exp−

{
(x− µ)2

2σ2

}
The mean of this distribution is µ and the standard deviation is σ. This distribution
is widely called a Gaussian distribution in the vision community.
The multivariate normal distribution for d-dimensional vectors x has prob-

ability density function

p(x;µ,Σ) =
1

(2π)
d
2 det(Σ)−1/2

exp−

{
(x−µ)TΣ−1(x− µ)

2

}

The mean of this distribution is µ and the covariance is Σ. Again, this distribution
is widely called a Gaussian distribution in the vision community.
The normal distribution is extremely important in practice, for several reasons:

• The sum of a large number of random variables is normally distributed, pretty
much whatever the distribution of the individual random variables. This fact
is known as the central limit theorem. It is often cited as a reason to model
a collection of random effects with a single normal model.

• Many computations that are prohibitively hard for any other case are easy
for the normal distribution.

• In practice, the normal distribution appears to give a fair model of some kinds
of noise.

• Many probability density functions have a single peak and then die off; a
model for such distributions can be obtained by taking a Taylor series of the
log of the density at the peak. The resulting model is a normal distribution
(which is often quite a good model).

7.5 Probabilistic Inference

Very often, we have a sequence of observations produced by some process whose
mechanics we understand, but which has some underlying parameters that we do
not know. The problem is to make useful statements about these parameters. For
example, we might observe the intensities in an image, which are produced by the
interaction of light and surfaces by principles we understand; what we don’t know
— and would like to know — are such matters as the shape of the surface, the
reflectance of the surface, the intensity of the illuminant, etc. Obtaining some
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representation of the parameters from the data set is known as inference. There
is no canonical inference scheme; instead, we need to choose some principle that
identifies the most desirable set of parameters.

7.5.1 The Maximum Likelihood Principle

A general inference strategy known as maximum likelihood estimation, can be
described as

Choose the world parameters that maximise the probability of the mea-
surement observed

In the general case, we are choosing

argmaxP (measurements|parameters)

(where the maximum is only over the world parameters because the measurements
are known, and argmax means “the argument that maximises”). In many prob-
lems, it is quite easy to specify the measurements that will result from a particular
setting of model parameters — this means that P (measurements|parameters), often
referred to as the likelihood, is easy to obtain. This can make maximum likelihood
estimation attractive.

We return to example 15. Now assume that we know some conditional proba-
bilities. In particular, the unbiased coin has P (heads|I) = P (tails|I) = 0.5,
and the biased coin has P (tails|II) = 0.2 and P (heads|II) = 0.8.
We observe a series of flips of a single coin, and wish to know what type of coin
we are dealing with. One strategy for choosing the type of coin represented
by our evidence is to choose either I or II, depending on whether P (side|I) >
P (side|II). For example, if we observe four heads and one tail in sequence, then
P (hhhht|II) = (0.8)40.2 = 0.08192 and P (hhhht|I) = 0.03125, and we choose
type II.

Example 7.16: Maximum likelihood inference on the type of a coin from its be-
haviour.

Maximum likelihood is often an attractive strategy, because it can admit quite
simple computation. A classical application of maximum likelihood estimation in-
volves estimating the parameters of a normal distribution from a set of samples of
that distribution (example 17).

7.5.2 Priors, Posteriors and Bayes’ rule

In example 16, our maximum likelihood estimate incorporates no information about
P (I) or P (II) — which can be interpreted as how often coins of type I or type II
are handed out, or as our subjective degree of belief that we have a coin of type I
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Assume that we have a set of n samples — the i’th of which is xi — that
are known to be independent and to have been drawn from the same normal
distribution. The likelihood of our sample is

P (sample|µ, σ) = L(x1, . . . xn;µ, σ)

=
∏
i

p(xi;µ, σ) =
∏
i

1
√
2πσ

exp

(
−
(xi − µ)2

2σ2

)

Working with the log of the likelihood will remove the exponential, and not
change the position of the maximum. For the log-likelihood, we have

Q(x1, . . .xn;µ, σ) = −
∑
i

(xi − µ)2

2σ2
− n(

1

2
log 2 +

1

2
logπ + log σ)

and we want the maximum with respect to µ and σ. This must occur when the
derivatives are zero, so we have

∂Q

∂µ
= 2

∑
i

(xi − µ)

2σ2
= 0

and a little shuffling of expressions shows that this maximum occurs at

µ =

∑
i xi

n

Similarly
∂Q

∂σ
=

∑
i(xi − µ)

2

σ3
−
n

σ
= 0

and this maximum occurs at

σ =

√∑
i(xi − µ)

2

n

Note that this estimate of σ is biased, in that its expected value is σ(n/(n−1))
and it is more usual to use (1/(n− 1))

√∑
i(xi − µ)

2 as an estimate.

Example 7.17: Estimating the parameters of a normal distribution from a series
of independent samples from that distribution.

or of type II before we flipped the coin. This is unfortunate, to say the least; for
example, if coins of type II are rare, we would want to see an awful lot of heads
before it would make sense to infer that our coin is of this type. Some quite simple
algebra suggests a solution.
Recall that P (A,B) = P (A|B)P (B). This simple observation gives rise to an
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innocuous looking identity for reversing the order in a conditional probability:

P (B|A) =
P (A|B)P (B)

P (A)

This is widely referred to as Bayes’ theorem or Bayes’ rule.
Now the interesting property of Bayes’ rule is that it tells us which choice of

parameters is most probable, given our model and our prior beliefs. Rewriting
Bayes’ rule gives

P (parameters|measurements) =
P (measurements|parameters)P (parameters)

P (measurements)

The term P (parameters) is referred to as the prior (it describes our knowledge of
the world before measurements have been taken). The term P (parameters|data) is
usually referred to as the posterior (it describes the probability of various models
after measurements have been taken). P (data) can be computed by marginalisation
(which requires computing a high dimensional integral, often a nasty business) or
for some problems can be ignored. As we shall see in following sections, attempting
to use Bayes’ rule can result in difficult computations — that integral being one —
because posterior distributions often take quite unwieldy forms.

7.5.3 Bayesian Inference

The Bayesian philosophy is that

all information about the world is captured by the posterior.

The first reason to accept this view is that the posterior is a principled combination
of prior information about the world and a model of the process by which measure-
ments are generated — i.e. there is no information missing from the posterior, and
the information that is there, is combined in a proper manner. The second reason
is that the approach appears to produce very good results. The great difficulty is
that computing with posteriors can be very difficult — we will encounter various
mechanisms for computing with posteriors in following sections.
For example, we could use the study of physics in the last few chapters to get

expressions relating pixel values to the position and intensity of light sources, the
reflectance and orientation of surfaces, etc. Similarly, we are likely to have some
beliefs about the parameters that have nothing to do with the particular values of
the measurements that we observe. We know that albedos are never outside the
range [0, 1]; we expect that illuminants with extremely high exitance are uncommon;
and we expect that no particular surface orientation is more common than any other.
This means that we can usually cobble up a reasonable choice of prior.

MAP Inference

An alternative to maximum likelihood inference is to infer a state of the world that
maximises the posterior:
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Choose the world parameters that maximise the conditional probability
of the parameters, conditioned on the measurements taking the observed
values

This approach is known as maximum a posteriori (or MAP) reasoning.

Assume that we have three flips of the coin, and would like to determine whether
it has type I or type II. We know that the mint has 3 machines that produce
type I coins and 1 machine that produces type II coins, and there is no reason to
believe that these machines run at different rates. We therefore assign P (I) =
0.75 and P (II) = 0.25. Now we observe three heads, in three consecutive flips.
The value of the posterior for type I is:

P (I|hhh) =
P (hhh|I)P (I)

P (hhh)

=
P (h|I)3P (I)

P (hhh, I) + P (hhh, II)

=
P (h|I)3P (I)

P (hhh|I)P (I) + P (hhh|II)P (II)

=
0.530.75

0.530.75 + 0.830.25
= 0.422773

By a similar argument, the value of the posterior for type II is 0.577227. An
MAP inference procedure would conclude the coin is of type II.

Example 7.18: Determining the type of a coin using MAP inference.

The denominator in the expression for the posterior can be quite difficult to
compute, because it requires a sum over what is potentially a very large number of
elements (imagine what would happen if there were many different types of coin).
However, knowing this term is not crucial if we wish to isolate the element with the
maximum value of the posterior, because it is a constant. Of course, if there are
a very large number of events in the discrete space, finding the world parameters
that maximise the posterior can be quite tricky.

The Posterior as an Inference

We have argued that choosing parameters that maximise the posterior is a useful
inference mechanism. But, as figure 7.2 indicates, the posterior is good for other
uses as well. This figure plots the posterior distribution on the probability that a
coin comes up heads, given the result of some number of flips. In the figure, the
posterior distributions indicate not only the single “best” value for the probability
that a coin comes up heads, but also the extent of the uncertainty in that value. For
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Assume we have a coin which comes from a mint which has a continuous control
parameter, λ, which lies in the range [0, 1]. This parameter gives the probability
that the coin comes up heads, so P (heads|λ) = λ. We know no reason to prefer
any one value of λ to any other, so as a prior probability distribution for λ we
use the uniform distribution so p(λ) = 1.
Assume we flip the coin twice, and observe heads twice; what do we know about
λ? All our knowledge is captured by the posterior, which is

P (λ ∈ [x, x+ dx]|hh)

dx

we shall write this expression as p(λ|hh). We have

p(λ|hh) =
p(hh|λ)p(λ)

p(hh)

=
p(hh|λ)p(λ)∫ 1

0
p(hh|λ)p(λ)dλ

=
λ2p(λ)∫ 1

0
p(hh|λ)p(λ)dλ

= 3λ2

It is fairly easy to see that if we flip the coin n times, and observe k heads and
n− k tails, we have

p(λ|k heads and n− k tails) ∝ cλk(1− λ)n−k

Example 7.19: Determining the probability a coin comes up heads from the out-
come of a sequence of flips.

example, inferring a value of this probability after two coin flips leads to a value that
is not particularly reliable — the posterior is a rather flat function, and there are
many different values of the probability with about the same value of the posterior.
Possessing this information allows us to compare this evidence with other sources
of evidence about the coin.
Bayesian inference is a framework within which it is particularly easy to combine

various types of evidence, both discrete and continuous. It is often quite easy to set
up the sums.

Bayesian Model Selection

The crucial virtue of Bayesian inference is the accounting for uncertainty shown
in examples 20 and 21. We have been able to account for an occasionally un-
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Figure 7.2. On the left, the value of the posterior density for the probability that a coin
will come up heads, given an equal number of heads and tails are observed. This posterior
is shown for different numbers of observations. With no evidence, the posterior is the prior;
but as the quantity of evidence builds up, the posterior becomes strongly peaked — this
is because one is very unlikely to observe a long sequence of coin flips where the frequency
of heads is very different from the probability of obtaining a head. On the right, a similar
plot, but now for the case where every flip comes up heads. As the number of flips builds
up, the posterior starts to become strongly peaked near one. This overwhelming of the
prior by evidence is a common phenomenon in Bayesian inference.

truthful informant and a random measurement; when there was relatively little
contradictory evidence from the coin’s behaviour, our process placed substantial
weight on the informant’s testimony, but when the coin disagreed, the informant
was discounted. This behaviour is highly attractive, because we are able to combine
uncertain sources of information with confidence.
Example 22 shows how to tell whether the informant of examples 20 and 21 is

telling the truth or not, given the observations. A useful way to think about this
example is to regard it as comparing two models (as opposed to the value of a binary
parameter within one model). One model has a lying informant, and the other has
a truthful informant. The posteriors computed in this example compare how well
different models explain a given data set, given a prior on the models. This is a
very general problem — usually called model selection — with a wide variety of
applications in vision:

• Recognition: Assume we have a region in an image, and an hypothesis that
an object might be present in that region at a particular position and orienta-
tion (the hypothesis will have been obtained using methods from section ??,
which aren’t immediately relevant). Is there an object there or not? A prin-
cipled answer involves computing the posterior over two models — that the
data was obtained from noise, or from the presence of an object.

• Are these the same? Assume we have a set of pictures of surfaces we want
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We use the basic setup of example 19. Assume you have a contact at the
coin factory, who will provide a single estimate of λ. Your contact has poor
discrimination, and can tell you only whether λ is low, medium or high (i.e
in the range [0, 1/3], (1/3, 2/3) or [2/3, 1]). You expect that a quarter of the
time your contact, not being habitually truthful, will simply guess rather than
checking how the coin machine is set. What do you know about λ after a single
coin flip, which comes up heads, if your contact says high? We need

p(λ|high, heads) =
p(high, heads|λ)p(λ)

p(high, heads)

∝ p(high, heads|λ)p(λ)

The interesting modelling problem is in p(high, heads|λ). This is

p(high, heads|λ) = p(high, heads|λ, truth = 1)p(truth = 1)

+p(high, heads|λ, truth = 0)p(truth = 0)

= p(high, heads|λ, truth = 1)p(truth = 1)

+p(heads|λ, truth = 0)p(high|λ, truth = 0)p(truth = 0)

Now from the details of the problem

p(truth = 1) = 0.75

p(truth = 0) = 0.25

p(heads|λ, truth = 0) = λ

p(high|λ, truth = 0) =
1

3

and the term to worry about is p(high, heads|λ, truth = 1). This term reflects
the behaviour of the coin and the informant when the informant is telling the
truth; in particular, this term must be zero for λ ∈ [0, 2/3), because in this
case λ is not high, so we never see a truthful report of high with λ in this
range. For λ in the high range, this term must be λ, because now it is the
probability of getting a head with a single flip. Performing the computation of
P (λ|high, heads), we obtain the posterior graphed in figure 7.3.

Example 7.20: Determining the type of a coin from a sequence of flips, incorpo-
rating information from an occasionally untruthful informant.

to compare. For example, we might want to know if they are the same colour,
which would be difficult to answer directly if we didn’t know the illuminant.
A principled answer involves computing the posterior over two models — that
the data was obtained from one surface, or from two (or more).



196 An Introduction to Probability Chapter 7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

Figure 7.3. On the left, the posterior probability density for the probability a coin comes
up heads, given a single flip that shows a head and a somewhat untruthful informant who
says high, as in example 20. In the center, a posterior probability density for the same
problem, but now assuming that we have seen two tails and the informant says high (a
sketch of the formulation appears in example 21). On the right, a posterior probability
density for the case when the coin shows five tails and the informant says high. As the
number of tails builds up, the weight of the posterior in the high region goes down, strongly
suggesting the informant is lying.

Now consider what happens in example 20 if the contact says high and we see
two tails. We need

p(λ|high, tt) =
p(high, tt|λ)p(λ)

p(high, tt)

∝ p(high, tt|λ)p(λ)

Now p(high, tt|λ) is

p(high, tt|λ) = p(high, tt|λ, truth = 1)P (truth = 1)

+p(high, tt|λ, truth = 0)P (truth = 0)

= p(high, tt|λ, truth = 1)P (truth = 1)

+p(tt|λ, truth = 0)p(high|λ, truth = 0)P (truth = 0)

Now p(tt|λ, truth = 0) = (1 − λ)2 and the interesting term is
p(high, tt|λ, truth = 1). Again, this term reflects the behaviour of the coin
and the informant when the informant is telling the truth; in particular, this
term must be zero for λ ∈ [0, 2/3), because in this case λ is not high. For λ in
the high range, this term must be (1 − λ)2, because now it is the probability
of getting two tails with two flips. Performing the computation, we obtain the
posterior graphed in figure 7.3.

Example 7.21: Determining the type of a coin from a sequence of flips, incorpo-
rating information from an occasionally untruthful informant — II.
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We now need to know whether our informant lied to us. Assume we see a single
head and an informant saying high, again. The relevant posterior is:

P (truth=0|head, high) =
P (head, high|truth=0)P (truth=0)

P (head, high)

=

∫
P (λ, head, high|truth=0)P (truth=0)dλ

P (head, high)

=

∫
P (head, high|λ, truth=0)P (λ)P (truth=0)dλ

P (head, high)

=
1

1 +

∫
P(head,high|λ,truth=1)P(λ)dλP(truth=1)∫
P(head,high|λ,truth=0)P(λ)dλP(truth=0)

Example 7.22: Is the informant lying?

• What camera was used? Assume we have a sequence of pictures of a world.
With a certain amount of work, it is usually possible to infer a great deal of
information about the shape of the objects from such a sequence (section ??).
The algorithms involved differ quite sharply, depending on the camera model
adopted (i.e. perspective, orthographic, etc.). Furthermore, adopting the
wrong camera model tends to lead to poor inferences. Determining the right
camera model to use is quite clearly a model selection problem.

• How many segments are there? We would like to break an image into
coherent components, each of which is generated by a probabilistic model.
How many components should there be? (section 18.3).

The solution is so absurdly simple in principle (in practice, the computations can
be quite nasty) that it is easy to expect something more complex, and miss it. We
will write out Bayes’ rule specialised to this case to avoid this:

P (model|data) =
P (data|model)

P (data)

=

∫
P (data|model, parameters)P (parameters)d{parameters}

P (data)

∝

∫
P (data|model, parameters)P (parameters)d{parameters}

which is exactly the form used in the example. Notice that we are engaging in
Bayesian inference here, too, and so can report the MAP solution or report the whole
posterior. The latter can be quite helpful when it is difficult to distinguish between
models. For example, in the case of the dodgy informant, if P (truth=0|data) =
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0.5001, it may be undesirable to conclude the informant is lying — or at least,
to take drastic action based on this conclusion. The integral is potentially rather
nasty, which means that the method can be quite difficult to use in practice. Useful
references include [Carlin and Louis, 1996; Gelman et al., 1995; Gamerman, 1997;
Newman and Barkema, 1998; Evans and Swartz, 2000].

7.5.4 Open Issues

In the rest of the book, we will have regular encounters with practical aspects of
the Bayesian philosphy. Firstly, although the posterior encapsulates all information
available about the world, we very often need to make discrete decisions — should
we shoot it or not? Typically, this decision making process requires some accounting
for the cost of false positives and false negatives.
Secondly, how do we build models? There are three basic sources of likelihood

functions and priors:

• Judicious design: it is possible to come up with models that are too hard to
handle computationally. Generally, models on very high-dimensional domains
are difficult to deal with, particularly if there is a great deal of interdependence
between variables. For some models, quite good inference algorithms are
known. The underlying principle of this approach is to exploit simplifications
due to independence and conditional independence.

• Physics: particularly in low-level vision problems, likelihood models follow
quite simply from physics. It is hard to give a set of design rules for this
strategy. It has been used with some success on occasion (see, for exam-
ple, [Forsyth, 1999]).

• Learning: a poor choice of model results in poor performance, and a good
choice of model results in good performance. We can use this observation to
tune the structure of models if we have a sufficient set of data. We describe
aspects of this strategy in chapter 26 and in chapter 25.

Finally, the examples above suggest that posteriors can have a nasty functional
form. This intuition is correct, and there is a body of technique that can help handle
ugly posteriors which we explore as and when we need it (see also [Carlin and Louis,
1996; Gelman et al., 1995; Gamerman, 1997; Newman and Barkema, 1998]).

7.6 Discussion

Our discussion of probability is pretty much straight down the line. We have dis-
cussed the subject in terms of σ-algebras (implicitly!) because that is the right
way to think about it. It is important to keep in mind that the foundations of
probability are difficult, and that it takes considerable sophistication to appreci-
ate purely axiomatic probability. Very little real progress appears to have come
from asking “what does probability mean?”; instead, the right question is what it
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can do. The reason probabilistic inference techniques lie at the core of any solu-
tion to serious vision problems is that probability is a good book-keeping technique
for keeping track of uncertainty. Good textbooks include [Carlin and Louis, 1996;
Gelman et al., 1995; Gamerman, 1997; Newman and Barkema, 1998].
Inference is hard, however. The great difficulty in applying probability is, in our

opinion, arriving at a model that is both sufficiently accurate and sufficiently com-
pact to allow useful inference. This isn’t at all easy. A naive Bayesian view of vision
— write out a posterior using the physics of illumination and reflection, guess some
reasonable priors, and then study the posterior — very quickly falls apart. In terms
of what representation should this posterior be written? and how can we extract in-
formation from the posterior? These questions are exciting research topics. A num-
ber of advanced inference techniques appear in the vision literature, including expec-
tation maximisation (which we shall see in chapter 18; see also [Dellaert et al., 2000;
Wang and Adelson, 1993; Wang and Adelson, 1994; Adelson and Weiss, 1996;
Adelson and Weiss, 1995]); sampling methods (for image reconstruction [Geman
and Geman, 1984]; for recognition [Zhu et al., 2000; Ioffe and Forsyth, 1999]; for
structure from motion [Forsyth et al., 1999; Dellaert et al., 2000]; and for tex-
ture synthesis [Zhu et al., 1998]); dynamic programming (which we shall see in
chapter 26; see also [Felzenszwalb and Huttenlocher, 2000; Ioffe and Forsyth, 1999;
Papademetris and Belhumeur, 1996; Belhumeur and Mumford, 1992]); independent
components analysis (for separating lighting and reflections [Farid and Adelson,
1999]); and various inference algorithms for Bayes nets (e.g. [Binford et al., 1989;
Mann and Binford, 1992; Kumar and Desai, 1996; Buxton and Gong, 1995; Krebs
et al., 1998]).
The examples in this chapter are all pretty simple, so as to expose the line of

reasoning required. We do some hard examples below. Building and handling com-
plex examples is still very much a research topic; however, probabilistic reasoning
of one form or another is now pervasive in vision, which is why it’s worth studying.

Exercises

1. The event structure of section 7.1 did not explicitly include unions. Why does
the text say that unions are here?

2. In example 1, if P (heads) = p, what is P (tails)?

3. In example 10 show that if P (hh) = p2 then P ({ht, th}) = 2p(1 − p) and
P (tt) = (1− p)2.

4. In example 10 it says that

P (k heads and n − k tails in n flips) =

(
n
k

)
pk(1 − p)n−k

Show that this is true.
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5. A careless study of example 10 often results in quite muddled reasoning, of
the following form: I have bet on heads successfully ten times, therefore I
should bet on tails next. Explain why this muddled reasoning — which has
its own name, the gambler’s fallacy in some circles, anti-chance in others
— is muddled.

6. Confirm the count of parameters in example 8.

7. In example 19, what is c?

8. As in example 16, you are given a coin of either type I or type II; you do not
know the type. You flip the coin n times, and observe k heads. You will infer
the type of the coin using maximum likelihood estimation. for what values of
k do you decide the coin is of type I?

9. Compute P (truth|high, coin behaviour) for each of the three cases of exam-
ple 21. You’ll have to estimate an integral numerically.

10. In example 22, what is the numerical value of the probability that the infor-
mant is lying, given that the informant said high and the coin shows a single
tail? What is the numerical value of the probability that the informant is
lying, given that the informant said high and the coin shows seven tails in
eight flips?

11. The random variable x = (x1, x2, . . . xn)
T has a normal distribution. Show

that the random variable x̂ = (x2, . . . , xn)
T has a normal distribution (which

is obtained by marginalizing the density). A good way to think about this
problem is to consider the mean and covariance of x̂, and reason about the
behaviour of the integral; a bad way is to storm ahead and try and do the
integral.

12. The random variable p has a normal distribution. Furthermore, there are
symmetric matrices A, B and C and vectors D and E such that P (d|p) has
the form

− logP (d|p) = pTAp+ pTBd+ dT Cd+ pTD + dTE +C

(C is the log of the normalisation constant). Show that P (p|d) is a normal
distribution for any value of d. This has the great advantage that inference is
relatively easy.

13. x is a random variable with a continuous cumulative distribution function
F (x). Show that u = F (x) is a random variable with a uniform density on
the range [0, 1]. Now use this fact to show that w = F−1(u) is a random
variable with cumulative distribution function F .
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Chapter 8

LINEAR FILTERS

Pictures of zebras and of dalmatians have black and white pixels, and in about the
same number, too. The differences between the two have to do with the character-
istic appearance of small groups of pixels, rather than individual pixel values. In
this chapter, we introduce methods for obtaining descriptions of the appearance of
a small group of pixels.
Our main strategy will be to use weighted sums of pixel values, using different

patterns of weights to find different image patterns. This process, despite its sim-
plicity, is extremely useful. It allows us to smooth noise in images, and to find edges
and other image patterns. We discuss noise in some detail. We also describe some
useful non-linear functions of image neighbourhoods.

8.1 Linear Filters and Convolution

Many important effects can be modelled with a quite simple model. Construct a
new array, the same size as the image. Fill each location of this new array with a
weighted sum of the pixel values from the locations surrounding the corresponding
location in the image, using the same set of weights each time. Different sets of
weights could be used to represent different processes. One example is computing
a local average, taken over a fixed region. We could average all pixels within a
2k + 1 × 2k + 1 block of the pixel of interest. For an input image F , this gives an
output

Rij =
1

(2k + 1)2

u=i+k∑
u=i−k

v=j+k∑
v=j−k

Fuv

The weights in this example are simple (each pixel is weighted by the same constant),
but we could use a more interesting set of weights. For example, we could use a set
of weights that was large at the center and fell off sharply as the distance from the
center increased to model the kind of smoothing that occurs in a defocussed lens
system.
Whatever the weights chosen, the output of this procedure is shift-invariant—

meaning that the value of the output depends on the pattern in an image neighbour-
hood, rather than the position of the neighbourhood — and linear— meaning that

203
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the output for the sum of two images is the same as the sum of the outputs obtained
for the images separately. The procedure itself is known as linear filtering.

8.1.1 Convolution

We introduce some notation at this point. The pattern of weights used for a linear
filter is usually referred to as the kernel of the filter. The process of applying the
filter is usually referred to as convolution. There is a catch: for reasons that will
appear later (section 8.2.1), it is convenient to write the process in a non-obvious
way. In particular, given a filter kernel H, the convolution of the kernel with image
F is an image R. The i, j’th component of R is given by:

Rij =
∑
u,v

Hi−u,j−vFu,v

We carefully avoid inserting the range of the sum; in effect, we assume that the
sum is over a large enough range of u and v that all non-zero values are taken into
account. Furthermore, we assume that any values that haven’t been specified are
zero; this means that we can model the kernel as a small block of non-zero values
in a sea of zeros. We will use this convention — which is common — regularly in
what follows.

Example: Smoothing by Averaging

Images typically have the property that the value of a pixel is usually similar to
that of its neighbour. Assume that the image is affected by noise of a form where
we can reasonably expect that this property is preserved. For example, there might
be occasional dead pixels; or small random numbers with zero mean might have
been added to the pixel values. It is natural to attempt to reduce the effects of this
noise by replacing each pixel with a weighted average of its neighbours, a process
often referred to as smoothing or blurring.
Replacing each pixel with an unweighted average computed over some fixed

region centered at the pixel is the same as convolution with a kernel that is a block
of ones, multiplied by a constant. You can (and should) establish this point by close
attention to the range of the sum. This process is a poor model of blurring — its
output does not look like that of a defocussed camera (figure 8.1. The reason is
clear. Assume that we have an image in which every point but the center point was
zero, and the center point was one. If we blur this image by forming an unweighted
average at each point, the result will look like a small bright box — but this is not
what defocussed cameras do. We want a blurring process that takes a very small
bright dot to a circularly symmetric region of blur, brighter at the center than at
the edges and fading slowly to darkness. As figure 8.1 suggests, a set of weights of
this form produces a much more convincing defocus model.
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Figure 8.1. Although a uniform local average may seem to give a good blurring model,
it generates effects that are not usually seen in defocussing a lens. The images above
compare the effects of a uniform local average with weighted average. The image at the
top shows a view of grass. On the left in the second row, the result of blurring this image
using a uniform local model and on the right, the result of blurring this image using a
set of Gaussian weights. The degree of blurring in each case is about the same, but the
uniform average produces a set of narrow vertical and horizontal bars — an effect often
known as ringing. The bottom row shows the weights used to blur the image, themselves
rendered as an image; bright points represent large values and dark points represent small
values (in this example the smallest values are zero).
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Figure 8.2. The symmetric Gaussian kernel in 2D. This view shows a kernel scaled so
that its sum is equal to one; this scaling is quite often omitted. The kernel shown has
σ = 1. Convolution with this kernel forms a weighted average which stresses the point at
the center of the convolution window, and incorporates little contribution from those at
the boundary. Notice how the Gaussian is qualitatively similar to our description of the
point spread function of image blur; it is circularly symmetric, has strongest response in
the center, and dies away near the boundaries.

Example: Smoothing with a Gaussian

A good formal model for this fuzzy blob is the symmetric Gaussian kernel

Gσ(x, y) =
1

2πσ2
exp

(
−
(x2 + y2)

2σ2

)

illustrated in figure 8.2. σ is referred to as the standard deviation of the Gaussian
(or its “sigma”!); the units are inter-pixel spaces, usually referred to as pixels. The
constant term makes the integral over the whole plane equal to one and is often
ignored in smoothing applications. The name comes from the fact that this kernel
has the form of the probability density for a 2D normal (or Gaussian) random
variable with a particular covariance.
This smoothing kernel forms a weighted average that weights pixels at its center

much more strongly than at its boundaries. One can justify this approach qualita-
tively: smoothing suppresses noise by enforcing the requirement that pixels should
look like their neighbours; and by down-weighting distant neighbours in the aver-
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age, we can ensure that the requirement that a pixel look like its neighbours is less
strongly imposed for distant neighbours. A qualitative analysis gives:

• if standard deviation of the Gaussian is very small — say smaller than one
pixel — the smoothing will have very little effect, because the weights for all
pixels off the center will be very small;

• for a larger standard deviation, the neighbouring pixels will have larger weights
in the weighted average, which means in turn that the average will be strongly
biased toward a consensus of the neighbours — this will be a good estimate
of a pixel’s value, and the noise will largely disappear, at the cost of some
blurring;

• finally, a kernel that has very large standard deviation will cause much of the
image detail to disappear along with the noise.

Figure 8.3 illustrates these phenomena. You should notice that Gaussian smoothing
can be effective at suppressing noise.
In applications, a discrete smoothing kernel is obtained by constructing a 2k +

1× 2k + 1 array whose i, j’th value is

Hij =
1

2πσ2
exp

(
−
((i − k − 1)2 + (j − k − 1)2)

2σ2

)
Notice that some care must be exercised with σ; if σ is too small, then only one
element of the array will have a non-zero value. If σ is large, then k must be large,
too, otherwise we will be ignoring contributions from pixels that should contribute
with substantial weight.

Example: Derivatives and Finite Differences

Image derivatives can be approximated using another example of a convolution
process. Because

∂f

∂x
= lim
ε→0

f(x + ε, y)− f(x, y)

ε

we might estimate a partial derivative as a symmetric finite difference:

∂h

∂x
≈ hi+1,j − hi−1,j

This is the same as a convolution, where the convolution kernel is

H =



0 0 0
1 0 −1
0 0 0




Notice that this kernel could be interpreted as a template — it will give a large
positive response to an image configuration that is positive on one side and negative
on the other, and a large negative response to the mirror image.
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Original Smoothed at σ=1 Smoothed at σ=2

Figure 8.3. In salt-and-pepper noise, we choose pixels uniformly at random, and uni-
formly at random make them either black or white. Gaussian smoothing is particularly
effective at suppressing the effects of salt-and-pepper noise. The top row shows an image,
and versions smoothed by a symmetric Gaussian with σ two pixels and four pixels. The
images in the second row are obtained by corrupting the images in the top row by this
noise model and then smoothing the result. Notice that, as the smoothing increases, detail
is lost, but the effects of the noise diminish, too — the smoothed versions of the noisy
images look very much like the smoothed version of the noise-free images.

As figure 8.5 suggests, finite differences give a most unsatisfactory estimate of
the derivative. This is because finite differences respond strongly (i.e. have an
output with large magnitude) at fast changes, and fast changes are characteristic
of noise. Roughly, this is because image pixels tend to look like one another. For
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Figure 8.4. Finite differences are one way to obtain an estimate of a derivative. The
image at the left shows a detail from a picture of a zebra. The center image shows the
partial derivative in the y-direction — which responds strongly to horizontal stripes and
weakly to vertical stripes — and the right image shows the partial derivative in the x-
direction — which responds strongly to vertical stripes and weakly to horizontal stripes.
In the derivative figures, a mid grey level is a zero value, a dark grey level is a negative
value, and a light grey level is a positive value.

Figure 8.5. Finite differences respond strongly to noise. The image at top left shows
a detail from a picture of a zebra; the next image in the row is obtained by adding a
random number with zero mean and normal distribution (σ = 0.03) to each pixel; and
the third image is obtained by adding a random number with zero mean and normal
distribution (σ = 0.09) to each pixel. The second row shows the partial derivative in the
x-direction of the image at the head of the row. Notice how strongly the differentiation
process emphasizes image noise — the derivative figures look increasingly grainy. In the
derivative figures, a mid grey level is a zero value, a dark grey level is a negative value,
and a light grey level is a positive value.

example, if we had bought a discount camera with some pixels that were stuck
at either black or white, the output of the finite difference process would be large
at those pixels because they will, in general, be substantially different from their
neighbours. All this suggests that some form of smoothing is appropriate before
differentiation; the details appear in section 9.2.
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8.2 Shift invariant linear systems

Most imaging systems have, to a good approximation, three significant properties:

• Superposition: we expect that

R(f + g) = R(f) +R(g)

that is, the response to the sum of stimuli is the sum of the individual re-
sponses.

• Scaling: the response to a zero input is zero. Taken with superposition, we
have that the response to a scaled stimulus is a scaled version of the response
to the original stimulus, i.e.

R(kf) = kR(f)

A device that exihibits superposition and scaling is linear.

• Shift invariance: in a shift invariant system, the response to a translated
stimulus is just a translation of the response to the stimulus. This means that,
for example, if a view of a small light aimed at the center of the camera is a
small bright blob, then if the light is moved to the periphery, we should see
the same small bright blob, only translated.

A device that is linear and shift invariant is known as a shift invariant linear
system, or often just as a system.
The response of a shift invariant linear system to a stimulus is obtained by

convolution. We will demonstrate this first for systems that take discrete inputs —
say vectors or arrays — and produce discrete outputs. We then use this to describe
the behaviour of systems which operate on continuous functions of the line or the
plane, and from this analysis obtain some useful facts about convolution.

8.2.1 Discrete Convolution

In the 1D case, we have a shift invariant linear system that takes a vector and
responds with a vector. This case is the easiest to handle, because there are fewer
indices to look after. The 2D case — a system that takes an array, and responds
with an array — follows easily. In each case, we assume that the input and output
are infinite dimensional. This allows us to ignore some minor issues that arise at
the boundaries of the input — we’ll deal with these later (section 8.2.3).

Discrete Convolution in One Dimension

We have an input vector f . For convenience, we will assume that the vector is infi-
nite, and its elements are indexed by the integers (i.e. there is a -1’th element, etc.).
The i’th component of this vector is fi. Now f is a weighted sum of basis elements.
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A convenient basis is a set of elements that have a one in a single component, and
zeros elsewhere. We write

e0 = . . . 0, 0, 0, 1, 0, 0, 0, . . .

(this is a data vector that has a 1 in the zero’th place, and zeros elsewhere). Define
a shift operation, where Shift(f , i) is a vector whose j’th component is the j− i’th
component of f . For example, Shift(e0, 1) has a zero in the first component. Now
we can write

f =
∑
i

fiShift(e0, i)

We write the response of our system to a vector f as

R(f)

Now because the system is shift invariant, we have that

R(Shift(f , k)) = Shift(R(f), k)

Furthermore, because it is linear, we have that

R(kf) = kR(f)

This means that

R(f) = R(
∑
i

fiShift(e0, i))

=
∑
i

R(fiShift(e0, i))

=
∑
i

fiR(Shift(e0, i))

=
∑
i

fiShift(R(e0), i))

This means that to obtain the system’s response to any data vector, we need to
know only its response to e0. This is usually called the system’s impulse response.
Assume that the impulse response can be written as g. We have

R(f) =
∑
i

fiShift(g, i) = g ∗ f

This defines an operation — the 1D, discrete version of convolution — which we
write with a ∗.
This is all very well, but does not give us a particularly easy expression for the

output. If we consider the j’th element of R(f), which we write as Ri, we must
have:

Rj =
∑
i

gj−ifi

which conforms to (and explains the origin of) the form we used in section 8.1.1.
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Discrete Convolution in Two Dimensions

We now use an array of values, and write the i, j’th element of the array D is Dij.
The appropriate analogy to an impulse response is the response to a stimulus that
looks like:

E00 =

. . . . . . . . . . . . . . .

. . . 0 0 0 . . .

. . . 0 1 0 . . .

. . . 0 0 0 . . .

. . . . . . . . . . . . . . .

If G is the response of the system to this stimulus, the same considerations as
for 1D convolution yield a response to a stimulus F that is:

Rij =
∑
u,v

Gi−u,j−vFuv

which we write as

R = G ∗ ∗H

8.2.2 Continuous Convolution

There are shift invariant linear systems that produce a continuous response to a
continuous input; for example, a camera lens takes a set of radiances and produces
another set, and many lenses are approximately shift invariant. A brief study of
these systems will allow us to study the information that is lost by approximating
a continuous function — the incoming radiance values across an image plane — by
a discrete function — the value at each pixel.
The natural description is in terms of the system’s response to a rather unnatural

function — the δ-function, which is not a function in formal terms. We will do the
derivation first in one dimension, to make the notation easier.

Convolution in One Dimension

We will obtain an expression for the response of a continuous shift invariant linear
system from our expression for a discrete system. We can take a discrete input, and
replace each value with a box, straddling the value — this gives a continuous input
function. We will then make the boxes narrower, and consider what happens in the
limit.
Our system takes a function of one dimension and returns a function of one

dimension. Again, we write the response of the system to some input f(x) as R(f);
when we need to emphasize that f is a function, we write R(f(x)). The response
is also a function; occasionally, when we need to emphasize this fact, we will write
R(f)(u). We can express the linearity property in this notation by writing

R(kf) = kR(f)
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(for k some constant) and the shift invariance property by introducing a Shift
operator, which takes functions to functions:

Shift(f, c) = f(u − c)

With this Shift operator, we can write the shift invariance property as:

R(Shift(f, c)) = Shift(R(f), c)

We define the box function as:

boxε(x) =

{
0 abs(x) > ε

2
1 abs(x) < ε

2

The value of boxε(ε/2) does not matter for our purposes. The input function is f(x).
We construct an even grid of points xi, where xi+1 − xi = ε. We now construct a
vector f , whose i’th component (written fi) is f(xi). This vector can be used to
represent the function.
We obtain an approximate representation of f by

∑
i fiShift(boxε, xi) We apply

this input to a shift-invariant linear system; the response is a weighted sum of shifted
responses to box functions. This means that

R(
∑
i

fiShift(boxε, xi)) =
∑
i

R(fiShift(boxε, xi))

=
∑
i

fiR(Shift(boxε, xi))

=
∑
i

fiShift(R(
boxε

ε
ε), xi)

=
∑
i

fiShift(R(
boxε
ε
), xi)ε

(so far, everything has followed our derivation for discrete functions). We now have
something that looks like an approximate integral, if ε→ 0.
We introduce a new device, called a δ-function, to deal with the term boxε/ε.

Define

dε(x) =
boxε(x)

ε

The δ-function is:
δ(x) = lim

ε→0
dε(x)

We don’t attempt to evaluate this limit, so we need not discuss the value of δ(0). One
interesting feature of this function is that for practical shift-invariant linear systems
the response of the system to a δ-function exists and has compact support (i.e.
is zero except on a finite number of intervals of finite length). For example, a good
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model of a δ-function in 2D is an extremely small, extremely bright light. If we
make the light smaller and brighter, while ensuring the total energy is constant, we
expect to see a small but finite spot due to the defocus of the lens. The δ-function
is the natural analogue for e0 in the continuous case.
This means that the expression for the response of the system,∑

i

fiShift(R(
boxε

ε
), xi)ε

will turn into an integral as ε limits to zero. We obtain

R(f) =

∫
{R(δ)(u − x′)} f(x′)dx′

=

∫
g(u − x′)f(x′)dx′

where we have written R(δ) — which is usually called the impulse response of
the system — as g and have omitted the limits of the integral. These integral could
be from −∞ to ∞, but more stringent limits could apply if g and h have compact
support. This operation is called convolution (again), and we write the expression
above as

R(f) = (g ∗ f)

Convolution is symmetric, meaning

(g ∗ h)(x) = (h ∗ g)(x)

Convolution is associative, meaning that

(f ∗ (g ∗ h)) = ((f ∗ g) ∗ h)

This latter property means that we can find a single shift-invariant linear system
that behaves like the composition of two different systems. This will come in useful
when we discuss sampling.

Convolution in Two Dimensions

The derivation of convolution in two dimensions requires more notation — a box
function is now given by boxε2(x, y) = boxε(x)boxε(y); we now have

dε(x, y) =
boxε2(x, y)

ε2

The δ-function is the limit of dε(x, y) function as ε→ 0; and there are more terms
in the sum. All this activity will result in the expression:

R(h)(x, y) =

∫ ∫
g(x − x′, y− y′)h(x′, y′)dxdy

= (g ∗ ∗h)(x, y)
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Where we have used two ∗’s to indicate a two dimensional convolution. Convolution
in 2D is symmetric — that is (g ∗ ∗h) = (h ∗ ∗g) — and associative.
A natural model for the impulse response of two dimensional system is to think

of the pattern seen in a camera viewing a very small, distant light source (which
subtends a very small viewing angle). In practical lenses, this view results in some
form of fuzzy blob, justifying the name point spread function which is often
used for the impulse response of a 2D system. The point spread function of a linear
system is often known as its kernel.

8.2.3 Edge Effects in Discrete Convolutions

In practical systems we cannot have infinite arrays of data. This means that, when
we compute the convolution, we need to contend with the edges of the image; at
the edges, there are pixel locations where computing the value of the convolved
image requires image values that don’t exist. There are a variety of strategies we
can adopt:

• Ignore these locations — this means that we report only values for which
every required image location exists. This has the advantage of probity, but
the disadvantage that the output is smaller than the input — repeated con-
volutions can cause the image to shrink quite drastically.

• Pad the image with constant values — this means that, as we look at
output values closer to the edge of the image, the extent to which the output
of the convolution depends on the image goes down. This is a convenient
trick, because we can ensure that the image doesn’t shrink, but it has the
disadvantage that it can create the appearance of substantial gradients near
the boundary.

• Pad the image in some other way — for example, we might think of the
image as a doubly periodic function, so that, if we have an n×m image, then
column m + 1 — required for the purposes of convolution — would be the
same as column m− 1. This can create the appearance of substantial second
derivative values near the boundary.

8.3 Spatial Frequency and Fourier Transforms

We have used the trick of thinking of a signal g(x, y) an weighted sum of a very
large (or infinite) number of very small (or infinitely small) box functions. This
model emphasizes that a signal is an element of a vector space — the box functions
form a convenient basis, and the weights are coefficients on this basis. We need a
new technique to deal with two related problems, so far left open:

• while it is clear that a discrete image version cannot represent the full infor-
mation in a signal, we have not yet indicated what is lost;
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• it is clear that we cannot shrink an image simply by taking every k’th pixel —
this could turn a checkerboard image all white or all black — and we should
like to know how to shrink an image safely.

All of these problems are related to the presence of fast changes in an image. For
example, shrinking an image is most likely to miss fast effects, because they could
slip between samples; similarly, the derivative is large at fast changes.
These effects can be studied by a change of basis. We will change the basis to be

a set of sinusoids, and represent the signal as an infinite weighted sum of an infinite
number of sinusoids. This means that fast changes in the signal will be obvious,
because they will correspond to large amounts of high frequency sinusoids in the
new basis.

8.3.1 Fourier Transforms

The change of basis is effected by a Fourier Transform. We define the Fourier
transform of a signal g(x, y) to be:

F(g(x, y))(u, v) =

∫ ∞∫
−∞

g(x, y)e−i2π(ux+vy)dxdy

Assume that appropriate technical conditions are true to make this integral exist (it
is sufficient for all moments of g to be finite; a variety of other possible conditions
are available [Bracewell, 1995]). The process takes a complex valued function of x, y
and returns a complex valued function of u, v (images are complex valued functions
with zero imaginary component).
For the moment, fix u and v, and let us consider the meaning of the value of the

transform at that point. The exponential can be rewritten

e−i2π(ux+vy) = cos(2π(ux+ vy)) + i sin(2π(ux+ vy))

These terms are sinusoids on the x, y plane, whose orientation and frequency are
given by u, v. For example, consider the real term, which will be constant when
ux + vy is constant, i.e. along a straight line in the x, y plane whose orientation
is given by tan θ = v/u. The gradient of this term is perpendicular to lines where
ux+ vy is constant, and the frequency of the sinusoid is

√
u2 + v2. These sinusoids

are often referred to as spatial frequency components; a variety are illustrated
in figure 8.6.
The integral should be seen as a dot product. If we fix u and v, the value of the

integral is the dot product between a sinusoid in x and y and the original function.
This is a useful analogy, because dot products measure the “amount” of one vector
in the direction of another.
In the same way, the value of the transform at a particular u and v can be seen

as measuring the “amount” of the sinusoid with given frequency and orientation
in the signal. The transform takes a function of x and y to the function of u and
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Figure 8.6. The real component of Fourier basis elements, shown as intensity images.
The brightest point has value one, and the darkest point has value zero. The domain is
[−1, 1]x[−1,1], with the origin at the center of the image. On the left, (u, v) = (0, .4); in
the center, (u, v) = (1, 2) and on the right (u, v) = (10,−5). These are sinusoids of various
frequencies and orientations, described in the text.

v whose value at any particular (u, v) is the “amount” of that particular sinusoid
in the original function. This view justifies the model of a Fourier transform as a
change of basis.

Linearity

The Fourier transform is linear:

F(g(x, y) + h(x, y)) = F(g(x, y)) + F(h(x, y))

and

F(kg(x, y)) = kF(g(x, y))

The Inverse Fourier Transform

It is useful to be able to recover a signal from its Fourier transform. This is another
change of basis, with the form

g(x, y) =

∫ ∞∫
−∞

F(g(x, y))(u, v)ei2π(ux+vy)dudv

Fourier Transform Pairs

Fourier transforms are known in closed form for a variety of useful cases; a large set
of examples appears in [Bracewell, 1995]. We list a few in table 8.1 for reference.
The last line of table 8.1 contains the convolution theorem; convolution in the
signal domain is the same as multiplication in the Fourier domain. We will use this
important fact several times in what follows (section 11.2.2).
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Function Fourier transform

g(x, y)
∫ ∞∫
−∞
g(x, y)e−i2π(ux+vy)dxdy

∫ ∞∫
−∞
F(g(x, y))(u, v)ei2π(ux+vy)dudv F(g(x, y))(u, v)

δ(x, y) 1

∂f
∂x (x, y) uF(f)(u, v)

0.5δ(x+ a, y) + 0.5δ(x− a, y) cos 2πau

e−π(x
2+y2) e−π(u

2+v2)

box1(x, y)
sinu
u
sin v
v

f(ax, by) F(f)(u/a,v/b)
ab∑∞

i=−∞

∑∞
j=−∞ δ(x− i, y − j)

∑∞
i=−∞

∑∞
j=−∞ δ(u− i, v − j)

(f ∗ ∗g)(x, y) F(f)F(g)(u, v)

f(x − a, y− b) e−i2π(au+bv)F(f)

f(x cos θ − y sin θ, x sin θ + y cos θ) F(f)(u cos θ − v sin θ, u sin θ + v cos θ)

Table 8.1. A variety of functions of two dimensions, and their Fourier transforms.
This table can be used in two directions (with appropriate substitutions for u, v and
x, y), because the Fourier transform of the Fourier transform of a function is the function.
Observant readers may suspect that the results on infinite sums of δ functions contradict
the linearity of Fourier transforms; by careful inspection of limits, it is possible to show
that they do not (see, for example [Bracewell, 1995]).

Phase and Magnitude

The Fourier transform consists of a real and a complex component.

F(g(x, y))(u, v) =

∫ ∫ ∞
−∞
g(x, y) cos(2π(ux+ vy))dxdy +

i

∫ ∫ ∞
−∞
g(x, y) sin(2π(ux+ vy))dxdy

= �(F(g)) + i ∗ �(F(g))
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Figure 8.7. The second image in each row shows the log of the magnitude spectrum
for the first image in the row; the third image shows the phase spectrum, scaled so that
−π is dark and π is light. The final images are obtained by swapping the magnitude
spectra. While this swap leads to substantial image noise, it doesn’t substantially affect
the interpretation of the image, suggesting that the phase spectrum is more important for
perception than the magnitude spectrum.

= FR(g) + i ∗ FI(g)

It is usually inconvenient to draw complex functions of the plane. One solution
is to plot FR(g) and FI(g) separately; another is to consider the magnitude and
phase of the complex functions, and to plot these instead. These are then called
the magnitude spectrum and phase spectrum respectively.
The value of the Fourier transform of a function at a particular u, v point

depends on the whole function. This is obvious from the definition, because the
domain of the integral is the whole domain of the function. It leads to some subtle
properties, however. Firstly, a local change in the function — for example, zeroing
out a block of points — is going to lead to a change at every point in the Fourier
transform. This means that the Fourier transform is quite difficult to use as a repre-
sentation — for example, it might be very difficult to tell if a pattern was present in
an image just by looking at the Fourier transform. Secondly, the magnitude spectra
of images tends to be similar — this appears to be a fact of nature, rather than
something that can be proven axiomatically — and the magnitude spectrum of an
image is surprisingly uninformative (see figure 8.7 for an example).

8.4 Sampling and Aliasing

The crucial reason to discuss Fourier transforms is to get some insight into the
difference between discrete and continuous images; in particular, it is clear that
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some information has been lost when we work on a discrete pixel grid — but what?
A good, simple example to think about comes from an image of a checkerboard,
and is given in figure 8.8. The problem appears to have to do with the number
of samples relative to the function; we can formalize this rather precisely, given a
sufficiently powerful model.

8.4.1 Sampling

Passing from a continuous function — like the irradiance at the back of a camera
system — to a collection of values on a discrete grid — like the pixel values reported
by a camera — is referred to as sampling. We will construct a model that allows
us to obtain a precise notion of what is lost in sampling.

Sampling in One Dimension

Sampling in one dimension takes a function, and returns a discrete set of values.
The most important case involves sampling on a uniform discrete grid, and we shall
assume that the samples are defined at integer points. This means we have a process
that takes some function and returns a vector of values:

sample1D(f(x)) = f

We will model this sampling process by assuming that the elements of this vector
are the values of the function f(x) at the sample points, and allowing negative
indices to the vector. This means that the i’th component of f is f(xi).

Sampling in Two Dimensions

Sampling in 2D is very similar to sampling in 1D. Although sampling can occur on
non-regular grids (the best example being the human retina), we will proceed on
the assumption that samples are drawn at points with integer coordinates. This
yields a uniform rectangular grid, which is a good model of most cameras. Our
sampled images are then rectangular arrays of finite size (all values outside the grid
being zero).
In the formal model, we sample a function of two dimensions, instead of one,

yielding an array. This array we allow to have negative indices in both dimensions,
and can then write

sample2D(F (x, y)) = F

where the i, j’th element of the array F is F (xi, yj) = F (i, j).
Samples are not always evenly spaced in practical systems. This is quite often

due to the pervasive effect of television; television screens have an aspect ratio of
4:3 (width:height). Cameras quite often accomodate this effect by spacing sample
points slightly further apart horizontally than vertically (in jargon, they have non-
square pixels).
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Figure 8.8. The two checkerboards on the top illustrate a sampling procedure which
appears to be successful (whether it is or not depends on some details that we will deal
with later). The grey circles represent the samples; if there are sufficient samples, then the
samples represent the detail in the underlying function. The sampling procedure shown on
the bottom is unequivocally unsuccessful; the samples suggest that there are fewer checks
than there are. This illustrates two important phenomena: firstly, successful sampling
schemes sample data “often enough”; and, secondly, unsuccessful sampling schemes cause
high frequency information to appear as lower frequency information.

A Continuous Model of a Sampled Signal

We need a continuous model of a sampled signal. Generally, this model will be used
to evaluate integrals — in particular, taking a Fourier transform involves integrating
the product of our model with a complex exponential. It is clear how this integral
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Sample1D

Figure 8.9. Sampling in 1D takes a function, and returns a vector whose elements are
values of that function at the sample points, as the top figures show. For our purposes, it
is enough that the sample points be integer values of the argument. We allow the vector
to be infinite dimensional, and have negative as well as positive indices.

Sample2D

Figure 8.10. Sampling in 2D takes a function and returns an array; again, we allow the
array to be infinite dimensional and to have negative as well as positive indices.
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should behave — the value of the integral should be obtained by adding up values
at each integer point. This means we cannot model a sampled signal as a function
that is zero everywhere except at integer points (where it takes the value of the
signal), because this model has a zero integral.
An appropriate continuous model of a sampled signal relies on an important

property of the δ function:

∫ ∞
−∞
aδ(x)f(x)dx = a lim

ε→0

∫ ∞
−∞
d(x; ε)f(x)dx

= a lim
ε→0

∫ ∞
−∞

bar(x; ε)

ε
(f(x))dx

= a lim
ε→0

∞∑
i=−∞

bar(x; ε)

ε
(f(iε)bar(x − iε; ε))ε

= af(0)

(where we have used the idea of an integral as the limit of a sum of small strips).
An appropriate continuous model of a sampled signal consists of a δ-function at

each sample point weighted by the value of the sample at that point. We can obtain
this model by multiplying the sampled signal by a set of δ-functions, one at each
sample point. In one dimension, a function of this form is called a comb function
(because that’s what the graph looks like). In two dimensions, a function of this
form is called a bed-of-nails function (for the same reason).
Working in 2D and assuming that the samples are at integer points, this proce-

dure gets

sample2D(f) =

∞∑
i=−∞

∞∑
j=−∞

f(i, j)δ(x − i, y − j)

= f(x, y)




∞∑
i=−∞

∞∑
j=−∞

δ(x − i, y − j)




This function is zero except at integer points (because the δ-function is zero except
at integer points) and its integral is the sum of the function values at the integer
points.

8.4.2 Aliasing

Sampling involves a loss of information. As this section will show, a signal that is
sampled too slowly will be misrepresented by the samples; high spatial frequency
components of the original signal will appear as low spatial frequency components
in the sampled signal, an effect known as aliasing.



224 Linear Filters Chapter 8

The Fourier Transform of a Sampled Signal

A sampled signal is given by a product of the original signal with a bed-of-nails
function. By the convolution theorem, the Fourier transform of this product is
the convolution of the Fourier transforms of the two functions. This means that
the Fourier transform of a sampled signal is obtained by convolving the Fourier
transform of the signal with another bed-of-nails function.
Now convolving a function with a shifted δ-function merely shifts the function

(exercises). This means that the Fourier transform of the sampled signal is the sum
of a collection of shifted versions of the Fourier transforms of the signal.

F(sample2D(f(x, y))) = F


f(x, y)




∞∑
i=−∞

∞∑
j=−∞

δ(x− i, y− j)






= F(f(x, y)) ∗ ∗F






∞∑
i=−∞

∞∑
j=−∞

δ(x− i, y − j)






=

∞∑
i=−∞

F (u− i, v − j)

where we have written the Fourier transform of f(x, y) as F (u, v).
If the support of these shifted versions of the Fourier transform of the signal does

not intersect, we can easily reconstruct the signal from the sampled version. We
take the sampled signal, Fourier transform it, and cut out one copy of the Fourier
transform of the signal, and Fourier transform this back (figure 8.11).
However, if the support regions do overlap, we will not be able to reconstruct the

signal because we will not be able to determine the Fourier transform of the signal
in the regions of overlap, where different copies of the Fourier transform will add.
This results in a characteristic effect, usually called aliasing, where high spatial
frequencies appear to be low spatial frequencies (see figure 8.13 and exercises). Our
argument also yields Nyquist’s theorem — the sampling frequency must be at
least twice the highest frequency present for a signal to be reconstructed from a
sampled version.

8.4.3 Smoothing and Resampling

Nyquist’s theorem means it is dangerous to shrink an image by simply taking every
k’th pixel (as figure 8.13 confirms). Instead, we need to filter the image so that
spatial frequencies above the new sampling frequency are removed. We could do
this exactly by multiplying the image Fourier transform by a scaled 2D bar function,
which would act as a low pass filter. Equivalently, we would convolve the image
with a kernel of the form (sinx siny)/(xy). This is a difficult and expensive (a polite
way of saying “impossible”) convolution, because this function has infinite support.
The most interesting case occurs when we want to halve the width and height

of the image. We assume that the sampled image has no aliasing (because if it did,
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Figure 8.11. The Fourier transform of the sampled signal consists of a sum of copies
of the Fourier transform of the original signal, shifted with respect to each other by the
sampling frequency. Two possibilities occur. If the shifted copies do not intersect with
each other (as in this case), the original signal can be reconstructed from the sampled
signal (we just cut out one copy of the Fourier transform, and inverse transform it). If
they do intersect (as figure 8.12) the intersection region is added, and so we cannot obtain
a separate copy of the Fourier transform, and the signal has aliased.

there would be nothing we could do about it, anyway — once an image has been
sampled, any aliasing that is going to occur has happened, and there’s not much we
can do about it without an image model). This means that the Fourier transform of
the sampled image is going to consist of a set of copies of some Fourier transform,
with centers shifted to integer points in u, v space.
If we resample this signal, the copies will now have centers on the half-integer

points in u, v space. This means that, to avoid aliasing, we need to apply a filter
that strongly reduces the content of the original Fourier transform outside the range
|u| < 1/2, |v| < 1/2. Of course, if we reduce the content of the signal inside this
range, we may lose information, too. Now the Fourier transform of a Gaussian is a
Gaussian, and Gaussians die away fairly quickly. Thus, if we were to convolve the
image with a Gaussian — or multiply its Fourier transform by a Gaussian, which
is the same thing — we could achieve what we want.
The choice of Gaussian depends on the application; if σ is large, there is less

aliasing (because the value of the kernel outside our range is very small), but in-
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Figure 8.12. The Fourier transform of the sampled signal consists of a sum of copies
of the Fourier transform of the original signal, shifted with respect to each other by the
sampling frequency. Two possibilities occur. If the shifted copies do not intersect with
each other (as in figure 8.11), the original signal can be reconstructed from the sampled
signal (we just cut out one copy of the Fourier transform, and inverse transform it). If they
do intersect (as in this figure) the intersection region is added, and so we cannot obtain a
separate copy of the Fourier transform, and the signal has aliased. This also explains the
tendency of high spatial frequencies to alias to lower spatial frequencies.

formation is lost because the kernel is not flat within our range; similarly, if σ is
small, less information is lost within the range, but aliasing can be more substantial.
Figures 8.14 and 8.15 illustrate the effects of different choices of σ.

8.5 Technique: Scale and Image Pyramids

Images look quite different at different scales. For example, the zebra’s nose in
figure 8.16 can be described in terms of individual hairs — which might be coded
in terms of the response of oriented filters that operate at a scale of a small number
of pixels — or in terms of the stripes on the zebra. In the case of the zebra, we
would not want to apply very large filters to find the stripes. This is because these
filters are inclined to spurious precision — we don’t wish to have to represent the
disposition of each hair on the stripe — inconvenient to build, and slow to apply. A
more practical approach than applying very large filters is to apply smaller filters
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256x256 128x128 64x64 32x32 16x16

Figure 8.13. The top row shows sampled versions of an image of a grid obtained
by multiplying two sinusoids with linearly increasing frequency — one in x and one in
y. The other images in the series are obtained by resampling by factors of two, without
smoothing (i.e. the next is a 128x128, then a 64x64, etc., all scaled to the same size). Note
the substantial aliasing; high spatial frequencies alias down to low spatial frequencies, and
the smallest image is an extremely poor representation of the large image. The bottom
row shows the magnitude of the Fourier transform of each image — displayed as a log, to
compress the intensity scale. The constant component is at the center. Notice that the
Fourier transform of a resampled image is obtained by scaling the Fourier transform of
the original image and then tiling the plane. Interference between copies of the original
Fourier transform means that we cannot recover its value at some points — this is the
mechanism underlying aliasing.

to smoothed and resampled versions of the image.

8.5.1 The Gaussian Pyramid

A pyramid is a collection of representations of an image. The name pyramid comes
from a visual analogy. Typically, each layer of the pyramid is half the width and
half the height of the previous layer, and if we were to stack the layers on top of each
other a pyramid would result. In a Gaussian pyramid, each layer is smoothed
by a symmetric Gaussian kernel and resampled to get the next layer (figure 8.16).
These pyramids are most convenient if the image dimensions are a power of two, or
a multiple of a power of two. The smallest image is the most heavily smoothed; the
layers are often referred to as coarse scale versions of the image.
With a little notation, we can write simple expressions for the layers of a Gaus-

sian pyramid. The operator S↓ downsamples an image; in particular, the j, k’th
element of S↓(I) is the 2j, 2k’th element of I. The n’th level of a pyramid P (I) is
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256x256 128x128 64x64 32x32 16x16

Figure 8.14. Left: Resampled versions of the image of figure 8.13, again by factors of
two, but this time each image is smoothed with a Gaussian of σ one pixel before resam-
pling. This filter is a low-pass filter, and so suppresses high spatial frequency components,
reducing aliasing. Right: The effect of the low-pass filter is easily seen in these log-
magnitude images; the low pass filter suppresses the high spatial frequency components
so that components interfere less, to reduce aliasing.

denoted P (I)n. With this notation, we have:

PGaussian(I)n+1 = S
↓(Gσ ∗ ∗PGaussian(I)n) (8.5.1)

= (S↓Gσ)PGaussian(I)n) (8.5.2)

(where we have written Gσ for the linear operator that takes an image to the
convolution of that image with a Gaussian). The finest scale layer is the original
image

PGaussian(I)1 = I

8.5.2 Applications of Scaled Representations

Gaussian pyramids are useful, because they make it possible to extract representa-
tions of different types of structure in an image. There are three standard applica-
tions.

Search over Scale

Numerous objects can be represented as small image patterns. A standard example
is a frontal view of a face. Typically, at low resolution, frontal views of faces
have a quite distinctive pattern: the eyes form dark pools, under a dark bar (the
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256x256 128x128 64x64 32x32 16x16

Figure 8.15. Left: Resampled versions of the image of figure 8.13, again by factors
of two, but this time each image is smoothed with a Gaussian of σ two pixels before
resampling. This filter suppresses high spatial frequency components more aggressively
than that of figure 8.14. Right: The effect of the low-pass filter is easily seen in these
log-magnitude images; the low pass filter suppresses the high spatial frequency components
so that components interfere less, to reduce aliasing.

eyebrows), separated by a lighter bar (specular reflections from the nose) and above
a dark bar (the mouth). There are various methods for finding faces that exploit
these properties (see chapter 25). These methods all assume that the face lies in a
small range of scales. All other faces are found by forming a pyramid, and searching
it. To find bigger faces, we look at coarser scale layers, and to find smaller faces we
look at finer scale layers. This very useful trick applies to many different kinds of
feature, as we shall see in the chapters that follow.

Spatial Search

One application is spatial search, a common theme in computer vision. Typically,
we have a point in one image and are trying to find a point in a second image
that corresponds to it. This problem occurs in stereopsis — where the point has
moved because the two images are obtained from different viewing positions — and
in motion analysis — where the image point has moved either because the camera
moved, or because it is on a moving object.
Searching for a match in the original pairs of images is inefficient, because we

may have to wade through a great deal of detail. A better approach, which is now
pretty much universal, is to look for a match in a heavily smoothed and resampled
image, and then refine that match by looking at increasingly detailed versions of
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512 256 128 64 32 16 8

Figure 8.16. A Gaussian pyramid of images, running from 512x512 to 8x8. On the
top row, we have shown each image at the same size (so that some have bigger pixels
than others), and the lower part of the figure shows the images to scale. Notice that if we
convolve each image with a fixed size filter, it will respond to quite different phenomena.
An 8x8 pixel block at the finest scale might contain a few hairs; at a coarser scale it might
contain an entire stripe; and at the coarsest scale, it contains the animal’s nose.

the image. For example, we might reduce 1024x1024 images down to 4x4 versions,
match those and then look at 8x8 versions (because we know a rough match, it is
easy to refine it); we then look at 16x16 versions, etc. all the way up to 1024x1024.
This gives an extremely efficient search, because a step of a single pixel in the 4x4
version is equivalent to a step of 256 pixels in the 1024x1024 version. This strategy
is known as coarse-to-fine matching.
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Set the finest scale layer to the image

For each layer, going from next to finest to coarsest

Obtain this layer by smoothing the next finest

layer with a Gaussian, and then subsampling it

end

Algorithm 8.1: Forming a Gaussian pyramid

Feature Tracking

Most features found at coarse levels of smoothing are associated with large, high
contrast image events, because for an feature to be marked at a coarse scale a large
pool of pixels need to agree that it is there. Typically, these phenomena misestimate
the size of a feature — the contrast might decay along an edge, for example — and
their accuracy can be quite poor — a single pixel error in a coarse-scale image
represents a multiple pixel error in a fine-scale image.
At fine scales, there are many features, some of which are associated with smaller,

low contrast events. One strategy for improving a set of features obtained at a fine
scale is to track features across scales to a coarser scale, and accept only the fine
scale features that have identifiable parents at a coarser scale. This strategy, known
as feature tracking in principle can suppress features resulting from textured
regions (often referred to as “noise”) and features resulting from real noise.

8.5.3 Scale Space

Coarse scale components give the overall structure of a signal, and fine scale com-
ponents give detailed information, as figure 8.16 suggests. This approach allows us
to think about representing such objects as trees, which appear to exist at several
distinct scales; we would want to be able to represent a tree both as a puff of foliage
on top of a stalk (coarse scale) and as a collection of individual leaves and twigs
(fine scale).
Gaussian pyramids are not an ideal tool for this representation, because they

sample the range of smoothed images quite coarsely. Instead of a discrete pyramid
of images, we might consider a one parameter family of images (or, equivalently, a
function of three dimensions)

Φ(x, y, u) = Gσ(u) ∗ I(x, y)

where the extent of the smoothing is now a continuous parameter. For a 1D signal,
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Figure 8.17. At the top, a 1D signal smoothed using Gaussian filters of increasing
σ, plotted as a surface. As σ gets bigger, the detail is increasingly suppressed. At the
bottom we show particular versions of the signal at particular scales. As the signal is
smoothed, extrema merge and vanish. The smoothest versions of the signal can be seen
as an indication of the “overall trend” of the signal, and the finer versions have increasing
amounts of detail imposed.

we can draw the behaviour of features as the scaling parameter changes, and this
drawing gives us a simple and sometimes quite informative description of the signal
(figure 8.17 and figure 8.18). If we define a “feature” to be a zero-crossing of the
second derivative, then it is possible to show that in this family of signals, features
are not created by smoothing. This means that all coarse-scale zero-crossings will
have finer-scale events corresponding to them, so that there are quite simple rules
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Figure 8.18. One feature of a signal that can be important is the position of fast changes;
these can be found by marking the position of zero crossings of the second derivative. This
feature develops in an orderly way as the signal is smoothed. The representation shown
marks the position of zero crossings of the second derivative of the smoothed signal, as the
smoothing increases (again, scale increases vertically). Notice that zero crossings can meet
and obliterate one another as the signal is smoothed but no new zero-crossing is created.
This means that the figure shows the characteristic structure of either vertical curves or
inverted “u” curves. An inverted pitchfork shape is also possible — where three extrema
meet and become one — but this requires special properties of the signal; for most signals,
this inverted pitchfork shape degenerates to an inverted u next to a vertical curve. Notice
also that the position of zero crossings tends to shift as the signal is smoothed.

for what these drawings look like (figure 8.18). These drawings and the underlying
representations are often referred to as scale space.

2D scale space

It is possible to extend these decompositions from 1D to 2D. Again, the choice
of features is somewhat open, but a reasonable choice is the points of maximum
or minimum brightness. Smoothing an image with a symmetric Gaussian cannot
create local maxima or minima in brightness, but it can (and does) destroy them.
Assume we have a scale value σdie where a maximum (or minimum — we will just
talk about the one case, for simplicity) is destroyed. If we now reduce the scale, a
standard pattern will appear — there will be a corresponding maximum surrounded
by a curve of equal brightness that has a self intersection. Thus, corresponding to
each maximum (or minimum) at any scale, we have a blob, which is the region
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Increasing scale

Figure 8.19. Smoothing an image with a symmetric Gaussian cannot create local max-
ima or local minima of brightness. However, local extrema can be extinguished. What
happens is that a local maximum shrinks down to the value of the surrounding pixels. On
the left, an image with one local maximum near a region of constant brightness. As the
image is smoothed, the blob of brightness is smoothed into this region, and eventually (for
some scale value between the last two images) the local maximum disappears. Recording
the details of these disappearances — where the maximum that disappears is, the contour
defining the blob around the maximum, and the scale at which it disappears — yields a
scale-space representation of the image.

of the image marked out by this curve of equal brightness. Typically, maxima
are represented by light blobs and minima by dark blobs. All of this gives us a
representation of an image in terms of blobs growing (or dying) as the scale is
decreased (or increased).

8.6 Discussion

We don’t claim to be exhaustive in our treatment of linear systems, but it wouldn’t
be possible to read the literature on filters in vision without a grasp of the ideas in
this chapter. We have given a fairly straightforward account here; more details on
these topics can be found in Bracewell’s excellent books [Bracewell, 1995; Bracewell,
2000].

8.6.1 Real Imaging Systems vs Shift-Invariant Linear Systems

Imaging systems are only approximately linear. Film is not linear — it does not
respond to very weak stimuli, and it saturates for very bright stimuli — but one
can usually get away with a linear model within a reasonable range. CCD cameras
are linear within a working range. They give a very small, but non-zero response
to a zero input, as a result of thermal noise (which is why astronomers cool their
cameras) and they saturate for very bright stimuli. CCD cameras often contain
electronics that transforms their output to make them behave more like film, because
consumers are used to film. Shift invariance is approximate as well, because lenses
tend to distort responses near the image boundary. Some lenses — fish-eye lenses
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are a good example — are not shift-invariant.

8.6.2 Scale

There is a very large body of work on scale space and scaled representations. The
origins appear to lie with Witkin [Witkin, 1983] and the idea was developed by
Koenderink in [Koenderink and van Doorn, 1986]. Since then a huge literature has
sprung up (one might start with [ter Haar Romeny et al., 1997; Nielsen et al., 1999]).
We have given only the briefest picture here, because the analysis tends to be quite
tricky. The usefulness of the techniques is currently hotly debated, too. Recall our
a putative representation of a tree, considering each twig and leaf at a fine scale,
and a couple of puffs of leaves at the top of a trunk at a coarse scale. It is something
of a stretch from a representation of the behaviour of brightness maxima/minima
to (say) a description of a tree. Generally, high maxima and deep minima will give
blobs that last over a large range of scales, so that dark leaves on a bright sky may
lead to a very large collection of small blobs which slowly merge over scales to end
up with a single dark blob (the puff at the top of the tree). Much of the detailed
gymnastics of the blobs as they merge is irrelevant — we really care only about the
statistics of the blobs at the finest scale, and the size of the blob at the coarsest.
There is little formalised knowledge about which bits of the representation carry
cogent information and which do not.

8.6.3 Anisotropic Scaling

One important difficulty with scale space models is that the symmetric Gaussian
smoothing process tends to blur out edges rather two aggressively for comfort. For
example, if we have two trees near one another on a skyline, the large scale blobs
corresponding to each tree may start merging before all the small scale blobs have
finished. This suggests that we should smooth differently at edge points than at
other points. For example, we might make an estimate of the magnitude and orien-
tation of the gradient: for large gradients, we would then use an oriented smoothing
operator that smoothed aggressively perpendicular to the gradient and very little
along the gradient; for small gradients, we might use a symmetric smoothing oper-
ator. This idea used to be known as edge preserving smoothing.
In the modern, more formal version, due to Malik and Perona [Perona and Malik,

1987; Perona and Malik, 1990b], we notice the scale space representation family is
a solution to the diffusion equation

∂Φ

∂σ
=
∂2Φ

∂x2
+
∂2Φ

∂y2

= ∇2Φ

Φ(x, y, 0) = I(x, y)
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If this equation is modified to have the form

∂Φ

∂σ
= ∇ · (c(x, y, σ)∇Φ)

= c(x, y, σ)∇2Φ+ (∇c(x, y, σ)) · (∇Φ)

Φ(x, y, 0) = I(x, y)

then if c(x, y, σ) = 1, we have the diffusion equation we started with, and if
c(x, y, σ) = 0 there is no smoothing. We will assume that c does not depend
on σ. If we knew where the edges were in the image, we could construct a mask
that consisted of regions where c(x, y) = 1, isolated by patches along the edges
where c(x, y) = 0; in this case, a solution would smooth inside each separate region,
but not over the edge. While we do not know where the edges are — the exercise
would be empty if we did — we can obtain reasonable choices of c(x, y) from the
magnitude of the image gradient. If the gradient is large, then c should be small,
and vice-versa. There is a substantial literature dealing with this approach; a good
place to start is [ter Haar Romeny, 1994].

Assignments

Exercises

1. Show that forming unweighted local averages — which yields an operation of
the form

Rij =
1

(2k + 1)2

u=i+k∑
u=i−k

v=j+k∑
v=j−k

Fuv

is a convolution. What is the kernel of this convolution?

2. Write E0 for an image that consists of all zeros, with a single one at the center.
Show that convolving this image with the kernel

Hij =
1

2πσ2
exp

(
−
((i− k − 1)2 + (j − k − 1)2)

2σ2

)

(which is a discretised Gaussian) yields a circularly symmetric fuzzy blob.

3. Show that convolving an image with a discrete, separable 2D filter kernel is
equivalent to convolving with two 1D filter kernels. Estimate the number of
operations saved for an NxN image and a 2k + 1× 2k + 1 kernel.

4. Show that convolving a function with a δ function simply reproduces the orig-
inal function. Now show that convolving a function with a shifted δ function
shifts the function.
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5. We said that convolving the image with a kernel of the form (sinx siny)/(xy)
is impossible, because this function has infinite support. Why would it be
impossible to Fourier transform the image, multiply the Fourier transform by
a box function, and then inverse-Fourier transform the result? (hint: think
support).

6. Aliasing takes high spatial frequencies to low spatial frequencies. Explain why
following effects occur:

• In old cowboy films that show wagons moving, the wheel often seems to
be stationary or moving in the wrong direction (i.e. the wagon moves
from left to right and the wheel seems to be turning anticlockwise).

• White shirts with thin dark pinstripes often generate a shimmering array
of colours on television.

• In ray-traced pictures, soft shadows generated by area sources look blocky.

Programming Assignments

• One way to obtain a Gaussian kernel is to convolve a constant kernel with
itself, many times. Compare this strategy with evaluating a Gaussian kernel.

1. How many repeated convolutions will you need to get a reasonable ap-
proximation? (you will need to establish what a reasonable approxi-
mation is; you might plot the quality of the approximation against the
number of repeated convolutions).

2. Are there any benefits that can be obtained like this? (hint: not every
computer comes with an FPU)

• Write a program that produces a Gaussian pyramid from an image.

• A sampled Gaussian kernel must alias, because the kernel contains components
at arbitrarily high spatial frequencies. Assume that the kernel is sampled on
an infinite grid. As the standard deviation gets smaller, the aliased energy
must increase. Plot the energy that aliases against the standard deviation of
the Gaussian kernel in pixels. Now assume that the Gaussian kernel is given
on a 7x7 grid. If the aliased energy must be of the same order of magnitude
as the error due to truncating the Gaussian, what is the smallest standard
deviation that can be expressed on this grid?



Chapter 9

EDGE DETECTION

Sharp changes in image brightness are interesting for many reasons. Firstly, object
boundaries often generate sharp changes in brightness — a light object may lie
on a dark background, or a dark object may lie on a light background. Secondly,
reflectance changes often generate sharp changes in brightness which can have quite
distinctive patterns — zebras have stripes and leopards have spots. Cast shadows
can also generate sharp changes in brightness. Finally, sharp changes in surface
orientation are often associated with sharp changes in image brightness.
Points in the image where brightness changes particularly sharply are often

called edges or edge points. We should like edge points to be associated with
the boundaries of objects and other kinds of meaningful changes. It is hard to
define precisely the changes we would like to mark — is the region of a pastoral
scene where the leaves give way to the sky the boundary of an object? Typically,
it is hard to tell a semantically meaningful edge from a nuisance edge, and to do
so requires a great deal of high-level information. Nonetheless, experience building
vision systems suggests that, very often, interesting things are happening in an
image at an edge and it is worth knowing where the edges are.
We will proceed with a rather qualitative model of an edge as a point where

the change of image brightness is distinctive and large. One sign of a sharp change
in an image is a large gradient magnitude; this leads us to the study of noise, in
an attempt to obtain estimates of the derivative better than those available from
finite differences (section 9.1). We will deal with noise by smoothing, usually using
a Gaussian (section 9.2). Finally, we show how to use these methods to detect edges
(section 9.3).

9.1 Noise

A primary problem in edge detection is image noise. This is because edge detectors
are constructed to respond strongly to sharp changes; but one way to get sharp
changes in an image is to add noise to the pixels (because the noise values at
each pixel are typically uncorrelated, meaning they can be very different). As
section 8.1.1 indicated, noise makes finite difference estimates of image derivatives
unusable. We use this observation as an impetus to study image noise in general.

238
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Usually, by the term noise, we mean image measurements from which we do
not know how to extract information, or from which we do not care to extract
information; all the rest is signal. It is wrong to believe that noise does not con-
tain information — for example, we should be able to extract some estimate of
the camera temperature by taking pictures in a dark room with the lens-cap on.
Furthermore, since we cannot say anything meaningful about noise without a noise
model, it is wrong to say that noise is not modelled. Noise is everything we don’t
wish to use, and that’s all there is to it.

9.1.1 Additive Stationary Gaussian Noise

In the additive stationary Gaussian noise model, each pixel has added to it a
value chosen independently from the same Gaussian probability distribution. Al-
most always, the mean of this distribution is zero. The standard deviation is a
parameter of the model. The model is intended to describe thermal noise in cam-
eras.

Linear Filter Response to Additive Gaussian Noise

Assume we have a discrete linear filter whose kernel is G, and we apply it to a noise
imageN consisting of stationary additive Gaussian noise with mean µ and standard
deviation σ. The response of the filter at some point i, j will be:

R(N )i,j =
∑
u,v

Gi−u,j−vNu,v

Because the noise is stationary, the expectations that we compute will not de-
pend on the point, and we assume that i and j are zero, and dispense with the
subscript. Assume the kernel has finite support, so that only some subset of the
noise variables contributes to the expectation; write this subset as n0,0, . . . , nr,s.
The expected value of this response must be:

E[R(N )] =

∫ ∞
−∞
{R(N )}p(N0,0, . . . , Nr,s)dN0,0 . . . dNr,s

=
∑
u,v

G−u,−v{

∫ ∞
−∞
Nu,vp(Nu,v)dNu,v}

where we have done some aggressive moving around of variables, and integrated
out all the variables that do not appear in each expression in the sum. Since all the
Nu,v are independent identically distributed Gaussian random variables with mean
µ, we have that:

E[R(N )] = µ
∑
u,v

Gi−u,j−v

The variance of the noise response is obtained as easily. We want to determine

E[{R(N )i,j − E[R(N )i,j]}
2])
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Figure 9.1. The top row shows three realisations of a stationary additive Gaussian noise
process. We have added half the range of brightnesses to these images, so as to show both
negative and positive values of noise. From left to right, the noise has standard deviation
1/256, 4/256 and 16/256 of the full range of brightness respectively. This corresponds
roughly to bits zero, two and five of a camera that has an output range of eight bits per
pixel. The lower row shows this noise added to an image. In each case, values below zero
or above the full range have been adjusted to zero or the maximum value accordingly.

and this is the same as∫
{{R(N )i,j − E[R(N )i,j]}

2p(N0,0, . . . , Nr,s)dN0,0 . . . dNr,s

which expands to∫
{
∑
u,v

G−u,−v(Nu,v − µ)}
2p(N0,0, . . . , Nr,s)dN0,0 . . . dNr,s

This expression expands into a sum of two kinds of integral. Terms of the form∫
G2−u,−v(Nu,v − µ)

2p(N0,0, . . . , Nr,s)dN0,0 . . . dNr,s
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(for some u, v) can be integrated easily, because each Nu,v is independent; the
integral is σ2G2−u,−v where σ is the standard deviation of the noise. Terms of the
form ∫

G−u,−vG−a,−b(Nu,v − µ)(Na,b − µ)p(N0,0, . . . , Nr,s)dN0,0 . . . dNr,s

(for some u, v and a, b) integrate to zero, again because each noise term is inde-
pendent. We now have:

E[{R(N )i,j − E[R(N )i,j]}
2] = σ2

∑
G2u,v

Difficulties with the Additive Stationary Gaussian Noise Model

Taken literally, the additive stationary Gaussian noise model is poor model of image
noise. Firstly, the model allows positive (and, more alarmingly, negative!) pixel
values of arbitrary magnitude. With appropriate choices of standard deviation for
typical current cameras operating indoors or in daylight, this doesn’t present much
of a problem, because these pixel values are extremely unlikely to occur in practice.
In rendering noise images, the problematic pixels that do occur are fixed at zero or
full output respectively.
Secondly, noise values are completely independent, so this model does not cap-

ture the possibility of groups of pixels that have correlated responses, perhaps be-
cause of the design of the camera electronics or because of hot spots in the camera
integrated circuit. This problem is harder to deal with, because noise models that
do model this effect tend to be difficult to deal with analytically. Finally, this model
does not describe “dead pixels” (pixels that consistently report no incoming light,
or are consistently saturated) terribly well. If the standard deviation is quite large
and we threshold pixel values, then dead pixels will occur, but the standard devi-
ation may be too large to model the rest of the image well. A crucial advantage
of additive Gaussian noise is that it is easy to estimate the response of filters to
this noise model. In turn, this gives us some idea of how effective the filter is at
responding to signal and ignoring noise.

9.1.2 Why Finite Differences Respond to Noise

Our discussion of the response of linear filters to additive stationary Gaussian noise
offers some insight into the noise behaviour of finite differences. Assume we have an
image of stationary Gaussian noise of zero mean, and consider the variance of the
response to a finite difference filter that estimates derivatives of increasing order.
We shall use the kernel

0 0
1 −1
0 0
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Figure 9.2. Finite differences can accentuate additive Gaussian noise substantially,
following the argument in section 9.1.2. On the top left, an image of zero mean Gaussian
noise with standard deviation 4/256 of the full range. The top center figure shows a finite
difference estimate of the third derivative in the x direction, and the top right shows the
sixth derivative in the x direction. In each case, the image has been centered by adding
half the full range to show both positive and negative deviations. The images are shown
using the same grey level scale; in the case of the sixth derivative, some values exceed the
range of this scale. The graph on the bottom shows the standard deviations of these noise
images for the first eight derivatives (estimated using the argument based around Pascal’s
triangle).

to estimate the first derivative. Now a second derivative is simply a first derivative
applied to a first derivative, so the kernel will be:

0 0 0
1 −2 1
0 0 0

With a little thought, you can convince yourself that under this scheme, the
kernel coefficients of a k’th derivative come from the k+1’th row of Pascal’s triangle,
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Figure 9.3. Smoothing stationary additive Gaussian noise results in signals where pixel
values tend to be increasingly similar to the value of neighbouring pixels. This occurs at
about the scale of the filter kernel, because the filter kernel causes the correlations. The
figures show noise smoothed with increasingly large Gaussian smoothing kernels. Grey
pixels have zero value, darker values are negative and brighter values are positive. The
kernels are shown in the top right hand corners of the figures, to indicate the spatial scale
of the kernel (we have scaled the brightness of the kernels, which are Gaussians, so that
the center pixel is white and the boundary pixels are black). Smoothed noise tends to look
like natural texture, as the figures indicate.

with appropriate flips of sign. For each of these derivative filters, the mean response
to Gaussian noise is zero; but the variance of this response goes up sharply; for the
k’th derivative it is the sum of squares of the k+1’th row of Pascal’s triangle times
the standard deviation. Figure 9.2 illustrates this result.
There is an alternative explanation. From table 8.1, differentiating a function is

the same as multiplying its Fourier transform by a frequency variable; this means
that the high spatial frequency components are heavily emphasized at the expense
of the low frequency components. This is intuitively plausible — differentiating
a function must set the constant component to zero, and the amplitude of the
derivative of a sinusoid goes up with its frequency. Furthermore, this property is
the reason we are interested in derivatives; we are discussing the derivative precisely
because fast changes (which generate high spatial frequencies) have large derivatives.

9.2 Estimating Derivatives

As figure 8.5 indicates, simple finite difference filters tend to give strong responses
to noise, so that applying two finite difference filters (one in each direction) is a poor
way to estimate a gradient. However, we expect that any change of significance to
us has effects over a pool of pixels. For example, the contour of an object can result
in a long chain of points where the image derivative is large. For many kinds of noise
model, large image derivatives due to noise are an essentially local event. This means
that smoothing a differentiated image would tend to pool support for the changes we
are interested in, and to suppress the effects of noise. An alternative interpretation
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of the point is that the changes we are interested in will not be suppressed by some
smoothing, which will tend to suppress the effects of noise. There is no difference in
principle between differentiating a smoothed image, or smoothing a differentiated
image (section 9.2.3). In practice, it is usual to differentiate a smoothed image.

Figure 9.4. Derivative of Gaussian filters are less extroverted in their response to noise
than finite difference filters. The image at top left shows a detail from a picture of a zebra;
top center shows the same image corrupted by zero mean stationary additive Gaussian
noise, with σ = 0.03 (pixel values range from 0 to 1). Top right shows the same image
corrupted by zero mean stationary additive Gaussian noise, with σ = 0.09. The second
row shows the partial derivative in the x-direction of each image, in each case estimated
by a derivative of Gaussian filter with σ one pixel. Notice how the smoothing helps to
reduce the impact of the noise.

There is an alternative explanation as to why smoothing may help. Assume we
smooth a noisy image, and then differentiate it. Firstly, the variance of the noise
will tend to be reduced by a smoothing kernel. This is because we tend to use
smoothing kernels which are positive, and for which∑

uv

Guv = 1

which means that ∑
uv

G2uv ≤ 1

Secondly, pixels will have a greater tendency to look like neighbouring pixels — if
we take stationary additive Gaussian noise, and smooth it, the pixel values of the
resulting signal are no longer independent. In some sense, this is what smoothing
was about — recall we introduced smoothing as a method to predict a pixel’s
value from the values of its neighbours. However, if pixels tend to look like their
neighbours, then derivatives must be smaller (because they measure the tendency
of pixels to look different from their neighbours).
Another approach is to reason in terms of spatial frequencies. It is possible to

show that stationary additive Gaussian noise has uniform energy at each frequency;
but if we differentiate the noise, we will emphasize the high frequencies. If we do
not attempt to ameliorate this situation, the gradient magnitude map is likely to
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have occasional large values due to noise. Filtering with a Gaussian filter suppresses
these high spatial frequencies, as it does for resampling (section 8.4.3).
Smoothed noise has applications. As figure 9.3 indicates, smoothed noise tends

to look like some kinds of natural texture, and smoothed noise is quite widely used
as a source of textures in computer graphics applications [Perlin, 1985; Ebert et al.,
1998]).

9.2.1 Choosing a Smoothing Filter

The smoothing filter can be chosen by taking a model of an edge and then using
some set of criteria to choose a filter that gives the best response to that model.
It is difficult to pose this problem as a two dimensional problem, because edges in
2D can be curved. Conventionally, the smoothing filter is chosen by formulating a
one-dimensional problem, and then using a rotationally symmetric version of the
filter in 2D.
The one-dimensional filter must be obtained from a model of an edge. The usual

model is a step function of unknown height, in the presence of stationary additive
Gaussian noise:

edge(x) = AU(x) + n(x)

where

U(x) =

{
0 if x < 0
1 if x > 0

(the value of U(0) is irrelevant to our purpose). A is usually referred to as the
contrast of the edge. In the 1D problem, finding the gradient magnitude is the
same as finding the square of the derivative response. For this reason, we usually
seek a derivative estimation filter rather than a smoothing filter (which can then be
reconstructed from the derivative estimation filter).
Canny established the practice of choosing a derivative estimation filter by using

the continuous model to optimize a combination of three criteria (in [Canny, 1986]):

• Signal to noise ratio— the filter should respond more strongly to the edge
at x = 0 than to noise.

• Localisation — the filter response should reach a maximum very close to
x = 0.

• Low false positives — there should be only one maximum of the response
in a reasonable neighbourhood of x = 0.

Once a continuous filter has been found, it is discretised. The criteria can be
combined in a variety of ways, yielding a variety of somewhat different filters. It
is a remarkable fact that the optimal smoothing filters that are derived by most
combinations of these criteria tend to look a great deal like Gaussians — this is
intuitively reasonable, as the smoothing filter must place strong weight on center
pixels and less weight on distant pixels, rather like a Gaussian. In practice, optimal
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smoothing filters are usually replaced by a Gaussian, with no particularly important
degradation in performance.

Figure 9.5. The scale (i.e. σ) of the Gaussian used in a derivative of Gaussian filter has
significant effects on the results. The three images show estimates of the derivative in the
x direction of an image of the head of a zebra, obtained using a derivative of Gaussian filter
with σ one pixel, three pixels and seven pixels (moving to the right). Note how images at
a finer scale show some hair and the animal’s whiskers disappear at a medium scale, and
the fine stripes at the top of the muzzle disappear at the coarser scale.

The choice of σ used in estimating the derivative is often called the scale of
the smoothing. Scale has a substantial effect on the response of a derivative filter.
Assume we have a narrow bar on a constant background, rather like the zebra’s
whisker. Smoothing on a scale smaller than the width of the bar will mean that the
filter responds on each side of the bar, and we will be able to resolve the rising and
falling edges of the bar. If the filter width is much greater, the bar will be smoothed
into the background, and the bar will generate little or no response (as figure 9.5).

9.2.2 Why Smooth with a Gaussian?

While a Gaussian is not the only possible blurring kernel, it is convenient because
it has a number of important properties. Firstly, if we convolve a Gaussian with a
Gaussian, and the result is another Gaussian:

Gσ1 ∗ ∗Gσ2 = G√σ21+σ22

This means that it is possible to obtain very heavily smoothed images by resmooth-
ing smoothed images. This is a significant property, firstly because discrete convo-
lution can be an expensive operation (particularly if the kernel of the filter is large),
and secondly because it is common to want to see versions of an image smoothed
by different amounts.



Section 9.2. Estimating Derivatives 247

Efficiency

Consider convolving an image with a Gaussian kernel with σ one pixel. Although
the Gaussian kernel is non zero over an infinite domain, for most of that domain
it is extremely small because of the exponential form. For σ one pixel, points
outside a 5x5 integer grid centered at the origin have values less than e−4 = 0.0184
and points outside a 7x7 integer grid centered at the origin have values less than
e−9 = 0.0001234. This means that we can ignore their contributions, and represent
the discrete Gaussian as a small array (5x5 or 7x7, according to taste and the
number of bits you allocate to representing the kernel).
However, if σ is 10 pixels, we may need a 50x50 array or worse. A back of

the envelope count of operations should convince you that convolving a reasonably
sized image with a 50x50 array is an unattractice prospect. The alternative —
convolving repeatedly with a much smaller kernel — is much more efficient, because
we don’t need to keep every pixel in the interim. This is because a smoothed image
is, to some extent, redundant (most pixels contain a significant component of their
neighbours’ values). As a result, some pixels can be discarded. We then have a
strategy which is quite efficient: smooth, subsample, smooth, subsample, etc. The
result is an image that has the same information as a heavily smoothed image, but
is very much smaller and is easier to obtain. We explore the details of this approach
in section 8.5.1.

The Central Limit Theorem

Gaussians have another significant property which we shall not prove but illustrate
in figure 9.6. For an important family of functions, convolving any member of that
family of functions with itself repeatedly will eventually yield a Gaussian. With
the associativity of convolution, this implies that if we choose a different smoothing
kernel, and apply it repeatedly to the image, the result will eventually look as
though we had smoothed the image with a Gaussian anyhow.

Gaussians are Separable

Finally, an isotropic Gaussian can be factored as

Gσ(x, y) =
1

2πσ2
exp

(
−
(x2 + y2)

2σ2

)

=

(
1

√
2πσ

exp

(
−
(x2)

2σ2

))
×

(
1

√
2πσ

exp

(
−
(y2)

2σ2

))

and this is a product of two 1-D Gaussians. Generally, a function f(x, y) that
factors as f(x, y) = g(x)h(y) is referred to as a tensor product. It is common to
refer to filter kernels that are tensor products as separable kernels. Separability
is a very useful property indeed. In particular, convolving with a filter kernel that
is separable is the same as convolving with two 1-D kernels, one in the x direction
and another in the y direction (exercises).
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Figure 9.6. The central limit theorem states that repeated convolution of a positive
kernel with itself will eventually limit towards a kernel that is a scaling of a Gaussian.
The graph illustrates this effect for 1D convolution; the triangle is obtained by convolving
a box function with itself; each succeeding stage is obtained by convolving the previous
stage with itself.

Many other kernels are separable. Separable filter kernels result in discrete
representations that factor as well. In particular, if H is a discretised separable
filter kernel, then there are some vectors f and g such that

Hij = figj

It is possible to identify this property using techniques from numerical linear algebra,
because the rank of the matrix H must be one. Commercial convolution packages
often test the kernel to see if it is separable before applying it to the image. The cost
of this test is easily paid off by the savings if the kernel does turn out to be separable.
Many kernels can be approximated in a useful way as a sum of separable kernels.
If the number of kernels is sufficiently small, then the approximation can represent
a practical saving in convolution. This is a particularly attractive strategy if one
wishes to convolve an image with many different filters; in this case, one tries to
obtain a representation of each of these filters as a weighted sum of separable kernels
which are tensor products of a small number of basis elements. It is then possible
to convolve the images with the basis elements, and then form different weighted
sums of the result to obtain convolutions of the image with different filters.
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Which Gaussians can be Used?

The discussion of aliasing gives us some insight into available smoothing parameters.
Any Gaussian kernel that we use will be a sampled approximation to a Gaussian,
sampled on a single pixel grid. This means that, for the original kernel to be
reconstructed from the sampled approximation, it should contain no components
of spatial frequency greater than 0.5pixel−1. This isn’t possible with a Gaussian,
because its Fourier transform is also Gaussian, and hence isn’t bandlimited. The
best we can do is insist that the quantity of energy in the signal that is aliased is
below some threshold — in turn, this implies a minimum value of σ that is available
for a smoothing filter on a discrete grid (for values lower than this minimum, the
smoothing filter itself is badly aliased — see the exercises).

9.2.3 Derivative of Gaussian Filters

Smoothing an image and then differentiating it is the same as convolving it with the
derivative of a smoothing kernel. This fact is most easily seen by thinking about
continuous convolution.
Firstly, differentiation is linear and shift invariant. This means that there is

some kernel — we dodge the question of what it looks like — that differentiates.
That is, given a function I(x, y)

∂I

∂x
= K ∂

∂x
∗ ∗I

Now we want the derivative of a smoothed function. We write the convolution
kernel for the smoothing as S. Recalling that convolution is associative, we have

(K ∂
∂x
∗ ∗(S ∗ ∗I)) = (K ∂

∂x
∗ ∗S) ∗ ∗I = (

∂S

∂x
) ∗ ∗I

This fact appears in its most commonly used form when the smoothing function is
a Gaussian; we can then write

∂ (Gσ ∗ ∗I)

∂x
= (
∂Gσ
∂x
) ∗ ∗I

i.e. we need only convolve with the derivative of the Gaussian, rather than convolve
and then differentiate. Smoothing results in much smaller noise responses from the
derivative estimates (figure 9.4).

9.3 Detecting Edges

The two main strategies for detecting edges both model edges as very fast changes
in brightness. In the first, we observe that the fastest change occurs when a 2D
analogue of the second derivative vanishes (section 9.3.1). This approach, while
historically important, is no longer popular. The alternative is to explicitly search
for points where the magnitude of the gradient is extremal (section 9.3.2).
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9.3.1 Using the Laplacian to Detect Edges

In one dimension, the second derivative of a signal is zero when the derivative
magnitude is extremal. This means that, if we wish to find large changes, a good
place to look is where the second derivative is zero. This approach extends to two
dimensions. We now need a sensible analogue to the second derivative. This needs
to be rotationally invariant. It is not hard to show that the Laplacian has this
property. The Laplacian of a function in 2D is defined as:

(∇2f)(x, y) =
∂2f

∂x2
+
∂2f

∂y2

It is natural to smooth the image before applying a Laplacian. Notice that the
Laplacian is a linear operator (if you’re not sure about this, you should check),
meaning that we could represent taking the Laplacian as convolving the image with
some kernel (which we shall write as K∇2 . Because convolution is associative, we
have that

(K∇2 ∗ ∗(Gσ ∗ ∗I)) = (K∇2 ∗ ∗Gσ) ∗ ∗I = (∇
2Gσ) ∗ ∗I

The reason this is important is that, just as for first derivatives, smoothing an
image and then applying the Laplacian is the same as convolving the image with
the Laplacian of the kernel used for smoothing.
This leads to a simple and historically important edge detection strategy, illus-

trated in figure 9.8. We convolve an image with a Laplacian of Gaussian at some
scale, and mark the points where the result has value zero — the zero crossings.
These points should be checked to ensure that the gradient magnitude is large. The
method is due to [Marr and Hildreth, 1980].
The response of a Laplacian of Gaussian filter is positive on one side of an edge

and negative on another. This means that adding some percentage of this response
back to the original image yields a picture in which edges have been sharpened,
and detail is more easy to see. This observation dates back to a photographic
developing technique called unsharp masking, where a blurred positive is used to
increase visibility of detail in bright areas by “subtracting” a local average of the
brightness in that area. This is, roughly, the same as filtering the image with a
difference of Gaussians, multiplying the result by a small constant, and adding this
back to the original image. Now the difference between two Gaussian kernels looks
very similar to a Laplacian of Gaussian kernel, and it is quite common to replace
one with the other. This means that unsharp masking adds an edge term back to
the image.
Laplacian of Gaussian edge detectors have fallen into some disfavour. Because

the Laplacian of Gaussian filter is not oriented, its response is composed of an
average across an edge and one along the edge. This means that the behaviour
at corners — where the direction along the edge changes — is poor. They mark
the boundaries of sharp corners quite inaccurately; furthermore, at trihedral or
greater vertices, they have difficulty recording the topology of the corner correctly,
as figure 9.9 illustrates. Secondly, the components along the edge tend to contribute
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Figure 9.7. The Laplacian of Gaussian filter kernel, shown here for σ one pixel, can be
thought of as subtracting the center pixel from a weighted average of the surround (hence
the analogy with unsharp masking, described in the text). It is quite common to replace
this kernel with the difference of two Gaussians, one with a small value of σ and the other
with a large value of σ.

to the response of the filter to noise but not necessarily to an edge; this means that
zero-crossings may not lie exactly on an edge.

9.3.2 Gradient Based Edge Detectors

In a gradient based edge detector, we compute some estimate of the gradient mag-
nitude — almost always using a Gaussian as a smoothing filter — and use this
estimate to determine the position of edge points. Typically, the gradient magni-
tude can be large along a thick trail in an image (figure 9.10). Object outlines are
curves however, and we should like to obtain a curve of the most distinctive points
on this trail.
A natural approach is to look for points where the gradient magnitude is a maxi-

mum along the direction perpendicular to the edge. For this approach, the direction
perpendicular to the edge can be estimated using the direction of the gradient (fig-
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Figure 9.8. Zero crossings of the Laplacian of Gaussian for various scales and at various
gradient magnitude thresholds. Each column shows a fixed scale, with t, the threshold
on gradient magnitude increasing as one moves down (by a factor of two from image to
image). Each row shows a fixed t, with scale increasing from σ one pixel to σ eight pixels,
by factors of two. Notice that the fine scale, low threshold edges contain a quantity of
detailed information that may or may not be useful (depending on one’s interest in the
hairs on the zebra’s nose). As the scale increases, the detail is suppressed; as the threshold
increases, small regions of edge drop out. No scale or threshold gives the outline of the
zebra’s head; all respond to its stripes, though as the scale increases, the narrow stripes
on the top of the muzzle are no longer resolved.

ure 9.11). These considerations yield algorithm 1. Most current edgefinders follow
these lines, but there remain substantial debates about the proper execution of the
details.

Non-Maximum Suppresion

Given estimates of gradient magnitude, we would like to obtain edge points. Again,
there is clearly no objective definition, and we proceed by reasonable intuition.
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Figure 9.9. Zero crossings of Laplacian of Gaussian output can behave strangely at
corners. Firstly, at a right angled corner, the zero crossing bulges out at the corner (but
passes through the vertex). This effect is not due to digitisation or to quantization, but
can be shown to occur in the continuous case as well. At corners where three or more
edges meet, contours behave strangely, with the details depending on the structure of
the contour marking algorithm — this algorithm (the one shipped with Matlab) produces
curious loops. This effect can be mitigated with careful design of the contour marking
process, which needs to incorporate a fairly detailed vertex model.

The gradient magnitude can be thought of as a chain of low hills. Marking local
extrema would mark isolated points — the hilltops in the analogy. A better criterion
is to slice the gradient magnitude along the gradient direction — which should
be perpendicular to the edge — and mark the points along the slice where the
magnitude is maximal. This would get a chain of points along the crown of the hills
in our chain; the process is called non-maximum suppression.

Edge Following

Typically, we expect edge points to occur along curve-like chains. The significant
steps in non maximum suppression are:

• determining whether a given point is an edge point;

• and, if it is, finding the next edge point.

Once these steps are understood, it is easy to enumerate all edge chains. We find
the first edge point, mark it, expand all chains through that point exhaustively,
marking all points along those chains, and continue to do this for all unmarked
edge points.
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Figure 9.10. The gradient magnitude can be estimated by smoothing an image and
then differentiating it. This is equivalent to convolving with the derivative of a smoothing
kernel. The extent of the smoothing affects the gradient magnitude; in this figure, we show
the gradient magnitude for the figure of a zebra at different scales. On the left, gradient
magnitude estimated using the derivatives of a Gaussian with σ = 1 pixel and on the right
gradient magnitude estimated using the derivatives of a Gaussian with σ = 2 pixel. Notice
that large values of the gradient magnitude form thick trails.

form an estimate of the image gradient

obtain the gradient magnitude from this estimate

identify image points where the value

of the gradient magnitude is maximal

in the direction perpendicular to the edge

and also large; these points are edge points

Algorithm 9.1: Gradient based edge detection.

The two main steps are simple. For the moment, assume that edges are to be
marked at pixel locations (rather than, say, at some finer subdivision of the pixel
grid). We can determine whether the gradient magnitude is maximal at any pixel
by comparing it with values at points some way backwards and forwards along the
gradient direction (figure 9.11). This is a function of distance along the gradient;
typically we step forward to the next row (or column) of pixels and backwards to
the previous to determine whether the magnitude at our pixel is larger (figure 9.12).
The gradient direction does not usually pass through the next pixel, so we must
interpolate to determine the value of the gradient magnitude at the points we are
interested in; a linear interpolate is usual.
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Figure 9.11. The gradient magnitude tends to be large along thick trails in an image.
Typically, we would like to condense these trails into curves of representative edge points.
A natural way to do this is to cut the trail perpendicular to its direction and look for a
peak. We will use the gradient direction as an estimate of the direction in which to cut.
The top left figure shows a trail of large gradient magnitude; the figure on the top right
shows an appropriate cutting direction; and below, we show the peak in this direction.

If the pixel turns out to be an edge point, the next edge point in the curve can
be guessed by taking a step perpendicular to the gradient. This step will not, in
general, end on a pixel; a natural strategy is to look at the neighbouring pixels that
lie close to that direction (see figure 9.12). This approach leads to a set of curves
that can be represented by rendering them in black on a white background, as in
figures 9.13-9.15.

Hysteresis

There are too many of these curves to come close to being a reasonable representa-
tion of object boundaries. This is, in part, because we have marked maxima of the
gradient magnitude without regard to how large these maxima are. It is more usual
to apply a threshold test, to ensure that the maxima are greater than some lower
bound. This in turn leads to broken edge curves (look closely at figures 9.13-9.15).
The usual trick for dealing with this is to use hysteresis; we have two thresholds,
and refer to the larger when starting an edge chain and the smaller while following
it. The trick often results in an improvement in edge outputs (exercises)

9.3.3 Technique: Orientation Representations and Corners

Edge detectors notoriously fail at corners, because the assumption that estimates of
the partial derivatives in the x and y direction suffice to estimate an oriented gra-
dient becomes unsupportable. At sharp corners or unfortunately oriented corners,
these partial derivative estimates will be poor, because their support will cross the
corner. There are a variety of specialised corner detectors, which look for image
neighbourhoods where the gradient swings sharply. More generally, the statistics
of the gradient in an image neighbourhood yields quite a useful description of the
neighbourhood. There is a rough taxonomy of four qualitative types of image win-
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Figure 9.12. Non-maximum suppression obtains points where the gradient magnitude
is at a maximum along the direction of the gradient. The figure on the left shows how
we reconstruct the gradient magnitude. The dots are the pixel grid. We are at pixel q,
attempting to determine whether the gradient is at a maximum; the gradient direction
through q does not pass through any convenient pixels in the forward or backward direc-
tion, so we must interpolate to obtain the values of the gradient magnitude at p and r;
if the value at q is larger than both, q is an edge point. Typically, the magnitude values
are reconstructed with a linear interpolate, which in this case would use the pixels to the
left and right of p and r respectively to interpolate values at those points. On the right,
we sketch how to find candidates for the next edge point, given that q is an edge point;
an appropriate search direction is perpendicular to the gradient, so that points s and t
should be considered for the next edge point. Notice that, in principle, we don’t need to
restrict ourselves to pixel points on the image grid, because we know where the predicted
position lies between s and t, so that we could again interpolate to obtain gradient values
for points off the grid.

dow:

• constant windows, where the grey level is approximately constant;

• edge windows, where there is a sharp change in image brightness that runs
along a single direction within the window;

• flow windows, where there are several fine parallel stripes — say hair or fur
— within the window;

• and 2D windows, where there is some form of 2D texture — say spots, or a
corner — within the window.

These cases correspond to different kinds of behaviour on the part of the image
gradient. In constant windows, the gradient vector is short; in edge windows, there
is a small number of long gradient vectors all pointing in a single direction; in flow
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While there are points with high gradient

that have not been visited

Find a start point that is a local maximum in the

direction perpendicular to the gradient

erasing points that have been checked

while possible, expand a chain through

the current point by:

1) predicting a set of next points, using

the direction perpendicular to the gradient

2) finding which (if any) is a local maximum

in the gradient direction

3) testing if the gradient magnitude at the

maximum is sufficiently large

4) leaving a record that the point and

neighbours have been visited

record the next point, which becomes the current point

end

end

Algorithm 9.2: Non-maximum suppression.

windows, there are many gradient vectors, pointing in two directions; and in 2D
windows, the gradient vector swings.
These distinctions can be quite easily drawn by looking at variations in orienta-

tion within a window. In particular, the matrix

H =
∑
window

{
(∇I)(∇I)T

}

≈
∑
window

{
(∂Gσ∂x ∗ ∗I)(

∂Gσ
∂x ∗ ∗I) (

∂Gσ
∂x ∗ ∗I)(

∂Gσ
∂y ∗ ∗I)

(∂Gσ∂x ∗ ∗I)(
∂Gσ
∂y ∗ ∗I) (

∂Gσ
∂y ∗ ∗I)(

∂Gσ
∂y ∗ ∗I)

}

gives a good idea of the behaviour of the orientation in a window. In a constant
window, both eigenvalues of this matrix will be small, because all terms will be
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Figure 9.13. Edge points marked on the pixel grid for the image shown on the left.
The edge points on the center left are obtained using a Gaussian smoothing filter at σ
one pixel and gradient magnitude has been tested against a high threshold to determine
whether a point is an edge point or not. The edge points on the center right are obtained
using a Gaussian smoothing filter at σ four pixels and gradient magnitude has been tested
against a high threshold to determine whether a point is an edge point or not. The edge
points on the right are obtained using a Gaussian smoothing filter at σ four pixels and
gradient magnitude has been tested against a low threshold to determine whether a point
is an edge point or not. At a fine scale, fine detail at high contrast generates edge points,
which disappear at the coarser scale. When the threshold is high, curves of edge points
are often broken because the gradient magnitude dips below the threshold; for the low
threshold, a variety of new edge points of dubious significance are introduced.

small. In an edge window, we expect to see one large eigenvalue associated with
gradients at the edge and one small eigenvalue because few gradients will run in
other directions. In a flow window, we expect the same properties of the eigenvalues,
except that the large eigenvalue is likely to be larger because many edges contribute.
Finally, in a 2D window, both eigenvalues will be large.
The behaviour of this matrix is most easily understood by plotting the ellipses

(x, y)TH−1(x, y) = ε

for some small constant ε. These ellipses are superimposed on the image windows.
Their major and minor axes will be along the eigenvectors ofH, and the extent of the
ellipses along their major or minor axes corresponds to the size of the eigenvalues;
this means that a large circle will correspond to an edge window and a narrow
extended ellipse will indicate an edge window (as in figure 9.17 and figure 9.18).
Thus, corners could be marked by marking points where the area of this ellipse is
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Figure 9.14. Edge points marked on the pixel grid for the image shown on the left.
The edge points on the center left are obtained using a Gaussian smoothing filter at σ
one pixel and gradient magnitude has been tested against a high threshold to determine
whether a point is an edge point or not. The edge points on the center right are obtained
using a Gaussian smoothing filter at σ four pixels and gradient magnitude has been tested
against a high threshold to determine whether a point is an edge point or not. The edge
points on the right are obtained using a Gaussian smoothing filter at σ four pixels and
gradient magnitude has been tested against a low threshold to determine whether a point
is an edge point or not. At a fine scale, fine detail at high contrast generates edge points,
which disappear at the coarser scale. When the threshold is high, curves of edge points
are often broken because the gradient magnitude dips below the threshold; for the low
threshold, a variety of new edge points of dubious significance are introduced.

extremal and large. The localisation accuracy of this approach is limited by the size
of the window and the behaviour of the gradient. More accurate localisation can be
obtained, at the price of providing a more detailed model of the corner sought (see,
for example, [Schmid et al., 1998; Schmid et al., 2000; Harris and Stephens, 1988]).
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Figure 9.15. Edge points marked on the pixel grid for the image shown on the left.
The edge points on the center left are obtained using a Gaussian smoothing filter at σ
one pixel and gradient magnitude has been tested against a high threshold to determine
whether a point is an edge point or not. The edge points on the center right are obtained
using a Gaussian smoothing filter at σ four pixels and gradient magnitude has been tested
against a high threshold to determine whether a point is an edge point or not. The edge
points on the right are obtained using a Gaussian smoothing filter at σ four pixels and
gradient magnitude has been tested against a low threshold to determine whether a point
is an edge point or not. At a fine scale, fine detail at high contrast generates edge points,
which disappear at the coarser scale. When the threshold is high, curves of edge points
are often broken because the gradient magnitude dips below the threshold; for the low
threshold, a variety of new edge points of dubious significance are introduced.

9.4 Commentary

There is a huge edge detection literature. The earliest paper of which we are aware
is [Julez, 1959] (yes, 1959!). Those wishing to be acquainted with the early literature
in detail should start with [Herskovits and Binford, 1970]; a 1975 survey [Davis,
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Figure 9.16. An image of a joshua tree on the left, and its orientations shown as vectors
superimposed on the image on the right. The orientation is superimposed on the image as
small vectors. Notice that around corners and in textured regions, the orientation vector
swings sharply.

1975]; [Hueckel, 1971], which models edges and then detects the models; and [Horn,
1971].
Edge detection is a subject that is alive with controversy, much of it probably

empty. We have hardly scratched the surface. There are many optimality criteria
for edge detectors, and rather more “optimal” edge detectors. The key paper in this
literature is by Canny [Canny, 1986]; significant variants are due to Deriche [Deriche,
1987] and to Spacek [Spacek, 1986]. Faugeras’ textbook contains a detailed and
accessible exposition of the main issues [Faugeras, 1993b]. At the end of the day,
most variants boil down to smoothing the image with something that looks a lot
like a Gaussian before measuring the gradient.
Object boundaries are not the same as sharp changes in image values. Firstly,

objects may not have a strong contrast with their backgrounds through sheer bad
luck. Secondly, objects are often covered with texture or markings which generate
edges of their own; often so many that it is hard to wade through them to find
the relevant pieces of object boundary. Finally, shadows and the like may generate
edges that have no relation to object boundaries. There are some strategies for
dealing with these difficulties.
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Figure 9.17. The orientation field for a detail of the joshua tree picture. On the left,
the orientations shown as vectors and superimposed on the image. Orientations have been
censored to remove those where the gradient magnitude is too small. The right figure
shows the ellipses described in the text, for a 3x3 window.

Figure 9.18. The orientation field for a detail of the joshua tree picture. On the left,
the orientations shown as vectors and superimposed on the image. Orientations have been
censored to remove those where the gradient magnitude is too small. The right figure
shows the ellipses described in the text, for a 5x5 window.
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Firstly, some applications allow management of illumination; if it is possible to
choose the illumination, a careful choice can make a tremendous difference in the
contrast and eliminate shadows. Secondly, by setting smoothing parameters large
and contrast thresholds high it is often possible to ensure that edges due to texture
are smoothed over and not marked. This is a dubious business, firstly because it can
be hard to choose reliable values of the smoothing and the thresholds and secondly
because it is perverse to regard texture purely as a nuisance, rather than a source
of information.
There are other ways to handle the uncomfortable distinction between edges and

object boundaries. Firstly, one might work to make better edge detectors. This
approach is the root of a huge literature, dealing with matters like localisation,
corner topology and the like. We incline to the view that returns are diminishing
rather sharply in this endeavour; we can provide only some pointers to this (vast)
literature [Torre and Poggio, 1986; Bergholm, 1987; Deriche, 1990; Fleck, 1992a;
Kube and Perona, 1996; Perona and Malik, 1990b; Elder and Zucker, 1998; Olson,
1998].
Secondly, one might deny the usefulness of edge detection entirely. This ap-

proach is rooted in the observation that some stages of edge detection, particularly
non-maximum suppression, discard information that is awfully difficult to retrieve
later on. This is because a hard decision — testing against a threshold — has been
made. Instead, the argument proceeds, one should keep this information around in
a “soft” (a propaganda term for probabilistic) way. Attactive as these arguments
sound, we are inclined to discount this view because there are currently no practical
mechanisms for handling the volumes of soft information so obtained.
Finally, one might regard this as an issue to be dealt with by overall questions of

system architecture — the fatalist view that almost every visual process is going to
have obnoxious features, and the correct approach to this problem is to understand
the integration of visual information well enough to construct vision systems that
are tolerant to this. Although it sweeps a great deal of dust under the carpet —
precisely how does one construct such architectures? — we find this approach most
attractive and will discuss it again and again.
All edge detectors behave badly at corners; only the details vary. In the case of

zero crossings of the Laplacian of Gaussian, the problem is well understood [Torre
and Poggio, 1986]. This bad behaviour has resulted in two lively strands in the
literature (i: what goes wrong; ii: what to do about it). There are a variety
of quite sophisticated corner detectors, mainly because corners make quite good
point features for correspondence algorithms supporting such activities as stereopsis,
reconstruction or structure from motion. This has led to quite detailed practical
knowledge of the localisation properties of corner detectors (e.g. [Schmid et al., 1998;
Schmid et al., 2000]).
Another lively strand in the literature is to determine how well edge detectors do.

One may study localisation accuracy (e.g. [Lyvers and Mitchell, 1988; Kakarala and
Hero, 1992]) or stability (e.g. [Cho et al., 1997; Cho et al., 1998]); one may compare
with human preferences (e.g. [Heath et al., 1997; Dougherty and Bowyer, 1998;
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Bowyer et al., 1999]) or compare performance in the context of a fixed task, such
as structure from motion (e.g. [Shin et al., 1998]) or recognition (e.g. [Shin et al.,
1999]). All share some difficulties (e.g. at corners) [Fleck, 1992b].
A variety of other forms of edge are quite common, however. The most com-

monly cited example is the roof edge which consists of a rising segment meeting
a falling segment, rather like some of the reflexes which can result from the effects
of interreflections (figure 3.17). Another example that also results from interreflec-
tions is a composite of a step and a roof. It is possible to find these phenomena by
using essentially the same steps as outlined above (find an “optimal” filter, and do
non-maximum suppression on its outputs) [Canny, 1986; Perona and Malik, 1990a].
In practice, this is seldom done. There appear to be two reasons. Firstly, there
is no comfortable basis in theory (or practice) for the models that are adopted —
what particular composite edges are worth looking for? The easy answer — those
for which optimal filters are reasonably easy to derive — is most unsatisfactory.
Secondly, the semantics of roof edges and more complex composite edges is even
vaguer than that of step edges — there is little notion of what one would do with
roof edge once it had been found.
Edges are poorly defined and usually hard to detect, but one can solve problems

with the output of an edge detector. Roof edges are similarly poorly defined and
similarly hard to detect; we have never seen problems solved with the output of
a roof edge detector. The real difficulty here is that there seems to be no reliable
mechanism for predicting, in advance, what will be worth detecting. We will scratch
the surface of this very difficult problem in below.

Assignments

Exercises

1. Each pixel value in 500 × 500 pixel image I is an independent normally dis-
tributed random variable with zero mean and standard deviation one. Esti-
mate the number of pixels that where the absolute value of the x derivative,
estimated by forward differences (i.e. |Ii+1,j − Ii,j| is greater than 3.

2. Each pixel value in 500 × 500 pixel image I is an independent normally dis-
tributed random variable with zero mean and standard deviation one. I is
convolved with the 2k + 1× 2k + 1 kernel G. What is the covariance of pixel
values in the result? (There are two ways to do this; on a case-by-case basis —
e.g. at points that are greater than 2k+1 apart in either the x or y direction,
the values are clearly independent — or in one fell swoop. Don’t worry about
the pixel values at the boundary.)

3. We have a camera that can produce output values that are integers in the
range 0-255. Its spatial resolution is 1024 by 768 pixels, and it produces
30 frames a second. We point it at a scene that, in the absence of noise,
would produce the constant value 128. The output of the camera is subject
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to noise that we model as zero mean stationary additive Gaussian noise with
a standard deviation of 1. How long must we wait before the noise model
predicts that we should see a pixel with a negative value? (Hint: you may
find it helpful to use logarithms to compute the answer, as a straightforward
evaluation of exp(−1282/2) will yield 0; the trick is to get the large positive
and large negative logarithms to cancel).

4. We said “One diagnostic for a large gradient magnitude is a zero of a “second
derivative” at a point where the gradient is large. A sensible 2D analogue
to the 1D second derivative must be rotationally invariant” in section 9.3.1.
Why is this true?

Programming Assignments

1. Why is it necessary to check that the gradient magnitude is large at zero
crossings of the Laplacian of an image? Demonstrate a series of edges for
which this test is significant.

2. The Laplacian of a Gaussian looks similar to the difference between two Gaus-
sians at different scales. Compare these two kernels for various values of the
two scales — which choices give a good approximation? How significant is the
approximation error in edge finding using a zero-crossing approach?

3. Obtain an implementation of Canny’s edge detector (you could try the vision
home page at http://www.somewhereorother) and make a series of images
indicating the effects of scale and contrast thresholds on the edges that are
detected. How easy is it to set up the edge detector to mark only object
boundaries? Can you think of applications where this would be easy?

4. It is quite easy to defeat hysteresis in edge detectors that implement it —
essentially, one sets the lower and higher thresholds to have the same value.
Use this trick to compare the behaviour of an edge detector with and without
hysteresis. There are a variety of issues to look at:

• What are you trying to do with the edge detector output? it is sometimes
very helpful to have linked chains of edge points — does hysteresis help
significantly here?

• Noise suppression: we often wish to force edge detectors to ignore some
edge points and mark others. One diagnostic that an edge is useful is
high contrast (it is by no means reliable). How reliably can you use
hysteresis to suppress low contrast edges without breaking high contrast
edges?



Chapter 10

FILTERS AND FEATURES

Linear filters can be thought of as simple pattern finders. This view is helpful,
because it allows us to build quite effective object detection systems using filters.
We describe this view of a filter in section 10.1; in section 10.2 we describe a system
that uses this approach to find hand gestures and in section 10.3, we use this
view to understand a body of evidence about the primate early vision. Finally, we
describe more complex noise models and correspondingly more complex smoothing
techniques in section 10.4.

10.1 Filters as Templates

It turns out that filters offer a natural mechanism for finding simple patterns, be-
cause filters respond most strongly to pattern elements that look like the filter. For
example, smoothed derivative filters are intended to give a strong response at a
point where the derivative is large; at these points, the kernel of the filter “looks
like” the effect it is intended to detect. The x-derivative filters look like a verti-
cal light blob next to a vertical dark blob (an arrangement where there is a large
x-derivative), and so on.
It is generally the case that filters that are intended to give a strong response to

a pattern look like that pattern. This is a simple geometric result.

10.1.1 Convolution as a Dot Product

Recall from section 8.1.1 that, for G the kernel of some linear filter, the response of
this filter to an image H is given by:

Rij =
∑
u,v

Gi−u,j−vHuv

Now consider the response of a filter at the point where i and j are zero. This will
be

R =
∑
u,v

G−u,−vHu,v

266
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Figure 10.1. Filter kernels “look like” the effects they are intended to detect. On the
left, an smoothed derivative of Gaussian filter that looks for large changes in the x-direction
(such as a dark blob next to a light blob); on the right, a smoothed derivative of Gaussian
filter that looks for large changes in the y-direction.

This response is obtained by associating image elements with filter kernel ele-
ments, multiplying the associated elements, and summing. We could scan the image
into a vector, and the filter kernel into another vector, in such a way that associated
elements are in the same component. By inserting zeros as needed, we can ensure
that these two vectors have the same dimension. Once this is done, the process
of multiplying associated elements and summing is precisely the same as taking a
dot-product.
This is a powerful analogy, because this dot-product, like any other, will achieve

its largest value when the vector representing the image is parallel to the vector
representing the filter kernel. This means that a filter responds most strongly when
it encounters an image pattern that looks like the filter. The response of a filter
will get stronger as a region gets brighter, too.
Now consider the response of the image to a filter at some other point. Nothing

significant about our model has changed; again, we can scan the image into one
vector and the filter kernel into another vector, such that associated elements lie
in the same components. Again, the result of applying this filter is a dot-product.
There are two useful ways to think about this dot-product.

10.1.2 Changing Basis

We can think of convolution as a dot-product between the image and a different
vector (because we have moved the filter kernel to lie over some other point in
the image). The new vector is obtained by rearranging the old one, so that the
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elements lie in the right components to make the sum work out. This means that,
by convolving an image with a filter, we are representing the image on a new basis
of the vector space of images — the basis given by the different shifted versions of
the filter. The original basis elements were vectors with a zero in all slots except
one. The new basis elements are shifted versions of a single pattern.
For many of the kernels we have discussed, we expect that this process will

lose information — for the same reason that smoothing suppresses noise — so that
the coefficients on this basis are redundant. This basis transformation is valuable in
texture analysis. Typically, we choose a basis which consists of small, useful pattern
components. Large values of the basis coefficients suggest that a pattern component
is present, and texture can be represented by representing the relationships between
these pattern components, usually with some form of probability model.

10.2 Technique: Normalised Correlation and Finding Patterns

We can think of convolution as comparing a filter with a patch of image centered at
the point whose response we are looking at. In this view, the image neighbourhood
corresponding to the filter kernel is scanned into a vector which is compared with
the filter kernel. By itself, this dot-product is a poor way to find features, because
the value may be large simply because the image region is bright. By analogy with
vectors, we are interested in the cosine of the angle between the filter vector and the
image neighbourhood vector; this suggests computing the root sum of squares of
the relevant image region (the image elements that would lie under the filter kernel)
and dividing the response by that value.
This yields a value that is large and positive when the image region looks like

the filter kernel, and small and negative when the image region looks like a contrast-
reversed version of the filter kernel. This value could be squared if contrast reversal
doesn’t matter. This is a cheap and effective method for finding patterns, often
called normalised correlation.

10.2.1 Controlling the Television by Finding Hands by Normalised
Correlation

It would be nice to have systems that could respond to human gestures. You might,
for example, wave at the light to get the room illuminated, point at the aircondi-
tioning to get the room temperature changed, or make an appropriate gesture at an
annoying politician on television and get a change in channel. In typical consumer
applications, there are quite strict limits to the amount of computation available,
meaning that it is essential that the gesture recognition system be simple. However,
such systems are usually quite limited in what they need to do, too.

Controlling the Television

Typically, a user interface is in some state — perhaps a menu is displayed — and an
event occurs — perhaps a button is pressed on a remote control. This event causes
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the interface to change state — a new menu item is highlighted, say — and the
whole process continues. In some states, some events cause the system to perform
some action — the channel might change. All this means that a state machine is a
natural model for a user interface.
One way for vision to fit into this model is to provide events. This is good,

because there are generally very few different kinds of event, and we know what
kinds of event the system should care about in any particular state. As a result,
the vision system needs only to determine whether either nothing or one of a small
number of known kinds of event has occurred. It is quite often possible to build
systems that meet these constraints.
A relatively small set of events is required to simulate a remote control — one

needs events that “look like” button presses (for example, to turn the television
on or off), and events that “look like” pointer motion (for example, to increase the
volume; it is possible to do this with buttons, too). With these events, the television
can be turned on, and an on-screen menu system navigated.

Finding Hands

Freeman et al. produced an interface where an open hand turns the television on [].
This can be robust, because all the system needs to do is determine whether there is
a hand in view. Furthermore, the user will cooperate by holding their hand up and
open. Because the user is expected to be a fairly constant distance from the camera
— so the size of the hand is roughly known, and there is no need to search over
scales — and in front of the television, the image region that needs to be searched
to determine if there is a hand is quite small.
The hand is held up in a fairly standard configuration and orientation to turn the

television set on, and it usually appears at about the same distance from television
(so we know what it will look like). This means that a normalised correlation score
is sufficient to find the hand. Any points in the correlation image where the score
is high enough correspond to hands. This approach can be used to control volume,
etc. as well as turn the television on and off. To do so, we need some notion of
where the hand is going — to one side turns the volume up, to the other turns it
down — and this can be obtained by comparing the position in the previous frame
with that in the current frame. The system displays an iconic representation of
its interpretation of hand position, so the user has some feedback as to what the
system is doing (figure 10.2). Notice that an attractive feature of this approach is
that it could be self-calibrating. In this approach, when you install your television
set, you sit in front of it and show it your hand a few times to allow it to get an
estimate of the scale at which the hand appears.

10.3 Human Vision: Filters and Primate Early Vision

One remarkable application of filter theory is in understanding the early stages of
the primate visual system. Over the last few decades, a great deal of information
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Figure 10.2. Examples of Freeman et al.’s system controlling a television set. Each
state is illustrated with what the television sees on the left, and what the user sees on the
right. In (a), the television is asleep, but a process is watching the user. An open hand
causes the television to come on, and show its user interface panel (b). Focus on the panel
tracks the movement of the user’s open hand in (c), and the user can change channel by
using this tracking to move an icon on the screen in (d). Finally, the user displays a closed
hand in (e) to turn off the set.

has been gathered about this system. All this information suggests that the early
stages form a series of feature maps, formed using a collection of filters.

10.3.1 The Visual Pathway

The anatomical details of how visual information is passed into the brain, and
what happens in the early stages, are quite well understood. Information about
the connections along this pathway is obtained by staining cells with substances
that move in known ways (along the body of the cell; across connections; etc.) and
looking to see where the stain ends up.
These anatomical studies suggest a model of the early stages of the visual system

as a path — the visual pathway— along which signals are processed in different
ways. The main phenomena that the visual signal encounters in its journey are:

• The retina, where photoreceptive cells transduce irradiance to electrical spikes.
These signals are processed by a variety of layers of cells. Retinal ganglion
cells connect to the final layer; the fibers of these cells form the optic nerve.
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• The optic nerve connects the retina to the brain through the the optic chi-
asma. This is a crossing point; the left-hand side of each retina is connected
to the left half of the brain, and the right-hand side to the right half.

• Most information then goes to the lateral geniculate nucleus (some infor-
mation is fed to the superior colliculus, which we shall ignore). The lateral
geniculate nucleus consists of a series of highly structured layers of cells. These
cells pass information to the visual cortex.

• The visual cortex is one of the best studied regions in the primate brain.
It consists of a series of quite well defined layers, which offer a large selection
of different representations of an image, organised in fairly well understood
structures.

• Visual information leaves the visual cortex for the parietal cortex and the
temporal cortex. The temporal cortex appears to be involved in determin-
ing what an object is, and the parietal cortex in determining where it is []

and possibly how it can be grasped []. This information must be reunited
somewhere, but it isn’t currently known where.

The behaviour of various structures along the visual pathway can be studied
by recording the response of cells to patterns of light and motion shown to an
experimental animal. It is possible to insert electrodes into the main structures
along the visual pathway without traumatising the brain so badly that the results
are meaningless.
In a typical experiment, an electrode is inserted along a path through some

structure to record electrical signals from cells along that path. Patterns of light,
colour and motion are shown to an experimental animal, and the response from the
electrode — which is hopefully a response from a nearby cell — is recorded along
with the depth to which the electrode has penetrated. When sufficient information
has been obtained, the electrode is moved deeper along its path and the process
continues. Recordings may be taken from several different paths. Eventually, the
experimental animal is sacrificed and its brain cut in sections to determine from
what precise regions the electrode recorded information.
Neurons in the visual pathway can be studied by assuming that either they are

linear — an assumption that can be, and has been, checked in considerable detail,
see for example [] — or that their output involves only a relatively simple non-
linearity. This means that it is sufficient to study their response to the elements of
some basis, and the Fourier basis is a fairly natural choice. In practice, this means
that the response of cells is often determined by their response to a grating. A
spatial grating is a pattern of the form m(1+a cos 2πfx), where x is a convenient
spatial coordinate across the visual field. These gratings can be used to investigate
the spatial response of a cell. The spatio-temporal response is studied using a
spatio-temporal grating, a pattern of the form m(1 + a cos 2πfx cos 2πgt)) (this
is a moving sinusoid).
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Figure 10.3. A diagram of the visual pathway, viewed from the underside of the brain.
Elements of the right hand visual field are imaged on both left and right retinas; through
the optic chiasm, the left hand visual field is projected to the right lateral geniculate
nucleus (and vice versa — the dashed lines indicate the pathway followed by the right
visual field). Signals then leave the LGN for the visual cortex, at the back of the brain.
The behaviour of cells up to and including the cortex is quite well understood, and is
usually modelled as a system of filters. Notice that the outputs of retinal cells map to
the cortex in a spatially organised fashion, but that the central portion of the visual field
maps to a larger area of cortex than the peripheral portions; this reflects the fact that the
eye has higher spatial resolution in the central portion of the visual field. Redrawn after
figure ****** of Frisby, 19****.

10.3.2 The Response of Retinal Cells

The earliest cells in the visual pathway are photoreceptors. Photoreceptors con-
vert light falling on them into neural signals. These cells are remarkable in their
own right; they generate a neural signal whose dynamic range is roughly three or-
ders of magnitude (from about one spike per second to about a thousand spikes per
second)from an irradiance that may vary over about 12 orders of magnitude (from
about 100 photons per second on a dark night when objects are barely visible to
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about 1014 photons per second on an uncomfortably bright day at a beach).
The output of the photoreceptors is collected by layers of bipolar cells, which

are in turn connected to retinal ganglion cells. Retinal ganglion cells (and many
others in the visual pathway) can be described by their receptive field — this
is a record of the spatial distribution of the effect of illumination on the neuron’s
output. Within the region of the retina where light evokes a response from the cell,
there are two qualitatively different areas. Typically, light falling in the center of a
ganglion cell’s receptive field increases its firing rate — often called its response
— and light falling in the outside decreases the firing rate. A cell that responds
like this is referred to as an on-center, off-surround cell; there are also off-
center, on-surround cells. For a fixed mean value m of a stimulus, ganglion cells
appear to sum their response over the receptive field, weighting the center positive
(respectively negative) and the surround negative (resp. positive) for an on-center,
off-surround (resp. off-center, on-surround) cell. In particular, the response of
the cell for fixed mean value can be shown to be linear by comparing the sum
of the responses to individual stimuli and the response to a sum of these stimuli.
Figure 10.4 illustrates the behaviour of a linear retinal ganglion cell.

Delay
Σ

Figure 10.4. The response of a retinal ganglion cell can be predicted by adding the
temporal response of the center to the temporal response of the surround (which is slower
than that of the center, and is so delayed in the model). As the cross-section indicates,
the model of the spatial response is a difference of Gaussian model — there is a center
field that has a spatial sensitivity of the form of a narrow Gaussian, and a surround field
that has the form of a broad Gaussian. One field excites, the other inhibits (as indicated
by the positive/negative signs in the figure). Figure redrawn after Enroth-Cugell et al.,

It is usual to study neurons by fixing some level of response, and then determin-
ing the contrast (amplitude of the sinusoid) required to elicit that level of response
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Figure 10.5. The contrast sensitivity function can be used to describe the behaviour
of linear cells. In a center-surround cell, described in the figure, the response to a
constant stimulus is zero. Assume that the cell is exposed to a grating, of the form
m(1 + a cos(2πfx)), where f is the spatial frequency and x is spatial position in a conve-
nient system of units; a is referred to the contrast of the signal. The contrast sensitivity is
obtained by fixing some level of response, and taking the inverse of the contrast required
to reach that level of response. Center-surround cells are tuned in spatial frequency; if the
spatial frequency of the signal is low, then the signal is nearly constant over the receptive
field of the cell, and the contrast sensitivity is lowered. This is because the excitatory and
inhibitory responses are about the same, and so a very high contrast is required to reach
some given level of response. At an increased spatial frequency, we can have a grating
that is light in the excitatory regions and dark in the inhibitory regions, meaning that
relatively low contrast is required to reach the required response. Finally, if the frequency
of the signal is high, then the excitatory and inhibitory responses tend to cancel. These
considerations lead to a curve with the rather typical shape shown here.

— the contrast threshold. Typically, one plots the contrast sensitivity (the
inverse of the contrast threshold) against some interesting variable. Figure 10.5
plots the contrast sensitivity of a center-surround neuron against a measure of spa-
tial frequency. In this case, the stimulus shown was fixed, and the cell’s response
measured after some long time, giving an assymptotic response.

10.3.3 The Lateral Geniculate Nucleus

Anatomically, the LGN consists of six layers of neurons, which are then folded up.
Anatomical studies suggest that one should distinguish between two classes of layer
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— two layers consisting of cells with large cell bodies (magnocellular layers), and
four layers consisting of cells with small cell bodies (parvocellular layers).
The whole LGN receives input from both eyes, but each layer in the LGN receives

input from a only single eye — the eye involved alternates from layer to layer. The
layers are laid out like the retina of the eye providing input (an effect known as
retinotopic mapping). Retinotopic mapping means that signals from nearby
regions on the retina end up near one another in the layer, and so we can think of
each layer as representing some form of feature map.
The feature maps represented by these layers are qualitatively different. Typical

cells from the magnocellular layers have large receptive fields, respond strongly to
contrast and strongly but transiently to temporal changes in the retinal stimulus.
Their response depends only weakly on colour. Typical cells from the parvocellular
layers have small receptive fields, are largely insensitive to contrast, are highly
sensitive to colour and give a sustained response to temporal change. Neurons in
the lateral geniculate nucleus display similar receptive field behaviour to retinal
neurons.

10.3.4 The Visual Cortex

Most visual signals arrive at an area of the cortex called area V1 (or the primary
visual cortex, or the striate cortex). This area is highly structured and has been
intensively studied. Most physiological information about the cortex comes from
studies of cats or monkeys (which are known to react differently from one another
and from humans if the cortex is damaged).
The cortex is also retinotopically mapped and has a layered architecture, too. It

receives input from each eye, but now both eyes are represented within each layer.
Some cells receive input from both eyes; others receive input from only one eye.
Within layer V1 check, there are regions within each layer organised by the eye
of origin of the signal (often called ocular dominance columns). Within these
columns, cells are arranged so that their receptive fields move smoothly from the
center to the periphery of the visual field. This means that, as one moves within a
layer, the eye of origin of the signal changes from column to column. As one moves
within a layer and within a particular column, the receptive field of the cell sweeps
across the visual field.
Neurons in the primary visual cortex have been extensively studied. There are

at least two classes are usually recognised — simple cells and complex cells
(discussion of hypercomplex cells is also common).

Simple Cells

Simple cells behave rather like linear filters. They have receptive fields that consist
of regions that tend to excite the cell, and others that tend to inhibit, and the overall
response of the cell can be predicted by summing responses over the whole receptive
field. There are a variety of different kinds of receptive fields (some are illustrated
in figure 10.6). Typically, the receptive fields have orientation selective receptive
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Figure 10.6. Cortical simple cells can typically be modelled as linear, and are often
thought of as spot, edge or bar detectors. Typical receptive fields are shown above; the
output of the cell on the left is inhibited by light in the center of its receptive field —
marked with the ‘-’ sign — and excited by light in the surround (the ‘+’ sign). Thus, the
cell on the left is particularly strongly excited by dark bars on a light background, and
so is a bar detector. Similarly, the cell on the right is strongly excited by a vertical edge
(a bright patch next to a dark patch). Notice that these cells are orientation selective;
the cell on the left responds most strongly to a bright bar on a dark background and
the cell on the right will respond strongly to an oriented edge. Notice the similarity to
derivative of Gaussian filters, which also look like Gabor filters. This similarity suggests
an alternative interpretation of the cell’s behaviour — that it is computing a local spatial
frequency analysis of the image, as in section 11.2.2.

fields, meaning that a particular cell will respond more strongly to an oriented
structure. The preferred orientation of a cell varies fairly smoothly in a principled
way that depends on the cell’s position within a layer.
One way to interpret the behaviour of these cells is to see them as feature

detectors — the receptive fields illustrated in figure 10.6 are easily thought of as
edge and bar detectors, or as derivative operators. Simple cells can have quite
complex receptive fields, with multiple lobes, somewhat suggestive of the kernel of
a Gabor filter. This suggests an alternative, and more general, interpretation of
the cell’s output as a local spatial frequency analysis (rather like the Gabor filters
in section 11.2.2). This second interpretation sees the cells as generalised feature
detectors, because one could combine outputs in various ways to detect particular
features.
The response of some cortical cells depends on both the temporal and the spatial

structure of the stimulus. For example, some cells display direction selectivity, in
that the response of a cell to a moving bar depends strongly on both the orientation
of the bar and the direction of the motion (figure 10.7).
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Figure 10.7. Many cortical cells typically give stronger or weaker responses to moving
bars, depending on the direction in which the bar moves. The receptive field of a cell
like this can be thought of as a spatial filter that is swept in a particular direction with
time — a spatio-temporal filter. The first row shows typical behaviour from such a
cell; a horizontal bar moving vertically gets a strong response, but the bar gets a much
weaker response when its orientation changes. The second row shows one way of thinking
about this phenomenon — the cell’s output is computed by adding together the response
of several different spatial filters, computed at different time offsets. An alternative way
to think of this cell is as a linear filter in the spatial and the temporal domain; we can lay
out the kernel as a graph in space and time, as on the bottom row.

Complex Cells

One strong distinction between simple and complex cells appears when one considers
the time-course of a response to a contrast reversing pattern— a spatial sinusoid
whose amplitude is a sinusoidal function of time. Exposed to such a stimulus, a
simple cell responds strongly for the positive contrast and not at all for the negative
contrast — it is trying to be linear, but because the resting response of the cell is
low, there is a limit to the extent to which the cell’s output can be inhibited. In
contrast, complex cells respond to both phases (figure 10.8). Thus, one can think of
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Figure 10.8. Cortical cells are classified simple or complex, depending on their response
to a time-reversing grating. In a simple cell, the response grows as the intensity of the
grating grows, and then falls off as the contrast of the grating reverses. The negative
response is weak, because the cell’s resting output is low so that it cannot code much
inhibition. The response is what one would expect from a linear system with a lower
threshold on its response. On the right, the response of a complex cell, which looks like
full wave rectification; the cell responds similarly to a grating with positive and reversed
contrast.

a simple cell as performing half-wave rectification — it responds to the positive half
of the amplitude signal — and a complex cell as performing full wave rectification
— it gives a response to both the positive and negative half of the amplitude signal.

10.3.5 A Model of Early Spatial Vision

We now have a picture of the early stages of primate vision. The retinal image is
transformed into a series of retinotopic maps, each of which contains the output of
a linear filter which may have spatial or spatio-temporal support. The retinotopic
structure means that each map can be thought of as an image which is filtered
version of the retinal image. The filters themselves are oriented filters that look
rather a lot like various derivatives of a Gaussian, at various orientations. The
retinotopic maps are subjected to some form of non-linearity (to get the output of
the complex cells).
As we indicated above, the linear model applies only if the mean of the stimulus

is fixed. The contrast sensitivity function is different for different mean values,
an effect known as adaptation. Typically, quite large changes in the mean of
the stimulus shift the contrast sensitivity function only slightly. This phenomenon
implies that the behaviour of important parts of the visual system is largely invariant
to changes in average brightness — this suggests an answer to how our visual system
can operate over such a large range of brightnesses.
Adaptation phenomena can be used to hypothesize different channels in the

visual pathway. We assume that if responses adapt independently, then that means
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there are different channels. This approach is particularly successful if we are willing
to use the term adaptation fairly flexibly; generally, the term refers to a phenomenon
where the response of an observer to a stimulus declines if the stimulus is maintained
— the prime example being a constant average brightness — and stays depressed
for some time afterwards.
In experiments by Blakemore and Campbell [], observers were shown spatial

frequency gratings until they are adapted to that spatial frequency. It turns out
that the observer’s contrast sensitivity is decreased for a range of spatial frequencies
around the adapting frequency, but not for all spatial frequencies. This suggests that
the observer has several distinct spatial frequency channels. Suchmultiresolution
models provide the current best model of human early vision (figure 10.9). The
model has the visual signal split into several spatial frequency bands; each band is
then subjected to a set of oriented linear filters, and the responses of these filters in
turn are subjected to a non-linearity. The response of this model can be used quite
successfully to predict various forms of pattern sensitivity for simple patterns (it
clearly doesn’t explain, say, object recognition or stereopsis); we will see it again in
discussions of texture. Its great virtue is that it suggests a useful representation of
an image, despite the fact that it doesn’t yet help us interpret that representation.

+
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Figure 10.9. An overview of a multiresolution model of human pattern sensitivity. The
stimulus is convolved with linear filters at a variety of scales and orientations — we show
three scales, and only one orientation per scale; this is not a commitment to a number
— and then subjected to a nonlinearity. The results have noise added, and are passed to
a decision process. The details of the number of scales, the number of orientations, the
choice of non-linearity, etc. vary from author to author. This class of model is now quite
successful at predicting responses to simple patterns.
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10.4 Advanced Smoothing Strategies and Non-linear Filters

Another way to think of a smoothing filter is as a statistical estimator. In particular,
the goal here is to estimate the actual image value at a pixel, in the presence of
noisy measurements. This view leads us to a class of filters that are hard to analyse,
but can be extremely useful. Typically, these filters are used in circumstances where
the stationary additive Gaussian noise model is unusable. We describe a variety of
more complex noise models which occur in practice, and then discuss filters that
can be used to smooth away these models.

10.4.1 More Noise Models

Salt and pepper noise models cameras with defective sample sites. Pixels are
chosen uniformly at random; each of these pixels is set to be either full value or
zero value (again, uniformly at random). The result looks as though the image has
been sprinkled with salt and pepper, whence the name. There is a basic conceptual
difference between stationary additive Gaussian noise and salt and pepper noise; in
the first case, we add a random quantity to each pixel, whereas in the second, we
use a random mechanism to select pixels, and then operate on the selected pixels.
Random mechanisms to select pixels are usually called point processes, and

form a significant topic of their own. We will describe some important types of
point process. In a homogenous Poisson point process, points on the image
plane are chosen randomly so that the expected number of points in any subset is
proportional to the area of the subset. The constant of proportionality is known as
the intensity of the process. An instance of a Poisson point process can be obtained
by sampling the number of affected pixels from a Poisson distribution whose mean
is the intensity times the image area, and then drawing the coordinates of these
pixels uniformly at random.
Because we need to flip some pixels to white and other to black, we need to use

a marked point process. In this model, we use a point process to select points,
then assign to each point a “mark” (for example, whether it is white or black, or
some other such thing) at random using an appropriate distribution. For a camera
where a non-responsive pixel is as likely as a saturated pixel, the probability that
a point carries a black mark should be the same as the probability that a point
carries a white mark. If (for example, because of the manufacturing process) there
are fewer non-responsive pixels than responsive pixels, then the distribution on the
marks can reflect this as well.
A noise process of this form results in fairly evenly distributed noise. A set of bad

pixels that consists of widely separated large, tight clumps is quite unlikely. One
model that would achieve this takes points chosen by a Poisson process and then
marks a clump of pixels around them. The shape of the clump is chosen randomly
— this is another form of mark. Another form of noise that is quite common in
videotape systems involves whole scan-lines of an image being turned to noise. The
line involved can be chosen with a Poisson point process as well (figure 10.11). A
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Figure 10.10. Examples of salt-and-pepper noise at different intensities (Poisson pro-
cess). The snowy background means that, in some areas, the pepper is more visible than
the salt.

variety of models of this form are available; a brief exposition appears in chapter
*** of [?]; more detail on point processes appears in [?].
The response of a filter to spatial noise models of this form is usually impossible

to compute analytically. Instead, we rely on simulation. The basic idea is to set up
a probabilistic noise model, draw a large number of samples from that model, and
then apply the filter in question to the samples. One computes appropriate statistics
from the result — for example, the mean and variance of the noise response. In
principle it is possible to choose filters from families of filters in this way, although
we are not aware of anyone doing so in the computer vision literature.

10.4.2 Robust Estimates

Smoothing an image with a symmetric Gaussian kernel replaces a pixel with some
weighted average of its neighbours. If an image has been corrupted with stationary
additive zero-mean Gaussian noise, then this weighted average gives a reasonable
estimate of the original value of the pixel. The expected noise response is zero,
and the estimate has better behaviour in terms of spatial frequency than a simple
average (as the ringing effects in figure ?? show).
However, if the image noise is not stationary additive Gaussian noise, difficul-

ties arise. For example, consider a noise model where image points are set to the
brightest or darkest possible value with a Poisson point process (section 10.12).
In particular, consider a region of the image which has a constant dark value and
there is a single bright pixel due to noise — smoothing with a Gaussian will leave
a smooth, Gaussian-like, bright bump centered on this pixel.
The problem here is that a weighted average can be arbitrarily badly affected

by very large noise values. Thus, in our example, we can make the bright bump
arbitrarily bright by making the bright pixel arbitrarily bright — perhaps as result
of, say, a transient error in reading a memory element. Estimators that do not
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Figure 10.11. A variety of other natural spatial noise models. We show two versions.
The first image shows the result of randomly replacing lines with noise, where the proba-
bility of replacing the line is uniform; in the second, a block of lines of random length is
replaced with noise — this process is a reasonable model of the sort of noise that occurs
in fast-forwarding or rewinding VCR’s. In the third, a Poisson process chooses “noise
points”; in a neighbourhood of each noise point, pixels are randomly marked black with a
probability that falls off as the negative exponential of the distance from the noise point.
This process simulates damage to the CCD array, or to the lens.

have this most undesirable property are often known as robust estimates (see
section 17.5 for a more detailed discussion).
The best known robust estimator involves estimating the mean of a set of values

using itsmedian. For a set with 2k+1 elements, the median is the k+1’th element
of the sorted set of values. For a set with 2k elements, the median is the average
of the k and the k+ 1’th element of the sorted set. It does not matter whether the
set is sorted in increasing or decreasing order (exercises!).

10.4.3 Median Filters

A median filter is specified by giving some form of neighbourhood shape (which
can significantly affect the behaviour of the filter). This neighbourhood is passed
over the image as in convolution, but instead of taking a weighted sum of elements
within the neighbourhood, we take the median. If we write the neighbourhood
centered at i, j as Nij, the filter can be described by:

yij =med({xuv|xuv ∈ Nij})

Applying a median filter to our example of a uniform dark region with a single,
arbitrarily bright, pixel will yield a dark region. In this example, up to half of the
elements in the neighbourhood could be noise values and the answer would still be
correct (exercises!). It is difficult to obtain analytic results about the behaviour of
median filters, but a number of general observations apply.
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Figure 10.12. On the left, a black background with white noise pixels distributed as a
Poisson point process. About 1 in 20 pixels is a noise pixel. These pixels are outliers, in
the sense that they differ radically from their neighbouring pixels. In the center image, we
see the result of estimating pixels as the response of the image to a Gaussian filter with
σ one pixel; we are estimating a pixel value as a weighted sum of its neighbours. Because
the noise pixels are wildly different from their neighbourhood, they skew this estimate
substantially. In the right hand image, we see the result of using a Gaussian filter with σ
two pixels; the effect remains, but is smaller, because the effective support of the filter is
larger.

Figure 10.13. The columns on the left show Poisson noise processes of different in-
tensities, added to a black image; on the top row, about 1 in 20 pixels is noise and on
the bottom row about 1 in 4 is noise. The second column shows the effect of applying a
filter that returns the median of a 3x3 neighbourhood to these images, and the third col-
umn shows the effect of applying a filter that returns the median of a 5x5 neighbourhood
to these images. Notice that, if the noise is intense, then the median filter is unable to
suppress it.



284 Filters and Features Chapter 10

Figure 10.14. On the left, an image corrupted with salt-and-pepper noise (points are
chosen by a Poisson process, and then with even probability marked either black or white;
in this image, about 9% of the pixels are noise pixels). Gaussian smoothing (center left
shows σ one pixel and center shows σ two pixels) works particularly poorly, as the contrast
makes the dark regions left behind by averaging in dark pixels very noticeable. A median
filter is much more successful (center right shows a 3x3 median filter and right shows a
7x7 median filter). Notice how the median filter blurs boundaries.

Multi-stage Median Filters

Median filters preserve straight edges, but tend to behave badly at sharp corners
(figure 8.1 and exercises). This difficulty is usually dealt with by forming a multi-
stage median filter; this filter responds with the median of a set of different
medians, obtained in different neighbourhoods:

yij = med(z1 , z2, z3, z4)

z1 = med(
{
xuv|xuv ∈ N

1
ij

}
)

z2 = med(
{
xuv|xuv ∈ N

2
ij

}
)
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Figure 10.15. On the left, a detail from the figure of vegetables; in the center the result
of applying a median filter with a 7x7 neighbourhood of support. Notice that the texture
of the broccoli florets is almost completely smoothed away, and that corners around the
red cabbage have been obscured. These effects could be useful in some contexts, but
reduce the usefulness of the filter in suppressing long-tailed noise because they represent
a reduction in image detail, too. On the right, the result of applying a multistage median
filter, using 7 pixel domains that are horizontal, vertical, and along the two diagonals.
Significantly less detail has been lost.

z3 = med(
{
xuv|xuv ∈ N

3
ij

}
)

z4 = med(
{
xuv|xuv ∈ N

4
ij

}
)

where N1 is a vertically extended neighbourhood, N2 is a horizontally extended
neighbourhood, and N3 and N4 are diagonal neighbourhoods. In the exercises, we
ask for an intuitive argument as to why this filter is inclined to preserve corners;
the effect is illustrated in figure 10.15.

Trimmed and Hybrid Median Filters

While median filters tend to be better than linear filters at rejecting very large noise
values — so called outliers— they tend to be poorer than linear filters at handling
noise that does not have outliers. In jargon, noise that can produce occasional large
values is often called long-tailed noise, because the probability density for the
noise values has “long tails” —there is significant weight in the density far from
the mean; similarly, noise that does not have this property is often called short-
tailed noise. In a neighbourhood, long-tailed noise will produce a small number of
very large values, which tend not to affect the median much; however, short-tailed
noise will produce values that are similar to the original pixel value and which
will affect the median more. This difficulty can be handled either by using an α-
trimmed linear filter — where α/2 percent of the largest and smallest values
in a neighbourhood are removed from consideration and the rest are subjected to
a linear filter — or by using a hybrid median filter — where the output is the
median of a set of linear filters over a neighbourhood.
Median filters can be extremely slow. One strategy is to pretend that a median

filter is separable, and apply separate x and y median filters.
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Figure 10.16. On the left, a binary image; a natural strategy for removing small
groups of dark pixels is to lighten all pixels that do not lie at the center of a 3x3 dark
neighbourhood. This process is known as erosion. In the center, the relevant pixels have
been greyed. Similarly, we could fill in small gaps by marking all pixels such that a 3x3
neighbourhood around the pixel contacts a dark pixel, a process known as dilation. The
relevant pixels have been greyed on the right.

10.4.4 Mathematical morphology: erosion and dilation

A variety of useful operators can be obtained from considering set-theoretic opera-
tions on binary images. It often occurs that a binarised images has individual pixels
or small groups of pixels that are isolated from the main body of the image. Com-
monly, one would like to remove very small groups of pixels and join up groups that
are close together. Small groups can be removed by noticing that a block of pixels
would not fit inside a small group; large groups can be joined up by “thickening”
their boundaries. In figure 10.16, we illustrate removing groups of dark pixels by
removing pixels that are not at the center of a 3x3 block of dark pixels (i.e. pixels
where some neighbour is light). Similarly, gaps can be jumped by attaching a 3x3
neighbourhood to each pixel.
These (quite useful) tricks can be generalised. For example, there is no need to

insist on a 3x3 neighbourhood — any pattern will do. The generalisation is most
easily phrased in terms of sets. Assume, for the moment, we have two binary images
I and S (i.e. pixel values in each can be only either 0 or 1). We can regard each
image as a representation of a set of elements which belong to a finite grid. Pixels
that have the value 1 are elements of the set and pixels that have the value 0 are
not. Now write Sp for the image obtained by shifting the center of S to the pixel
p. We can define a new set

I ⊕ S = {p : Sp ∩ I �= ∅}

This is called the dilation of the set I by S. Similarly, we can define

I � S = {p : Sp ⊂ I}

which is called the erosion of the set I by S. In these operations, S is usually
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called the structuring element. The properties of these operators have been
widely studied; some are explored in the exercises. Their main application in prac-
tice appears in cleaning up data sets. Typically, a predicate is available that marks
“interesting” pixels — which might be skin-coloured, or red, or textured, etc. Usu-
ally, small groups of pixels pass this criterion as well as the real regions of interest.
A few passes of erosion by a 3x3 neighbourhood, followed by a few passes of dilation
by a 3x3 neighbourhood, will remove small groups, fill gaps, and leave an estimate
of the real region of interest that is often significantly improved. There is a sub-
stantial theory based on erosion or dilation by structuring elements different from
kxk neighbourhoods [Serra, 1986; Serra, 1982a; Soille, 1999; Haralick et al., 1987;
Noble, 1988].

10.5 Commentary

Thinking of a filter as a template can be extremely helpful, both in applications
and in thinking about problems. Our summary of the human vision system is
a summary of current orthodoxy (or, rather, of what we understand of current
orthodoxy!). We have regretfully limited our discussion of non-linear filters and of
morphology, because the subjects require a detailed treatment we are not able to
provide. We refer interested readers to [Netravali et al., 1999; Pitas, 2000] and to
the morphology references given above.

Assignments

Exercises

1. For a set with 2k+1 elements, the median is the k+1’th element of the sorted
set of values. For a set with 2k elements, the median is the average of the
k and the k + 1’th element of the sorted set. Show that it does not matter
whether the set is sorted in increasing or decreasing order.

2. Assume that we wish to remove salt-and-pepper noise from a uniform back-
ground. Show that up to half of the elements in the neighbourhood could be
noise values and a median filter would still give the same (correct) answer.

Programming Assignments

1. Build a normalised correlation matcher. The hand finding application is a
nice one, but another may occur to you.

• How reliable is it?

• How many different patterns can you tell apart in practice?

• How sensitive is it to illumination variations? shadows? occlusion?

2. Median filters can smooth corners unacceptably.
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• Demonstrate this effect by applying a median filter to a variety of images;
what are the qualitative effects at corners and in textured regions?

• Explain these effects.

• Show that the multi-stage median filter results in less heavily smoothed
corners in practice.

• Explain this effect.

• On occasion, it is attractive to suppress texture; median filters can do
this rather well. Read [?].



Chapter 11

TEXTURE

Texture is a phenomenon that is widespread, easy to recognise and hard to define.
Typically, whether an effect is referred to as texture or not depends on the scale
at which it is viewed. A leaf that occupies most of an image is an object, but
the foliage of a tree is a texture. Texture arises from a number of different sources.
Firstly, views of large numbers of small objects are often best thought of as textures.
Examples include grass, foliage, brush, pebbles and hair. Secondly, many surfaces
are marked with orderly patterns that look like large numbers of small objects.
Examples include: the spots of animals like leopards or cheetahs; the stripes of
animals like tigers or zebras; the patterns on bark, wood and skin.

Figure 11.1. A set of texture examples, used in experiments with human subjects to
tell how easily various types of textures can be discriminated. Note that these textures are
made of quite stylised subelements, repeated in a meaningful way. figure from the Malik
and Perona, A Computational Model of Texture Segmentation, p.331, in the fervent hope,
etc.

There are three standard problems to do with texture:

• Texture segmentation is the problem of breaking an image into components
within which the texture is constant. Texture segmentation involves both rep-
resenting a texture, and determining the basis on which segment boundaries
are to be determined. In this chapter, we deal only with the question of how
textures should be represented (section 11.1); chapters ?? and 18 show how
to segment textured images using this representation.

• Texture synthesis seeks to construct large regions of texture from small

289
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Figure 11.2. Typical textured images. For materials such as brush, grass, foliage and
water, our perception of what the material is is quite intimately related to the texture (for
the figure on the left, what would the surface feel like if you ran your fingers over it? is it
wet?, etc.). Notice how much information you are getting about the type of plants, their
shape, etc. from the textures in the figure on the right. These textures are also made of
quite stylised subelements, arranged in a rough pattern.

example images. We do this by using the example images to build probability
models of the texture, and then drawing on the probability model to obtain
textured images. There are a variety of methods for building a probability
model; three successful current methods are described in section 11.3.

• Shape from texture involves recovering surface orientation or surface shape
from image texture. We do this by assuming that texture “looks the same” at
different points on a surface; this means that the deformation of the texture
from point to point is a cue to the shape of the surface. In section 11.4, we
describe the main lines of reasoning in this (rather technical) area.

11.1 Representing Texture

Image textures generally consist of organised patterns of quite regular subelements
(sometimes called textons). For example, one texture in figure 11.1 consists of
triangles. Similarly, another texture in that figure consists of arrows. One natural
way to try and represent texture is to find the textons, and then describe the way
in which they are laid out.
The difficulty with this approach is that there is no known canonical set of
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textons, meaning that it isn’t clear what one should look for. Instead of looking for
patterns at the level of arrowheads and triangles, we could look for even simpler
pattern elements — dots and bars, say — and then reason about their spatial layout.
The advantage of this approach is that it is easy to look for simple pattern elements
by filtering an image.

11.1.1 Extracting Image Structure with Filter Banks

In section 10.1, we saw that convolving an image with a linear filter yields a repre-
sentation of the image on a different basis. The advantage of transforming an image
to the new basis given by convolving it with a filter, is that the process makes the
local structure of the image clear. This is because there is a strong response when
the image pattern in a neighbourhood looks similar to the filter kernel, and a weak
response when it doesn’t.

Figure 11.3. A set of eight filters used for expanding images into a series of responses.
These filters are shown at a fixed scale, with zero represented by a mid-grey level, lighter
values being positive and darker values being negative. They represent two distinct spots,
and six bars; the set of filters is that used by [Malik and Perona, 1990].

This suggests representing image textures in terms of the response of a collection
of filters. The collection of different filters would consist of a series of patterns —
spots and bars are usual — at a collection of scales (to identify bigger or smaller
spots or bars, say). The value at a point in a derived image represents the local
“spottiness” (“barriness”, etc.) at a particular scale at the corresponding point in
the image. While this representation is now heavily redundant, it exposes structure
(“spottiness”, “barriness”, etc., in a way that has proven helpful. The process of
convolving an image with a range of filters is referred to as analysis.
Generally, spot filters are useful because they respond strongly to small regions
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that differ from their neighbours (for example, on either side of an edge, or at a spot).
The other attraction is that they detect non-oriented structure. Bar filters, on the
other hand, are oriented, and tend to respond to oriented structure (this property
is sometimes, rather loosely, described as analysing orientation or representing
orientation).

Spots and Bars by Weighted Sums of Gaussians

But what filters should we use? There is no canonical answer. A variety of answers
have been tried. By analogy with the human visual cortex, it is usual to use at
least one spot filter and a collection of oriented bar filters at different orientations,
scales and phases. The phase of the bar refers to the phase of a cross-section
perpendicular to the bar, thought of as a sinusoid (i.e. if the cross section passes
through zero at the origin, then the phase is 0o.

Figure 11.4. At the top, an image of a butterfly at a fine scale, and below, the result of
applying each of the filters of figure 11.3 to that image. The results are shown as absolute
values of the output, lighter pixels representing stronger responses, and the images are laid
out corresponding to the filter position in the top row.

One way to obtain these filters is to form a weighted difference of Gaussian filters
at different scales; this technique was used for the filters of figure 11.3. The filters
for this example consist of

• A spot, given by a weighted sum of three concentric, symmetric Gaussians,
with weights 1, −2 and 1, and corresponding sigmas 0.62, 1 and 1.6.
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• Another spot, given by a weighted sum of two concentric, symmetric Gaus-
sians, with weights 1 and −1, and corresponding sigmas 0.71 and 1.14.

• A series of oriented bars, consisting of a weighted sum of three oriented
Gaussians, which are offset with respect to one another. There are six versions
of these bars; each is a rotated version of a horizontal bar. The Gaussians in
the horizontal bar have weights −1, 2 and −1. They have different sigma’s in
the x and in the y directions; the σx values are all 2, and the σy values are all
1. The centers are offset along the y axis, lying at (0, 1), (0, 0) and (0,−1).

Figure 11.5. The input image of a butterfly and responses of the filters of figure 11.3
at a coarser scale than that of figure 11.4. Notice that the oriented bars respond to the
bars on the wings, the antennae, and the edges of the wings; the fact that one bar has
responded does not mean that another will not, but the size of the response is a cue to
the orientation of the bar in the image.

You should understand that the details of the choice of filter are almost certainly
immaterial. There is a body of experience that suggests that there should be a series
of spots and bars at various scales and orientations — which is what this collection
provides — but very little reason to believe that optimising the choice of filters
produces any major advantage.
Figures 11.4 and 11.5 illustrate the absolute value of the responses of this bank

of filters to an input image of a butterfly. Notice that, while the bar filters are not
completely reliable bar detectors (because a bar filter at a particular orientation



294 Texture Chapter 11

responds to bars of a variety of sizes and orientations), the filter outputs give a
reasonable representation of the image data. Generally, bar filters respond strongly
to oriented bars and weakly to other patterns, and the spot filter responds to isolated
spots.
This, in itself, is not a representation of texture, because we need some rep-

resentation of the overall distribution of spots and bars. Typical representations
involve various statistics of filter outputs. For example, in figure 11.6, we illus-
trate a putative representation in terms of horizontal and vertical textures, which
is obtained by looking at a smoothed local mean of the filter outputs. Outputs are
commonly squared (among other things, this has the advantage of counting black
next to white stripes in the same way as white next to black stripes). The question
of what statistics should be collected depends to some extent on what we intend to
represent. Typically, we wish to represent the texture by some form of probabil-
ity model, and the choice of this model determines the choice of statistics. What
the probability model should be is, again, hard to determine from first principles.
However, work on texture synthesis has indicated some constraints on appropriate
choices of model, which is why we spend so much ink on the topic in section ??.

How many Filters and at what Orientation?

It is not known just how many filters are “best” for useful texture algorithms.
Perona lists the number of scales and orientation used in a variety of systems;
numbers run from four to eleven scales and from two to eighteen orientations [?].
The number of orientations varies from application to application and does not
seem to matter much, as long as there are at least about six orientations. Typically,
the “spot” filters are Gaussians and the “bar” filters are obtained by differentiating
oriented Gaussians.
Similarly, there does not seem to be much benefit in using more complicated

sets of filters than the basic spot and bar combination. There is a tension here:
using more filters leads to a more detailed (and more redundant representation of
the image); but we must also convolve the image with all these filters, which can be
expensive. One way to simplify the process is to control the amount of redundant
information we deal with, by building a pyramid.

11.2 Analysis (and Synthesis) Using Oriented Pyramids

Analysing images using filter banks presents a computational problem — we have to
convolve an image with a large number of filters at a range of scales. The computa-
tional demands can be simplified by handling scale and orientation systematically.
The Gaussian pyramid (section 8.5.1) is an example of image analysis by a bank
of filters — in this case, smoothing filters. The Gaussian pyramid handles scale
systematically by subsampling the image once it has been smoothed. This means
that generating the next coarsest scale is easier, because we don’t process redundant
information.
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Figure 11.6. A putative texture representation in terms of filter outputs. We have
sharply reduced the number of filters (there are two derivative filters, one vertical and
one horizontal). The image on the left is the input; notice it has components that could
reasonably be described as horizontal, vertical and fuzzy. The images in the center left
column show the squared values of the filter outputs (which have been squared so that
black-to-white transitions count the same as white-to-black transitions). The values are
shown on the same linear scale, with lighter points indicating stronger responses. These
have been smoothed to yield the images on the center right (which can be interpreted
as the mean of the squared response over a small window). The mean response to vertical
stripes is strong in the vertical map, and that to horizontal stripes in the horizontal map.
Finally, we have thresholded these two images and combined them to get the image on
the right (black values are neither horizontal nor vertical; dark grey values are horizontal;
light grey values are vertical; and white values are “both”).

In fact, the Gaussian pyramid is a highly redundant representation because each
layer is a low pass filtered version of the previous layer — this means that we are
representing the lowest spatial frequencies many times. A layer of the Gaussian
pyramid is a prediction of the appearance of the next finer scale layer — this pre-
diction isn’t exact, but it means that it is unnecessary to store all of the next finer
scale layer. We need keep only a record of the errors in the prediction. This is the
motivating idea behind the Laplacian pyramid.
The Laplacian pyramid will yield a representation of various different scales
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that has fairly low redundancy, but it doesn’t immediately deal with orientation.
By thinking about pyramids in the Fourier domain, we obtain a method for encoding
orientation as well (section 11.2.2). In section 11.2.3, we will sketch a method that
obtains a representation of orientation as well.

11.2.1 The Laplacian Pyramid

The Laplacian pyramid makes use of the fact that a coarse layer of the Gaussian
pyramid predicts the appearance of the next finer layer. If we have an upsampling
operator that can produce a version of a coarse layer of the same size as the next
finer layer, then we need only store the difference between this prediction and the
next finer layer itself.
Clearly, we cannot create image information, but we can expand a coarse scale

image by replicating pixels. This involves an upsampling operator S↑ which takes
an image at level n+1 to an image at level n. In particular, S↑(I) takes an image,
and produces an image twice the size in each dimension. The four elements of the
output image at (2j − 1, 2k− 1); (2j, 2k− 1); (2j − 1, 2k); and (2j, 2k) all have the
same value as the j, k’th element of I.

Analysis — Building a Laplacian Pyramid from an Image

The coarsest scale layer of a Laplacian pyramid is the same as the coarsest scale
layer of a Gaussian pyramid. Each of the finer scale layers of a Laplacian pyramid
is a difference between a layer of the Gaussian pyramid and a prediction obtained
by upsampling the next coarsest layer of the Gaussian pyramid. This means that:

PLaplacian(I)m = PGaussian(I)m

(where m is the coarsest level) and

PLaplacian(I)k = PGaussian(I)k − S
↑(PGaussian(I)k+1) (11.2.1)

= (Id− S↑S↓Gσ)PGaussian(I)k (11.2.2)

All this yields algorithm 1. While the name “Laplacian” is somewhat misleading —
there are no differential operators here — it is not outrageous, because each layer
is approximately the result of a difference of Gaussian filter.
Each layer of the Laplacian pyramid can be thought of as the response of a band-

pass filter. This is because we are taking the image at a particular resolution, and
subtracting the components that can be predicted by a coarser resolution version
— which corresponds to the low spatial frequency components of the image. This
means in turn that we expect that an image of a set of stripes at a particular
spatial frequency would lead to strong responses at one level of the pyramid and
weak responses at other levels (figure 11.7).
Because different levels of the pyramid represent different spatial frequencies,

the Laplacian pyramid can be used as a reasonably effective image compression
scheme.
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Figure 11.7. A Laplacian pyramid of images, running from 512x512 to 8x8. A zero
response is coded with a mid-grey; positive values are lighter and negative values are
darker. Notice that the stripes give stronger responses at particular scales, because each
layer corresponds (roughly) to the output of a band-pass filter.

Synthesis — Recovering an Image from its Laplacian Pyramid

Laplacian pyramids have one important feature. It is easy to recover an image from
its Laplacian pyramid. We do this by recovering the Gaussian pyramid from the
Laplacian pyramid, and then taking the finest scale of the Gaussian pyramid (which
is the image). It is easy to get to the Gaussian pyramid from the Laplacian. Firstly,
the coarsest scale of the Gaussian pyramid is the same as the coarsest scale of the
Laplacian pyramid. The next-to-coarsest scale of the Gaussian pyramid is obtained
by taking the coarsest scale, upsampling it, and adding the next-to-coarsest scale
of the Laplacian pyramid (and so on up the scales). This process is known as
synthesis (algorithm 2).
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Form a Gaussian pyramid

Set the coarsest layer of the Laplacian pyramid to be

the coarsest layer of the Gaussian pyramid

For each layer, going from next to coarsest to finest

Obtain this layer of the Laplacian pyramid by

upsampling the next coarser layer, and subtracting

it from this layer of the Gaussian pyramid

end

Algorithm 11.1: Building a Laplacian pyramid from an image

Set the working image to be the coarsest layer

For each layer, going from next to coarsest to finest

Upsample the working image and add the current layer

to the result

Set the working image to be the result of this operation

end

The working image now contains the original image

Algorithm 11.2: Synthesis: obtaining an image from a Laplacian pyramid

11.2.2 Filters in the Spatial Frequency Domain

The convolution theorem (that convolution in the spatial domain is the same as
multiplication in the Fourier domain) yields some intuition about what filters do and
what information pyramids contain. We shall illustrate this theorem by showing
a natural analogy between smoothing and low-pass filtering; that some kinds of
band-pass filter naturally respond to oriented structure; and that a form of local
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spatial frequency analysis can be obtained using a particular family of filters.

Smoothing and Low-Pass Filters

The convolution theorem yields that convolving an image with an isotropic Gaus-
sian with standard deviation σ is the same as multiplying the Fourier transform of
the image by an isotropic Gaussian of standard deviation 1/σ. Now a Gaussian falls
off quite quickly, particularly if its standard deviation is large. This means that the
Fourier transform of the result will have relatively little energy at high spatial fre-
quencies, where a high spatial frequency is a few multiples of 1/σ. We can interpret
this as a low-pass filter— one that has a high gain for low spatial frequencies and
a low gain for high spatial frequencies. This is quite a satisfactory interpretation:
if we smooth with a Gaussian with a very small standard deviation, all but the
highest spatial frequencies are preserved; and if we smooth with a Gaussian with
a very large standard deviation, the result will be pretty much the average value
of the image. This means that a Gaussian pyramid is, in essence, a set of low-pass
filtered versions of the image.

Band-Pass Filters and Orientation Selective Operators

A band-pass filter is one that has high gain for some range of spatial frequencies
and a low gain for higher and for lower spatial frequencies. One type of band-pass
filter is insensitive to orientation. A natural example of such a filter is to smooth
an image with the difference of two isotropic Gaussians; one with a small standard
deviation and one with a large standard deviation. In the Fourier domain, the kernel
of this filter looks like an annulus of large values (the left half of figure 11.8); this
means that it selects a range of spatial frequencies, but is not selective to orientations
(because points at the same distance from the origin in Fourier space refer to basis
elements of the frequency, but at different orientations). While an ideal bandpass
filter would have a unit value within the annulus and a zero value outside, such a
filter would have infinite spatial support — making it difficult to work with — and
the difference of Gaussians appears to be a satisfactory practical choice. Of course,
this difference of Gaussians is the filter used to obtain the Laplacian pyramid, so
the Laplacian pyramid consists of a set of band-pass filtered versions of the image.
An alternative type of band-pass filter has a Fourier transform that is large

within a wedge of the annulus, and small outside (the right half of figure 11.8)
— this filter is orientation selective, meaning that it responds most strongly to
signals that have a particular range of spatial frequencies and orientations.

Local Spatial Frequency Analysis and Gabor Filters

One difficulty with the Fourier transform is that Fourier coefficients depend on
the entire image; the value of the Fourier transform for some particular (u, v) is
computed using every image pixel. This is an inconvenient way to think of images,
because we have lost all spatial information. For example, the stripes of figure 11.11
get wider as one moves across the image. If we think in terms of spatial frequency
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Figure 11.8. Each layer of the Laplacian pyramid consists the elements of a smoothed
and resampled image that are not represented by the next smoother layer. Assuming
that a Gaussian is a sufficiently good smoothing filter, each layer can be thought of as
representing the image components within a range of spatial frequencies — this means
that the Fourier transform of each layer is an annulus of values from the Fourier transform
space (u, v) space (recall that the magnitude of (u, v) gives the spatial frequency). The
sum of these annuluses is the Fourier transform of the image, so that each layer cuts an
annulus out of the image’s Fourier transform. An oriented pyramid cuts each annulus into
a set of wedges. If (u, v) space is represented in polar coordinates, each wedge corresponds
to an interval of radius values and an interval of angle values (recall that arctan(u/v) gives
the orientation of the Fourier basis element).

only locally defined, then we can think of this phenomenon in terms of the spatial
frequency content of the image changing as we move across it. In some window
around a point, the narrow stripes look like high spatial frequency terms and the
wide stripes look like low spatial frequency terms.
Gabor filters achieve this. The kernels look like Fourier basis elements that are

multiplied by Gaussians, meaning that a Gabor filter responds strongly at points in
an image where there are components that locally have a particular spatial frequency
and orientation. Gabor filters come in pairs, often referred to as quadrature pairs;
one of the pair recovers symmetric components in a particular direction, and the
other recovers antisymmetric components. The mathematical form of the symmetric
kernel is

Gsymmetric(x, y) = cos (kxx+ kyy) exp−

{
x2 + y2

2σ2

}
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and the antisymmetric kernel has the form

Gantisymmetric(x, y) = sin (k0x+ k1y) exp−

{
x2 + y2

2σ2

}

The filters are illustrated in figures 11.9 and 11.10; (kx, ky) give the spatial frequency
to which the filter responds most strongly, and σ is referred to as the scale of the
filter. In principle, by applying a very large number of Gabor filters at different
scales, orientations and spatial frequencies, one can analyse an image into a detailed
local description. There is an analogy between Gabor filtering with σ = ∞ and a
Fourier transform; this explains why there are two types of filter, and indicates why
we can think of a Gabor filter as performing a local spatial frequency analysis.

Figure 11.9. Gabor filter kernels are the product of a symmetric Gaussian with an
oriented sinusoid; the form of the kernels is given in the text. The images show Gabor
filter kernels as images, with mid-grey values representing zero, darker values representing
negative numbers and lighter values representing positive numbers. The top row shows
the antisymmetric component, and the bottom row shows the symmetric component. The
symmetric and antisymmetric components have a phase difference of π/2 radians, because
a cross-section perpendicular to the bar (horizontally, in this case) gives sinusoids that
have this phase difference. The scale of these filters is constant, and they are shown for
three different spatial frequencies. Figure 11.10 shows Gabor filters at a finer scale.
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Figure 11.10. The images shows Gabor filter kernels as images, with mid-grey values
representing zero, darker values representing negative numbers and lighter values repre-
senting positive numbers. The top row shows the antisymmetric component, and the
bottom row shows the symmetric component. The scale of these filters is constant, and
they are shown for three different spatial frequencies. These filters are shown at a finer
scale than those of figure 11.9.

11.2.3 Oriented Pyramids

A Laplacian pyramid does not contain enough information to reason about image
texture, because there is no explicit representation of the orientation of the stripes.
A natural strategy for dealing with this is to take each layer and decompose it
further, to obtain a set of components each of which represents a energy at a distinct
orientation. Each component can be thought of as the response of an oriented filter
at a particular scale and orientation. The result is a detailed analysis of the image,
known as an oriented pyramid (figure 11.12).
A comprehensive discussion of the design of oriented pyramids would take us

out of our way. The first design constraint is that the filter should select a small
range of spatial frequencies and orientations, as in figure 11.8. There is a second
design constraint for our analysis filters: synthesis should be easy. If we think of
the oriented pyramid as a decomposition of the Laplacian pyramid (figure 11.13),
then synthesis involves reconstructing each layer of the Laplacian pyramid, and
then synthesizing the image from the Laplacian pyramid. The ideal strategy is
to have a set of filters that have oriented responses and where synthesis is easy.
It is possible to produce a set of filters such that reconstructing a layer from its
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Figure 11.11. The image on the top shows a detail from an image of a zebra, chosen
because it has a stripes at somewhat different scales and orientations. This has been
convolved with the kernel in the center, which is a Gabor filter kernel. The image at the
bottom shows the absolute value of the result; notice that the response is large when the
spatial frequency of the bars roughly matches that windowed by the Gaussian in the Gabor
filter kernel (i.e. the stripes in the kernel are about as wide as, and at about the same
orientation as, the three stripes in the kernel). When the stripes are larger or smaller, the
response falls off; thus, the filter is performing a kind of local spatial frequency analysis.
This filter is one of a quadrature pair (it is the symmetric component). The response
of the antisymmetric component is similarly frequency selective. The two responses can
be seen as the two components of the (complex valued) local Fourier transform, so that
magnitude and phase information can be extracted from them.

components involves filtering the image a second time with the same filter (as fig-
ure 11.14 suggests). An efficient implementation of these pyramids is available
at http://www.cis.upenn.edu/ eero/steerpyr.html. The design process is de-
scribed in detail in [Karasaridis and Simoncelli, 1996; Simoncelli and Freeman,
1995].
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Filter Kernels

Finest scale

Coarsest scale

Figure 11.12. An oriented pyramid, formed from the image at the top left,
with four orientations per layer. This is obtained by firstly decomposing an
image into subbands which represent bands of spatial frequency (as with the
Laplacian pyramid), and then applying oriented filters (top right) to these sub-
bands to decompose them into a set of distinct images, each of which repre-
sents the amount of energy at a particular scale and orientation in the image.
Notice how the orientation layers have strong responses to the edges in partic-
ular directions, and weak responses at other directions. Code for constructing
oriented pyramids, written and distributed by Eero Simoncelli, can be found at
http://www.cis.upenn.edu/ eero/steerpyr.html. Figure from “Shiftable Mul-
tiScale Transforms”, Simoncelli et al., IEEE Transactions on Information Theory,
1992, c© 1992, IEEE

11.3 Application: Synthesizing Textures for Rendering

Renderings of object models look more realistic if they are textured (it’s worth
thinking about why this should be true, even though the point is widely accepted
as obvious). There are a variety of techniques for texture mapping; the basic idea
is that when an object is rendered, the reflectance value used to shade a pixel is
obtained by reference to a texture map. Some system of coordinates is adopted on
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Figure 11.13. The oriented pyramid is obtained by taking layers of the Laplacian
pyramid, and then applying oriented filters (represented in this schematic drawing by
boxes). Each layer of the Laplacian pyramid represents a range of spatial frequencies; the
oriented filters decompose this range of spatial frequencies into a set of orientations.
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Figure 11.14. In the oriented pyramid, synthesis is possible by refiltering the layers and
then adding them, as this schematic indicates. This property is obtained by appropriate
choice of filters.

the surface of the object to associate the elements of the texture map with points on
the surface. Different choices of coordinate system yield renderings that look quite
different, and it is not always easy to ensure that the texture lies on a surface in a
natural way (for example, consider painting stripes on a zebra — where should the
stripes go to yield a natural pattern?). Despite this issue, texture mapping seems
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to be an important trick for making rendered scenes look more realistic.
Texture mapping demands textures, and texture mapping a large object may

require a substantial texture map. This is particularly true if the object is close to
the view, meaning that the texture on the surface is seen at a high resolution, so
that problems with the resolution of the texture map will become obvious. Tiling
texture images can work poorly, because it can be difficult to obtain images that
tile well — the borders have to line up, and even if they did, the resulting periodic
structure can be annoying. It is possible to buy image textures from a variety of
sources, but an ideal would be to have a program that can generate large texture
images from a small example. Quite sophisticated programs of this form can be
built, and they illustrate the usefulness of representing textures by filter outputs.

11.3.1 Homogeneity

The general strategy for texture synthesis is to think of a texture as a sample from
some probability distribution and then to try and obtain other samples from that
same distribution. To make this approach practical, we need to obtain a probability
model. The first thing to do is assume that the texture is homogenous. This means
that local windows of the texture “look the same”, from wherever in the texture
they were drawn. More formally, the probability distribution on values of a pixel
is determined by the properties of some neighborhood of that pixel, rather than
by, say, the position of the pixel. This assumption means that we can construct a
model for the texture outside the boundaries of our example region, based on the
properties of our example region. The assumption often applies to natural textures
over a reasonable range of scales. For example, the stripes on a zebra’s back are
homogenous, but remember that those on its back are vertical and those on its legs,
horizontal. We now use the example texture to obtain the probability model for
the synthesized texture in various ways.

11.3.2 Synthesis by Matching Histograms of Filter Responses

If two homogenous texture samples are drawn from the same probability model,
then (if the samples are big enough) histograms of the outputs of various filters
applied to the samples will be the same. Heeger and Bergen use this observation to
synthesize a texture using the following strategy: take a noise image and adjust it
until the histogram of responses of various filters on that noise image looks like the
histogram of responses of these filters on the texture sample [Heeger and Bergen,
1995]. Using an arbitrary set of filters is likely to be inefficient; we can avoid this
problem by using an oriented pyramid. As we have seen, each orientation of each
layer represents the response of an oriented filter at a particular scale, so the whole
pyramid represents the response of a large number of different filters. The reason
this is efficient is that we have thrown away redundant information in subsampling
the images to get the coarser scale layers.
If we represent texture samples as oriented pyramids, we can adjust the pyra-

mid corresponding to the image to be synthesized, and then synthesize the image
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from the pyramid, using the methods of section 11.2.3. We will adjust each layer
separately, and then synthesize an image. There are two steps: firstly, we need to
know how to adjust a layer, and secondly, we need to make these local adjustments
converge to the correct overall structure.

Histogram Equalization

We think about each layer in an oriented pyramid as an image, and the problem of
adjusting a layer becomes the following. We have two images, and we should like
to adjust image two so that it has the same histogram as image one. The process is
known as histogram equalization. Histogram equalization is easiest for images
that are continuous functions. In this case, we record for each value of the image
the percentage of the image that takes the value less than or equal to this one-this
record is known as the cumulative histogram. The cumulative histogram is a
continuous, monotonically increasing function that maps the range of the image to
the unit interval. Because it is continuous and monotonically increasing, the inverse
exists. The inverse of the cumulative histogram takes a percentage — say 25 % —
and gives the image value v such that the given percentage of the image has value
less than or equal to v — i.e. 0.3, if 25% of the image has value less than or equal
to 0.3.
The easiest way to describe histogram equalisation is slightly inefficient in space.

We create a temporary image, image three. Now choose some value v from image
two. The cumulative histogram of image two yields that p percent of the image
has value less than v. Now apply the inverse cumulative histogram of image one to
p, yielding a new value v′ for v. Wherever image two has the value v, insert the
value v′ in image three. If this is done for every value, image three will have the
same histogram as image one. This is because, for any value in image three, the
percentage of image three that has that value is the same as the percentage of image
one that has that value. In fact, image three isn’t necessary, as we can transform
image two in place, yielding algorithm 3.
Things are slightly more difficult for discrete images and images that take dis-

crete values. For example, if image one is a binary image in which every pixel but
one is black, and image two is a binary image in which half the pixels are white,
some but not all of the white pixels in image two will need to be mapped to black
— but which ones should we choose? usually the choice is made uniformly and at
random.

Adjusting a Pyramid to Obtain an Image

Now assume we have started with a noise image, formed a pyramid, and then ad-
justed each layer to have the same histogram as each layer of the example pyramid.
The resulting pyramid will not, in general, be a pyramid that could be obtained
from any image, because we have assumed that the layers are independent and they
are not. This means that, if we synthesize an image from the adjusted pyramid
and then compute the pyramid from the synthesized image, the resulting pyramid
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Figure 11.15. Histogram equalization uses cumulative histograms to map the grey
levels of one image so that it has the same histogram as another image. The figure at the
top shows two cumulative histograms, with the relevant images inset in the graphs. To
transform the left image so that it has the same histogram as the right image, we take a
value from the left image, read off the percentage from the cumulative histogram of that
image, and obtain a new value for that grey level from the inverse cumulative histogram
of the right image. The image on the left is a linear ramp (it looks non-linear because the
relationship between brightness and lightness is not linear); the image on the right is a
cube root ramp. The result — the linear ramp, with grey levels remapped so that it has
the same histogram as the cube root ramp — is shown on the bottom row.

will not, in general, match our original adjusted pyramid. In particular, we are not
guaranteed that each layer in the new pyramid has the histogram we want it to. If
the layer histograms are not satisfactory, we readjust the layers, resynthesize the
image, and iterate. While convergence is not guaranteed, in practice the process
appears to converge.
The overall technique looks like algorithm 4. This algorithm yields quite good

results on a substantial variety of textures, as figure 11.16 indicates. It is inclined
to fail when there are conditional relations in the texture that are important — for
example, in figure 11.17, the method has been unable to capture the fact that the
spots on the coral lie in stripes. This problem results from the assumption that the
histogram at each spatial frequency and orientation is independent of that at every
other.



Section 11.3. Application: Synthesizing Textures for Rendering 309

Form the cumulative histogram c1(v) for image 1

Form the cumulative histogram c2(v) for image 2

Form ic1(p), the inverse of c1(v)

for every value v in image 2, going from smallest to largest

Obtain a new value vnew=ic1(c2(v))

Replace the value v in image 2 with vnew

end

Algorithm 11.3: Histogram Equalization

Make a working image from noise

Match the working image histogram to the example image histogram

Make a pyramid pe from the example image

until convergence

Make a pyramid pw from the working image

for each layer in the two pyramids

Match the histogram of pw’s layer to that of pe’s layer

end

Synthesize the working image from the pyramid pw

end

Algorithm 11.4: Iterative texture synthesis using histogram equalisation applied
to an oriented pyramid

11.3.3 Synthesis by Sampling Conditional Densities of Filter Re-
sponses

A very successful algorithm due to DeBonet retains the idea of synthesizing a texture
by coming up with an image pyramid that looks like the pyramid associated with
an example texture [de Bonet, 1997]. However, this approach does not assume that
the layers are independent, as the previous algorithm did.
For each location in a given layer of the pyramid, there are a set of locations in

coarser scale layers associated with it by the sampling process (as in figure 11.18).
The set of values of in these locations is called the parent structure of the location.
We can use this parent structure for synthesis. Firstly, let us make the coarsest

scale in the new pyramid the same as the coarsest scale — say the m’th level —
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Figure 11.16. Examples of texture synthesis by histogram equalisation. On the left,
the example textures and on the right, the synthesized textures. For the top example, the
method is unequivocally successful. For the bottom example, the method has captured the
spottiness of the texture but has rather more (and smaller) spots than one might expect.
figure from Heeger and Bergen, Pyramid-based Texture Analysis and Synthesis, p. figure
3, in the fervent hope, etc.

in the example pyramid. Now choose a location to be synthesized in the m− 1’th
level of the pyramid. We know the parent structure of this location, so we can go
to the example pyramid and collect all values in the corresponding level that have
a similar parent structure. This collection forms a probability model for the values
for our location, conditioned on the parent structure that we observed. If we choose
an element from this collection uniformly and at random, the values at the m’th
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Figure 11.17. Examples of texture synthesis by histogram equalisation failing. The left
column shows example textures, and the right hand column shows synthesized textures.
The main phenomenon that causes failure is that, for most natural textures, the histogram
of filter responses at different scales and orientations is not independent. In the case of
the coral (top left), this independence assumption suppresses the fact that the small spots
on the coral lie in a straight line. figure from Heeger and Bergen, Pyramid-based Texture
Analysis and Synthesis, p. figure 8, in the fervent hope, etc., figure from Heeger and
Bergen, Pyramid-based Texture Analysis and Synthesis, p. figure 7, in the fervent hope,
etc.

level and at the m−1’th level of the pyramid being synthesized have the same joint
histogram as the corresponding layers in the example pyramid.
This is easiest to see if we think of histograms as a representation of a proba-
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Figure 11.18. The values of pixels at coarse scales in a pyramid are a function of the
values in the finer scale layers. We associate a parent structure with each pixel, which
consists of the values of pixels at coarse scales which are used to predict our pixel’s value
in the Laplacian pyramid, as indicated in this schematic drawing. This parent structure
contains information about the structure of the image around our pixel for a variety of
differently sized neighbourhoods.

bility distribution. The joint histogram is a representation of the joint probability
distribution for values at the two scales. This joint distribution is the product of
a marginal distribution on the values at the m’th level with the conditional dis-
tribution on values at the m − 1’th level, conditioned on the value at the m’th
level.
The m’th level layers must have the same histograms (that is, the same marginal

distributions). The sampling procedure for the m − 1’th layer means that a his-
togram of the pixels in the m− 1’th layer whose parents have some fixed value will
be the same for the pyramid being synthesized as for the example pyramid. This
histogram — which is sometimes called a conditional histogram — is a repre-
sentation of the conditional distribution on values at the m−1’th level, conditioned
on the value at the m’th level.
Nothing special is required to synthesize a third (or any other) layer. For any

location in the third layer, the parent structure involves values from the coarsest
and the next to coarsest scale. To obtain a value for a location, we collect every
element from the corresponding layer in the example pyramid with the same parent
structure, and choose from a uniformly and at random from this collection. The
fourth, fifth and other layers follow from exactly the same approach. Furthermore,
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Make a pyramid pe from the example image

Make an empty pyramid pw, corresponding to the image to

be synthesized

Set the coarsest scale layer of pw to be the same as the

coarsest scale level of pe; if pw is bigger than pe, then

replicate copies of pe to fill it

for each other layer l of pe, going from coarsest to finest

for each element e of the layer

Obtain all elements with

the same parent structure

Choose one of this collection uniformly at random

Insert the value of this element into e

end

end

Synthesize the texture image from the pyramid pw

Algorithm 11.5: Texture Synthesis using Conditional Histograms

the joint histogram of all these layers in the synthesized pyramid will be the same
as that for the example pyramid, using the same argument as above.
There are three important details to address before we have a usable algorithm.

• Firstly, what does it mean for parent structures to be the same? In practice,
it is sufficient to regard the parent structures as vectors and require that
they are close together — an appropriate distance threshold should be set by
experiment.

• Secondly, what components of the parent structure should be preserved in
matching? If we represent a pixel at a layer by all pixels in previous layers, we
have a comprehensive record of its ancestors, but there may be no comparable
pixels. Again, this criterion is usually satisfied by experiment.

• Finally, how do we obtain all pixels with the same parent structure as a given
location? one strategy is to search all locations in the example image for every
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Figure 11.19. Four examples of textures synthesized using De Bonet’s algorithm (al-
gorithm 5). In each case, the example texture is the small block on the left, and the
synthesized texture is the larger image block on the right. Note that the method has
captured apparent periodic structure in the textures; in the case of the blob with wires
(top right), it has succeeded in joining up wires. This is because the method can capture
larger scale structure in a texture in greater detail, by not assuming that responses at each
level of the pyramid are independent. figure from De Bonet, Multiresolution Sampling
Procedure for Analysis and Synthesis of Image Textures, p figure 10, in the fervent hope,
etc.

pixel value we wish to synthesize, but this is crude and expensive. We explore
alternate strategies in the exercises.

11.3.4 Synthesis by Sampling Local Models

As Efros points out, it isn’t essential to use an oriented pyramid to build a prob-
ability model [Efros and Leung, 1999]. Instead, the example image itself supplies
a probability model. Assume for the moment that we have every pixel in the syn-
thesized image, except one. To obtain a probability model for the value of that
pixel, we could match a neighborhood of the pixel to the example image. Every
matching neighborhood in the example image has a possible value for the pixel of
interest. This collection of values is a conditional histogram for the pixel of interest.
By drawing a sample uniformly and at random from this collection, we obtain the
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Figure 11.20. Figure 11.16 showed texture synthesis by histogram equalisation failing on
the coral texture example shown on the top left here, because the independence assumption
suppresses the fact that the small spots on the coral lie in a straight line. The texture
synthesized by histogram equalization is shown on the top right. The bottom row shows
textures synthesized using algorithm 5, which doesn’t require an independence assumption.
These textures appear to have the same structure as the example. figure from De Bonet,
Multiresolution Sampling Procedure for Analysis and Synthesis of Image Textures, p figure
14, in the fervent hope, etc.

value that is consistent with the example image.

Finding Matching Image Neighbourhoods

The essence of the matter is to take some form of neighbourhood around the pixel of
interest, and to compare it to neighbourhoods in the example image. The size and
shape of this neighbourhood is significant, because it codes the range over which
pixels can affect one another’s values directly (see figure 11.22). Efros uses a square
neighborhood, centered at the pixel of interest.
The similarity between two image neighbourhoods can be measured by forming

the sum of squared differences of corresponding pixel values. This value is small
when the neighbourhoods are similar, and large when they are different (it is es-
sentially the length of the difference vector). Of course, the value of the pixel to be
synthesized is not counted in the sum of squared differences.
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Synthesizing Textures using Neighbourhoods

Now we know how to obtain the value of a single missing pixel: choose uniformly and
at random amongst the values of pixels in the example image whose neighborhoods
match the neighbourhood of our pixel (i.e. where the sum of squared differences
between the two neighbour hoods is smaller than some threshold).
Generally, we need to synthesize more than just one pixel. Usually, the values

of some pixels in the neighborhood of the pixel to be synthesized are not known —
these pixels need to be synthesized too. One way to obtain a collection of examples
for the pixel of interest is to count only the known values in computing the sum
of squared differences, and to adjust the threshold pro rata. The synthesis process
can be started by choosing a block of pixels at random from the example image,
yielding algorithm 6.

Choose a small square of pixels at random from the example image

Insert this square of values into the image to be synthesized

until each location in the image to be synthesized has a value

For each unsynthesized location on

the boundary of the block of synthesized values

Match the neighborhood of this location to the

example image, ignoring unsynthesized

locations in computing the matching score

Choose a value for this location uniformly and at random

from the set of values of the corresponding locations in the

matching neighborhoods

end

end

Algorithm 11.6: Non-parametric Texture Synthesis

11.4 Shape from Texture

A patch of texture of viewed frontally looks very different from a same patch viewed
at a glancing angle, because foreshortening causes the texture elements (and the
gaps between them!) to shrink more in some directions than in others. This suggests
that we can recover some shape information from texture, at the cost of supplying
a texture model. This is a task at which humans excel (figure 11.23). Remarkably,
quite general texture models appear to supply enough information to infer shape.
This is most easily seen for planes (section 11.4.1); while the details remain opaque
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Figure 11.21. Efros’ texture synthesis algorithm (algorithm 6) matches neighbourhoods
of the image being synthesized to the example image, and then chooses at random amongst
the possible values reported by matching neighbourhoods. This means that the algorithm
can reproduce complex spatial structures, as these examples indicate. The small block on
the left is the example texture; the algorithm synthesizes the block on the right. Note
that the synthesized text looks like text; it appears to be constructed of words of varying
lengths that are spaced like text; and each word looks as though it is composed of letters
(though this illusion fails as one looks closely). figure from Efros, Texture Synthesis by
Non-parametric sampling, p. figure 3, in the fervent hope, etc.

in the case of curved surfaces, the general issues remain the same (we scratch the
surface in section 11.4.2).

11.4.1 Shape from Texture for Planes

If we know we are viewing a plane, shape from texture boils down to determine the
configuration of the plane relative to the camera. Assume that we hypothesize a
configuration; we can then project the image texture back onto that plane. If we
have some model of the “uniformity” of the texture, then we can test that property
for the backprojected texture. We now obtain the plane with the “best” backpro-
jected texture on it. This general strategy works for a variety of texture models.
We will confine our discussion to the case of an orthographic camera. If the camera
is not orthographic, the arguments we use will go through, but require substantially
more work and more notation. We discuss other cases in the commentary.
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Figure 11.22. The size of the image neighbourhood to be matched makes a significant
difference in algorithm 6. In the figure, the textures at the right are synthesized from
the small blocks on the left, using neighbourhoods that are increasingly large as one
moves to the right. If very small neighbourhoods are matched, then the algorithm cannot
capture large scale effects easily. For example, in the case of the spotty texture, if the
neighbourhood is too small to capture the spot structure (and so sees only pieces of curve),
the algorithm synthesizes a texture consisting of curve segments. As the neighbourhood
gets larger, the algorithm can capture the spot structure, but not the even spacing. With
very large neighbourhoods, the spacing is captured as well. figure from Efros, Texture
Synthesis by Non-parametric sampling, p. figure 2, in the fervent hope, etc.

Representing a Plane

Now assume that we are viewing a single textured plane in an orthographic camera.
Because the camera is orthographic , there is no way to measure the depth to the
plane. However, we can think about the orientation of the plane. Let us work
in terms of the camera coordinate system. We need to know firstly, the angle
between the normal of the textured plane and the viewing direction — sometimes
called the slant — and secondly, the angle the projected normal makes in the
camera coordinate system — sometimes called the tilt (figure 11.24). In an image
of a plane, there is a tilt direction — the direction in the plane parallel to the
projected normal.

Isotropy Assumptions

An isotropic texture is one where the probability of encountering a texture element
does not depend on the orientation of that element. This means that a probability
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Figure 11.23. Humans obtain information about the shape of surfaces in space from
the appearance of the texture on the surface. The figure on the left shows one common use
for this effect — away from the contour regions, our only source of information about the
surface depicted is the distortion of the texture on the surface. On the right, the texture
of the stones gives a clear sense of the orientation of the (roughly) plane surface leading
up to the waterhole.

model for an isotropic texture need not depend on the orientation of the coordinate
system on the textured plane.
If we assume that the texture is isotropic, both slant and tilt can be read from

the image. We could synthesize an orthographic view of a textured plane by first
rotating the coordinate system by the tilt and then secondly contracting along
one coordinate direction by the cosine of the slant — call this process a viewing
transformation. The easiest way to see this is to assume that the texture consists
of a set of circles, scattered about the plane. In an orthographic view, these circles
will project to ellipses, whose minor axes will give the tilt, and whose aspect ratios
will give the slant (see the exercises and figure 11.24).
An orthographic view of an isotropic texture is not isotropic (unless the plane is

parallel to the image plane). This is because the contraction in the slant direction
interferes with the isotropy of the texture. Elements that point along the contracted
direction get shorter. Furthermore, elements that have a component along the
contracted direction have that component shrunk. Now corresponding to a viewing
transformation is an inverse viewing transformation (which turns an image
plane texture into the object plane texture, given a slant and tilt). This yields
a strategy for determining the orientation of the plane: find an inverse viewing
transformation that turns the image texture into an isotropic texture, and recover
the slant and tilt from that inverse viewing transformation.
There are variety of ways to find this viewing transformation. One natural

strategy is to use the energy output of a set of oriented filters. This is the squared
response, summed over the image. For an isotropic texture, we would expect the
energy output to be the same for each orientation at any given scale, because the



320 Texture Chapter 11

Textured
plane

Image
plane

Tilt

Viewing
direction

Projected
normal

Plane
normal

Figure 11.24. The orientation of a plane with respect to the camera plane can be
given by the slant — which is the angle between the normal of the textured plane and the
viewing direction — and the tilt — which is the angle the projected normal makes with
the camera coordinate system. The figure illustrates the tilt, and shows a circle projecting
to an ellipse.

probability of encountering a pattern does not depend on its orientation. Thus, a
measure of isotropy is the standard deviation of the energy output as a function of
orientation. We could sum this measure over scales, perhaps weighting the measure
by the total energy in the scale. The smaller the measure, the more isotropic the
texture. We now find the inverse viewing transformation that makes the image
looks most isotropic by this measure, using standard methods from optimization.
Notice that this approach immediately extends to perspective projection, spheri-

cal projection, and other types of viewing transformation. We simply have to search
over a larger family of transformations for the transformation that makes the image
texture look most isotropic. One does need to be careful, however. For example,
scaling an isotropic texture will lead to another isotropic texture, meaning that it
isn’t possible to recover a scaling parameter, and it’s a bad idea to try. The main
difficulty with using an assumption of isotropy to recover the orientation of a plane
is that there are very few isotropic textures in the world.
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Homogeneity Assumptions

It isn’t possible to recover the orientation of a plane in an orthographic view by
assuming that the texture is homogeneous (the definition is in section 11.3.1). This
is because the viewing transformation takes one homogeneous texture into another
homogeneous texture. However, if we make some other assumptions about the
structure of the texture, it becomes possible. One possible assumption is that the
texture is a homogenous marked Poisson point process. This is a special case
of the Poisson point process described in section 10.4.1; in particular, the texture
is obtained by (1) marking points on the plane with a homogenous Poisson point
process and then (2) dropping a texture element (a “mark”) at each point, with the
choice of element and orientation being random with some fixed distribution.
Assume that we can identify each texture element. Now recall that the core

property of a homogenous Poisson point process is that the expected number of
points in a set is proportional to the area of that set. Consider a set of rectangles
in the image oriented by the slant-tilt coordinate system: a rectangle that is long in
the slant direction and short in the tilt direction will contain more texture elements
than a rectangle that is long in the tilt direction and short in the slant direction.
This is because the slant direction is foreshortened — so that image length in this
direction is shorter than length on the plane in this direction — but the tilt direction
is not. However, the foreshortening does not affect the count of texture elements.
These observations mean that we can obtain the slant and tilt direction of a plane
textured according to our model by searching over plane orientations to find one
that makes the back-projected texture most uniform in space.

11.4.2 Shape from Texture for Curved Surfaces

For many textures lying on a curved surface, we can recover information about the
differential geometry of that surface. The reasoning is as follows:

• We assume that the texture is a homogeneous marked Poisson point process.
This means that, if we know the configuration of one of the tangent planes on
the surface, then we know what the texture elements look like frontally.

• Now we assume that we know the configuration of one of the tangent planes.

• Now we can reconstruct other tangent planes — possibly every other tangent
plane — from this information, because we know the rule by which the texture
foreshortens.

Of course, we don’t know the configuration of any of the tangent planes, so we
need to reason about relative configurations. The texture distorts from place to
place in the image, because it undergoes different projections into the image: we
keep track of those distortions, and use them to reason about the shape of the
surface (figures 11.25). Shape from texture for curved surfaces tends to require
some technical geometry, however, and we will pursue it in no further detail.
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Figure 11.25. If the texture on a surface is homogenous, then the texture at each point
on the surface “looks like” the texture at other points. This means that the deformation
of the texture in the image is a cue to surface geometry. In particular, the texture around
one point in the image is related to the texture around another point by: mapping from
the image to the surface, transforming on the surface, and then mapping back to the
image. By keeping track of these transformations, we can reconstruct surfaces up to some
ambiguity.

11.5 Notes

We have aggressively compressed the texture literature in this chapter. Over the
years, there have been a wide variety of techniques for representing image textures,
typically looking at the statistics of how patterns lie with respect to one another.
The disagreements are in how a pattern should be described, and what statistics to
look at. While it is a bit early to say that the approach that represents patterns
using linear filters is correct, it is currently dominant, mainly because it is very easy
to solve problems with this strategy. Readers who are seriously interested in texture
will probably most resent our omission of the Markov Random Field model, a choice
based on the amount of mathematics required to develop the model and the ab-
sence of satisfactory inference algorithms for MRF’s. We refer the interested reader
to [Chellappa and Jain, 1993; Cross and Jain, 1983; Manjunath and Chellappa, 1991;
Speis and Healey, 1996].
Another important omission is the discussion of wavelet methods for representing

texture. While these methods follow the rather rough lines given above — represent
a texture by thinking about the output of a lot of filters — there is a comprehensive
theory behind those filters. We refer the interested reader to [Ma and Manjunath,
1995; Ma and Manjunath, 1996; Manjunath and Ma, 1996b].
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11.5.1 Filters, Pyramids and Efficiency

If we are to represent texture with the output of a large range of filters at many
scales and orientations, then we need to be efficient at filtering. This is a topic
that has attracted much attention; the usual approach is to try and construct a
tensor product basis that represents the available families of filters well. With
an appropriate construction, we need to convolve the image with a small number
of separable kernels, and can estimate the responses of many different filters by
combining the results in different ways (hence the requirement that the basis be a
tensor product). Significant papers include [Perona, 1991; Perona, 1995; Freeman
and Adelson, 1991; Greenspan et al., 1994; Perona, 1992; Freeman and Adelson,
1990; Simoncelli and Farid, 1995; Hel-Or and Teo, 1996; Simoncelli and Freeman,
1995; Simoncelli and Farid, 1995].

11.5.2 Texture Synthesis

Texture synthesis exhausted us long before we could exhaust it. The most significant
omission, apart from MRF’s, is the work of Zhu et al [Zhu et al., 1998], which uses
sophisticated entropy criteria to firstly choose filters by which to represent a texture
and secondly construct probability models for that texture.

11.5.3 Shape from Texture

There are surprisingly few methods for recovering a surface model from a projec-
tion of a texture field that is assumed to lie on that surface. Global methods
attempt to recover an entire surface model, using assumptions about the distri-
bution of texture elements. Appropriate assumptions are isotropy [Witkin, 1981]

(the disadvantage of this method is that there are relatively few natural isotropic
textures) or homogeneity [Aloimonos, 1986; Blake and Marinos, 1990]. Methods
based around homogeneity assume that texels are the result of a homogenous Pois-
son point process on a plane; the gradient of the density of the texel centers then
yields the plane’s parameters. However, deformation of individual texture elements
is not accounted for.
Local methods recover some differential geometric parameters at a point on

a surface (typically, normal and curvatures). This class of methods, which is due
to Garding [Garding, 1992], has been successfully demonstrated for a variety of
surfaces by Malik and Rosenholtz [Malik and Rosenholtz, 1997; Rosenholtz and
Malik, 1997]; a reformulation in terms of wavelets is due to Clerc [Clerc and Mallat,
1999]. The method has a crucial flaw; it is necessary either to know that texture
element coordinate frames form a frame field that is locally parallel around the point
in question, or to know the differential rotation of the frame field (see [Garding, 1995]

for this point, which is emphasized by the choice of textures displayed in [Rosenholtz
and Malik, 1997]; the assumption is known as texture stationarity). For example,
if one were to use these methods to recover the curvature of a doughnut dipped in
chocolate sprinkles, it would be necessary to ensure that the sprinkles were all
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parallel on the surface (or that the field of angles from sprinkle to sprinkle was
known). As a result, the method can be demonstrated to work only on quite a
small class of textured surfaces. A second, important, difficulty lies in the data
recovered; these methods all make local estimates of normal and curvature. But
curvature is a derivative of the normal; as a result, while one local estimate may
be helpful, there is no reason to believe that a collection of local estimates will be
consistent. This is a problem of integrability. Surface interpolation methods have
largely fallen out of fashion in computer vision, due to the uncertainty regarding
the semantic status of surface patches in regions where data is absent. Shape from
texture is a problem where an interpolate has an unquestionably useful role — it
expresses the fact that, because one has a prior belief that surfaces are relatively
slowly changing, incomplete local measurements of the surface normal can constrain
one another and lead to good global estimates of the normal at some points.

Assignments

Exercises

1. The texture synthesis algorithm of section 11.3.3 needs to obtain parent struc-
tures in the example image that match the parent structure of a pixel to be
synthesized. These could be obtained by blank search. An alternative is to
use a hashing process. It is essential that every parent structure that could
match a given structure is obtained by this hashing process. One strategy is
to compute a hash key from the parent structure, and then look at nearby
keys as well, to ensure that no matches are missed.

• Describe how this strategy could work.

• What savings could be obtained by using it?

2. Show that a circle appears as an ellipse in an orthographic view, and that the
minor axis of this ellipse is the tilt direction. What is the aspect ratio of this
ellipse?

3. We will study measuring the orientation of a plane in an orthographic view,
given the texture consists of points laid down by a homogenous Poisson point
process. Recall that one way to generate points according to such a process is
to sample the x and y coordinate of the point uniformly and at random. We
assume that the points from our process lie within a unit square.

• Show that the probability that a point will land in a particular set is
proportional to the area of that set.

• Assume we partition the area into disjoint sets. Show that the number
of points in each set has a multinomial probability distribution.

We will now use these observations to recover the orientation of the plane.
We partition the image texture into a collection of disjoint sets.
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• Show that the area of each set, backprojected onto the textured plane, is
a function of the orientation of the plane.

• Use this function to suggest a method for obtaining the plane’s orienta-
tion.

Programming Assignments

• Texture synthesis - a: Implement the texture synthesis algorithms of sec-
tion 11.3.2 and of section 11.3.3. Use the steerable filter implementation
available at http://www.cis.upenn.edu/ eero/steerpyr.html to construct
steerable pyramid representations. Use your implementation to find examples
where the independence assumption fails. Explain what is going on in these
examples.

• Texture synthesis - b: Extend the algorithms of section 11.3.2 and of
section 11.3.3 to use pyramids obtained using an analysis based on more ori-
entations; you will need to ensure that you can do synthesis for the set of
filters you choose. Does this make any difference in practice to (a) the quality
of the texture synthesis or (b) the speed of the synthesis algorithm?

• Texture synthesis - c: Implement the non-parametric texture synthesis
algorithm of section 11.3.4. Use your implementation to study:

1. the effect of window size on the synthesized texture;

2. the effect of window shape on the synthesized texture;

3. the effect of the matching criterion on the synthesized texture (i.e. using
weighted sum of squares instead of sum of squares, etc.).
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Chapter 12

THE GEOMETRY OF
MULTIPLE VIEWS

Despite the wealth of information contained in a photograph, the depth of a scene
point along the corresponding projection ray is not directly accessible in a single
image. With at least two pictures, on the other hand, depth can be measured
through triangulation. This is of course one of the reasons why most animals have
at least two eyes and/or move their head when looking for friend or foe, as well
as the motivation for equipping autonomous robots with stereo or motion analysis
systems. Before building such a program, we must understand how several views of
the same scene constrain its three-dimensional structure as well as the corresponding
camera configurations. This is the goal of this chapter.
In particular, we will elucidate the geometric and algebraic constraints that hold

among two, three, or more views of the same scene. In the familiar setting of binoc-
ular stereo vision, we will show that the first image of any point must lie in the plane
formed by its second image and the optical centers of the two cameras. This epipo-
lar constraint can be represented algebraically by a 3×3 matrix called the essential
matrix when the intrinsic parameters of the cameras are known, and the funda-
mental matrix otherwise. Three pictures of the same line will introduce a different
constraint, namely that the intersection of the planes formed by their preimages
be degenerate. Algebraically, this geometric relationship can be represented by a
3 × 3 × 3 trifocal tensor. More images will introduce additional constraints, for
example four projections of the same point will satisfy certain quadrilinear rela-
tions whose coefficients are captured by the quadrifocal tensor, etc. Remarkably,
the equations satisfied by multiple pictures of the same scene feature can be set up
without any knowledge of the cameras and the scene they observe, and a number of
methods for estimating their parameters directly from image data will be presented
in this chapter.
Computer vision is not the only scientific field concerned with the geometry

of multiple views: the goal of photogrammetry, already mentioned in Chapter 6,
is precisely to recover quantitative geometric information from multiple pictures.
Applications of the epipolar and trifocal constraints to the classical photogrammetry

328
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problem of transfer (i.e., the prediction of the position of a point in an image given its
position in a number of reference pictures) will be briefly discussed in this chapter,
along with some examples. Many more applications in the domains of stereo and
motion analysis will be presented in latter chapters.

12.1 Two Views

12.1.1 Epipolar Geometry

Consider the images p and p′ of a point P observed by two cameras with optical
centers O and O′. These five points all belong to the epipolar plane defined by the
two intersecting rays OP and O′P (Figure 12.1). In particular, the point p′ lies
on the line l′ where this plane and the retina Π′ of the second camera intersect.
The line l′ is the epipolar line associated with the point p, and it passes through
the point e′ where the baseline joining the optical centers O and O′ intersects Π′.
Likewise, the point p lies on the epipolar line l associated with the point p′, and
this line passes through the intersection e of the baseline with the plane Π.

’

P

e’e

p’p

O’O

l’l

Figure 12.1. Epipolar geometry: the point P , the optical centers O and O′ of the two
cameras, and the two images p and p′ of P all lie in the same plane.

The points e and e′ are called the epipoles of the two cameras. The epipole e′ is
the (virtual) image of the optical center O of the first camera in the image observed
by the second camera, and vice versa. As noted before, if p and p′ are images of the
same point, then p′ must lie on the epipolar line associated with p. This epipolar
constraint plays a fundamental role in stereo vision and motion analysis.
Let us assume for example that we know the intrinsic and extrinsic parameters

of the two cameras of a stereo rig. We will see in Chapter 13 that the most difficult
part of stereo data analysis is establishing correspondences between the two images,
i.e., deciding which points in the right picture match the points in the left one.
The epipolar constraint greatly limits the search for these correspondences: indeed,
since we assume that the rig is calibrated, the coordinates of the point p completely
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determine the ray joining O and p, and thus the associated epipolar plane OO′p
and epipolar line. The search for matches can be restricted to this line instead of
the whole image (Figure 12.2). In two-frame motion analysis on the other hand,
each camera may be internally calibrated, but the rigid transformation separating
the two camera coordinate systems is unknown. In this case, the epipolar geometry
obviously constrains the set of possible motions. The next sections explore several
variants of this situation.

2

1

2

1

p’

P

P

p’

l’l

O
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e’e
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Figure 12.2. Epipolar constraint: given a calibrated stereo rig, the set of possible
matches for the point p is constrained to lie on the associated epipolar line l′.

12.1.2 The Calibrated Case

Here we assume that the intrinsic parameters of each camera are known, so p = p̂.

Clearly, the epipolar constraint implies that the three vectors
−→
Op,
−−→
O′p′, and

−−→
OO′

are coplanar. Equivalently, one of them must lie in the plane spanned by the other
two, or

−→
Op · [

−−→
OO′ ×

−−→
O′p′] = 0.

We can rewrite this coordinate-independent equation in the coordinate frame
associated to the first camera as

p · [t× (Rp′)], (12.1.1)

where p = (u, v, 1)T and p′ = (u′, v′, 1)T denote the homogenous image coordinate

vectors of p and p′, t is the coordinate vector of the translation
−−→
OO′ separating the

two coordinate systems, and R is the rotation matrix such that a free vector with
coordinates w′ in the second coordinate system has coordinates Rw′ in the first
one (in this case the two projection matrices are given in the coordinate system
attached to the first camera by ( Id 0 ) and (RT ,−RT t )).
Equation (12.1.1) can finally be rewritten as

pT Ep′ = 0, (12.1.2)
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where E = [t×]R, and [a×] denotes the skew-symmetric matrix such that [a×]x =
a×x is the cross-product of the vectors a and x. The matrix E is called the essential
matrix, and it was first introduced by Longuet-Higgins [1981]. Its nine coefficients
are only defined up to scale, and they can be parameterized by the three degrees
of freedom of the rotation matrix R and the two degrees of freedom defining the
direction of the translation vector t.
Note that Ep′ can be interpreted as the coordinate vector representing the epipo-

lar line associated with the point p′ in the first image: indeed, an image line l can
be defined by its equation au+ bv + c = 0, where (u, v) denote the coordinates of a
point on the line, (a, b) is the unit normal to the line, and −c is the (signed) distance
between the origin and l. Alternatively, we can define the line equation in terms
of the homogeneous coordinate vector p = (u, v, 1)T of a point on the line and the
vector l = (a, b, c)T by l · p = 0, in which case the constraint a2 + b2 = 1 is relaxed
since the equation holds independently of any scale change applied to l. In this con-
text, (12.1.2) expresses the fact that the point p lies on the epipolar line associated
with the vector Ep′. By symmetry, it is also clear that ETp is the coordinate vector
representing the epipolar line associated with p in the second image.
It is obvious that essential matrices are singular since t is parallel to the coordi-

nate vector e of the left epipole, so that ETe = −RT [t×]e = 0. Likewise, it is easy
to show that e′ is a zero eigenvector of E . As shown by Huang and Faugeras [1989],
essential matrices are in fact characterized by the fact that they are singular with
two equal non-zero singular values (see exercises).

12.1.3 Small Motions

Let us now turn our attention to infinitesimal displacements. We consider a moving
camera with translational velocity v and rotational velocity ω and rewrite (12.1.2)
for two frames separated by a small time interval δt. Let us denote by ṗ = (u̇, v̇, 0)T

the velocity of the point p, or motion field. Using the exponential representation of
rotations,1 we have (to first order):


t = δtv,
R = Id + δt [ω×],
p′ = p+ δt ṗ.

Substituting in (12.1.2) yields

pT [v×](Id + δt [ω×])(p+ δt ṗ) = 0,

and neglecting all terms of order two or greater in δt yields:

pT ([v×][ω×])p− (p× ṗ) · v = 0. (12.1.3)

1The matrix associated with the rotation whose axis is the unit vector a and whose angle is θ

can be shown to be equal to eθ[a×]
def
=
∑+∞

i=0
1
i!
(θ[a×])i.
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Equation (12.1.3) is simply the instantaneous form of the Longuet-Higgins rela-
tion (12.1.2) which captures the epipolar geometry in the discrete case. Note that
in the case of pure translation we have ω = 0, thus (p× ṗ) · v = 0. In other words,
the three vectors p = −→op, ṗ and v must be coplanar. If e denotes the infinitesimal
epipole, or focus of expansion, i.e., the point where the line passing through the op-
tical center and parallel to the velocity vector v pierces the image plane, we obtain
the well known result that the motion field points toward the focus of expansion
under pure translational motion (Figure 12.3).

.
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Figure 12.3. Focus of expansion: under pure translation, the motion field at every point
in the image points toward the focus of expansion.

12.1.4 The Uncalibrated Case

The Longuet-Higgins relation holds for internally calibrated cameras, whose intrin-
sic parameters are known so that image positions can be expressed in normalized
coordinates. When these parameters are unknown (uncalibrated cameras), we can
write p = Kp̂ and p′ = K′p̂′, where K and K′ are 3 × 3 calibration matrices, and
p̂ and p̂′ are normalized image coordinate vectors. The Longuet-Higgins relation
holds for these vectors, and we obtain

pTFp′ = 0, (12.1.4)

where the matrix F = K−TEK′−1, called the fundamental matrix, is not, in general,
an essential matrix.2 It has again rank two, and the eigenvector of F (resp. FT )
corresponding to its zero eigenvalue is as before the position e′ (resp. e) of the
epipole. Note that Fp′ (resp. FTp) represents the epipolar line corresponding to
the point p′ (resp. p) in the first (resp. second) image.
2Small motions can also be handled in the uncalibrated setting. In particular, Viéville and

Faugeras [1995] have derived an equation similar to (12.1.3) that characterizes the motion field of
a camera with varying intrinsic parameters.
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The rank-two constraint means that the fundamental matrix only admits seven
independent parameters. Several choices of parameterization are possible, but the
most natural one is in terms of the coordinate vectors e = (α, β)T and e′ = (α′, β′)T

of the two epipoles, and of the so-called epipolar transformation that maps one set
of epipolar lines onto the other one. We will examine the properties of the epipolar
transformation in Chapter 15 in the context of structure from motion. For the time
being, let us just note (without proof) that this transformation is parameterized by
four numbers a, b, c, d, and that the fundamental matrix can be written as

F =


 b a −aβ − bα

−d −c cβ + dα
dβ′ − bα′ cβ′ − aα′ −cββ′ − dβ′α+ aβα′ + bαα′


 . (12.1.5)

12.1.5 Weak Calibration

As mentioned earlier, the essential matrix is defined up to scale by five indepen-
dent parameters. It is therefore possible (at least in principle), to calculate it by
writing (12.1.2) for five point correspondences. Likewise, the fundamental matrix
is defined by seven independent coefficients (the parameters a, b, c, d in (12.1.5) are
only defined up to scale) and can in principle be estimated from seven point corre-
spondences. Methods for estimating the essential and fundamental matrices from
a minimal number of parameters indeed exist (see [Faugeras, 1993a] and Section
12.4), but they are far too involved to be described here. This section addresses
the simpler problem of estimating the epipolar geometry from a redundant set of
point correspondences between two images taken by cameras with unknown intrinsic
parameters, a process known as weak calibration.
Note that the epipolar constraint (12.1.4) is a linear equation in the nine coeffi-

cients of the fundamental matrix F :

(u, v, 1)

(
F11 F12 F13
F21 F22 F23
F31 F32 F33

)(
u′

v′

1

)
= 0⇔ (uu′, uv′, u, vu′, vv′, v, u′, v′, 1)




F11
F12
F13
F21
F22
F23
F31
F32
F33



= 0.

(12.1.6)

Since (12.1.6) is homogeneous in the coefficients of F , we can for example set
F33 = 1 and use eight point correspondences pi ↔ p′i (i = 1, .., 8) to set up an 8× 8
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system of non-homogeneous linear equations:
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1 u1v

′
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′
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,

which is sufficient for estimating the fundamental matrix. This is the eight-point
algorithm proposed by Longuet-Higgins [1981] in the case of calibrated cameras. It
will fail when the associated 8×8 matrix is singular. As shown in [Faugeras, 1993a]
and the exercises, this will only happen, however, when the eight points and the
two optical centers lie on a quadric surface. Fortunately, this is quite unlikely since
a quadric surface is completely determined by nine points, which means that there
is in general no quadric that passes through ten arbitrary points.
When n > 8 correspondences are available,F can be estimated using linear least

squares by minimizing
n∑
i=1

(pTi Fp
′
i)
2 (12.1.7)

with respect to the coefficients of F under the constraint that the vector formed by
these coefficients has unit norm.
Note that both the eight-point algorithm and its least-squares version ignore

the rank-two property of fundamental matrices.3 To enforce this constraint, Luong
et al. [1993; 1996] have proposed to use the matrix F output by the eight-point
algorithm as the basis for a two-step estimation process: first, use linear least
squares to compute the position of the epipoles e and e′ that minimize |FTe|2 and
|Fe′|2; second, substitute the coordinates of these points in (12.1.5): this yields a
linear parameterization of the fundamental matrix by the coefficients of the epipolar
transformation, which can now be estimated by minimizing (12.1.7) via linear least
squares.
The least-squares version of the eight-point algorithm minimizes the mean-

squared algebraic distance associated with the epipolar constraint, i.e., the mean-
squared value of e(p,p′) = pTFp′ calculated over all point correspondences. This
error function admits a geometric interpretation: in particular, we have

e(p,p′) = λd(p,Fp′) = λ′d(p′,FTp),

where d(p, l) denotes the (signed) Euclidean distance between the point p and the
line l, and Fp and FTp′ are the epipolar lines associated with p and p′. The

3The original algorithm proposed by Longuet-Higgins ignores the fact that essential matrices
have rank two and two equal singular values as well.
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scale factors λ and λ′ are simply the norms of the vectors formed by the first two
components of Fp′ and FTp, and their dependence on the pair of data points
observed may bias the estimation process.
It is of course possible to get rid of the scale factors and directly minimize the

mean-squared distance between the image points and the corresponding epipolar
lines, i.e.,

n∑
i=1

[d2(pi,Fp
′
i) + d

2(p′i,F
Tpi)].

This is a non-linear problem, regardless of the parameterization chosen for the
fundamental matrix, but the minimization can be initialized with the result of the
eight-point algorithm. This method was first proposed by Luong et al. [1993], and
it has been shown to provide results vastly superior to those obtained using the
eight-point method.
Recently, Hartley [1995] has proposed a normalized eight-point algorithm and

has also reported excellent results. His approach is based on the observation that
the poor performance of the plain eight-point method is due, for the most part, to
poor numerical conditioning. Thus Hartley has proposed to translate and scale the
data so it is centered at the origin and the average distance to the origin is

√
2 pixel.

This dramatically improves the conditioning of the linear least-squares estimation
process. Accordingly, his method is divided into four steps: first, transform the
image coordinates using appropriate translation and scaling operators T : pi → p̃i
and T ′ : p′i → p̃′i. Second, use linear least squares to compute the matrix F̃
minimizing

n∑
i=1

(p̃Ti F̃ p̃
′
i)
2.

Third, enforce the rank-two constraint; this can be done using the two-step method
of Luong et al. described earlier, but Hartley uses instead a technique, suggested by
Tsai and Huang [1984] in the calibrated case, which constructs the singular value
decomposition F̃ = USVT of F̃ . Here, S = diag(r, s, t) is a diagonal 3 × 3 matrix
with entries r ≥ s ≥ t, and U ,V are orthogonal 3 × 3 matrices.4 The rank-two
matrix F̄ minimizing the Frobenius norm of F̃ − F̄ is simply F̄ = Udiag(r, s, 0)VT

[Tsai and Huang, 1984]. Fourth, set F = T T F̄T ′. This is the final estimate of the
fundamental matrix.
Figure 12.4 shows weak calibration experiments using as input data a set of 37

point correspondences between two images of a toy house. The data points are
shown in the figure as small discs, and the recovered epipolar lines are shown as
short line segments. The top of the figure shows the output of the least-squares
version of the plain eight-point algorithm, and the bottom part of the figure shows
the results obtained using Hartley’s variant of this method. As expected, the results
are much better in the second case, and in fact extremely close to those obtained
using the distance minimization criterion of Luong et al. [1993; 1996].

4Singular value decomposition will be discussed in detail in Chapter 14.
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(a)

(b)
Linear Least Squares [Hartley, 1995] [Luong et al., 1993]

Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel

Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel

Figure 12.4. Weak calibration experiments using 37 point correspondences between two
images of a toy house. The figure shows the epipolar lines found by (a) the least-squares
version of the 8-point algorithm, and (b) the “normalized” variant of this method proposed
by Hartley [1995]. Note for example the much larger error in (a) for the feature point close
to the bottom of the mug. Quantitative comparisons are given in the table, where the
average distances between the data points and corresponding epipolar lines are shown for
both techniques as well as the non-linear distance minimization algorithm of Luong et
al. [1993].

12.2 Three Views

Let us now go back to the calibrated case where p = p̂ as we study the geometric
constraints associated with three views of the same scene. Consider three perspec-
tive cameras observing the same point P , whose images are denoted by p1, p2 and
p3 (Figure 12.5). The optical centers O1, O2 and O3 of the cameras define a trifocal
plane T that intersects their retinas along three trifocal lines t1, t2 and t3. Each
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one of these lines passes through the associated epipoles, e.g., the line t2 associated
with the second camera passes through the projections e12 and e32 of the optical
centers of the two other cameras.
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Figure 12.5. Trinocular epipolar geometry.

Each pair of cameras defines an epipolar constraint, i.e.,

pT1 E12p2 = 0,
pT2 E23p3 = 0,
pT3 E31p1 = 0,

(12.2.1)

where Eij denotes the essential matrix associated with the image pairs i↔ j. These
three constraints are not independent since we must have eT31E12e32 = e

T
12E23e13 =

eT23E31e21 = 0 (to see why, consider for example the epipoles e31 and e32: they are
the first and second images of the optical center O3 of the third camera, and are
therefore in epipolar correspondence).
Any two of the equations in (12.2.1) are, on the other hand, independent. In

particular, when the essential matrices are known, it is possible to predict the
position of the point p1 from the positions of the two corresponding points p2 and
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p3: indeed, the first and third constraints in (12.2.1) form a system of two linear
equations in the two unknown coordinates of p1. Geometrically, p1 is found as the
intersection of the epipolar lines associated with p2 and p3 (Figure 12.5). Thus the
trinocular epipolar geometry offers a solution to the problem of transfer mentioned
in the introduction.

12.2.1 Trifocal Geometry

A second set of constraints can be obtained by considering three images of a line
instead of a point: as shown in Chapter 27, the set of points that project onto an
image line is the plane that contains the line and the pinhole. We can characterize
this plane as follows: ifM denotes a 3×4 projection matrix, then a point P projects
onto p when zp =MP , or

lTMP = 0, (12.2.2)

where P = (x, y, z, 1)T is the 4-vector of homogeneous coordinates of P . Equation
(12.2.2) is of course the equation of the plane L that contains both the optical center
O of the camera and the line l, and L =MT l is the coordinate vector of this plane.
Two images l1 and l2 of the same line do not constrain the relative position

and orientation of the associated cameras since the corresponding planes L1 and L2
always intersect (possibly at infinity). Let us now consider three images li, l2 and l3
of the same line l and denote by L1, L2 and L3 the associated planes (Figure 12.6).
The intersection of these planes forms a line instead of being reduced to a point in
the generic case. Algebraically, this means that the system of three equations in
three unknowns 

LT1LT2
LT3


P = 0

must be degenerate, or, equivalently, the rank of the 3× 4 matrix

L
def
=


 lT1M1

lT2M2

lT3M3




must be two, which in turn implies that the determinants of all its 3×3 minors must
be zero. These determinants are clearly trilinear combinations of the coordinates
vectors l1, l2 and l3. As shown below, only two of the four determinants are
independent.

12.2.2 The Calibrated Case

To obtain an explicit formula for the trilinear constraints, we pick the coordinate
system attached to the first camera as the world reference frame, which allows us
to write the projection matrices as

M1 = ( Id 0 ) , M2 = (R2 t2 ) and M3 = (R3 t3 ) ,
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Figure 12.6. Three images of a line define it as the intersection of three planes in the
same pencil.

and to rewrite L as

L =


 lT1 0
lT2R2 lT2 t2
lT3R3 lT3 t3


 . (12.2.3)

As shown in the exercises, three of the minor determinants can be written to-
gether as

l1 ×


 lT2 G11l3lT2 G

2
1l3

lT2 G
3
1l3


 = 0, (12.2.4)

where

Gi1 = t2R
iT
3 −R

i
2t
T
3 for i = 1, 2, 3, (12.2.5)

and Ri2 and R
i
3 (i = 1, 2, 3) denote the columns of R2 and R3.

The fourth determinant is equal to |l1 R2l2 R3l3|, and it is zero when the nor-
mals to the plane L1, L2 and L3 are coplanar. The corresponding equation can be
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written as a linear combination of the three equations in (12.2.4) (see exercises).
Only two of those are linearly independent of course.
Equation (12.2.4) can finally be rewritten as

l1 ≈


 lT2 G11 l3lT2 G

2
1 l3

lT2 G
3
1 l3


 (12.2.6)

where we use a ≈ b to denote that a and b are equal except for an unknown scale
factor.
The three 3×3 matrices Gi1 define the 3×3×3 trifocal tensor with 27 coefficients

(or 26 up to scale). (A tensor is the multi-dimensional array of coefficients associated
with a multilinear form, in the same way that matrices are associated with bilinear
forms.)
Since O1 is the origin of the coordinate system in which all projection equations

are expressed, the vectors t2 and t3 can be interpreted as the homogeneous image
coordinates of the epipoles e12 and e13. In particular it follows from (12.2.5) that
lT2 G

i
1l3 = 0 for any pair of matching epipolar lines l2 and l3.
The trifocal tensor also constrains the positions of three corresponding points.

Indeed, suppose that P is a point on l. Its first image lies on l1, so p
T
1 l1 = 0 (Figure

12.7). In particular,

pT1


 lT2 G11 l3lT2 G

2
1 l3

lT2 G
3
1 l3


 = 0. (12.2.7)

Given three point correspondences p1 ↔ p2 ↔ p3, we obtain four independent
constraints by rewriting (12.2.7) for independent pairs of lines passing through p2
an p3, e.g., l

′
i = (1, 0,−ui) and l

′′
i = (0, 1,−vi) (i = 2, 3). These constraints are

trilinear in the coordinates of the points p1, p2 and p3.

12.2.3 The Uncalibrated Case

We can still derive trilinear constraints in the image line coordinates when the
intrinsic parameters of the three cameras are unknown. Since in this case p = Kp̂,
and since the image line associated with the vector l is defined by lTp = 0, we
obtain immediately l = K−T l̂, or equivalently l̂ = KT l.
In particular, (12.2.3) holds when pi = p̂i and li = l̂i. In the general case we

have

L =


 lT1K1 0
lT2K2R2 lT2K2t2
lT3K3R3 lT3K3t3


 ,

and

Rank(L) = 2⇐⇒ Rank(L

(
K−11 0
0 1

)
) = Rank


 lT1 0
lT2A2 lT2 a2
lT3A3 lT3 a3


 = 2,
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Figure 12.7. Given three images p1, p2 and p3 of the same point P , and two arbitrary
images l2 and l3 passing through the points p2 and p3, the ray passing through O1 and
p1 must intersect the line where the planes L2 and L3 projecting onto l2 and l3 meet in
space.

where Ai
def
= KiRiK

−1
1 and ai

def
= Kiti for i = 2, 3. Note that the projection matrices

associated with our three cameras are now M1 = (K1 0 ), M2 = (A2K1 a2 ),
and M3 = (A3K1 a3 ). In particular a2 and a3 can still be interpreted as the
homogeneous image coordinates of the epipoles e12 and e13, and the trilinear con-
straints (12.2.6) and (12.2.7) still hold when, this time,

Gi1 = a2A
iT
3 −A

i
2a
T
3 ,

where Ai2 and A
i
3 (i = 1, 2, 3) denote the columns of A2 and A3. As before, we will

have lT2 G
i
1l3 = 0 for any pair of matching epipolar lines l2 and l3.

12.2.4 Estimation of the Trifocal Tensor

We now address the problem of estimating the trifocal tensor from point and line
correspondences established across triples of pictures. The equations (12.2.5) defin-
ing the tensor are linear in its coefficients and depend only on image measurements.
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As in the case of weak calibration, we can therefore use linear methods to estimate
these 26 parameters. Each triple of matching points provides four independent
linear equations, and every triple of matching lines provides two additional linear
constraints. Thus the tensor coefficients can be computed from p points and l lines
granted that 2p+ l ≥ 13. For example, 7 triples of points or 13 triples of lines will
do the trick, as will 3 triples of points and 7 triples of lines, etc.
Once the tensor has been estimated, it can be used to predict the position

of a point in one image from its positions in the other two. As noted before,
the epipolar constraints associated with the camera pairs 1 ↔ 2 and 1 ↔ 3 can
also be used to perform this task. Figure 12.8 shows experimental results using
point correspondences found in three images of a sports shoe [Shashua, 1995a].
It compares the results obtained from the fundamental matrices estimated by the
method of Luong et al. [1993] (Figure 12.8(a)) and by a different weak-calibration
technique that takes advantage of the coplanarity of correspondences lying in the
ground plane supporting the shoe (see [Shashua, 1995a] and Figure 12.8(b)) with
the results obtained using the trifocal tensor estimated from a minimal set of seven
points (Figure 12.8(c)) and a redundant set of ten correspondences (Figure 12.8(d)).
In this example, the trifocal tensor clearly gives better results than the fundamental
matrices.
As in the case of weak calibration, it is possible to improve the numerical stability

of the tensor estimation process by normalizing the image coordinates so the data
points are centered at the origin with an average distance from the origin of

√
2

pixel. See [Hartley, 1995] for details.
The methods outlined so far ignore the fact that the 26 parameters of the trifocal

tensor are not independent. This should not come as a surprise: the essential ma-
trix only has five independent coefficients (the associated rotation and translation
parameters, the latter being only defined up to scale) and that the fundamental
matrix only has seven. Likewise, the parameters defining the trifocal tensor sat-
isfy a number of constraints, including the aforementioned equations lT2 G

i
1l3 = 0

(i = 1, 2, 3) satisfied by any pair of matching epipolar lines l2 and l3. It is also
easy to show that the matrices Gi1 are singular, a property we will come back to in
Chapter 15. Faugeras and Mourrain [1995] have shown that the coefficients of the
trifocal tensor of an uncalibrated trinocular stereo rig satisfy 8 independent con-
straints, reducing the total number of independent parameters to 18. The method
described in [Hartley, 1995] enforces these constraints a posteriori by recovering the
epipoles e12 and e13 (or equivalently the vectors t2 and t3 in (12.2.5)) from the
linearly-estimated trifocal tensor, then recovering in a linear fashion a set of tensor
coefficients that satisfy the constraints.

12.3 More Views

What about four views? In this section we follow Faugeras and Mourrain [1995] and
first note that we can eliminate the depth of the observed point in the projection
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(a)

(b) (c)

(d) (e)
Transfer Using Fundamental Matrices

Method: Average Distance:
Ground Plane (b) 7.70 pixels

[Luong et al., 1993] (c) 9.58 pixels

Transfer Using the Trifocal Tensor

Method: Average Distance:
7 points (d) 0.98 pixel

10 points (e) 0.44 pixel

Figure 12.8. Transfer experiments: (a) input images; (b)-(c) transfer using the funda-
mental matrix, estimated in (a) using correspondences on the ground floor and in (b) using
the non-linear method of [Luong et al., 1993]; (d)-(e) transfer using the trifocal tensor es-
timated in (d) from seven points, and in (e) using least squares from ten points. Reprinted
from [Shashua, 1995a], Figures 2–4. Quantitative comparisons are given in the table, where
the average distances between the data points and the transfered ones are shown for each
method. The input features are indicated by white squares and the reprojected ones are
are indicated by white crosses.
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equation by writing

zp =MP ⇐⇒ p × (MP ) = ([p×]M)P = 0. (12.3.1)

Of course, only two of the scalar equations associated with this vector equation
are independent. Choosing (for example) the first and second of these equations
allows us to rewrite (12.3.1) as(

uM3 −M1

vM3 −M2

)
P = 0, (12.3.2)

whereMi denotes row number i of the matrixM.
Suppose now that we have four views, with associated projection matricesMi

(i = 1, 2, 3, 4). Writing (12.3.2) for each one of these yields

QP = 0, where Q
def
=




u1M3
1 −M

1
1

v1M3
1 −M

2
1

u2M3
2 −M

1
2

v2M3
2 −M

2
2

u3M
3
3 −M

1
3

v3M3
3 −M

2
3

u4M3
4 −M

1
4

v4M3
4 −M

2
4



. (12.3.3)

Equation (12.3.3) is a system of eight homogeneous equations in four unknowns
that admits a non-trivial solution. It follows that the rank of the corresponding
8 × 4 matrix Q is at most 3, or, equivalently, all its 4 × 4 minors must have zero
determinants. Geometrically, each pair of equations in (12.3.3) represents the ray
Ri (i = 1, 2, 3, 4) associated with the image point pi, and Q must have rank 3 for
these rays to intersect at a point P (Figure 12.9).
The matrix Q has three kinds of 4× 4 minors:

1. Those that involve two rows from one projection matrix, and two rows from
another one. The equations associated with the six minors of this type include,
for example,5

Det



u2M3

1 −M
1
1

v2M3
1 −M

2
1

u3M3
2 −M

1
2

v3M3
2 −M

2
2


 = 0. (12.3.4)

These determinants yield bilinear constraints on the position of the associated
image points. It is easy to show (see exercises) that the corresponding equa-
tions reduce to the epipolar constraints (12.1.2) when we takeM1 = ( Id 0 )
andM2 = (RT −RT t ).

5General formulas can be given as well by using for example (u1, u2) instead of (u, v) and
playing around with indices and tensorial notation. We will abstain from this worthy exercise
here.
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Figure 12.9. Four images p1, p2, p3 and p4 of the same point P define this point as the
intersection of the corresponding rays Ri (i = 1, 2, 3, 4).

2. The second type of minors involves two rows from one projection matrix, and
one row from each of two other matrices. There are 48 of those, and the
associated equations include, for example,

Det



u1M3

1 −M
1
1

v1M3
1 −M

2
1

u2M3
2 −M

1
2

v3M3
3 −M

2
3


 = 0. (12.3.5)

These minors yield trilinear constraints on the corresponding image positions.
It is easy to show (see exercises) that the corresponding equations reduce
to the trifocal constraints (12.2.7) introduced in the previous section when
we takeM1 = ( Id 0 ). In particular, they can be expressed in terms of the
matrices Gi1 (i = 1, 2, 3). Note that this completes the geometric interpretation
of the trifocal constraints, that express here the fact that the rays associated
with three images of the same point must intersect in space.
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3. The last type of determinant involves one row of each matrix. The equations
associated with the 16 minors of this form include, for example,

Det



v1M3

1 −M
2
1

u2M3
2 −M

1
2

v3M3
3 −M

2
3

v4M3
4 −M

2
4


 = 0. (12.3.6)

These equations yield quadrilinear constraints on the position of the points pi
(i = 1, 2, 3, 4). Geometrically, each row of the matrix Q is associated with an
image line or equivalently with a plane passing through the optical center of
the corresponding camera. Thus each quadrilinearity expresses the fact that
the four associated planes intersect in a point (instead of not intersecting at
all in the generic case).

Let us focus from now on the the quadrilinear equations. Developing determi-
nants such as (12.3.6) with respect to the image coordinates reveals immediately
that the coefficients of the quadrilinear constraints can be written as

εijklDet



Mi
1

Mj
2

Mk
3

Ml
4


 , (12.3.7)

where εijkl = ∓1 and i, j, k and l are indices between 1 and 4 (see exercises). These
coefficients determine the quadrifocal tensor [Triggs, 1995].
Like its trifocal cousin, this tensor can be interpreted geometrically using both

points and lines. In particular, consider four pictures pi (i = 1, 2, 3, 4) of a point
P and four arbitrary image lines li passing through these points. The four planes
Li (i = 1, 2, 3, 4) formed by the preimages of the lines must intersect in P , which
implies in turn that the 4× 4 matrix

L
def
=



lT1M1

lT2M2

lT3M3

lT4M4




must have rank 3, and, in particular, that its determinant must be zero. This
obviously provides a quadrilinear constraint on the coefficients of the four lines li
(i = 1, 2, 3, 4). In addition, since each row LTi = l

T
i Mi of L is a linear combination

of the rows of the associated matrix Mi, the coefficients of the quadrilinearities
obtained by developing Det(L) with respect to the coordinates of the lines li are
simply the coefficients of the quadrifocal tensor as defined by (12.3.7).
Finally, note since Det(L) is linear in the coordinates of l1, the vanishing of this

determinant can be written as l1 ·q(l2, l3, l4) = 0, where q is a (trilinear) function of
the coordinates of the lines li (i = 2, 3, 4). Since this relationship holds for any line
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l1 passing through p1 it follows that p1 ≈ q(l2, l3, l4). Geometrically, this means
that the ray passing through O1 and p1 must also pass through the intersection of
the planes formed by the preimages of l2, l3 and l4 (Figure 12.10). Algebraically,
this means that, given the quadrifocal tensor and arbitrary lines passing through
three images of a point, we can predict the position of this point in a fourth image.
This provides yet another method for transfer.

2L 2
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3l

2
p

1
p l2

3
O

3

1

21 OO
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4l4

4
p

4L

P

4
O

Figure 12.10. Given four images p1, p2, p3 and p4 of some point P and three arbitrary
image lines l2, l3 and l4 passing through the points p2, p3 and p4, the ray passing through
O1 and p1 must also pass through the point where the three planes L2, L3 and L4 formed
by the preimages of these lines intersect.

Note that the quadrifocal constraints are valid in both the calibrated and un-
calibrated cases since we have made no assumption on the form of the matrices
Mi. The quadrifocal tensor is defined by 81 coefficients (or 80 up to scale), but
these coefficients satisfy 51 independent constraints, reducing the total number of
independent parameters to 29 [Heyden, 1998; Hartley, 1998]. It can also be shown
that, although each quadruple of images of the same point yields 16 independent
constraints like (12.3.6) on the 80 tensor coefficients, there exists a linear depen-
dency between the 32 equations associated with each pair of points [Heyden, 1998].
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Thus six point correspondences are necessary to estimate the quadrifocal tensor in a
linear fashion. Algorithms for performing this task and enforcing the 51 constraints
associated with actual quadrifocal tensors can be found in [Hartley, 1998].
Finally, Faugeras and Mourrain [1995] have shown that the quadrilinear tensor

is algebraically dependent on the associated essential/fundamental matrices and
trifocal tensor, and thus does not add independent new constraints. Likewise, it
can be shown that additional views do not add independent constraints either.

12.4 Notes

The essential matrix as an algebraic form of the epipolar constraint was discovered
by Longuet-Higgins [1981], and its properties have been elucidated by Huang and
Faugeras [1989]. The fundamental matrix was introduced by Luong and Fauge-
ras [1992; 1996]. We will come back to the properties of the fundamental matrix
and of the epipolar transformation in Chapter 15, when we adress the problem of
recovering the structure of a scene and the motion of a camera from a sequence of
perspective images.
The trilinear constraints associated with three views of a line were introduced in-

dependently by Spektakis and Aloimonos [1990] and Weng, Huang and Ahuja [1992]

in the context of motion analysis for internally calibrated cameras. They were ex-
tended by Shashua [1995a] and Hartley [1997] to the uncalibrated case. The quadri-
focal tensor was introduced by Triggs [1995]. Geometric studies can by found in
Faugeras andMourrain [1995], Faugeras and Papadopoulo [1997] and Heyden [1998].
We mentioned in the introduction that photogrammetry is concerned with the

extraction of quantitative information from multiple pictures. In this context, binoc-
ular and trinocular geometric constraints are regarded as the source of condition
equations that determine the intrinsic and extrinsic parameters (called interior and
exterior orientation parameters in photogrammetry) of a stereo pair or triple. In
particular, the Longuet-Higgins relation appears, in a slightly disguised form, as the
coplanarity condition equation, and trinocular constraints yield scale-restraint con-
dition equations that take calibration and image measurement errors into account
[Thompson et al., 1966, Chapter X]: in this case, the rays associated with three
images of the same point are not guaranteed to intersect anymore (Figure 12.11).
The setup is as follows: if the rays R1 and Ri (i = 2, 3) associated with the image

points p1 and pi do not intersect, the minimum distance between them is reached
at the points P1 and Pi such that the line joining these points is perpendicular to
both R1 and Ri. Algebraically, this can be written as

−−−→
O1P1 = z

i
1
−−−→
O1p1 =

−−−→
O1Oi + zi

−−→
Oipi + λi(

−−−→
O1p1 ×

−−→
Oipi) for i = 2, 3. (12.4.1)

Assuming that the cameras are internally calibrated so the projection matrices
associated with the second and third cameras are (RT2 −RT2 t2 ) and (R

T
3 −RT3 t3 ),

(12.4.1) can be rewritten in the coordinate system attached to the first camera as

zi1p1 = ti + ziRipi + λi(p1 ×Ripi) for i = 2, 3. (12.4.2)
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Figure 12.11. Trinocular constraints in the presence of calibration or measurement
errors: the rays R1, R2 and R3 may not intersect.

Note that a similar equation could be written as well for completely uncalibrated
cameras by including terms depending on the (unknown) intrinsic parameters. In
either case, (12.4.2) can be used to calculate the unknowns zi, λi and z

i
1 in terms of

p1, pi, and the projection matrices associated with the cameras (see exercises). The
scale-restraint condition is then written as z21 = z

3
1 . Although it is more complex

than the trifocal constraint (in particular, it is not trilinear in the coordinates of
the points p1, p2 and p3), this condition does not involve the coordinates of the
observed point, and it can be used (in principle) to estimate the trifocal geometry
directly from image data. A potential advantage is that the error function z21 − z

3
1

has a clear geometric meaning: it is the difference between the estimates of the
depth of P obtained using the pairs of cameras 1 ↔ 2 and 1 ↔ 3. It would be
interesting to further investigate the relationship between the trifocal tensor and
the scale-constraint condition, as well as its practical application to the estimation
of the trifocal geometry.
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12.5 Assignments

Exercises

1. Show that one of the singular values of an essential matrix is 0 and the other
two are equal. (Huang and Faugeras [1989] have shown that the converse is
also true, i.e., any 3 × 3 matrix with one singular value equal to 0 and the
other two equal to each other is an essential matrix.)

Hint: the singular values of E are the eigenvalues of EET .

Solution: We have E = [t×]R, thus EET = [t×][t×]T = [t×]T [t×]. If a is an
eigenvector of EET associated with the eigenvalue λ then, for any vector b

λb · a = bT ([t×]
T [t×]a) = (t× b) · (t× a).

Choosing a = b = t shows that λ = 0 is an eigenvalue of EET . Choosing
b = t shows that if λ �= 0 then a is orthogonal to t. But then choosing a = b
shows that

λ|a|2 = |t× a|2 = |t|2|a|2.

It follows that all non-zero singular values of E must be equal. Note that the
singular values of E cannot all be zero since this matrix has rank 2.

2. The infinitesimal epipolar constraint (12.1.3) was derived by assuming that
the observed scene was static and the camera was moving. Show that when
the camera is fixed and the scene is moving with translational velocity v and
rotational velocity ω, the epipolar constraint can be rewritten as

pT ([v×][ω×])p+ (p× ṗ) · v = 0.

Note that this equation is now the sum of the two terms appearing in (12.1.3)
instead of their difference.

Hint: If R and t denote the rotation matrix and translation vectors appearing
in the definition of the essential matrix for a moving camera, show that the
object displacement that yields the same motion field for a static camera is
given by the rotation matrix RT and the translation vector −RT t.

3. Show that when the 8× 8 matrix associated with the eight-point algorithm is
singular, the eight points and the two optical centers lie on a quadric surface
[Faugeras, 1993a].

Hint: Use the fact that when a matrix is singular, there exists some non-trivial
linear combination of its columns that is equal to zero. Also take advantage of
the fact that the matrices representing the two projections in the coordinate
system of the first camera are in this case ( Id 0 ) and (RT ,−RT t ).
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4. Show that three of the determinants of the 3× 3 minors of

L =


 lT1 0
lT2R2 lT2 t2
lT3R3 lT3 t3


 .

can be written as

l1 ×


 lT2 G11 l3lT2 G

2
1 l3

lT2 G
3
1 l3


 = 0.

Show that the fourth determinant can be written as a linear combination of
these.

5. Show that (12.3.4) reduces to (12.1.2) when M1 = ( Id 0 ) and M2 =
(RT −RT t ).

6. Show that (12.3.5) reduces to (12.2.7) whenM1 = ( Id 0 ).

7. Develop (12.3.6) with respect to the image coordinates and verify that the
coefficients can indeed be written in the form (12.3.7).

8. Use (12.4.2) to calculate the unknowns zi, λi and z
i
1 in terms of p1, pi, Ri

and ti (i = 2, 3). Show that the value of λi is directly related to the epipolar
constraint and characterize the degree of the dependency of z21 − z

3
1 on the

data points.

Programming Assignments

Note: the assignments below require routines for solving square and overdetermined
linear systems. An extensive set of such routines is available in MATLAB as well as
in public-domain libraries such as LINPACK and LAPACK that can be downloaded
from the Netlib repository (http://www.netlib.org/). Data for these assignments
will be available in the CD companion to this book.

1. Implement the 8-point algorithm for weak calibration from binocular point
correspondences.

2. Implement the linear least-squares version of that algorithm with and without
Hartley’s pre-conditioning step.

3. Implement an algorithm for estimating the trifocal tensor from point corre-
spondences.

4. Implement an algorithm for estimating the trifocal tensor from line correspon-
dences.



Chapter 13

STEREOPSIS

Fusing the pictures recorded by our two eyes and exploiting the difference (or dis-
parity) between them allows us to gain a strong sense of depth (Figure 13.1(left)).
This chapter is concerned with the design and implementation of algorithms that
mimick our ability to perform this task, known as stereopsis. Note that a machine
(or for that matter the Martian shown in Figure 13.1(right), or an ordinary spi-
der) may be equipped with three eyes or more, and this will lead us to investigate
multi-camera approaches to stereopsis at the end of this chapter.

Figure 13.1. The sailor shown in the left picture is, like most people, able to perform
stereopsis and gain a sense of depth for the objects within his field of view. Reprinted
from [Navy, 1969], Figure 6-8. The right photograph is from the 1953 film “The War of
the Worlds”, and it shows a close-up of the face of a three-eyed Martian warrior. Why
such a configuration may prove benefitial will be explained in Section 13.3.1.

Reliable computer programs for stereoscopic perception are of course invaluable
in visual robot navigation (Figure 13.2), cartography, aerial reconnaissance and
close-range photogrammetry. They are also of great interest in tasks such as image
segmentation for object recognition and, as will be seen in Chapter 23, the construc-
tion of three-dimensional scene models in image-based rendering, a new discipline
that ties together computer vision and computer graphics.
Stereo vision involves two processes: the binocular fusion of features observed

by the two eyes, and the reconstruction of their three-dimensional preimage. The

352
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(a) (b)

Figure 13.2. Mobile robot navigation is a classical application of stereo vision: (a) the
Stanford cart sports a single camera moving in discrete increments along a straight line
and providing multiple snapshots of outdoor scenes [Moravec, 1983]; the INRIA mobile
robot uses three cameras to map its environment.

latter is relatively simple: the preimage of matching points can (in principle) be
found at the intersection of the rays passing through these points and the associ-
ated pupil centers (or pinholes, see Figure 13.3(left)). Thus, when a single image
feature is observed at any given time, stereo vision is easy.1 However, each picture
consists of hundreds of thousands of pixels, with tens of thousands of image features
such as edge elements, and some method must be devised to establish the correct
correspondences and avoid erroneous depth measurements (Figure 13.3(right)).
Although human binocular fusion is effortless and reliabe in most situations, we

can be fooled too: the abstract single-image stereograms [Thimbley et al., 1994]

that were popular in the late nineties demonstrate this quite well: in this case,
repetitive patterns or judiciously assembled random dots are used to trick the eyes
into focussing on the wrong correspondences, producing a vivid impression of layered
planes.2 This suggests that constructing a reliable stereo vision program is difficult,
a fact that will be attested time and again in the rest of this chapter. As should be
expected, the geometric machinery introduced in Chapter 12 will prove extremely
useful in tackling this problem. We will assume in the rest of this chapter that all
cameras have been carefully calibrated so their intrinsic and extrinsic parameters
are precisely known relative to some fixed world coordinate system. The case of
multiple uncalibrated cameras will be examined in the context of structure from
motion in Chapters 14 and 15.

1This is actually how some laser range finders work: two cameras observe an object while a
laser beam scans its surface one point at a time. After thresholding the two pictures, the bright
laser spot is, effectively, the only surface point seen by the cameras. See Chapter 21 for details.
2To enjoy this effect without any special equipment or expensive props, you may try to sit

down in a place decorated with a repetitive tile pattern such as those often found in bathroom
floors. By letting your mind wander and your eyes unfocus, you may be able to see the floor jump
up by a foot or so, and even pass your hand through the “virtual” floor. This experiment, best
conducted late at night, is quite worth the effort.
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Figure 13.3. The binocular fusion problem: in the simple case of the diagram shown on
the left, there is no ambiguity and stereo reconstruction is a simple matter. In the more
usual case shown on the right, any of the four points in the left picture may, a priori, match
any of the four points in the right one. Only four of these correspondences are correct, the
other ones yielding the incorrect reconstructions shown as small grey discs.

13.1 Reconstruction

Given a calibrated stereo rig and two matching image points p and p′, it is in princi-
ple straightforward to reconstruct the corresponding scene point by intersecting the
two rays R = Op and R′ = O′p′. However, the rays R and R′ will never, in practice,
actually intersect, due to calibration and feature localization errors (Figure 13.4).
In this context, various reasonable approaches to the reconstruction problem can be
adopted. For example, we may choose to construct the line segment perpendicular
to R and R′ that intersects both rays: the mid-point P of this segment is the closest
point to the two rays and can be taken as the pre-image of p and p′. It should be
noted that a similar construction was used at the end of Chapter 12 to characterize
algebraically the geometry of multiple views in the presence of calibration or mea-
surement errors. The equations (12.4.1) and (12.4.2) derived in that chapter are
readily adapted to the calculation of the coordinates of P in the frame attached to
the first camera.
Alternatively, we can reconstruct a scene point using a purely algebraic ap-

proach: given the projection matrices M and M′ and the matching points p and
p′, we can rewrite the constraints zp =MP and z′p′ =MP as{

p×MP = 0
p′ ×M′P = 0

⇐⇒

(
[p×]M
[p′×]M

′

)
P = 0.

This is an overconstrained system of four independent linear equations in the
homogeneous coordinates of P , that is easily solved using the linear least-squares
techniques introduced in Chapter 6. Unlike the previous approach, this reconstruc-
tion method does not have an obvious geometric interpretation, but it generalizes
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Figure 13.4. Triangulation in the presence of measurement errors. See text for details.

readily to the case of three or more cameras, each new picture simply adding two
additional constraints.
Finally, we can reconstruct the scene point associated with p and p′ as the point

Q with images q and q′ that minimizes d2(p, q) + d2(p′, q′) (Figure 13.4). Unlike
the two other methods presented in this section, this approach does not allow the
closed-form computation of the reconstructed point, which must be estimated via
non-linear least-squares techniques such as those introduced in Chapter 6. The
reconstruction obtained by either of the other two methods can be used as a rea-
sonable guess to initialize the optimization process. This non-linear approach also
readily generalizes to the case of multiple images.
Before moving on to studying the problem of binocular fusion, let us now say a

few words about two key components of stereo vision systems: camera calibration
and image rectification.

13.1.1 Camera Calibration

As noted in the introduction, we will assume throughout this chapter that all cam-
eras have been carefully calibrated (using, for example, one of the techniques intro-
duced in Chapter 6) so their intrinsic and extrinsic parameters are precisely known
relative to some fixed world coordinate system. This is of course a prerequisite for
the reconstruction methods presented in the previous section since they require that
the projection matrices associated with the two cameras be known, or, equivalently,
that a definite ray be associated with every image point. It should also be noted
that, once the intrinsic and extrinsic camera parameters are known, it is a simple
matter to estimate the multi-view geometry (essential matrix for two views, trifocal
tensor for three, etc.) as described in Chapter 12. This will play a fundamental role
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in the algorithms for establishing stereo correspondences presented in Sections 13.2
and 13.3.

13.1.2 Image Rectification

The calculations associated with stereo algorithms are often considerably simplified
when the images of interest have been rectified, i.e., replaced by two projectively
equivalent pictures with a common image plane parallel to the baseline joining the
two optical centers (Figure 13.5). The rectification process can be implemented
by projecting the original pictures onto the new image plane. With an apropriate
choice of coordinate system, the rectified epipolar lines are scanlines of the new
images, and they are also parallel to the baseline.

l
p’p

’

l’

’

p p’

l’l

O O’

e e’

P

Figure 13.5. A rectified stereo pair: the two image planes Π and Π′ are reprojected onto
a common plane Π̄ = Π̄′ parallel to the baseline. The epipolar lines l and l′ associated with
the points p and p′ in the two pictures map onto a common scanline l̄ = l̄′ also parallel
to the baseline and passing through the reprojected points p̄ and p̄′. The rectified images
are easily constructed by considering each input image as a polyhedral mesh and using
texture mapping to render the projection of this mesh into the plane Π̄ = Π̄′.

As noted in [Faugeras, 1993a], there are two degrees of freedom involved in
the choice of the rectified image plane: (1) the distance between this plane and
the baseline, which is essentially irrelevant since modifying it will only change the
scale of the rectified pictures, an effect easily balanced by an inverse scaling of the
image coordinate axes, and (2) the direction of the rectified plane normal in the
plane perpendicular to the baseline. Natural choices include picking a plane parallel
to the line where the two original retinas intersect, and minimizing the distortion
associated with the reprojection process.
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In the case of rectified images, the notion of disparity introduced informally
earlier takes a precise meaning: given two points p and p′ located on the same
scanline of the left and right images, with coordinates (u, v) and (u′, v), the disparity
is defined as the difference d = u′−u. Let us assume from now on normalized image
coordinates. If B denotes the distance between the optical centers, also called
baseline in this context, it is easy to show that the depth of P in the (normalized)
coordinate system attached to the first camera is z = −B/d (Figure 13.6).
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Figure 13.6. Triangulation for rectified images: the rays associated with two points p
and p′ on the same scanline are by construction guaranteed to intersect in some point P .
As shown in the text, the depth of P relative to the coordinate system attached to the left
camera is inversely proportional to the disparity d = u′ − u. In particular, the preimage
of all pairs of image points with constant disparity d is a frontoparallel plane Πd (i.e., a
plane parallel to the camera retinas).

To show this, let us consider first the points q and q′ with coordinates (u, 0) and
(u′, 0), and the corresponding scene point Q. Let b and b′ denote the respective
distances between the orthogonal projection of Q onto the baseline and the two
optical centers O and O′. The triangles qQq′ and OQO′ are similar, and it follows
immediately that b = zu and b′ = −zu′. Thus B = −zd, which proves the result
for q and q′. The general case involving p and p′ with v �= 0 follows immediately
from the fact that the line PQ is parallel to the two lines pq and p′q′ and therefore
also parallel to the rectified image plane. In particuliar, the coordinate vector of
the point P in the frame attached to the first camera is P = −(B/d)p, where
p = (u, v, 1)T is the vector of normalized image coordinates of p. This provides yet
another reconstruction method for rectified stereo pairs.
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Human Vision: Stereopsis

Before moving on to algorithms for establishing binocular correspondences, let us pause
for a moment to discuss the mechanisms underlying human stereopsis. First, it should be
noted that, unlike the cameras rigidly attached to a passive stereo rig, the two eyes of a
person can rotate in their sockets. At each instant, they fixate on a particular point in
space, i.e., they rotate so that its two images form in the centers of the eyes’ foveas. Figure
13.7 illustrates a simplified, two-dimensional situation.

F

D

Vieth-Muller Circle

Disparate dot

Fixated dot

l

r

Figure 13.7. This diagram depicts a situation similar to that of the sailor in Figure 13.1.
The close-by dot is fixated by the eyes, and it projects onto the center of their foveas, with
no disparity. The two images of the far dot deviate from this central position by different
amounts, indicating a different depth.

If l and r denote the (counterclockwise) angles between the vertical planes of symmetry
of two eyes and two rays passing through the same scene point, we define the corresponding
disparity as d = r − l (Figure 13.7). It is an elementary exercise in trigonometry to show
that d = D−F , where D denotes the angle between these rays, and F is the angle between
the two rays passing through the fixated point. Points with zero disparity lie on the Vieth-
Müller circle that passes through the fixated point and the anterior nodal points of the
eyes. Points lying inside this circle have a positive (or convergent) disparity, points lying
outside it have, as in Figure 13.7, a negative (or divergent) disparity,3 and the locus of
all points having a given disparity d forms, as d varies, the pencil of all circles passing
through the two eyes’ nodal points. This property is clearly sufficient to rank-order in
depth dots that are near the fixation point. However, it is also clear that the vergence
angles between the vertical median plane of symmetry of the head and the two fixation
rays must be known in order to reconstruct the absolute position of scene points.
The three-dimensional case is naturally a bit more complicated, the locus of zero-

disparity points becoming a surface, the horopter, but the general conclusion is the same,
and absolute positioning requires the vergence angles. As already demonstrated by Wundt
and Helmholtz [1909, pp. 313-314] a hundred years ago, there is strong evidence that these
angles cannot be measured very accurately by our nervous system. In fact, the human

3The terminology comes from the fact that the eyes would have to converge (resp. diverge)
to fixate on a point inside (resp. outside) the Vieth-Müller circle. Note that the position of this
circle in space depends on the fixation point (even if the fixation angle F is preserved), since the
rotation centers of the eyes do not coincide with their anterior nodal points.
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visual system can be fooled into believing that threads that actually lie in the same vertical
plane lie instead on a convex or concave surface, depending on the distance between the
observer and this plane [Helmholtz, 1909, pp. 318-321]. Likewise, the reliefmodels used in
sculpture to mimick solids with much reduced depths are almost indistinguishable binocu-
larly from the originals (see [Helmholtz, 1909, pp. 324-326] for an analytical justification).
On the other hand, relative depth, or rank-ordering of points along the line of sight, can be
judged quite accurately: for example, it is possible to decide which one of two targets near
the horopter is closer to an observer for disparities of a few seconds of arc (stereoacuity
threshold), which matches the minimum separation that can be measured with one eye
(monocular hyperacuity threshold) [Helmholtz, 1909, p. 307] (though the stereo disparity
threshold increases quickly as one gets away from the horopter, see, for example, [McKee
et al., 1990]). It can therefore reasonably be argued that the output of human stereopsis
consists mostly of a map of relative depth information, conveying a partial depth order
between scene points [Julesz, 1971, pp. 176-177].4 In that context, the main role of eye
movements in stereopsis would be to bring the images within Panum’s fusional area, a
disc with a diameter of 6min of arc in the fovea center where fusion can occur [Julesz,
1971, pp. 148] (points can still be vividly perceived in depth for much larger disparities,
but they will appear as double images, a phenomenon known as diplopia).
Concerning the construction of correspondences between the left and right images,

Julesz [1960] asks the following question: is the basic mechanism for binocular fusion a
monocular process (where local brightness patterns (micropatterns) or higher organizations
of points into objects (macropatterns) are identified before being fused), a binocular one
(where the two images are combined into a single field where all further processing takes
place), or a combination of both? Some anecdotal evidence hints at a binocular mechanism,
for example, to quote Julesz [1960, pp. 1133-1134]: “In aerial reconnaissance it is known
that objects camouflaged by a complex background are very difficult to detect but jump
out if viewed sterescopically.” But this is not conclusive: “Though the macropattern
(hidden object) is difficult to see monocularly, it can be seen. Therefore, the evidence
is not sufficient to prove that depth can be perceived without monocular macropattern
recognition.” To gather more conclusive data, Julesz [1960] introduces a new device, the
random dot stereogram, a pair of synthetic images obtained by randomly spraying black
dots on white objects, typically a small square plate floating over a larger one (Figure 13.8).
To quote Julesz [1960, p. 1127-1128] again: “When viewed monocularly, the images

appear completely random. But when viewed stereoscopically, the image pair gives the
impression of a square markedly in front of (or behind) the surround. ... Of course,
depth perception under these conditions takes longer to establish because of the absence
of monocular cues. Still, once depth is perceived, it is quite stable. This experiment shows
quite clearly that it is possible to perceive depth without monocular macropatterns.”
By locally perturbing the stereograms in various ways, Julesz proceeds to show that the
identification of monocular micropatterns is not necessary for depth perception either.
Although monocular perception is certainly also involved in most situations (e.g., making
the central region in each image visible by increasing its average brightness has the effect
of speeding up depth perception), the conclusion, articulated in [Julesz, 1971], is clear:
human binocular fusion cannot be explained by peripheral processes directly associated

4Frisby [1980, p. 155] goes even further, suggesting that the depth effect might be a secondary
advantage of stereopsis, the primary one being to give the human visual system an effective way
of performing grouping and segmentation.
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Figure 13.8. Creating random dot stereograms by shaking pepper over a pair of plates
observed by two cameras. In the experiments presented in [Julesz, 1960], the two images
are of course synthesized by a computer using a random-number generator to decide the dot
locations and pixel intensities, that can either be binary values as in the situation described
in the text, or more generally random values in the 0..15 range. The two pictures have the
same random background and differ in a central region by a constant horizontal offset.

with the physical retinas. Intead, it must involve the central nervous system and an
imaginary cyclopean retina that combines the left and right image stimuli as a single unit.
Julesz has proposed two models of human stereopsis. The first one represents the

binocular field in terms of a finite number of difference fields formed by substracting
from the first picture the second one shifted by various degrees of disparity [Julesz, 1960].
The matching process amounts in this case to finding various patterns in some of the
difference fields. This model has been implemented in the AUTOMAP-1 program that has
proven capable of fusing simple randon dot stereograms [Julesz, 1982]. The second model
represents each image by a rectangular array of compass needles (or dipoles) mounted on
spherical joints. A black dot will force the corresponding dipole to point north, and a white
dot will force it to point south. After the directions of all dipoles are set, they are coupled
to their four neighbors via springs. Finally, the two dipole arrays are superimposed, and
left to follow each other’s magnetic attraction under various horizontal shifts.
These two models are cooperative, with neighboring matches influencing each other

to avoid ambiguities and promote a global analysis of the observed scene. The approach
proposed by Marr and Poggio [1976] is another instance of such a cooperative process.
Their algorithm relies on three constraints: (1) compatibility (black dots can only match
black dots, or more generally, two image features can only match if they have possibly
arisen from the same physical marking), (2) uniqueness (a black dot in one image matches
at most one black dot in the other picture), and (3) continuity (the disparity of matches
varies smoothly almost everywhere in the image). Given a number of black dots on a
pair of corresponding epipolar lines, Marr and Poggio build a graph that reflects possible
correspondences (Figure 13.9).
The nodes of the graph are pairs of black dots within some disparity range, reflecting

the compatibility constraint; vertical and horizontal arcs represent inhibitory connections
associated with the uniqueness constraint (any match between two dots should discourage
any other match for both the left dot –horizontal inhibition– and the right one –vertical
inhibition– in the pair); and diagonal arcs represent excitory connections associated with
the continuity constraint (any match should favor nearby matches with similar disparities).
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Figure 13.9. A cooperative approach to stereopsis: the Marr-Poggio algorithm [1976].
The left part of the figure shows two intensity profiles along the same scanline of two
images. The spikes correspond to black dots. The line segments joining the two profiles
indicate possible matches between dots given some maximum disparity range. These
matches are also shown in the right part of the figure, where they form the nodes of a
graph. The vertical and horizontal arcs of this graph join nodes associated with the same
dot in the left or right image. The diagonal arcs join nodes with similar disparities.

In this approach, a quality measure is associated with each node. It is initialized to 1
for every pair of potential matches within some disparity range. The matching process is
iterative and parallel, each node being assigned at each iteration a weighted combination of
its neighbors’ values. Excitory connections are assigned weights equal to 1, and inhibitory
ones weights equal to 0. A node is assigned a value of 1 when the corresponding weighted
sum exceeds some threshold, and a value of 0 otherwise. This approach works quite
reliably on random dot stereograms (Figure 13.10), but not on natural images, perhaps, as
suggested by Faugeras [1993a], because the constraints it enforces are not sufficient to deal
with the complexities of real pictures. Section 13.2 will present a number of algorithms
that perform better on most real images, but the original Marr-Poggio algorithm and
its implementation retain the interest of offering an early example of a theory of human
stereopsis that allows the fusion of random dot stereograms.

Figure 13.10. From left to right: a random dot stereogram depicting four planes at
varying depth (a “wedding cake”) and the disparity map obtained after 14 iterations of
the Marr-Poggio cooperative algorithm. Reprinted from [Marr, 1982], Figure 3-7.
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13.2 Binocular Fusion

13.2.1 Correlation

Correlation methods find pixel-wise image correspondences by comparing intensity
profiles in the neighborhood of potential matches, and they are amongst the first
techniques ever proposed to solve the binocular fusion problem [Kelly et al., 1977;
Gennery, 1980]. More precisely, let us consider a rectified stereo pair and a point
(u, v) in the first image. We associate with the window of size p = (2m+1)×(2n+1)
centered in (u, v) the vector w(u, v) ∈ IRp obtained by scanning the window values
one row at a time (the order is in fact irrelevant as long as it is fixed). Now, given
a potential match (u+ d, v) in the second image, we can construct a second vector
w′(u+ d, v) and define the corresponding (normalized) correlation function as

C(d) =
1

|w − w̄|

1

|w′ − w̄′|
(w − w̄) · (w′ − w̄′),

where the u, v and d indices have been omitted for the sake of conciseness and ā
denotes the vector whose coordinates are all equal to the mean of the coordinates
of a (Figure 13.11).
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Figure 13.11. Correlation of two 3×5 windows along corresponding epipolar lines. The
second window position is separated from the first one by an offset d. The two windows
are encoded by vectors w and w′ in IR15, and the correlation function measures the cosine
of the angle θ between the vectors w − w̄ and w′ − w̄′ obtained by substracting from the
components of w and w′ the average intensity in the corresponding windows.
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The normalized correlation function C clearly ranges from −1 to +1, and it
reaches its maximum value when the image brightnesses of the two windows are
related by an affine transformation I′ = λI + µ for some constants λ and µ with
λ > 0 (see exercises). In other words, maxima of this function correspond to image
patches separated by a constant offset and a positive scale factor, and stereo matches
can be found by seeking the maximum of the C function over some pre-determined
range of disparities.5

At this point, let us make a few remarks about matching methods based on
correlation. First, it is easily shown (see exercises) that maximizing the correlation
function is equivalent to minimizing the norm of the difference between the vectors
(1/|w−w̄|)(w−w̄) and (1/|w′−w̄′|)(w′−w̄′), or equivalently the sum of the squared
differences between the pixel values of the normalized windows being compared.
Second, although the calculation of the normalized correlation function at every
pixel of an image for some range of disparities is computationally expensive, it can be
implemented efficiently using recursive techniques (see exercises). Finally, a major
problem with correlation-based techniques for establishig stereo correspondences is
that they implicitly assume that the observed surface is (locally) parallel to the
two image planes (Figure 13.12). This suggests a two-pass algorithm where initial
estimates of the disparity are used to warp the correlation windows to compensate
for inequal amounts of foreshortening in the two pictures [Kass, 1987; Devernay and
Faugeras, 1994].

O’O

l’l

L

Figure 13.12. The foreshortening of non-frontoparallel surfaces is different for the two
cameras: a surface segment with length L projects onto two image segments of different
lengths l and l′.

Figure 13.13 shows a reconstruction example obtained by such a method [De-
vernay and Faugeras, 1994]. In this case, a warped window is associated in the
right image with each rectangle in the left image. This window is defined by the

5The invariance of C to affine transformations of the brightness function affords correlation-
based matching techniques some degree of robustness in situations where the observed surface is
not quite Lambertian, or the two cameras have different gains or lenses with different f stops.
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disparity in the center of the rectangle and its derivatives. An optimization process
is used to find the values of the disparity and of its derivatives that maximize the
correlation between the left rectangle and the right window, using interpolation to
retrieve appropriate values in the right image (see exercises for more details). As
shown in Figure 13.13, the reconstruction obtained by this method is clearly better
than the reconstruction found by plain correlation.

(a) (b) (c)

Figure 13.13. Correlation-based stereo matching: (a) a pair of stereo pictures; (b)
a texture-mapped view of the reconstructed surface; (c) comparison of the regular (left)
and refined (right) correlation methods in the nose region. Reprinted from [Devernay and
Faugeras, 1994], Figures 5, 8 and 9.

13.2.2 Multi-Scale Edge Matching

We saw in the last section that slanted surfaces pose problems to correlation-
based matchers. Other arguments against correlation can be found in the works
of Julesz [1960, p. 1145] (“One might think that the matching of corresponding
point domains (instead of corresponding patterns)6 could be achieved by searching
for a best fit according to some similarity criterion (e.g., maximal cross-correlation).
... But such a process cannot work. If the zone [used to search for correspondences]
is small, noise can easily destroy any zone-matching; if the zone size is increased,
ambiguities arise at the boundaries of objects which are at different distances.”)
and Marr [1982, p. 105] (“...by and large the primitives that the processes operate
on should correspond to physical items that have identifiable physical properties
and occupy a definite location on a surface in the world. Thus one should not try
to carry out stereo matching between gray-level intensity arrays, precisely because
a pixel corresponds only implicitly and not explicitly to a location on a visible
surface.”). These arguments suggest that correspondences should be found at a
variety of scales, and that matches between (hopefully) physically-significant image
features such as edges should be prefered to matches between raw pixel intensities.

6This remark shows, by the way, that the random dot stereogram experiments of Julesz do
not dismiss, at least in his thought, the possibility of a correlation-based process as opposed to a
higher-level, pattern recognition one.
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Marr and Poggio [1979] propose an algorithm that follows these two principles. Its
overall structure is quite simple, as described below.

1. Convolve the two (rectified) images with ∇2Gσ filters of increasing standard
deviations σ1 < σ2 < σ3 < σ4.

2. Find zero crossings of the Laplacian along horizontal scanlines of the filtered
images.

3. For each filter scale σ, match zero crossings with the same parity and roughly
equal orientations in a [−wσ,+wσ] disparity range, with wσ = 2

√
2σ.

4. Use the disparities found at larger scales to control eye vergence and cause
unmatched regions at smaller scales to come into correspondence.

Algorithm 13.1: The Marr-Poggio-Grimson multi-scale algorithm for establishing
stereo correspondences [Marr and Poggio, 1979; Grimson, 1981a].

Note that matches are sought at each scale in the [−wσ, wσ] disparity range,
where wσ = 2

√
2σ is the width of the central negative portion of the ∇2Gσ filter.

This choice is motivated by psychophysical and statistical considerations. In par-
ticular, assuming that the convolved images are white Gaussian processes, Grimson
[1981a] has shown that the probability of a false match occurring in the [−wσ,+wσ]
disparity range of a given zero crossing is only 0.2 when the orientations of the
matched features are within 30◦ of each other. A simple mechanism can be used
to disambiguate the multiple potential matches that may still occur within the
matching range. See [Grimson, 1981a] for details.
Of course, limiting the search for matches to the [−wσ,+wσ] range prevents the

algorithm from matching correct pairs of zero crossings whose disparity falls outside
this interval. Since wσ is proportional to the scale σ at which matches are sought,
eye movements (or equivalently image offsets) controlled by the disparities found
at large scales must be used to bring large-disparity pairs of zero crossings within
matchable range at a fine scale. This process occurs in Step 4 of the algorithm, and
it is illustrated by Figure 13.14. Once matches have been found, the corresponding
disparities can be stored in a buffer, called the 2 12 -dimensional sketch by Marr and
Nishihara [1978].
This algorithmhas been implemented by Grimson [1981a], and extensively tested

on random dot stereograms and natural images. An example appears in Figure
13.15.
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Matching zero-crossings at multiple scales

Matching zero-crossings at a single scale

Match

Match

Rematch

<’

Offset

Width
Scale

Width
Scale

Figure 13.14. Multi-scale matching of zero crossings: the eye movements (or equiv-
alently the image offsets used in matching) are controlled by seeking image regions that
have been assigned a disparity value at a scale σ′ but not at a scale σ < σ′. These values
are used to refine the eye positions and bring the corresponding regions within matchable
range. The disparity value associated with a region can be found by various methods, for
example by averaging the disparity values found at each matched zero crossing within it.

Figure 13.15. Applying the multi-scale matching algorithm of Marr and Poggio [1979]
to a pair of images: (a) one of the pictures in the stereo pair; (b)-(e) its convolution with
four ∇2σ filters of increasing sizes; (f)-(i) the corresponding zero crossings; (j)-(k) two views
of the disparity map obtained after matching; (l)-(m) two views of the surface obtained by
interpolating the reconstructed dots using the algorithm described in [Grimson, 1981b].
Reprinted from [Marr, 1982], Figure 4-8.
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13.2.3 Dynamic Programming

It is reasonable to assume that the order of matching image features along a pair
of epipolar lines is the inverse of the order of the corresponding surface attributes
along the curve where the epipolar plane intersects the observed object’s boundary
(Figure 13.16(left)). This is the so-called ordering constraint that has been used in
stereo circles since the early eighties [Baker and Binford, 1981; Ohta and Kanade,
1985]. Interestingly enough, this constraint may not be satisfied by real scenes, in
particular when small solids occlude parts of larger ones (Figure 13.16(right)), or
more rarely, at least in robot vision, when transparent objects are involved.
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Figure 13.16. Ordering constraints. In the (usual) case shown in the left part of the
diagram, the order of feature points along the two (oriented) epipolar lines is the same,
and it is the inverse of the order of the scene points along the curve where the observed
surface intersects the epipolar plane. In the case shown in the right part of the figure, a
small object lies in front of a larger one. Some of the surface points are not visible in one
of the images (e.g., A is not visible in the right image), and the order of the image points
is not the same in the two pictures: b is on the right of d in the left image, but b′ is on the
left of d′ in the right image.

Despite these reservations, the ordering constraint remains a reasonable one,
and it can be used to devise efficient algorithms relying on dynamic programming
[Forney, 1973; Aho et al., 1974] to establish stereo correspondences (Figure 13.17).
Specifically, let us assume that a number of feature points (say edgels) have been
found on corresponding epipolar lines. Our objective here is to match the intervals
separating those points along the two intensity profiles (Figure 13.17(left)). Accord-
ing to the ordering constraint, the order of the feature points must be the same,
although the occasional interval in either image may be reduced to a single point
corresponding to missing correspondences associated with occlusion and/or noise.
This setting allows us to restate the matching problem as the optimization of

a path’s cost over a graph whose nodes correspond to pairs of left and right im-
age features, and arcs represent matches between left and right intensity profile
intervals bounded by the features of the corresponding nodes (Figure 13.17(right)).
This optimization problem can be solved using dynamic programming as shown in
Algorithm 13.2 below.
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Figure 13.17. Dynamic programming and stereopsis: the left part of the figure shows
two intensity profiles along matching epipolar lines. The polygons joining the two profiles
indicate matches between successive intervals (some of the matched intervals may have
zero length). The right part of the diagram represents the same information in graphical
form: an arc (thick line segment) joins two nodes (i, i′) and (j, j′) when the intervals (i, j)
and (i′, j′) of the intensity profiles match each other.

% Loop over all nodes (k, l) in ascending order.
for k = 1 to m do
for l = 1 to n do
% Initialize optimal cost C(k, l) and backward pointer B(k, l).
C(k, l)← +∞;B(k, l)← nil;
% Loop over all inferior neighbors (i, j) of (k, l).
for (i, j) ∈ Inferior-Neighbors(k, l) do
% Compute new path cost and update backward pointer if necessary.
d← C(i, j) + Arc-Cost(i, j, k, l);
if d < C(k, l) then C(k, l)← d;B(k, l)← (i, j) endif;
endfor;
endfor;
endfor;

% Construct optimal path by following backward pointers from (m, n).
P ← {(m, n)}; (i, j)← (m, n);
while B(i, j) �= nil do (i, j)← B(i, j);P ← {(i, j)} ∪ P endwhile.

Algorithm 13.2: A dynamic-programming algorithm for establishing stereo corre-
spondences between two corresponding scanlines with m and n edge points respec-
tively (the endpoints of the scanlines are included for convenience). Two auxiliary
functions are used: Inferior-Neighbors(k, l) returns the list of neighbors (i, j) of the
node (k, l) such that i ≤ k and j ≤ l, and Arc-Cost(i, j, k, l) evaluates and returns
the cost of matching the intervals (i, k) and (j, l). For correctness, C(1, 1) should
be initialized with a value of zero.
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As given, Algorithm 13.2 has a computational complexity of O(mn), where m
and n respectively denote the number of edge points on the matched left and right
scanlines.7 Variants of this approach have been implemented by Baker and Bin-
ford [1981], who combine a coarse-to-fine intra-scanline search procedure with a
cooperative process for enforcing inter-scanline consistency, and Ohta and Kanade
[1985], who use dynamic programming for both intra- and inter-scanline optimiza-
tion, the latter procedure being conducted in a three-dimensional search space.
Figure 13.18 shows a sample result taken from [Ohta and Kanade, 1985].

Figure 13.18. Two images of the Pentagon and an isometric plot of the disparity map
computed by the dynamic-programming algorithm of Ohta and Kanade [1985]. Reprinted
from [Ohta and Kanade, 1985], Figures 18 and 22.

13.3 Using More Cameras

13.3.1 Trinocular Stereo

Adding a third camera eliminates (in large part) the ambiguity inherent in two-
view point matching. In essence, the third image can be used to check hypothetical
matches between the first two pictures (Figure 13.19): the three-dimensional point
associated with such a match is first reconstructed then reprojected into the third
image. If no compatible point lies nearby, then the match must be wrong. In fact,
the reconstruction/reprojection process can be avoided by noting, as in Chapter 12,
that, given three weakly (and a fortiori strongly) calibrated cameras and two images
of a point, one can always predict its position in a third image by intersecting the
corresponding epipolar lines.
The trifocal tensor introduced in Chapter 12 can be used to also predict the

tangent line to some image curve in one image given the corresponding tangents
in the other images (Figure 13.20): given matching tangents l2 and l3 in images
2 and 3, we can reconstruct the tangent l1 in image number 1 using Eq. (12.2.4),

7Our version of the algorithm assumes that all edges are matched. To account for noise and
edge detection errors, it is reasonable to allow the matching algorithm to skip a bounded number
of edges, but this does not change its asymptotic complexity [Ohta and Kanade, 1985].
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Figure 13.19. The small grey discs indicate the incorrect reconstructions associated
with the left and right images of four points. The addition of a central camera removes
the matching ambiguity: none of the corresponding rays intersects any of the six discs.
Alternatively, matches between points in the first two images can be checked by reproject-
ing the corresponding three-dimensional point in the third image. For example, the match
between b1 and a2 is obviously wrong since there is no feature point in the third image
near the reprojection of the hypothetical reconstruction numbered 1 in the diagram.

rewritten here as:

l1 ≈


 lT2 G11 l3lT2 G

2
1 l3

lT2 G
3
1 l3


 , where Gi1 = t2RiT3 −Ri2tT3 for i = 1, 2, 3,

Ri2 and R
i
3 (i = 1, 2, 3) denote the columns of the rotation matrices R2 and R3

associated with cameras 2 and 3, and t2 and t3 denote the corresponding translation
vectors (here “≈” is used to denote equality up to scale).
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Figure 13.20. Given matches between the points p1 and p2 and their tangents l1 and
l2 in two images, it is possible to predict both the position of the corresponding point p3
and tangent l3 in a third image.
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Algorithms for trinocular stereo include [Milenkovic and Kanade, 1985; Yachida
et al., 1986; Ayache and Lustman, 1987; Robert and Faugeras, 1991]. An example
is shown in Figure 13.21.

Figure 13.21. Three images and the correspondences between edges found by the
algorithm of Robert and Faugeras [1991; 1995]. Reprinted from [Robert and Faugeras,
1995], Figure 9.

As shown in [Robert and Faugeras, 1991; Robert and Faugeras, 1995], it is in
fact also possible to predict the curvature at a point on some image curve given
the corresponding curvatures in the other images (see exercises). This fact can be
used to effectively reconstruct curves from their images [Faugeras, 1993a; Robert
and Faugeras, 1995].

13.3.2 Multiple-Baseline Stereo

In most trinocular stereo algorithms, potential correspondences are hypothesized
using two of the images, then confirmed or rejected using the third one. In contrast,
Okutami and Kanade [1993] have proposed a a multi-camera method where matches
are found using all pictures at the same time. The basic idea is simple but elegant:
assuming that all the images have been rectified, the search for the correct disparities
is replaced by a search for the correct depth, or rather its inverse. Of course, the
inverse depth is proportional to the disparity for each camera, but the disparity
varies from camera to camera, and the inverse depth can be used as a common
search index. Picking the first image as a reference, Okutami and Kanade add the
sums of squared differences associated with all other cameras into a global evaluation
function E (this is of course, as shown earlier, equivalent to adding the correlation
functions associated with the images).
Figure 13.22 plots the value of E as a function of inverse depth for various sets

of cameras. It should be noted that the corresponding images contain a repetitive
pattern and that using only two or three cameras does not yield a single, well-defined
minimum. On the other hand, adding more cameras provides a clear minimum
corresponding to the correct match.
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Figure 13.22. Combining multiple-baseline stereo pairs: the sum of squared differences
is plotted here as a function of the inverse depth for various numbers of input pictures. The
data are taken from a scanline near the top of the images shown in Figure 13.23, whose
intensity is nearly periodic. The diagram clearly shows that the mininum of the function
becomes less and less ambiguous as more images are added. Reprinted from [Okutami and
Kanade, 1993], Figure 7.

Figure 13.23 shows a sequence of ten rectified images and a plot of the surface
reconstructed by the algorithm.

Figure 13.23. A series of ten images and the corresponding reconstruction. The grid-
board near the top of the images is the source for the nearly periodic brightness signal
giving rise to ambiguities in Figure 13.22. Reprinted from [Okutami and Kanade, 1994],
Figure 13(c).

13.4 Notes

The fact that disparity gives rise to stereopsis in human beings was first demon-
strated by Wheatstone’s invention of the stereoscope [Wheatstone, 1838]. The fact
that disparity is sufficient for stereopsis without eye movements was demonstrated
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shortly afterwards by Dove [1841], using illumination provided by an electric spark
and much too brief for eye vergence to take place [Helmholtz, 1909, p. 455]. Hu-
man stereo vision is further discussed in the classical works of Helmholtz [1909] and
Julesz [1971] as well as the books by Frisby [1980] and Marr [1982]. Theories of
human binocular perception not presented in this chapter for lack of space include
[Koenderink and Van Doorn, 1976a; Pollard et al., 1970; Anderson and Nayakama,
1994].
Excellent treatments of machine stereopsis can be found in the books of Grim-

son [1981b], Marr [1982], Horn [1986] and Faugeras [1993a]. Marr focusses on the
computational aspects of human stereo vision, while Horn’s account emphasizes the
role of photogrammetry in artificial stereo systems. Grimson and Faugeras empha-
size the geometric and algorithmic aspects of stereopsis. The constraints associated
with stereo matching are discussed in [Binford, 1984].
As noted earlier, image edges are often used as the basis for establishing binoc-

ular correspondences, at least in part because they can (in principle) be identi-
fied with physical properties of the imaging process, corresponding for example to
albedo, color, or occlusion boundaries. A point rarely taken into account by stereo
matching algorithms is that binocular fusion always fails along the contours of solids
bounded by smooth surfaces (Figure 13.24). Indeed, the corresponding image edges
are in this case viewpoint dependent, and matching them yields erroneous recon-
structions.
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Figure 13.24. Stereo matching fails at smooth object boundaries: for narrow baselines,
the pairs (c, d′) and (a, b′) will be easily matched by most edge-based algorithms, yielding
the fictitious points F and E as the corresponding three-dimensional reconstructions.

As shown in [Arbogast and Mohr, 1991; Vaillant and Faugeras, 1992; Cipolla and
Blake, 1992; Boyer and Berger, 1997] and the exercises, three cameras are sufficient
in this case to reconstruct a local second-degree surface model.
It is not quite clear at this point whether feature-based matching is preferable to
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grey-level matching. The former is accurate near surface markings but only yields a
sparse set of measurements, while the latter may give poor results in uniform regions
but provides dense correspondences in textured areas. In this context, the topic of
dense surface interpolation from sparse samples is important, although it has hardly
been mentioned in this chapter. The interested reader is refered to [Grimson, 1981b;
Terzopoulos, 1984] for more details.
A different approach to stereo vision that we have also failed to discuss for

lack of space involves higher-level interpretation processes, for example predic-
tion/verification methods operating on graphical image descriptions [Ayache and
Faverjon, 1997], or hierarchical techniques matching curves, surfaces and volumes
found in two images [Lim and Binford, 1988].
All of the algorithms presented in this chapter (implicitly) assume that the

images being fused are quite similar. This is equivalent to considering a short
baseline. An effective algorithm for dealing with wide baselines can be found in
[Pritchett and Zisserman, 1998]. Another, model-based approach will be discussed
in Chapter 23.
Finally, we have limited our attention to stereo rigs with fixed intrinsic and

extrinsic parameters. Active vision is concerned with the construction of vision
systems capable of dynamically modifying these parameters, e.g., changing camera
zoom and vergence angles, and taking advantage of these capabilities in perceptual
and robotic tasks [Aloimonos et al., 1987; Bajcsy, 1988; Ahuja and Abbott, 1993;
Brunnström et al., 1996].

13.5 Assignments

Exercises

1. Use the definition of disparity to characterize the accuracy of stereo recon-
struction as a function of baseline and depth.

2. Give reconstruction formulas for verging eyes in the plane.

3. Give an algorithm for generating an ambiguous random dot stereogram that
can depict two different planes hovering over a third one.

4. Give an algorithm for generating single-image random dot stereograms.

5. Show that the correlation function reaches its maximum value of 1 when the
image brightnesses of the two windows are related by the affine transform
I′ = λI + µ for some constants λ and µ with λ > 0.

6. Prove the equivalence of correlation and sum of squared differences for images
with zero mean and unit Frobenius norm.

7. Recursive computation of the correlation function:
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(a) Show that

(w − w̄) · (w′ − w̄′) = w ·w′ − (2m+ 1)(2n+ 1)Ī Ī′.

(b) Show that the average intensity Ī can be computed recursively, and es-
timate the cost of the incremental computation.

(c) Generalize the above calculations to all elements involved in the con-
struction of the correlation function, and estimate the overall cost of
correlation over a pair of images.

8. Show how a first-order expansion of the disparity function for rectified im-
ages can be used to warp the window of the right image corresponding to
a rectangular region of the left one. Show how to compute correlation in
this case using interpolation to estimate right-image values at the locations
corresponding to the centers of the left window’s pixels.

9. Show how to predict curvature in one image from curvature measurements in
two other pictures.

10. Three-camera reconstruction of smooth surfaces’ occluding contours: show
that, in the planar case, three matching rays provide enough constraints to
reconstruct the circle of curvature as shown below.
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Programming Assignments

1. Implement the rectification process.

2. Implement the algorithm developed in Exercise 4 for generating single-image
random dot stereograms.

3. Implement a correlation-based approach to stereopsis.
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4. Implement a multi-scale approach to stereopsis.

5. Implement a dynamic-programming approach to stereopsis.

6. Implement a trinocular approach to stereopsis.



Chapter 14

AFFINE STRUCTURE FROM
MOTION

In this chapter we address the problem of recovering the three-dimensional structure
of a scene from a sequence of pictures. We will suppose that n points have been
observed in m images and that the correct correspondences between the features
observed in successive images have been established (through tracking for example).
We will also assume an affine projection model: in other words, the observed objects
undergo an affine motion/deformation before being projected orthographically onto
the picture plane.
Following Koenderink and Van Doorn [1990], we stratify the solution to this

problem into two phases: (1) First use at least two views of the scene and purely
affine measurements (e.g., ratios of distances) to construct a unique (up to an arbi-
trary affine transformation) three-dimensional representation of the scene; (2) use
additional views and metric measurements (distances or angles) to uniquely deter-
mine the rigid structure of the scene.
As argued by Koenderink and Van Doorn, the first step yields the essential

part of the solution: the affine structure is a full three-dimensional representation
of the scene, which can be used in its own right to construct new views of the
scene, or, as shown in Section 14.5, to segment the data points into objects un-
dergoing different motions [Boult and Brown, 1991; Costeira and Kanade, 1998;
Gear, 1994]. The second step simply amounts to finding a single affine transfor-
mation that will account for the rigidity of the scene and align it with the correct
Euclidean frame. In addition, purely affine methods do not require camera cal-
ibration since the corresponding transformation of the image coordinates can be
folded into the overall affine deformation of the object. This may prove useful for
active vision systems whose calibration parameters vary dynamically, or, for exam-
ple, for planetary robot probes whose parameters may have been altered by the
large accelerations at take-off and landing. As shown in Section 14.4, recovering the
Euclidean structure from the affine one requires, however, knowing at least some of
the calibration parameters (e.g., the aspect ratio of the pixels).
Additional arguments in favor of a stratification of three-dimensional motion

377
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analysis have been advanced by Faugeras [1995] in the more general setting of central
projection models, but we will focus our attention on affine models in this chapter.
This is not overly restrictive for small fields of view and restricted depth ranges.
As shown in Section 14.4.1, the affine projection model subsumes three well known
approximations to full perspective projection: orthography, weak perspective, and
paraperspective [Ohta et al., 1981], and it can account for variations in depth as
well as certain types of perspective distortions.
Like Ullman’s classical work on (Euclidean) shape from motion [Ullman, 1979],

the affine structure-from-motion method of Koenderink and Van Doorn is con-
cerned with shape recovery from a minimum number of images. Using more images
overconstrains the problem and leads to more robust least-squares solutions. Ac-
cordingly, the second part of this chapter is devoted to the problem of recovering
the affine shape of a scene from several (possibly many) pictures. In particular, we
will elucidate the structure of affine images, showing it to be the key to powerful
linear solutions to this problem [Tomasi and Kanade, 1992; Poelman and Kanade,
1997].

14.1 Elements of Affine Geometry

As noted in [Snapper and Troyer, 1989], affine geometry is, roughly speaking, what
remains after practically all ability to measure length, area, angles, etc.. has been
removed from Euclidean geometry. The concept of parallelism remains, however, as
well as the concept of affine transformations, i.e., bijections that preserve parallelism
and the ratio of distances between collinear points.
Giving a rigorous axiomatic introduction to affine geometry would be out of

place here. Instead, we will remain quite informal, and just recall the basic facts
about real affine spaces that are necessary to understand the rest of this chapter.
The reader familiar with notions such as barycentric combinations, affine coordinate
systems, and affine transformations may safely proceed to the next section.
Roughly speaking once again, a real affine space is a set X of points, together

with a real vector space �X , and an action φ of the additive group of V on X. The
vector space �X is said to underlie the affine space X. Informally, the action of a
group on a set maps the elements of this group onto bijections of the set. Here, the
action φ associates with every vector u ∈ �X a bijection φu : X → X such that,
for any u, v in �X and any point P in X, φu+v(P ) = φu(φv(P )), φ0(P ) = P , and

for any pair of points P,Q in X, there exists a unique vector u in �X such that
φu(P ) = Q.
Although the points of an affine space cannot be “added”, they can be “sub-

tracted”, i.e., Q−P
def
=
−−→
PQ, and the barycentric combination (or affine combination)

of p+ 1 points can also be defined as follows: Consider the points A0, . . . , Am and
m + 1 real weights α0, . . . , αm such that α0 + . . . + αm = 1; the corresponding
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A familiar affine space is of course the physical three-dimensional space, where
X is the set of physical points, and �X is the set of translations of X onto itself.
Another affine space of interest can be constructed by choosing both X and �X
to be equal to IRn, with the action φ defined by φu(P ) = P + u, where P and
u are both elements of IRn and “+” denotes the addition in IRn.

P
X

Q=P+u u

0
X

PQ

These two examples justify the notation that will be used in the rest of this
chapter: we will usually denote the point φu(P ) by P + u and the vector u

such that φu(P ) = Q by
−−→
PQ.

Example 14.1: Affine examples

barycentric combination is the point

m∑
i=0

αiAi
def
= Aj +

m∑
i=0,i �=j

αi(Ai − Aj),

where j is an integer between 0 and m. It is easily verified that this point is
independent of the value of j (it is of course essential that the weights αi add to 1
for this definition to make sense).

An affine subspace is defined by a point O of X and a vector subspace U of �X as

the set of points S(O,U)
def
= {O + u,u ∈ U}. The dimension of an affine subspace

is the dimension of the associated vector subspace. Two affine subspaces associated
with the same vector subspace are said to be parallel. Barycentric combinations can
be used to define affine subspaces purely in terms of points: The subspace spanned

by the points A0, . . . , Am is the set S(A0 , . . . , Am)
def
= {

∑m
i=0 αiAi|

∑m
i=0 αi = 1} of

all barycentric combinations of these points. It is easy to verify that S(A0 , . . . , Am)
is indeed an affine subspace, and that its dimension is at most m (e.g., two distinct
points define a line, three points define (in general) a plane etc.). We will say that
m+ 1 points are independent if they do not lie in a subspace of dimension at most
m− 1, so m+ 1 independent points define an m-dimensional subspace.
An affine coordinate system for S(O,U) consists of a point A0 (called the origin

of the coordinate system) in S(O,U) and a coordinate system (u1, . . . ,um) for U.
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Consider three non-collinear points A0, A1 and A2 in IR
3 considered as an affine

space. These points span the plane S(A0 , A1, A2), and any point P in that plane
can be represented as a barycentric combination of these three points.

1 2
0

0

A

A

A

1

2 P

0
S(A  ,A  ,A  )0

u

u

A

1

2

S(A  ,U)

P

Equivalently, the plane can be viewed as the affine subspace S(A0, U) of IR
3

associated with the point A0 and the vector plane U spanned by the two vectors
u1 =

−−−→
A0A1 and u2 =

−−−→
A0A2.

Example 14.2: More affine examples.

The affine coordinates of the point P ∈ S(O,U) are defined as the coordinates
of the vector

−−→
A0P in the coordinate system (u1, . . . ,um). An alternative way of

defining a coordinate system for an affine subspace Y is to pick m+ 1 independent
points A0, . . . , Am in Y . The barycentric coordinates αi (i = 0, . . . , m) of a point
P in Y are uniquely defined by P = α0A0+ . . .+αmAm. Note that the barycentric
coordinates of the basis points are (1, 0, . . . , 0), . . . , (0, . . . , 0, 1).
When an n-dimensional affine space X has been equipped with an affine basis,

a necessary and sufficient condition for m+ 1 points Ai to define a p-dimensional
affine subspace of X (with m ≥ p and n ≥ p) is that the (n+ 1)× (m+ 1) matrix


x00 . . . xm0
. . . . . . . . .
x0n . . . xmn
1 . . . 1




formed by the coordinate vectors (xi0, . . . , xin)
T (i = 0, . . . , m) has rank p + 1:

indeed, a rank lower than p+1 means that any column of this matrix is a barycentric
combination of at most p of its columns, and a rank higher than p+ 1 implies that
at least p+ 2 of the points are independent.
An affine transformation between two affine subspaces X and Y is a bijection

from X onto Y that preserves parallelism and affine coordinates. Equivalently,
affine transformations can be characterized by the fact that they preserve the ratio
of signed distances along parallel oriented lines.
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Parallel projections from a plane onto another one are affine transformations:
the triangles OAa, OBb and OCc are similar, and it follows that AB/BC =
ab/bc for any orientation of the lines OC and Oc. The parallelism of lines is
obviously preserved by parallel projection.

A

B

C

a b c

O

This property of parallel projection will play an essential role in the next section.

Example 14.3: Parallel projection.

Finally, the relationship between vector spaces and affine spaces induces a rela-
tionship between linear and affine transformations. In particular, it is easily shown
that an affine transformation ψ : X → Y between two affine subspaces X and Y
associated with the vector spaces �X and �Y can be written as

ψ(P ) = ψ(O) + �ψ(P −O),

where O is some arbitrarily chosen origin, and �ψ : �X → �Y is a linear mapping from
�X onto �Y that is independent of the choice of O. When X and Y are of (finite)
dimension m and an affine coordinate system with origin O is chosen, this yields
the familiar expression

ψ(P ) = t+AP ,

where P denotes the coordinate vector of P in the chosen basis, t denotes the
coordinate vector of ψ(O), and A is the m×m matrix representing �ψ in the same
coordinate system.

14.2 Affine Structure from Two Images

We now have the right tools for estimating the three-dimensional structure of a
scene from two images. We follow Koenderink and Van Doorn [1990] and first
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solve for the affine structure, before taking into account the rigidity constraints and
metric measurements that will map the affine structure onto a Euclidean one.

14.2.1 The Affine Structure-from-Motion Theorem

Given two orthographic images of five points A, B, C, D and P , is it possible to
reconstruct the affine coordinates of P in the basis (A,B, C,D)?
Koenderink and Van Doorn [1990] have shown that the answer to this question is

positive, exploiting the fact that the orthographic projection of a plane onto another
plane is an affine transformation. In particular, when the point P belongs to the
plane Π that contains the triangle ABC, its affine coordinates in the basis of Π
formed by these three points can be directly measured in either of the two images.
Now let E (resp. Q) denote the intersection of the line passing through the

points D and d′ (resp. P and p′) with the plane Π (Figure 14.1). The projections
e′′ and q′′ of the points E and P onto the plane Π′′ have the same affine coordinates
in the basis (a′′, b′′, c′′) as the points d′ and p′ in the basis (a′, b′, c′).
In addition, since the two segments ED and QP are parallel to the first projec-

tion direction, the two line segments e′′d′′ and q′′p′′ are also parallel, and we can
measure the ratio

λ =
q′′p′′

e′′d′′
=
QP

ED
,

where AB denotes the signed distance between the two points A and B for some
arbitrary (but fixed) orientation of the line joining these points.
If we now denote by (αd′ , βd′) and (αp′ , βp′ ) the coordinates of the points d

′ = e′

and p′ = q′ in the basis (a′, b′, c′), we can write

−→
AP =

−→
AQ+

−−→
QP

= αp′
−−→
AB + βp′

−→
AC + λ

−−→
ED

= (αp′ − λαd′)
−−→
AB + (βp′ − λβd′ )

−→
AC + λ

−−→
AD.

In other words, the affine coordinates of P in the (A,B, C,D) basis are (αp′ −
λαd′ , βp′ − λβd′ , λ). This is the affine structure-from-motion theorem: given two
orthographic views of four non-coplanar points, the affine structure of the scene is
uniquely determined [Koenderink and Van Doorn, 1990].
Figure 14.2 shows three projections of the synthetic face used in Koenderink’s

and Van Doorn’s experiments, along with an affine profile view computed from two
of the images.

14.2.2 Rigidity and Metric Constraints

When the observed object is rigid, the transformation between the two views goes
from affine to Euclidean, i.e., it is the composition of a rotation and a translation.
Under orthographic projection, a translation in depth has no effect, and a transla-
tion in the image plane (fronto-parallel translation) is easily eliminated by aligning
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Figure 14.1. Geometric construction of the affine coordinates of a point P in the basis
formed by the four points A, B, C and D.

the two projections of the point A. Any rotation about the viewing direction is also
easily identified and discarded [Koenderink and Van Doorn, 1990]. At this stage,
the two views differ by a rotation about some axis in a fronto-parallel plane passing
through the projection of A, and Koenderink and Van Doorn show that there exists
a one-parameter family of such rotations, determining the shape up to a depth scal-
ing and a shear. The addition of a third view finally restricts the solution to one or
two pairs related through a reflection in the fronto-parallel plane. This construction
is a bit too involved to be included here. Instead, we will detail in Section 14.4 the
passage from affine to Euclidean structure in the multi-image case.
Figure 14.3 shows a profile view of the Euclidean face reconstructed from the

three views of Figure 14.2.
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(a)

            

(b)

            

Figure 14.2. Affine reconstruction from two views – experimental results: (a) three
views of a face: views 0 and 1 are overlaid on the left, and views 1 and 2 are overlaid
on the right; (b) profile view of the affine reconstruction, computed from images 0 and 1.
Reprinted from [Koenderink and Van Doorn, 1990], Figures 1 and 6.

14.3 Affine Structure from Multiple Images

The method presented in the previous section is aimed at recovering the affine
scene structure from a minimum number of images. We now address the problem
of estimating the same information from a potentially large number of pictures,
and switch from a mostly geometric approach to an algebraic one. The set of
affine images of a scene is first shown to also exhibit an affine structure, which is
then exploited to derive the factorization method of Tomasi and Kanade [1992] for
estimating the affine structure and motion of a scene from an image sequence.1

1This method was originally proposed by Tomasi and Kanade as an approach to Euclidean
structure and motion recovery from orthographic views. Indeed, Section 14.4 will show that the
Euclidean structure and motion are easily computed from the affine ones. However, in keeping
with Koenderink’s and Van Doorn’s view of a stratified approach to motion analysis, we believe
that Tomasi’s and Kanade’s method is better understood in the setting of a two-phase process
whose main step is the affine one.
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Figure 14.3. Euclidean reconstruction from the three views of a face shown in Figure
14.2. Reprinted from [Koenderink and Van Doorn, 1990], Figure 9.

14.3.1 The Affine Structure of Affine Image Sequences

Let us consider an affine camera observing some three-dimensional object, i.e., let
us assume that the scene, represented in some fixed affine coordinate system, is first
submitted to an affine transformation and then orthographically projected onto the
image plane of the camera.
We will suppose that we observe a point P with a fixed set of m cameras and

denote by pi (i = 1, . . . , m) the corresponding image points. Let us also denote the
coordinate vector of P in the object coordinate system by P = (x, y, z)T and use
pi = (ui, vi)

T to denote the coordinate vector of pi. The affine camera model can
now be written as

pi = o+MiP , (14.3.1)

where Mi is a 2× 3 matrix and o is the position of the projection into the image
of the object coordinate system’s origin.
Stacking the m instances of (14.3.1) yields

d = r +MP ,

where

d
def
=


 p1. . .
pm


 , r def=


 o1. . .
om


 and M

def
=


M1

. . .
Mm


 .

This shows that the set of images taken by the cameras is the three-dimensional
affine subspace of IR2m spanned by the point r and the column vectors of the 2m×3
matrixM.
In particular, if we now consider n points Pi observed by m cameras, we can

now define a (2m+ 1)× n data matrix(
d1 . . . dn
1 . . . 1

)
,

and it follows from Section 14.1 that this matrix has rank 4.
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Technique: Singular Value Decomposition

Let A be an m× n matrix, with m ≥ n, then A can always be written as

A = UWVT ,

where:

• U is an m × n column-orthogonal matrix, i.e., UTU = Idm,

• W is a diagonal matrix whose diagonal entries wi (i = 1, . . . , n) are the singular
values of A with w1 ≥ w2 ≥ . . . ≥ wn ≥ 0,

• and V is an n× n orthogonal matrix, i.e., VTV = VVT = Idn.

This is the singular value decomposition (SVD) of the matrix A, and it can be computed
using the algorithm described in [Wilkinson and Reinsch, 1971].
Suppose now that A has rank p < n, then the matrices U , W, and V can be written as

U = Up Un−p W =
Wp 0

0 0
and VT =

VTp
VTn−p

,

and

• the columns of Up form an orthonormal basis of the space spanned by the columns
of A, i.e., its range,

• and the columns of Vn−p for a basis of the space spanned by the solutions of Ax = 0,
i.e., the null space of this matrix.

Both Up and Vp are n×p column-orthogonal matrices, and we have of course A = UpWpV
T
p .

The following two theorems show that singular value decomposition also provides a valu-
able approximation procedure. In both cases, Up and Vp denote as before the matrices
formed by the p leftmost columns of the matrices U and V , and Wp is the p× p diagonal
matrix formed by the p largest singular values. This time, however, A may have maximal
rank n, and the remaining singular values may be nonzero.

Theorem 2: When A has a rank greater than p, UpWpV
T
p is the best possible rank-p

approximation of A (in the sense of the Frobenius norm, i.e., the norm induced on matrices
by the Euclidean vector norm).

Theorem 3: Let ai ∈ IR
m (i = 1, . . . , n) denote the n column vectors of the matrix A;

the vector subspace Vp of dimension p that minimizes the mean squared error

1

n

n∑
i=1

|ai − bi|
2,

where bi denotes the orthogonal projection of ai into Vp, is the subspace of IR
m spanned

by the columns of Up.

These two theorems will be used repeatedly in the rest of this book. Singular value
decomposition has other important properties, for example:

• The SVD of a matrix can be used to determine its rank numerically.

• Singular value decomposition can be used to compute the solution of a linear least-
squares problem.
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14.3.2 A Factorization Approach to Affine Motion Analysis

Tomasi and Kanade [1992] have exploited the affine structure of affine images in
a robust factorization method for estimating the structure of a scene and the cor-
responding camera motion through singular value decomposition [Wilkinson and
Reinsch, 1971] (see insert).
Assuming that the origin of the object coordinate system is one of the observed

points or their center of mass, we can translate the origin of the image coordinate
system to the corresponding image point. Under this transformation, the set of
images of a scene becomes the three-dimensional vector space defined by

pi =MiP for i = 1, . . . , m or equivalently d =MP . (14.3.2)

We can now define the 2m× n data matrix

D
def
= (d1 . . . dn ) =MP, with P

def
= (P 1 . . . Pn ) .

As the product of a 2m× 3 matrix and a 3× n matrix, D has, in general, rank
3. If UWVT is the singular value decomposition, this means that only three of the
singular values are nonzero, thus D = U3W3VT3 , where U3 and V3 denote the 2m×3
and 3× n matrices formed by the three leftmost columns of the matrices U and V,
and W3 is the 3× 3 diagonal matrix formed by the corresponding nonzero singular
values.
We claim that we can takeM = U3 and P = W3VT3 are representative of the

true affine camera motion and scene structure. Indeed, the columns of M form
by definition a basis for the range of D. The columns of U3 form by construction
another basis for this range. This implies that there exists a 3 × 3 matrix Q such
thatM = U3Q and thus P = Q−1W3VT3 . Conversely, D3 = (U3Q)(Q

−1W3VT3 ) for
any invertible 3× 3 matrix Q. Since the origin of the world coordinate system can
of course be set arbitrarily, it follows that the structure and motion can only be
recovered up to an affine transformation, and singular value decomposition indeed
outputs a representant of the affine motion and scene structure.
Our reasoning so far is of course only valid in an idealized, noiseless case. In

practice, due to image noise, errors in localization of feature points, and to the mere
fact that actual cameras are not affine, (14.3.2) will not hold exactly and the matrix
D will have (in general) full rank. Let us show that singular value decomposition
still yields a reasonable estimate of the affine structure and motion in this case.
Since (14.3.2) does not hold exactly, the best we can hope for is to minimize

E
def
=
∑
i,j

|pij −MiP j |
2 =

∑
j

|dj −MP j|
2.

with respect to the matricesMi (i = 1, . . . , m) and vectors P j (j = 1, . . . , m).
Writing that the partial derivative of E with respect to P j should be zero at a

minimum yields

0 =
∂E

∂P j
= [2

∂

∂P j
(dj −MP j)

T ][dj −MP j ] = −2M
T [dj −MP j ],
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thus
P j =M

†dj ,

whereM† def= (MTM)−1MT is the pseudoinverse ofM. Substituting back into E
shows that the minimum value of E verifies

E =
∑
j

|(Id−MM†)dj |
2.

Now observe that the matrix MM† associates with any vector d in IR2m its
orthogonal projection onto the three-dimensional subspace VM spanned by the
columns ofM (see exercises). It follows that E measures the mean squared norm
of the difference between the vectors dj and their orthogonal projections onto VM.
According to Theorem 3, E is minimum when VM is the range of the matrix U3
formed by the three leftmost columns of U , where UWVT denotes as before the sin-
gular value decomposition of D. In particular, the matrixM minimizing E verifies
VM = VU3 and we can takeM = U3.
As noted earlier, the corresponding estimate of the point position is P j =M†dj,

thus, since U3 is column-orthogonal,

P =M†D = [(UT3 U3)
−1UT3 ][UWV

T ] =W3V
T
3 ,

where, as before, V3 denotes the 3×n matrix formed by the three leftmost columns
of the matrix V, and W3 is the 3× 3 diagonal matrix formed by the corresponding
singular values. In particular, singular value decomposition can be used to estimate
the affine structure and motion from the data matrixD, as shown in Algorithm 14.1.

1. Compute the singular value decomposition D = UWVT .

2. Construct the matrices U3, V3, andW3 formed by the three leftmost columns
of the matrices U and V, and the corresponding 3× 3 sub-matrix of W.

3. Define
M = U3 and P =W3V

T
3 ;

the 2m × 3 matrix M is an estimate of the camera motion, and the 3 × n
matrix P is an estimate of the scene structure.

Algorithm 14.1: Tomasi’s and Kanade’s factorization algorithm for affine shape
from motion.

14.4 From Affine to Euclidean Images

As noted in Section 14.2, taking rigidity into account allows the recovery of Eu-
clidean shape from three orthographic views. Here we address a similar problem in
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the case where more than three views are available, and consider several Euclidean
projection models subsumed by the affine projection model.

14.4.1 Euclidean Projection Models

We examine the orthographic, weak perspective (scaled orthographic), and parap-
erspective [Ohta et al., 1981] projection models (Figure 14.4), and assume that the
camera observing the scene has been calibrated so that image points are represented
by their normalized coordinate vectors.2 We shall see that the affine projection
equation (14.3.1) still holds for these models. However, this time there are some
constraints on the components of the projection matrixM.
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Figure 14.4. Three projection models.

For an orthographic camera, the matrix M is part of a rotation matrix, and

2Strictly speaking, this is not completely necessary: the orthographic and weak perspective
models only require that the camera aspect ratio be known. However, the paraperspective pro-
jection model utilizes the absolute image position of a reference point, and this requires that the
image center be known.
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its rows aT and bT are unit vectors orthogonal to each other. In other words, an
orthographic camera is an affine camera with the additional constraints

a · b = 0 and |a|2 = |b|2 = 1. (14.4.1)

Weak perspective is an approximation of perspective projection, constructed as
follows (Figure 14.4): Let C denote the optical center of the camera and let R
denote a scene reference point; the weak perspective projection of a scene point P
is constructed in two steps: P is first projected orthographically onto a point P ′

of the plane Π′ parallel to the image plane Π and passing through R. Perspective
projection is then used to map the point P ′ onto the image point p. Since Π′ is
a fronto-parallel plane, the net effect of the second projection step is a scaling of
the image coordinates, and it follows that a weak perspective camera is an affine
camera with the two constraints

a · b = 0 and |a|2 = |b|2. (14.4.2)

Paraperspective projection [Ohta et al., 1981] is a refined approximation of per-
spective that takes into account the distortions associated with a reference point
that is off the optical axis of the camera (Figure 14.4). Using the same notation
as before, and denoting by ∆ the line joining the optical center C to the reference
point R, parallel projection in the direction of ∆ is first used to map P onto a point
P ′ of the plane Π′; perspective projection is then used to map the point P ′ onto
the image point p. It is easily shown (see [Poelman and Kanade, 1997] for example)
that a paraperspective camera is an affine camera that satisfies the constraints

a · b =
urvr

2(1 + u2r)
|a|2 +

urvr

2(1 + v2r )
|b|2 and (1 + v2r)|a|

2 = (1 + u2r)|b|
2, (14.4.3)

where (ur , vr) denote the coordinates of the perspective projection of the point R.
It should be noted that under this projection model, the vectors a and b do not form
a basis of the image plane. Instead, they form a basis of the vector plane orthogonal
to the line joining the optical center of the camera to the reference point.
As expected, the paraperspective constraints reduce to the weak perspective con-

straints when ur = vr = 0, and these reduce in turn to the orthographic constraints
when the planes Π and Π′ coincide.

14.4.2 From Affine to Euclidean Motion

Let us now show how to recover the Euclidean structure from the affine one under
orthographic projection. Let Q denote the 3× 3 matrix associated with the linear
mapping between the affine shape P and motionM and their Euclidean counter-
parts P̂ and M̂ (of course Q is only defined up to an arbitrary rotation). As noted in
Section 14.3.2, we must have M̂ =MQ and P̂ = Q−1P. The Euclidean constraints
derived in the previous section can be used to compute Q.
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Assuming orthographic projection. we can rewrite the constraints (14.4.1) as

aTi QQ

Tbi = 0,

aTi QQ
Tai = 1,

bTi QQ
T bi = 1,

(14.4.4)

where aTi and b
T
i denote the rows of the matrixMi for i = 1, . . . , m.

To determine Q uniquely, we can for example assume that

M̂1 =

(
1 0 0
0 1 0

)
.

Together with the constraints obtained by writing (14.4.4) for the remaining
m−1 images, we have 6 linear equations and 3m−3 quadratic ones in the coefficients
of Q. Tomasi and Kanade [1992] proposed solving these equations via non-linear
least squares . An alternative is to consider (14.4.4) as a set of linear constraints on

the matrix R
def
= QQT . The coefficients of R are found in this case via linear least

squares, and the coefficients ofQ can then be computed via Cholesky decomposition.
This is the method used in [Poelman and Kanade, 1997] for example (see [Weinshall
and Tomasi, 1995] for another variant). It should be noted that it requires that the
recovered matrix B be positive definite, which is not guaranteed in the presence of
noise.
Figure 14.5 shows experimental results, including some input images, the corre-

sponding feature tracks, and the recovered scene structure.
The weak and paraperspective cases can be treated in the same manner, except

for the fact that the 2 constraints (14.4.2) or (14.4.3) written for m− 1 images will
replace the 3m−3 constraints (14.4.4). See [Poelman and Kanade, 1997] for details.

14.5 Affine Motion Segmentation

We have assumed so far that the n points observed all undergo the same mo-
tion. What happens if these points belong instead to k objects undergoing different
motions? We present two methods [Costeira and Kanade, 1998; Gear, 1994] for
segmenting the data points into such independently-moving objects (see [Boult and
Brown, 1991] for another approach to the same problem).

14.5.1 The Reduced Echelon Form of the Data Matrix

Exactly as in Section 14.3.1, we can define the data matrix

D =



p11 . . . p1n
. . . . . . . . .
pm1 . . . pmn
1 . . . 1


 .

This time, however, D does not have rank 4 anymore. Instead, the sub-matrices
formed by the columns corresponding to each object will have rank 4 (or less), and
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Figure 14.5. Euclidean shape from motion – experimental results: top-left: sample
input images; top-right: the features automatically detected in the first frame; bottom:
two views of the reconstructed scene. Reprinted from [Tomasi and Kanade, 1992], Figures
6–7.

the maximum rank of the overall data matrix will be 4k. In other words, the columns
of D corresponding to each object lie in four- (or less) dimensional subspaces of its
range, and, as remarked by Gear [1994], constructing the reduced echelon form of
D will identify these subspaces and the column vectors that lie in them, providing
a segmentation of the input points into rigid objects (or, to be more exact, into
objects that may undergo affine deformations). Gear [1994] gives several methods
for computing the reduced echelon form using Gauss-Jordan elimination and QR
reduction.

14.5.2 The Shape Interaction Matrix

The approach presented in the previous section relies only on the affine structure of
affine images. Costeira and Kanade [1998] have proposed a different method, based
on a factorization of the data matrix. In the setting of motion segmentation, it is
not possible to define a rank-3 data matrix for each object since the centroid of the
corresponding points is unknown. Instead, Costeira and Kanade [1998] construct,
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for i = 1, . . . , k, a rank-4 data matrix

D(i)
def
=


 p(i)11 . . . p

(i)
1ni

. . . . . . . . .
p
(i)
m1 . . . p

(i)
mni


 ,

where ni is the number of points associated with object number i. This matrix
factorizes as D(i) =M(i)P(i) where, this time,

M(i) def=


M(i)

1 o
(i)
1

. . . . . .
M(i)
m o

(i)
m


 and P(i)

def
=

(
P
(i)
1 . . . P (i)ni
1 . . . 1

)
.

Let us define the 2m× n composite data matrix

D
def
= (D(1)D(2) . . .D(k)),

as well as the composite 2m× 4k (motion) and 4k × n (structure) matrices

M
def
= (M(1)M(2) . . .M(k)) and P

def
=



P(1) 0 . . . 0 0
0 P(2) . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . 0 P(k)


 .

With this notation, we have
D =MP,

which confirms, of course, that D has rank 4k (or less).
As in the rank-3 case, the matrix D can be factorized using singular value

decomposition, which also provides an estimate of its rank r ≤ 4k. The best
approximation Dr of rank r of D is then constructed and factorized as

Dr = UrWrV
T
r .

In the noiseless case, the columns of D and the columns of Ur span the same
r-dimensional subspace of IR2m, and there exists an r × r linear transformation
between these two matrices. This implies in turn the existence of a non-singular
r × r matrix B such that

VTr = BP.

Following Costeira and Kanade [1998], we can now define the shape interaction
matrix Q as

Q
def
= VrV

T
r = P

T (BTB)P.

Noting that the matrix BTB is also a non-singular 4× 4 matrix and that Vr is
by construction column-orthogonal (i.e., VTr Vr = Idr) now allows us to write

Q = PT (B−1B−T )−1P = P T (B−1VTr VrB
−T )P = PT (PPT )−1P.
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The matrix C
def
= (PPT )−1 is an r × r matrix, and it follows that the shape

interaction matrix has the following block-diagonal structure

Q =



P(1)TCP(1) 0 . . . 0

0 P(2)TCP(2) . . . 0
. . . . . . . . . . . .
0 0 . . . P(k)TCP(k)


 .

The above construction assumes that the data points are ordered consistently
with the object they belong to. In general, of course, this will not be the case. As
remarked by Costeira and Kanade however, the values of the entries of the matrix
Q are independent of the order of the points: changing this order will swap the
rows and columns of D and Q in the same way. Thus recovering the correct point
ordering (and the corresponding segmentation into objects) amounts to finding the
row and column swaps of the matrix Q that will reduce it to block-diagonal form.
Costeira and Kanade have proposed several methods for finding the correct

swaps in the presence of noise: one possibility is to minimize the sum of the squares
of the off-diagonal block entries over all rows and column permutations (see [Costeira
and Kanade, 1998] for details). Figure 14.6 shows experimental results, including
the images of two objects and the corresponding feature tracks, a plot of the corre-
sponding shape interaction matrix before and after sorting, and the corresponding
segmentation results.

14.6 Notes

As shown in this chapter, the stratification of structure from motion into an affine
and a Euclidean stage affords simple and robust methods for shape reconstruction
from image sequences. The affine stage by itself also affords simple techniques for
motion-based image segmentation. As shown in Chapter 23, other applications
include interactive image synthesis in the augmented reality domain.
Variations of the rank-3 property of the data matrix associated with an affine

motion sequence include the fact that an affine image is the linear combination of
three model images [Ullman and Basri, 1991], and that the image trajectories of
a scene point are linear combinations of the trajectories of three reference points
[Weinshall and Tomasi, 1995].
Various extensions of the approach presented in this chapter have been proposed

recently, including the incremental recovery of structure and motion [Weinshall and
Tomasi, 1995; Morita and Kanade, 1997], the extension of the affine/metric strati-
fication to a projective/affine/metric one [Faugeras, 1995], along with correspond-
ing projective shape estimation algorithms [Faugeras, 1992; Hartley et al., 1992],
and the generalization of the factorization approach of Tomasi and Kanade [1992]

to various other computer vision problems that have a natural bilinear structure
[Koenderink and Van Doorn, 1997].
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Figure 14.6. Motion segmentation – experimental results: top-left: one frame from a
sequence of pictures of two cylinders, including feature tracks; top-right: the recovered
shapes after motion segmentation; bottom-left: the shape interaction matrix; bottom-
right: the matrix after sorting. Reprinted from [Costeira and Kanade, 1998], Figures
13–15.

14.7 Assignments

Exercises

1. In this exercise we prove Theorem 3. Let us define

a(v) =
1

n

n∑
i=1

(v · ai)
2,

S = (a1, . . . ,an), and C =
1
nSS

T . With this notation we have

a(v) = vTCv.

You can assume for simplicity that the eigenvalues of C are all distinct. Use
the following steps to prove Theorem 3.

(a) Show that determining Vp reduces to constructing the orthonormal family

of vectors vi (i = 1, . . . , p) that maximizes A
def
=
∑p
i=1 a(vi).
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(b) Let uj (j = 1, . . . , m) denote the eigenvectors of C with associated eigen-
values λi, and let ξi = (ξi1, . . . , ξim)

T denote the coordinate vector of vi
(i = 1, . . . , p) in the basis of IRm formed by the vectors uj . Show that

A =
∑m
i=1 ξ

T
i Lξi, where L = Diag(λ1, . . . , λm).

(c) Let Xp denote the subspace of IR
m spanned by the vectors ξi (i =

1, . . . , p) and Lp denote the restriction to Xp of the linear operator
L : IRm → IRm associated with the matrix L. Use Lagrange multipliers
to show that Lp is an endomorphism of Xp.

(d) Show that Xp is the subspace of IR
m spanned by p of the canonical basis

vectors (1, . . . , 0),. . . ,(0, . . . , 1). (Hint: first show that the matrix repre-
senting Lp in the basis of Xp formed by the vectors ξi is diagonalizable.)

(e) Show that
∑p
k=1 ξ

2
ik =

∑p
k=1 ξ

2
kj = 1 (i, j = 1, . . . , p), and prove the

theorem.

2. Show that the matrixMM† associates with any vector d in IR2m its projection
onto the three-dimensional subspace VM spanned by the columns ofM. (Hint:
shows thatMM†d is orthogonal to the columns vectors ofM.)

Programming Assignments

Note: the assignments below require routines for numerical linear algebra and singu-
lar value decomposition. An extensive set of such routines is available in MATLAB
as well as in public-domain libraries such as LINPACK and LAPACK that can be
downloaded from the Netlib repository (http://www.netlib.org/). Data for these
assignments will be available in the CD companion to this book.

1. Implement the Tomasi-Kanade approach to affine shape from motion.



Chapter 15

PROJECTIVE STRUCTURE
FROM MOTION

This chapter addresses once again the recovery of the three-dimensional structure of
a scene from correspondences established by tracking n points in m pictures. This
time, however, we will assume a perspective projection model. Given some fixed
world coordinate system, we can write

zijpij =MiP j for i = 1, . . . , m and j = 1, . . . , n, (15.0.1)

where pij = (uij, vij, 1)
T denotes the (homogeneous) coordinate vector of the pro-

jection of the point Pj in the image i expressed in the corresponding camera’s
coordinate system, zij is the depth of Pj in the same coordinate system,Mi is the
3×4 projection matrix associated with this camera in the world coordinate system,
and P j is the (homogeneous) coordinate vector of the point Pj in that coordinate
system.
We address the problem of reconstructing both the matricesMi (i = 1, . . . , m)

and the vectors P j (j = 1, . . . , n) from the image correspondences pij. This problem
shares a great deal of similarities with the affine structure-from-motion problem, but
it also differs from it in several key aspects: contrary to the set of m affine images
of a fixed scene, the set of m perspective images does not exhibit a natural affine
structure, or for that matter, any (obvious) simple structure at all. On the other
hand, there is a natural ambiguity in perspective structure from motion that is
similar (but not identical) to the natural ambiguity of affine structure from motion:
in particular, if the camera calibration parameters are unknown, the projection
matrices Mi are, according to Chapter 6, arbitrary 3 × 4 matrices, and it follows
that ifMi and P j are solutions of (15.0.1), so areMiQ and Q−1P j for any non-
singular 4× 4 matrix Q [Faugeras, 1992; Hartley et al., 1992].
Linear geometric relations between homogeneous vectors that are invariant un-

der projective transformations (i.e. bijective linear mappings associated with 4 × 4
matrices) fall in the domain of projective geometry, which will play in the rest of this
chapter the role that affine geometry played in Chapter 14, and will afford a similar
overall methodology: once again, ignoring (at first) the Euclidean constraints as-

397
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sociated with calibrated cameras will linearize the recovery of scene structure and
camera motion from point correspondences, and this will allow us to decompose
motion analysis into two stages: the first one will be concerned with the recovery
of the scene structure and camera motion, up to an arbitrary projective transfor-
mation. The second step will exploit the geometric constraints associated with real
cameras to upgrade the projective reconstruction to a Euclidean one.
We start by introducing some elementary notions from projective geometry be-

fore presenting several algorithms for projective and metric scene and motion recon-
struction from point correspondences. The first class of methods presented in this
chapter was originally introduced by Faugeras [1992] and Hartley et al. [1992] in
the context of uncalibrated stereo vision, and it takes advantage of the multilinear
constraints introduced in Chapter 12 to estimate the scene and motion parame-
ters from a few pictures. We also discuss a different class of techniques that rely
on non-linear optimization to exploit the wealth of information contained in long
image sequences in a uniform manner [Mahamud and Hebert, 2000]. We conclude
with a discussion of techniques for constructing the metric upgrade of a projec-
tive scene reconstruction [Heyden and Åström, 1996; Triggs, 1997; Pollefeys, 1999;
Ponce, 2000].

15.1 Elements of Projective Geometry

Let us consider a real vector space E of dimension n+1. If v is a non-zero element
of E, the set IRv of all vectors kv as k varies over IR is called a ray, and it is
uniquely characterized by any one of its non-zero vectors. The real projective space
P (E) of dimension n associated with E is the set of rays in E, or equivalently the
quotient of the set E\0 of non-zero elements of E under the equivalence relation
“u ∼ v if and only if u = kv for some k ∈ IR”. Elements of P (E) are called points,
and we will say that a family of points are linearly dependent (resp. independent)
when representative vectors for the corresponding rays are linearly dependent (resp.
independent). The map p : E\0 → P (E) associates with any element v of E the
corresponding point p(v) of P (E).

15.1.1 Projective Bases and Projective Coordinates

Consider a basis (e0, e1, . . . , en) for E. We can associate with each point A in
P (E) a one-parameter family of elements of IRn+1, namely the coordinate vectors
(x0, x1, . . . , xn)

T of the vectors v ∈ E such that A = p(v). These tuples are
proportional to one another, and a representative tuple is called a set of homogeneous
(projective) coordinates of the point A.
Homogeneous coordinates can also be characterized intrinsically in terms of fam-

ilies of points in P (E): consider m + 1 (m ≤ n) linearly independent points Ai
(i = 0, . . . , m) and m+1 vectors ui representative of the corresponding rays. If an
additional point A linearly depends upon the points Ai, and u is a representative
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Consider an affine plane Π of IR3. The rays of IR3 that are not parallel to Π are
in one-to-one correspondence with the points of this plane. For example, the
rays RA, RB and RC associated with the vectors vA, vB and vC below can be
mapped onto the points A, B and C where they intersect Π. The vectors vA,
vB and vC are only defined up to scale; they are linearly independent, and so
are (by definition) the corresponding points A, B and C.

RD

RC
RB RA

0

B

A
D

v

B D
C

Projective plane

Π

v

v

v

D

C

A

A model of the projective plane IP2
def
= P (IR2) can be constructed by adding to

Π a one-dimensional set of points at infinity associated with the rays parallel
to this plane. For example, the ray RD parallel to Π maps onto the point at
infinityD. The introduction of points at infinity frees projective geometry from
the numerous exceptions encountered in the affine case: for example, parallel
affine lines do not intersect unless they coincide. In contrast, any two distinct
lines in IP2 intersect in one point, with pairs of parallel lines intersecting at the
point at infinity associated with their common direction.

Example 15.1: A projective plane embedded in IR3.

vector of the corresponding ray, we can write:

u = µ0u0 + µ1u1 + . . .+ µmum.

Note that the coefficients µi are not uniquely determined since each vector ui is
only defined up to a non-zero scale factor. However, when none of the coefficients µi
vanishes, i.e., when u does not lie in the vector subspace spanned by any m vectors
ui, we can uniquely define the m+ 1 non-zero vectors ei = µiui such that

u = e0 + e1 + . . .+ em.
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Any other vector v linearly dependent on the vectors ui can now be written
uniquely as

v = x0e0 + x1e1 + . . .+ xmem.

This defines a one-to-one correspondence between the rays IR(x0, x1, . . . , xm)
T

of IRm+1 and a linear subspace Sm of P (E). Sm is in fact the projective space
P (Em) associated with the vector subspace Em of E spanned by the vectors ui (or
equivalently of course by the vectors ei). The number m is called the dimension
of Sm. If P = p(v) is the point of Sm associated with the ray IRv, the numbers
x0, x1, . . . , xm are called the homogeneous (projective) coordinates of P in the pro-
jective basis (or projective frame) determined by the m + 1 fundamental points Ai
and the unit point A. Note that, since the vector v associated with a ray is only
defined up to scale, so are the homogeneous coordinates of a point.

The coordinate vectors of the points that form a projective basis have a par-
ticularly simple form: in particular, since the vectors ui (hence the vectors ei)
are linearly independent, the coordinate vectors of the fundamental points Ai
(i = 0, . . . , m) are 


A0 = (1, 0, . . . , 0)T ,
A1 = (0, 1, . . . , 0)T ,
. . .
Am = (0, 0, . . . , 1)T .

The coordinate vector of the unit point A is, by definition, A = (1, 1, . . . , 1)T .

Example 15.2: Coordinate vectors of a projective basis.

It should be clear that the two notions of homogeneous coordinates that have
been introduced in this section coincide. The only difference is in the choice of the
coordinate vectors ei (i = 0, . . . , m), that are given a priori in the former case, and
constructed from the points forming a given projective frame in the latter one.
A linear subspace S1 of dimension 1 of IP

n is called a line. Linear subspaces of
dimension 2 and n−1 are respectively called planes and hyperplanes. A hyperplane
Sn−1 consists of the set of points P linearly dependent on n linearly independent
points Pi (i = 1, . . . , n).

15.1.2 Projective Transformations

Consider an injective linear map U : E → F between two vector spaces E and F . By
linearity, U maps rays of E onto rays of F . Since it is injective, it also maps non-zero
vectors onto non-zero vectors and therefore induces a map P (U) : P (E) → P (F )
between the quotient spaces P (E) and P (F ). This map is called a projective map,
and a projective transformation (or homography) if it is bijective. It is easy to show
that projective transformations form a group under the law of composition of maps.
This group is called the projective group of P (E).
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A line is uniquely determined by two distinct points lying on it, but a projective
frame for a line is determined by three distinct points on that line.

B 0

0

1

2

1

A

A

A
A

C

A

B

A
A

A

A

Likewise, a plane is uniquely determined by three points lying in it, but a
projective frame for that plane is defined by four points: three fundamental
points forming a non-degenerate triangle and a unit point not lying on one of
the edges of this triangle.

Example 15.3: Lines and planes.

Now consider two n-dimensional projective spaces P (E) and P (E′), equipped
respectively with the coordinate frames (A0, A1, . . . , An+1) and (A

′
0, A

′
1, . . . , A

′
n+1)

(here An+1 and A
′
n+1 are the unit points of the two frames). There exists a unique

homography U : P (E)→ P (E′) such that U(Ai) = A′i for i = 0, . . . , n+ 1. This is
often refered to as the first fundamental theorem of projective geometry.
Given some choice of coordinate frame, projective transformations can conve-

niently be represented by matrices. Let P denote the coordinate vector of the point
P in P (E) and P ′ denote the coordinate vector of the point P ′ in P (E′); if U is a
non-singular (n+1)× (n+1) matrix, the equation P ′ = UP defines a homography
between the points P of P (E) and the points P ′ of P (E′). Conversely, any projec-
tive transformation U : P (E) → P (E′) can also be represented by a non-singular
(n+ 1)× (n + 1) matrix U .
Projective geometry can be thought of as the study of the properties of a pro-

jective space P (E) that are invariant under any non-singular projectivity. An ex-
ample of such a property is the linear dependence (or independence) of a fam-
ily of points in P (E). Another fundamental example is obtained by considering
a basis (A0, A1, . . . , An+1) of P (E) and constructing the images A

′
i = U(Ai) of

its points via the projective transformation U : P (E) → P (E′). The points A′i
form a basis for P (E′) and if a point P has coordinates (x0, x1, . . . , xn) in the
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Consider two planes and a point O in IP3. As shown in the exercises, the per-
spective projection mapping any point A in the first plane onto the intersection
of the line AO and the second plane is a projective transformation.

Image
plane

Scene plane

O

ac

B

CA

b

Example 15.4: Projective correspondence between coplanar points and their pic-
tures.

basis (A0, A1, . . . , An+1), the point U(P ) has the same coordinates in the basis
(A′0, A

′
1, . . . , A

′
n+1). Coming back to Example 15.4, it follows that an image of a

set of coplanar points completely determines the projective coordinates of these
points relative to the frame formed by four of them. This will prove very useful in
designing invariant-based recognition systems in latter chapters.
Given two projective bases (A′0, A

′
1, . . . , An+1) and (A

′′
0 , A

′′
1 , . . . , An + 1) of the

n-dimensional projective space P (E), it is also easily shown (see exercises) that the
coordinate vectors P ′ and P ′′ of the same point P are related by P ′′ = AP ′, where
A is as before an (n+ 1)× (n + 1) non-singular matrix.

15.1.3 Affine and Projective Spaces

Example 15.1 introduced (informally) the idea of embedding an affine plane into a
projective one with the addition of a line at infinity. More generally, it is possible to
construct the projective closure X̂ of an affine space X of dimension n by adding to
it a set of points at infinity associated with the directions of its lines. These points
form a hyperplane of X̂ , called the hyperplane at infinity and denoted by ∞X .

Let us pick some point A in X and introduce X̂
def
= P ( �X × IR). We can embed
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X into X̂ via the injective map JA : X → X̂ defined by JA(P ) = p(
−→
AP, 1).1

(  ,  )0 1

p(AP, )1R

RX x

P

A

X

(  ,  )

0

0 0

(AP, )

X x {1}

X x {0}

(AP, )1

Figure 15.1. The projective completion of an affine space.

The complement of X in X̂ is the hyperplane at infinity ∞X
def
= P ( �X × {0}) ≈

P ( �X) mentioned earlier. We can also relate affine and projective coordinates as
follows. Consider a fixed affine frame (A0, A1, . . . , An) of X and embed X into X̂

using JA0 . The vectors ei
def
=
−−−→
A0Ai (i = 1, . . . , n) form a basis for �X , thus the

vectors (e1, 0), . . ., (en, 0), and (0, 1) form a basis of �X × IR. If P has coordinates
(x1, . . . , xn) in the basis formed by the points Ai, then JA0 (P ) has coordinates
(x1, . . . , xn, 1) in the basis formed by these n + 1 vectors (the elements of ∞X ,
on the other hand, have coordinates of the form (x1, . . . , xn, 0)). Note that the
projective completion process justifies, at long last, the representation of image
and scene points by homogeneous coordinates introduced in Chapter 6 and used
throughout this book.

15.1.4 Hyperplanes and Duality

As mentioned before, the introduction of hyperplanes at infinity frees projective
geometry from the exceptions that plague affine geometry. For example, in the pro-
jective plane, two distinct lines have exactly one common point (possibly at infinity).
Likewise, two distinct points belong to exactly one line. These two statements can

1Here we identify X and the underlying vector space �X by identifying each point P in X with
the vector

−→
AP . This vectorialization process is of course dependent on the choice of the origin A,

but it can easily be shown that X̂ is indeed independent of that choice. A more rigorous approach
to the projective completion process involves the universal vector space associated with an affine
space and would be out of place here. See [Berger, 1987, Chapter 5] for details.
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actually be taken as incidence axioms, from which the projective plane can be con-
structed axiomatically. Points and lines play a symmetric, or more precisely dual
role in these statements.
To introduce duality a bit more generally, let us equip the n-dimensional projec-

tive space P (E) with a fixed projective frame and consider n+1 points P0, P1, . . . , Pn
lying in some hyperplane Sn−1 of P (E). Since these points are by construction lin-
early dependent, the (n+1)× (n+1) matrix formed by collecting their coordinate
vectors is singular. Expanding its determinant with respect to its last column yields

u0x0 + u1x1 + . . .+ unxn = 0, (15.1.1)

where (x0, x1, . . . , xn) denote the coordinates of Pn and the coefficients ui (i =
0, 1, . . . , n) are functions of the coordinates of the points Pj (j = 0, 1, . . . , n− 1).
Equation (15.1.1) is satisfied by every point Pn in the hyperplane Sn−1, and it is

called the equation of Sn−1. Conversely, it is easily shown (see exercises) that any
equation of the form (15.1.1) where at least one of the coefficients ui is non-zero
is the equation of some hyperplane. Since the coefficients ui in (15.1.1) are only
defined up to some common scale factor, there exists a one-to-one correspondence
between the rays of IRn+1 and the hyperplanes of P (E), and it follows that we can
define a second projective space P (E∗) formed by these hyperplanes (this notation
is justified by the fact that P (E∗) can be shown to be the projective space associated
with the dual vector space E∗ of E).
It can also be shown that any geometric theorem that holds for points in P (E)

induces a corresponding theorem for hyperplanes (i.e., points in P (E∗)) and vice
versa. The two theorems are said to be dual of each other. For example, points and
lines are dual notions in IP2, while points and planes are dual in IP3.2

15.1.5 Cross-Ratios

From now on we will focus on the three-dimensional projective space formed by the
projective closure of the physical affine space surrounding us. Non-homogeneous
projective coordinates of a point can be defined geometrically in terms of cross-
ratios: in the affine case, given four collinear points A,B, C,D such that A, B and
C are distinct, we define the cross-ratio of these points as

hABC(D) = [A,B, C,D]
def
=
CA

CB
×
DB

DA
,

where PQ denotes the signed distance between two points P and Q for some choice
of orientation of the line ∆ joining them. The orientation of this line is fixed but
2At this point we cannot resist quoting Samuel [1988], who mentions an early ninenteenth-

century controversy on the basis of duality between points and lines in the plane. After contrasting
the views of Gergonne and Poncelet (the former, that emphasizes the structural similarity of the
projective spaces formed by points and lines, is closer to the modern view of duality), Samuel goes
on to write: “Since Poncelet was a general and the head of the Ecole Polytechnique, and Gergonne
a mere captain in the French artillery, it was the former’s point of view that prevailed, at least
among their French contemporaries.”
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What is the dual of a line of P (E)? A line is a one-dimensional linear subspace
of P (E), whose elements are linearly dependent on two points on the line.
Likewise, a line of P (E∗) is a one-dimensional subspace of the dual, called a
pencil of hyperplanes, whose elements are linearly dependent on two hyperplanes
in the pencil. In the plane, the dual of a line is a pencil of lines intersecting at
a common point.

In three dimensions, the dual of a line is a pencil of planes, intersecting along
a common line.

Example 15.5: Duality

arbitrary, since reversing it will obviously not change the cross-ratio. Note that
[A,B, C,D] is, a priori, only defined when D �= A since its calculation involves a
division by zero when D = A. We extend the definition of the cross-ratio to the
whole affine line by using the symbol ∞ to denote the ratio formed by dividing
any non-zero real number by zero, and to the whole projective line ∆̂ by defin-
ing [A,B, C,∞∆] = CA/CB. Alternatively, given three points A, B and C on a
projective line ∆, the cross-ratio can also be defined as the unique projective trans-
formation hABC : ∆→ ÎR mapping ∆ onto the projective completion ÎR = IR ∪∞
of the real line such that h(A) =∞, h(B) = 0 and h(C) = 1.
Given a projective frame (A0, A1, A) for a line ∆, and a point P lying on ∆ with

homogeneous coordinates (x0, x1) in that frame, we can define a non-homogeneous
coordinate for P as k0 = x0/x1. The scalar k0 is sometimes called projective pa-
rameter of P , and it is easy to show that k0 = [A0, A1, A2, P ].
As noted earlier, a set of lines passing through the same point O is called a

pencil of lines. The cross-ratio of four coplanar lines ∆1, ∆2, ∆3 and ∆4 in some
pencil is defined as the cross-ratio of the intersections of these lines with any other
line ∆ in the same plane that does not pass through O, and it is easily shown to be
independent of the choice of ∆ (Figure 15.2).
Consider now four planes Π1, Π2, Π3 and Π4 in the same pencil, and denote by
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Figure 15.2. Definition of the cross-ratio of four lines. As shown in the exercises, the
cross-ratio [A,B,C,D] depends only on the three angles α, β and γ. In particular, we
have [A,B,C,D] = [A′, B′, C′,D′].

∆ their common line. The cross-ratio of these planes is defined as the cross-ratio of
the pencil of lines formed by their intersection with any other plane Π not containing
∆ (Figure 15.3). Once again, the cross-ratio is easily shown to be independent of
the choice of Π.

Π

Π

ΠΠ

Π1

2 3

4

∆

2 3

1 4∆
∆ ∆

∆

Figure 15.3. The cross-ratio of four planes.

In the plane, the non-homogeneous projective coordinates (k0, k1) of the point
P in the basis (A0, A1, A2, A) are defined by k0 = x0/x2 and k1 = x1/x2, and it
can be shown that {

k0 = [A1A0, A1A2, A1A,A1P ],
k1 = [A0A1, A0A2, A0A,A0P ],

where MN denotes the line joining the points M and N , and [∆1,∆2,∆3,∆4]
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denotes the cross-ratio of the pencil of lines ∆1, ∆2, ∆3, ∆4.
Similarly, the non-homogeneous projective coordinates (k0, k1, k2) of the point

P in the basis (A0, A1, A2, A3, A) are defined by k0 = x0/x3, k1 = x1/x3 and
k2 = x2/x3, and it can be shown that


k0 = [A1A2A0, A1A2A3, A1A2A,A1A2P ] ,
k1 = [A2A0A1, A2A0A3, A2A0A,A2A0P ] ,
k2 = [A0A1A2, A0A1A3, A0A1A,A0A1P ] ,

where LMN denotes the plane spanned by the three points L, M and N , and
[Π1,Π2,Π3,Π4] denotes the cross-ratio of the pencil of planes Π1, Π2, Π3, Π4.

15.1.6 Application: Parameterizing the Fundamental Matrix

Before attacking the main topic of this chapter, i.e., the estimation of the projective
structure of a scene from multiple images, let us give as an example an important
application of projective geometry to vision by revisiting the problem of determining
the epipolar geometry of two uncalibrated cameras. This problem was introduced
in Chapter 12, where we gave without proof an explicit parameterization of the
fundamentel matrix. We now construct this parameterization. Let us denote by e
and e′ the epipoles associated with the two images and define the epipolar trans-
formation as the mapping from one set of epipolar lines onto the other one: as
shown in [Faugeras et al., 1992] and illustrated by Figure 15.4, this transformation
is a homography. Indeed, the epipolar planes associated with the two cameras form
a pencil whose spine is the baseline joining the two optical centers. This pencil
intersects the corresponding image planes along the two families of epipolar lines,
and the cross-ratio of any quadruple of lines in either family is of course the same
as the cross-ratio of the corresponding planes. In turn, this means that the epipolar
transformation preserves the cross-ratio and is therefore a projective tranformation.
In particular, if the epipolar line l with slope τ in the first image is in correspon-

dence with the epipolar line l′ with slope τ ′ in the second image, then, as shown in
the exercises,

τ → τ ′ =
aτ + b

cτ + d
, (15.1.2)

where a, b, c, d are the coefficients of the homography, and

τ =
v − β

u− α
, τ ′ =

v′ − β′

u′ − α′
,

where p = (u, v)T and p′ = (u′, v′)T are the coordinate vectors of corresponding
points, and e = (α, β)T and e′ = (α′, β′)T are the positions of the epipoles. This
homography is the epipolar transformation. As shown in [Faugeras et al., 1992] and
in the exercises, the coefficients of the fundamental matrix can be computed from
the positions of the epipoles and a, b, c, d, and vice versa. In particular, we obtain
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O O’
e e’

’

Figure 15.4. Epipolar geometry: corresponding epipolar lines in the two images form
pencils of lines in projective correspondence.

the parameterization of F given without proof in Chapter 12, i.e.,

F =


 b a −aβ − bα

−d −c cβ + dα
dβ′ − bα′ cβ′ − aα′ −cββ′ − dβ′α+ aβα′ + bαα′


 .

15.2 Projective Scene Reconstruction from Two Views

The rest of this chapter is concerned with the recovery of the three-dimensional
structure of a scene assuming that n points have been tracked in m images of this
scene. This section focuses on the case of two images. The general multi-view
problem will be revisited in the next two sections.

15.2.1 Analytical Scene Reconstruction

The perspective projection equations introduced in Chapter 6 extend naturally to
the projective completion of the physical three-dimensional affine space. In partic-
ular, let us consider five points Ai (i = 0, . . . , 4) and choose them as a basis for this
projective space, with A4 playing the role of the unit point. We consider a camera
observing these points, with projection matrixM, and denote by ai (i = 0, . . . , 4)
the images of these points, and choose the points a0 to a3 as a projective basis of
the image plane, a3 being this time the unit point. We also denote by α, β and γ
the coordinates of a4 in this basis.
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Writing, for i = 0, . . . , 4 that ziai =MAi yields immediately

M =


 z0 0 0 z3
0 z1 0 z3
0 0 z2 z3


 and



z4α = z0 + z3,
z4β = z1 + z3,
z4γ = z2 + z3.

Since a perspective projection matrix is only defined up to scale, we can divide
its coefficients by z3, and defining λ = z4/z3 yields

M =


λα− 1 0 0 1

0 λβ − 1 0 1
0 0 λγ − 1 1


 .

Let us now suppose we have a second image of the same scene, with projection
matrix M′ and image points a′i (i = 0, . . . , 4). The same construction applies in
this case, and we obtain

M′ =


λ′α′ − 1 0 0 1

0 λ′β′ − 1 0 1
0 0 λ′γ′ − 1 1


 .

The stereo configuration of our two cameras is thus completely determined by
the two parameters λ and λ′. The epipolar geometry of the rig can now be used
to compute these parameters: let us denote by C the optical center of the first
camera and by e′ the associated epipole in the image plane of the second camera,
with coordinate vectors C and e′ in the corresponding projective bases. We have
MC = 0 thus

C = (
1

1 − λα
,
1

1− λβ
,
1

1− λγ
, 1)T ,

and substituting in the equationM′C = e′ yields

e′ = (1−
λ′α′ − 1

λα− 1
, 1−

λ′β′ − 1

λβ − 1
, 1−

λ′γ′ − 1

λγ − 1
)T

Now, if µ′ and ν ′ denote this time the non-homogeneous coordinates of e′ in the
projective basis formed by the points a′i, we finally obtain{

µ′(λγ − λ′γ′)(λα− 1) = (λα− λ′α′)(λγ − 1),
ν ′(λγ − λ′γ′)(λβ − 1) = (λβ − λ′β′)(λγ − 1).

(15.2.1)

A system of two quadratic equations in two unknowns λ and λ′ such as (15.2.1)
admits in general four solutions, that can be thought of as the four intersections
of the conic sections defined by the two equations in the (λ, λ′) plane. Inspection
of (15.2.1) reveals immediately that (λ, λ′) = (0, 0) and (λ, λ′) = (1/γ, 1/γ′) are
always solutions of these equations. It is easy (if a bit tedious) to show that the
two remaining solutions are identical (geometrically the two conics are tangent to
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each other at their point of intersection), and that the corresponding values of the
parameters λ and λ′ are given by

λ =

Det


µ′ α α′

ν ′ β β′

1 γ γ′




Det


µ′α α α′

ν ′β β β′

γ γ γ′




and λ′ =

Det


µ α α′

ν β β′

1 γ γ′




Det


µα′ α α′

νβ′ β β′

γ′ γ γ′



.

These values uniquely determine the projection matrices M and M′. Note
that taking into account the equations defining the second epipole would not add
independent constraints because of the epipolar constraint that relates matching
epipolar lines. Once the projection matrices are known, it is a simple matter to
reconstruct the scene points.

15.2.2 Geometric Scene Reconstruction

We now give a simple geometric alternative to the analytical approach presened in
the previous section. Choosing the optical centers of the cameras as part of the
points that define the projective frame will simplify the construction in this case.
Let us start by fixing the notation (Figure 15.5). Suppose that we observe four

non-coplanar points A,B, C,D with a weakly calibrated stereo rig. Let O′ (resp.
O′′) denote the position of the optical center of the first (resp. second) camera.
For any point P , let p′ (resp. p′′) denote the position of the projection of P into
the first (resp. second) image, and P ′ (resp. P ′′) denote the intersection of the ray
O′P (resp. O′′P ) with the plane ABC. The epipoles are e′ and e′′ and the baseline
intersects the plane ABC in E. (Clearly, E′ = E′′ = E, A′ = A′′ = A, etc.)
We choose A,B, C, O′, O′′ as a basis for projective three-space, and our goal

is to reconstruct the position of D. Choosing a′, b′, c′, e′ as a basis for the first
image plane, we can measure the coordinates of d′ in this basis and reconstruct the
point D′ in the basis A,B, C, E of the plane ABC. Similarly, we can reconstruct
the point D′′ from the projective coordinates of d′′ in the basis a′′, b′′, c′′, e′′ of the
second image plane. The point D is finally reconstructed as the intersection of the
two lines O′D′ and O′′D′′.
We can now express this geometric construction in algebraic terms. It turns out

to be simpler to reorder the points of our projective frame and to calculate the non-
homogeneous projective coordinates of D in the basis formed by the tetrahedron
A,O′′, O′, B and the unit point C. These coordinates are defined by the following
three cross-ratios: 


k0 = [O

′′O′A,O′′O′B,O′′O′C,O′′O′D] ,
k1 = [O

′AO′′, O′AB,O′AC,O′AD] ,
k2 = [AO

′′O′, AO′′B,AO′′C,AO′′D] .
(15.2.2)

By intersecting the corresponding pencils of planes with the two image planes
we immediately obtain the values of k0, k1, k2 as cross-ratios directly measurable in
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Figure 15.5. Geometry of the three-point problem.

the two images:

k0 = [e

′a′, e′b′, e′c′, e′d′] = [e′′a′′, e′′b′′, e′′c′′, e′′d′′] ,
k1 = [a

′e′, a′b′, a′c′, a′d′] ,
k2 = [a

′′e′′, a′′b′′, a′′c′′, a′′d′′] .
(15.2.3)

Note that, for any choice of positions for the reference points, k0, k1, and k2 can
be used to reconstruct D as the intersection of the three planes O′O′′D, AO′D, and
AO′′D. As shown in the exercises, similar methods can be used to reconstruct the
scene when the five basis points are chosen arbitrarily.
Figure 15.6 illustrates this method with data consisting of 46 point correspon-

dences established between two images taken by weakly-calibrated cameras. Figure
15.6(a) shows the input images and point matches. Figure 15.6(b) shows a view of
the corresponding projective scene reconstruction, the raw projectives coordinates
being used for rendering purposes. Since this form of display is not particularly
enlightening, we also show in Figure 15.6(c) the reconstruction obtained by apply-
ing to the scene points the projective transformation mapping the three reference
points (shown as small circles) onto their calibrated Euclidean positions. The true
point positions are displayed as well for comparison.

15.3 Motion Estimation from Two or Three Views

The methods given in the previous two sections reconstruct the scene relative to
five of its points, thus the quality of the reconstruction will strongly depend on
the accuracy of the localization of these points in the two images. In contrast,
the approach presented in this section takes all points into account in a uniform
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(a)

(b) (c)

Figure 15.6. Geometric point reconstruction: (a) input data; (b) raw projective coor-
dinates; (c) corrected projective coordinates. Reprinted from [Ponce et al., 1993], Figures
1 and 9.

manner and uses the multilinear constraints introduced in Chapter 12 to reconstruct
the camera motion in the form of the associated projection matrices.

15.3.1 Motion Estimation from Fundamental Matrices

As seen in Chapter 12, the general form of the fundamental matrix is

F = K−T [t×]RK
′−1,

where the projection matrices associated with the two cameras are M = (K 0 )
andM′ = K′RT ( Id −t ). Here, K and K′ are 3 × 3 calibration matrices, and R
and t specify the rigid transformation relating the two cameras’ coordinate systems.
Since in the projective setting the scene structure and the camera motion are

only defined up to an arbitrary projective transformation, we can always reduce the
first projection matrix to the canonical form M = ( Id 0 ) by postmultiplying it
by the matrix

H =

(
K−1 0
αT β

)
,
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where α is an arbitrary element of IR3 and β is an arbitrary non-zero real number.
It is easy to show that this four-parameter family of matrices is the most general
class of projective transformations that achieve the desired reduction.
Let us define A = K′RTK−1 and b = −βK′RT t. When postmultiplied by H,

the second projection matrix takes the general form

M′ = (B b ) , where B = A +
1

β
bαT . (15.3.1)

The vector b can be thought of as the homogeneous coordinate vector of the
second epipole in the corresponding image coordinate system.
Let us derive an alternate expression for the fundamental matrix using the new

form of the projection matrices. If P ∈ IR3 denotes the non-homogeneous coordinate
vector of the point P in the world coordinate system, we can write the projection
equations associated with the two cameras as

zp = P and z′p′ = BP + b,

which can be rewritten as
z′p′ = zBp + b.

It follows that z′b×p′ = zb×Bp, and forming the dot product of this expression
with p′ finally yields

pTFp′ = 0 where F
def
= BT [b×].

This parameterization of the matrix F provides a simple method for computing
the projection matrixM′. First note that since the overall scale ofM′ is irrelevant,
we can always take |b| = 1. Under this constraint, M′ is still only defined up to
the four-parameter class of transformations specified by (15.3.1), and this allows
us to choose α = −βAT b, which in turn ensures that BT b = 0 when b has unit
norm. These choices allow us to first compute b as the linear least-squares solution
of Fb = 0 with unit norm, then pick B = [b×]FT since

[b×]F
T = −[b×]

2B

and it is easy to show for any vector a, [a×]
2 = aaT − |a|2Id.

Once the matrixM is known, we can compute the position of any point P by
solving in the least-squares sense the non-homogeneous linear system of equations
in z and z′ defined by z′p′ = zBp + b. Various alternatives to this technique are
discussed in [Hartley, 1994b; Beardsley et al., 1997].

15.3.2 Motion Estimation from Trifocal Tensors

Here we rewrite the uncalibrated trilinear constraints derived in Chapter 12 in a
projective setting. Recall that we wrote the projection matrices associated with
three cameras as

M1 = (K1 0 ) , M2 = (A2K1 a2 ) and M3 = (A3K1 a3 ) .
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Since in the projective case the scene structure and the camera motion can
only be recovered up to an arbitrary transformation, we can postmultiply the three
matrices by the matrix H defined in the previous section. We obtain

M1 = ( Id 0 ) , M2 = (B2 b2 ) and M3 = (B3 b3 ) ,

where, similar to the previous section, we have bi = βai and Bi = Ai +
1

β
biα

T for

i = 2, 3.
Under this transformation, b2 and b3 can still be interpreted as the homoge-

neous image coordinates of the epipoles e12 and e13, and the trilinear constraints of
Chapter 12 still hold, with the trifocal tensor defined this time by the three matrices

Gi1 = b2B
iT
3 −B

i
2b
T
3 , (15.3.2)

and Bi2 and B
i
3 (i = 1, 2, 3) denote the columns of B2 and B3.

Assuming that the trifocal tensor has been estimated from point or line corre-
spondences as described in Chapter 12, our goal in this section is to recover the
projection matricesM2 andM3. Let us first observe that

(b2 ×B
i
2)
TGi1 = [(b2 ×B

i
2)
Tb2]B

iT
3 − [(b2 ×B

i
2)
TBi2]b

T
3 = 0,

and, likewise,

Gi1(b3 ×B
i
3) = [B

iT
3 (b3 ×B

i
3)]b2 − [b

T
3 (b3 ×B

i
3)]B

i
2 = 0.

It follows that the matrix Gi1 is singular (a fact already mentioned in Chapter
12) and that the vectors b2 ×B

i
2 and b3 ×B

i
3 lie respectively in its left and right

nullspaces. In turn, this means that, once the trifocal tensor is known, we can
compute the epipole b2 (resp. b3) as the common normal to the left (resp. right)
nullspaces of the matrices Gi1 (= i = 1, 2, 3) [Hartley, 1997].
Once the epipoles are known, writing (15.3.2) for i = 1, 2, 3 provides 27 homo-

geneous linear equations in the 18 unknown entries of the matrices Bj (j = 2, 3).
These equations can be solved up to scale using linear least squares. Alternatively,
it is possible to estimate the matrices Bj directly from the trilinear constraints
associated with pairs of matching points or lines by writing the trifocal tensor coef-
ficients as functions of these matrices, which leads once again to a linear estimation
process.
Neither of these methods determines the matrices M1 and M2 uniquely of

course. If desired, this ambiguity can be eliminated by imposing various constraints
on the vectors b2 and b3. For example, Hartley [1997] suggests imposing that b2 be
a unit vector orthogonal to the columns of B2, which can be achieved as in the last
section for an appropriate choice for α.
Once the projection matrices have been recovered, the projective structure of

the scene can be recovered as well by using the perspective projection equations
as linear constraints on the homogeneous coordinate vectors of the observed points
and lines.
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15.4 Motion Estimation from Multiple Views

Section 15.3 used the epipolar and trifocal constraints to reconstruct the camera
motion and the corresponding scene structure from a pair or a triple of images.
Likewise, the quadrifocal tensor introduced in Chapter 12 can in principle be used to
estimate the projection matrices associated with four cameras and the corresponding
projective scene structure. However, multilinear constraints do not provide a direct
method for handling m > 4 views in a uniform manner. Instead, the structure and
motion parameters estimated from pairs, triples, or quadruples of successive views
must be stitched together iteratively, as described for example in [Beardsley et al.,
1997; Pollefeys et al., 1999]. We now present an alternative where all images are
taken into account at once in a non-linear optimization scheme.

15.4.1 A Factorization Approach to Projective Motion Analysis

In this section we present a factorization method for motion analysis due to Ma-
hamud and Hebert [2000] that generalizes the algorithm of Tomasi and Kanade
presented in Chapter 14 to the projective case. Given m images of n points we can
rewrite (15.0.1) as

D =MP, (15.4.1)

where

D
def
=



z11p11 z12p12 . . . z1np1n
z21p21 z22p22 . . . z2np2n
sec . . . . . . . . . . . .

zm1pm1 zm2pm2 . . . zmnpmn


 , M def

=



M1

M2

. . .

Mm


 and P

def
= (P 1 P 2 . . . P n ) .

In particular, the 3m× n matrix D has (at most) rank 4, thus if the projective
depths zij were known, we could computeM and P, just as in the affine case, by
using singular value decomposition to factor D. On the other hand, if M and P
were known, we could read out the values of the projective depths zij from (15.4.1).
This suggests an iterative scheme for estimating the unknowns zij , M and P by
alternating steps where some of these unknowns are held constant while others are
estimated. This section proposes such a scheme and shows that is guaranteed to
converge to a local minimum of a physically-significant objective function.
Ideally, we would like to minimize the mean-squared distance between the ob-

served image points and the point positions predicted from the parameters zij ,Mi

and Pj, i.e.,

E =
1

mn

∑
i,j

|pij −
1

zij
MiP j|

2.

Unfortunately the corresponding optimization problem is difficult since the error
we are trying to minimize is highly non-linear in the unknowns zij ,Mi and P j . In-
stead, let us define the vectors dj = (z1jp1j, . . . , zmjpmj)

T and zj = (z1j, . . . , zmj)
T
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(j = 1, . . . , n), and minimize

E =
1

mn
Ej, where Ej

def
=

1

|dj |
2 |dj −MP j |

2

with respect to the unknownsM, zj and P j. Note that the vectors zj, dj and P j
are defined up to a common scale factor. The normalizing factor 1/|dj|

2 in Ej is
used to avoid the trivial solution where all three are zero.
As proposed earlier, we will minimize E iteratively by alternating steps where

motion paramaters are held constant while structure parameters are estimated and
vice versa.
Let us assume that we are at some stage of this minimization process, fix the

value ofM to its current estimate and compute, for j = 1, . . . , n, the values of zj
and P j that minimize Ej. These values will of course minimize E as well.
Just as in the affine case discussed in Chapter 14, writing that the gradient

of Ej with respect to the vector P j is zero yields P j = M†dj , where M† def=
(MTM)−1MT is the pseudoinverse ofM. Substituting this value in the definition
of Ej yields

Ej =
1

|dj |
2 |(Id−MM

†)dj|
2.

As noted in Chapter 14, the matrix MM† associates with any vector in IR3m

its orthogonal projection onto the subspace VM spanned by the columns ofM. It
follows immediately that minimizing Ej with respect to zj and P j is equivalent to
minimizing the squared norm of the difference between dj and its projection onto
VM under the constraint that dj has unit length.
Now, M is a 3m × 4 matrix of rank 4, whose singular value decomposition

UWVT is formed by the product of a column-orthogonal 3m× 4 matrix U , a 4× 4
non-singular diagonal matrix W and a 4× 4 orthogonal matrix VT . The pseudoin-
verse ofM isM† = VW−1UT , and substituting this value in the expression of Ej
immediately yields

Ej =
1

|dj|
2 |[Id−UU

T ]dj |
2 =

1

|dj |
2 [|dj |

2 − dTj (UU
T )dj] = 1−

1

|dj|
2d
T
j (UU

T )dj.

In turn, this means that minimizing Ej with respect to zj and P j is equivalent
to maximizing

dTj (UU
T )dj

|dj|
2

with respect to zj .
Observing that

dTj = z
T
j Qj, where Qj

def
=



pT1j 000 . . . 000

000 pT2j . . . 000
. . . . . . . . . . . .
000 000 . . . pTmj


 ,
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finally shows that minimizing Ej is equivalent to maximizing

zTj Ajzj

zTj Bjzj

with respect to zj , with Aj
def
= QjUU

TQTj and Bj
def
= QjQ

T
j . This is a generalized

eigenvalue problem, whose solution is the generalized eigenvector associated with
the largest eigenvalue. If desired, the value of P j can be computed at this stage as
P j =MM†dj = UUTdj .
Let us now fix zj (hence dj), and minimize E with respect to M and the

vectors P j.Writing that the gradient of E with respect to P j is zero yields once
again P j =MM†dj , thus

E =

n∑
j=1

1

|dj|
2 |(Id−MM

†)dj |
2 =

n∑
j=1

|(Id−MM†)d̃j |
2,

where d̃j
def
=
1

|dj |
dj.

In other words, E measures the mean squared norm of the difference between
the unit vectors d̃j and their orthogonal projections onto the subspace VM spanned
by the columns ofM. As in the affine case, we now use Theorem 3, that states that
E is minimum when VM is the range of the matrix Ũ4 formed by the four leftmost
columns of Ũ , where ŨW̃ṼT denotes the singular value decomposition of the matrix
D̃ whose columns are the unit vectors d̃j . In particular, the matrixM minimizing

E verifies VM = VŨ4 and we can takeM = Ũ4.
This yields the iterative procedure sketched below. Note that this procedure

does not explicitly maintain a separate copy of D̃. Instead, the columns of the
matrix D are normalized at each iteration.
It should be noted that this algorithm is guaranteed to converge to some local

minimum of the error function E. Indeed, let E0 be the current error value at the
beginning of each iteration; the first two steps of the algorithm do not change the
vectors zj but minimizes E with respect to the unknownsM and P j . If E2 is the
value of the error at the end step 2, we have therefore E2 ≤ E0. Now step 3 does
not change the matrixM but minimizes each error term Ej with respect to both
the vectors zj and P j. Therefore the error E3 at the end of this step is smaller
than or equal to E2. This shows that the error decreases in a monotone manner at
each iteration, and since it is bounded below by zero, we conclude that the process
converges to a local minimum of E.
Whether this local minimum will turn out to be the global one depends, of

course, on the choice of initial values chosen for the various unknown parameters.
A possible choice, used in the experiments presented in [Mahamud and Hebert,
2000], is to initialize the projective depths zij to 1, which effectively amounts to
starting with a weak-perspective projection model. The authors also report that the
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Repeat:

1. normalize each column of the data matrix D;

2. compute the singular value decomposition UWVT of the matrix D, and set
U4 to be the 3m× 4 matrix formed by the four leftmost columns of U ;

3. for j = 1, . . . , n do:

(a) compute Aj = QjU4U
T
4 Qj and Bj = QjQ

T
j ;

(b) solve the generalized eigenvalue problem Ajz = λBjz and set zj to be
the generalized eigenvector associated with the largest eigenvalue;

(c) update the corresponding column of D;

until convergence.

Algorithm 15.1: A factorization algorithm for projective shape from motion.

data preprocessing suggested by Hartley [1995] and already used in the normalized
eight-point algorithm for weak calibration described in Chapter 12 improves the
robustness of the algorithm. Figure 15.7(a) shows two images in a sequence of 20
pictures of an outdoor scene. A total of 30 points were tracked manually across the
sequence, with a localization error of ∓1 pixel. Figure 15.7(b) plots the evolution
of the average and maximum error between the observed and predicted image point
positions when various subsets of the image sequence are used for training and
testing.

15.4.2 Bundle Adjustment

Given initial estimates for the matrices Mi (i = 1, . . . , m) and vectors P j (j =
1, . . . , n), we can refine these estimates by using non-linear least squares to minimize
the global error measure

E =
1

mn

∑
i,j

[(uij −
mi1 · P j

mi3 · P j
)2 + (vij −

mi2 · P j

mi3 · P j
)2].

This is the method of bundle adjustment, whose name originates from the field of
photogrammetry. Although it may be expensive, it offers the advantage of combin-
ing all measurements to minimize a physically-significant error measure, namely the
mean-squared error between the actual image point positions and those predicted
using the estimated scene structure and camera motion.

15.5 From Projective to Euclidean Structure and Motion

Although projective structure is useful by itself, in most cases it is the Euclidean,
or metric structure of the scene which is the true object of interest. Let us assume
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Figure 15.7. Iterative projective estimation of camera motion and scene structure: (a)
the first and last images in the sequence; (b) plot of the average and maximum reprojection
error as a function of iteration number. Two experiments were conducted: in the first one
(alternate) alternate images in the sequence are used as training and testing datasets; in
the second experiment (inner), the first five and last five pictures were used as training
set, and the remaining images were used for testing. In both cases, the average error falls
below 1 pixel after 15 iterations. Reprinted from [Mahamud and Hebert, 2000], Figure 4.

that one of the techniques presented in Section 15.4 has been used to estimate the
projection matrices Mi (i = 1, . . . , m) and the point positions P j (j = 1, . . . , n)
from m images of these points. We know that any other reconstruction and in par-
ticular a metric one will be separated from this one by a projective transformation.
In other words, if M̂i and P̂ j denote the metric shape and motion parameters,

there exists a 4× 4 matrix Q such that M̂i =MiQ and P̂ j = Q−1P j (the matrix
Q is of course only defined up to an arbitrary similarity, i.e., rigid transformation
plus scaling). This section presents a number of methods for computing the met-
ric upgrade matrix Q and thus recovering the metric shape and motion from the
projective ones.

15.5.1 Metric Upgrades from (Partial) Camera Calibration

It is a simple matter to adapt the affine method introduced in Chapter 14 to the
projective setting when the intrinsic parameters of all cameras are known: indeed,
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the 3 × 3 matrix formed by the three leftmost columns of each matrix M̂i is in
this case a rotation matrix scaled by an unknown factor. Writing that its rows are
perpendicular to each other and have the same length yields




m̂Ti1m̂i2 =m
T
i1Q3Q

T
3mi2 = 0,

m̂Ti2m̂i3 =m
T
i2Q3Q

T
3mi3 = 0,

m̂Ti3m̂i1 =m
T
i3Q3Q

T
3mi1 = 0,

m̂Ti1m̂i1 − m̂
T
i2m̂i2 =m

T
i1Q3Q

T
3mi1 −m

T
i2Q3Q

T
3mi2 = 0,

m̂Ti2m̂i2 − m̂
T
i3m̂i3 =m

T
i2Q3Q

T
3mi2 −m

T
i3Q3Q

T
3mi3 = 0,

(15.5.1)

where Q3 is the 4 × 3 matrix formed by the three leftmost columns of Q. To
determine Q uniquely, we can for example assume that the world coordinate system
and the first camera’s frame coincide. Givenm images, we obtain 12 linear equations
and 5(m−1) quadratic ones in the coefficients of Q. These equations can be solved
using non-linear least squares.
Alternatively, the constraints (15.5.1) are linear in the coefficients of the sym-

metric matrix A
def
= Q3QT3 , allowing its estimation from at least two images via

linear least squares. Note that A has rank 3, a constraint that is not enforced by
our construction. To recover Q3, let us also note that since A is symmetric, it can
be diagonalized in an orthonormal basis as A = UDUT , where D is the diagonal
matrix formed by the eigenvalues of A and U is the orthogonal matrix formed by
its eigenvectors. In the absence of noise, A is positive semidefinite with three posi-
tive and one zero eigenvalues, and Q3 can be computed as U3

√
D3, where U3 is the

matrix formed by the columns of U inassociated with the positive eigenvalues of A,
and D3 is the corresponding sub-matrix of D. Because of noise, however, A will
usually have maximal rank, and its smallest eigenvalue may even be negative. As
shown in the exercises, if we take this time U3 and D3 to be the sub-matrices of U
and D associated with the three largest (positive) eigenvalues of A, then U3D3UT3
provides the best positive semidefinite rank-3 approximation of A in the sense of
the Frobenius norm,3 and we can take as before Q3 = U3

√
D3.

This method can easily be adapted to the case where only some of the intrinsic
camera parameters are known: let us write the metric upgrade matrix as Q =
(Q3, q4), where Q3 is as before a 4 × 3 matrix and q4 is a vector in IR

4. We can
rewrite the equation M̂i =MiQ as

Mi(Q3, q4) = Ki(Ri, ti) =⇒MiQ3 = KiRi,

where Ki, Ri and ti denote respectively the matrix of intrinsic parameters, the
rotation matrix and the translation vector associated with M̂i.
Using the fact that Ri is an orthogonal matrix allows us to write

MiAM
T
i = KiK

T
i . (15.5.2)

3Note the obvious similarity between this result and Theorem 2.
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Thus every image provides a set of constraints between the entries of Ki and A.
Assuming for example that the center of the image is known for each camera, we
can write the square of the matrix Ki as

KiK
T
i =



α2i

1

sin2 θi
−αiβi

cos θi
sin2 θi

0

−αiβi
cos θi
sin2 θi

β2i
1

sin2 θi
0

0 0 1


 .

In particular, the part of Equation (15.5.2) corresponding to the zero entries of
KiKTi provides two independent linear equations in the ten coefficients of the 4× 4
symmetrix matrix A. With m ≥ 5 images, these parameters can be estimated via
linear least squares. Once A is known, Q can be estimated as before. Figure 15.8
shows a texture-mapped picture of the 3D model of a castle obtained by a variant
of this method [Pollefeys et al., 1999].

Figure 15.8. A synthetic texture-mapped image of a castle constructed via projective
motion analysis followed by metric upgrade. The principal point is assumed to be known.
Reprinted from [Pollefeys, 1999], Figure 6.13.

15.5.2 Metric Upgrades from Minimal Assumptions

We now consider the case where the only constraint on the intrinsic parameters is
that the pixels be rectangular, a condition satisfied (to a very good approximation)
by all digital cameras. Theorem 1 in Chapter 6 shows that arbitrary 3× 4 matrices
are not zero-skew perspective projection matrices. It can therefore be hoped that
better-than-projective reconstructions of the world can be achieved for zero-skew
cameras. We will say that a projective transformation Q preserves zero skew when,
for any zero-skew perspective projection matrixM, the matrixMQ is also a zero-
skew perspective projection matrix. Heyden and Åström [1998] and Pollefeys et al.
[1999] have independently shown the following important result.
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Theorem 4: The class of transformations that preserve zero skew is the group of
similarity transformations.

The proof of this theorem is constructive: for example, Pollefeys et al. [1999]

exhibit a set of eight camera positions and orientations that constrain the transfor-
mation to be a similarity. Unfortunately, it does not provide a method for estimating
the camera calibration parameters. We use in this section the elements of line ge-
ometry presented in Chapter 64 to derive a linear (or rather linearized) technique
that exploits the zero-skew constraint to compute a metric upgrade of a projective
reconstruction.
This section provides an algebraic and geometric characterization of the 4 × 4

matrices Q such that, if M̂ =MQ, the rows of M̂ satisfy the condition of Theorem
1. We write the matrices M̂,M and Q as

M̂ =


 m̂T1 m̂14
m̂T2 m̂24
m̂T3 m̂34


 , M =


mT1mT2
mT3


 and Q = ( q1 q2 q3 q4 ) .

Note that the vectors mi and qi are elements of IR
4 but the vectors m̂i are

elements of IR3. With this notation, we have the following result [Ponce, 2000].

Theorem 5: Given a projection matrix M and a projective transformation Q, a
necessary and sufficient condition for the matrix M̂ =MQ to satisfy the zero-skew
constraint

(m̂1 × m̂3) · (m̂2 × m̂3) = 0

is that
λTRTRµ = 0, (15.5.3)

where

R
def
=


 (q2 ∧ q3)T(q3 ∧ q1)

T

(q1 ∧ q2)
T


 , λ def= m1 ∧m3 and µ

def
= m2 ∧m3.

The proof of this theorem relies on elementary properties of the exterior product
to show that m̂1 × m̂3 = Rλ and m̂2 × m̂3 = Rµ, from which the theorem
immediately follows (see exercises).
A matrix Q satisfying (15.5.3) can be estimated from m images using linear

methods: we first use linear least squares to estimate the matrix S
def
= RTR, then

take advantage of elementary properties of symmetric (but possibly indefinite) ma-
trices to factor S and compute R. Once R is known, it is a simple matter to deter-
mine the matrix Q using once again linear least squares. This approach linearizes
the estimation process since (15.5.3) is an equation of degree 4 in the coefficients of
Q. It is easy to show (see exercises) that the columns of the matrices R and S are
4This may be a good time to look back at that chapter to brush up on your line geometry.
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the Plücker coordinates of a family of lines and it follows that their entries satisfy
a number of quadratic constraints as well as the linear constraint:

S16 − S25 + S34 = 0.

We can now estimate the matrix S. Let us first note that (15.5.3) is a linear
constraint on the coefficients of S, that can be rewritten as

6∑
i=1

λiµiSii +
∑

1≤i<j≤6

(λiµj + λjµi)Sij = 0 (15.5.4)

where the coefficients λi and µi denote the coordinates of the vectors λ and µ and
the 20 coefficients Sij denote the entries of S. The unknown S16 can be eliminated
by using the constraint S16 − S25 + S34 = 0 and the fact that, since the lines
associated with the vectors λ and µ both lie in the focal plane, we have (λ|µ) = 0.
This allows us to and rewrite (15.5.4) as

6∑
i=1

λiµiSii +
∑

1≤i<j≤6

i+j �=7

(λiµj + λjµi)Sij + a25S25 + a34S34 = 0, (15.5.5)

where {
a25 = 2(λ2µ5 + λ5µ2) − (λ3µ4 + λ4µ3),
a34 = 2(λ3µ4 + λ4µ3) − (λ2µ5 + λ5µ2),

and the missing elements in the second sum in (15.5.5) correspond to the terms S16,
S25 and S34.
With only 20 out of the 21 original unknown coefficients left, writing (23.5.1) for

m ≥ 19 images yields an overdetermined homogeneous system of linear equations
of the form As = 0, where A is an m× 20 data matrix and s is the vector formed
by the 20 independent coefficients of S. The least-squares solution of this system
is computed (up to an irrelevant scale factor) using the techniques described in
Chapter 6. The S16 entry is then computed as S25 − S34. Note that this linear
process ignores the quadratic equations satisfied by the entries of the matrix S.
Once the symmetric matrix S = RTR is known, it can be used to estimate the
rank-3 matrix RT via eigenvalue decomposition, just as in the previous section.
Once the matrix R is known, we can recover the vectors qi (i = 1, 2, 3) from R

using linear least squares, exactly as we recovered the vectors mi from the matrix
M̃ in Chapter 6. Once the vectors qi are known, we can complete the construction
of Q by imposing, for example, that the optical center of the first camera be used
as origin of the world coordinate system. This translates into the fourth column
of M̂1 being zero, and allows us to compute q4 (up to scale) as the solution of
M1q4 = 0. This unknown scale factor reflects the fact that absolute scale cannot
be recovered from images.
Let us conclude by noting that, given m projection matricesMi, the estimates

of the vectors qi (i = 1, 2, 3) obtained from the linear least-squares process can be
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refined using non-linear least-squares to minimize the average squared skew of the
projection matrices, i.e.,

1

m

m∑
i=1

[
arcsin

(Rλi) · (Rµi)

|Rλi| |Rµi|

]2
,

with respect to the vectors qi (i = 1, 2, 3). The vector q4 can then be computed as
before.
Figure 15.9(a) shows two views of the projective reconstruction of a desk scene

featuring a volleyball and a cylindrical box [Pollefeys, 1999]. The data consists of
182 projection matrices and 3506 points. Applying the method described in this
section to this reconstruction yields the results shown in Figure 15.9(b)-(c). The
skew averaged over the 182 input matrices is 5.68◦ after the linear stage of the
algorithm, and 0.46◦ after its non-linear stage.

15.6 Notes

The short introduction to projective geometry given at the beginning of this chapter
focuses on the analytical side of things. See for example [Todd, 1946; Berger, 1987;
Samuel, 1988] for thorough introductions to analytical projective geometry and
[Coxeter, 1974] for an axiomatic presentation. Projective structure from motion is
covered in detail in the excellent book by Hartley and Zisserman [2000b].
As mentioned by Faugeras [1993a], the problem of calculating the epipoles and

the epipolar transformations compatible with seven point correspondences was first
posed by Chasles [1855] and solved by Hesse [1863]. The problem of estimating the
epipolar geometry from five point correspondences for internally calibrated cam-
eras was solved by Kruppa [1913]. An excellent modern account of Hesse’s and
Kruppa’s techniques can be found in [Faugeras and Maybank, 1990], where the ab-
solute conic, an imaginary conic section invariant through similarities, is used to
derive two tangency constraints that make up for the missing point correspondences.
These methods are of course mostly of theoretical interest since their reliance on
a minimal number of correspondences limits their ability to deal with noise. The
weak-calibration methods of Luong et al. [1993; 1996] and Hartley [1995] described
in Chapter 12 provide reliable and accurate alternatives.
Faugeras [1992] and Hartley et al. [1992] introduced independently the idea

of using a pair of uncalibrated cameras to recover the projective structure of a
scene. Other notable work in this area includes, for example, [Mohr et al., 1992;
Shashua, 1993]. Section 15.2.1 presents Faugeras’ original method, and its geometric
variant presented in Section 15.2.2 is taken from [Ponce et al., 1993]. Hartley
[1992; 1994b; 1997] developed the two- and three-view motion analysis techniques
also presented in this chapter.
An iterative algorithm for perspective motion and structure recovery using cal-

ibrated cameras is given in [Christy and Horaud, 1996]. The extension of factor-
ization approaches to structure and motion recovery was first proposed by Sturm



Section 15.6. Notes 425

(a)

−20
−15

−10
−5

0
5

10
15

−15

−10

−5

0

5

10

0

20

40

5

10

15

20

25

30
−15 −10 −5 0 5 10 15 20

−15

−10

−5

0

5

10

(b)
−0.2

0

0.2

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

−0.8
−0.6

−0.4
−0.2

0
0.2

0.4
0.6

0.8
1

−0.5

0

0.5

(c)
−0.5

0
0.5

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.4

−0.2

0

0.2

0.4

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure 15.9. Computing metric upgrades of projective reconstructions: (a) two views
of the projective reconstruction of a simple scene, and its metric upgrades after (b) the
linear stage of the method presented in this section, and (c) its non-linear refinement stage.
Reprinted from [Ponce, 2000], Figure 1.
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and Triggs [1996]. Its variant due to Mahamud and Hebert [2000] presented in this
chapter has the advantage of having provable convergence.
The problem of computing metric upgrades of projective reconstructions when

some of the intrinsic parameters are known has been addressed by a number of
authors (e.g., [Heyden and Åström, 1996; Triggs, 1997; Pollefeys, 1999]). The
matrix A = Q3QT3 introduced in Section 15.5 can be interpreted geometrically
as the projective representation of the dual of the absolute conic, the absolute
dual quadric [Triggs, 1997]. Like the absolute conic, this quadric surface is in-
variant through similarities, and the (dual) conic section associated with KiKTi is
simply the projection of this quadric surface into the corresponding image. Self-
calibration is the process of computing the intrinsic parameters of a camera from
point correspondences with unknown Euclidean positions. Work in this area was
pioneered by Faugeras and Maybank [1992] for cameras with fixed intrinsic parame-
ters. A number of reliable self-calibrationmethods are now available [Hartley, 1994a;
Fitzgibbon and Zisserman, 1998; Pollefeys et al., 1999], and they can of course
also be used to upgrade projective reconstructions to metric ones. The problem
of computing metric upgrades of projective reconstructions under minimal camera
constraints such as a zero skew was first addressed by Heyden and Åström [1998]

and Pollefeys et al. [1999]. The method discussed in Section 15.5 was proposed
in [Ponce, 2000]. See also [Heyden and Åström, 1999] for a related approach.

15.7 Assignments

Exercises

1. Show that the perspective projection mapping between two planes of IP3 is a
projective transformation (Example 15.4).

Hint: If Π and Π′ denote the two planes of IP3 under consideration, and
V and V ′ denote the two corresponding planes of IR3, i.e., Π = P (V ) and
Π′ = P (V ′), construct the mapping f associated with the restriction to Π of
the linear projection onto V ′ in the direction p−1(O).

2. In this exercise you will show that the cross-ratio of four collinear points A,
B, C and D is equal to

[A,B, C,D] =
sin(β + γ) sin γ

sin(α+ β) sinα
,

where the angles α, β and γ are defined as in Figure 15.2.

(a) Show that the area of a triangle PQR is

A(P,Q,R) = PQ×RH = PQ× PR sin θ,

where PQ denotes the distance between the two points P and Q, H is
the projection of R onto the line passing through P and Q, and θ is the
angle between the lines joining the point P to the points Q and R.
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(b) Define the ratio of three collinear points A, B, C as

R(A,B, C) =
AB

BC

for some orientation of the line supporting the three points. Show that
(A,B, C) = A(A,B,O)/A(B,C,O) where O is some point not lying on
this line.

(c) Conclude that the cross-ratio [A,B, C,D] is indeed given by the formula
above.

3. Show that a collineation between two pencils of lines can be written as

τ → τ ′ =
aτ + b

cτ + d
,

where τ and τ ′ are the slopes of the lines.

Hint: Parameterize each pencil of lines by the vertical and horizontal lines in
the pencil.

Solution: Consider the first pencil and let a denote the common point of
its lines, with (non-homogeneous) coordinates (α, β) in some fixed coordi-
nate system. The vertical and horizontal lines in the pencil have coordinates
(1, 0,−α) and (0, 1,−β). In particular, any line in the pencil can be written
as (x, y,−αx−βy), where x and y are homogeneous coordinates defined up to
scale. If the line passes through the point (u, v) we have (u−α)x+(v−β)y = 0
or x = β − v and y = u− α. Using the same construction for the second line
and writing the collineation in matrix form yields(

β′ − v′

u′ − α′

)
=

(
A B
C D

)(
β − v
u− α

)
,

or
v′ − β′

u′ − α′
= −
A(v − β) − B(u− α)

C(v − β) −D(u− α)
,

and the result follows immediately by taking a = −A, b = B, c = C and
d = −D.

4. Show that the fundamental matrix F can be expressed as

F =


 b a −aβ − bα

−d −c cβ + dα
dβ′ − bα′ cβ′ − aα′ −cββ′ − dβ′α+ aβα′ + bαα′


 ,

where (α, β) and (α′, β′) denote the coordinates of the epipoles, and a, b, c
and d denote the coefficients of the epipolar transformation.
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5. **Rewrite this as a true exercise.** Here we revisit the three-point reconstruc-
tion problem in the context of the homogeneous coordinates of the point D
in the projective basis formed by the tetrahedron (A,B, C, O′) and the unit
point O′′. Note that the ordering of the reference points, and thus the order-
ing of the coordinates, is different from the one used earlier: this new choice
is, like the previous one, made to facilitate the reconstruction.

A

O’

O"

B

C
D

D’

D"
E

With this choice of coordinates, the point E where the baseline intersects the
plane ABC has coordinates (1, 1, 1, 0). We denote the (unknown) coordinates
of the point D by (x, y, z, w), and equip the first (resp. second) image plane
with the triangle of reference a′, b′, c′ (resp. a′′, b′′, c′′) and the unit point e′

(resp. e′′), and denote by (x′, y′, z′) (resp. (x′′, y′′, z′′)) the coordinates of the
point d′ (resp. d′′).

Obviously, the coordinates of the pointsD′ andD′′ are simply (x′, y′, z′, 0) and
(x′′, y′′, z′′, 0). It remains to compute the coordinates of D as the intersection
of the two rays O′D′ and O′′D′′.

We write D = λ′O′ + µ′D′ = λ′′O′′ + µ′′D′′, which yields:

x = µ′x′ = λ′′ + µ′′x′′,
y = µ′y′ = λ′′ + µ′′y′′,
z = µ′z′ = λ′′ + µ′′z′′,
w = λ′ = λ′′.

(15.7.1)

The values of µ′, µ′′, λ′′ are found (up to some scale factor) by solving the
following homogeneous system:

−x′ x′′ 1−y′ y′′ 1
−z′ z′′ 1




 µ′µ′′
λ′′


 = 0. (15.7.2)
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Note that the determinant of this equation must be zero, which corresponds
to D′, D′′, and E being collinear. In practice, (15.7.2) is solved through linear
least-squares, and the values of x, y, z, w are then computed using (15.7.1).

6. **Rewrite this as a true exercise.** This exercise gives a geometric projective
scene reconstruction method when the projective frame is formed by five ar-
bitrary points A,B, C,D, F . Here, we give a geometric construction of the
points O′, O′′. Scene points can then be reconstructed using the three-point
approach. We change the notation a bit to avoid confusion. While E is still
the intersection of the baseline with the ABC plane, the rays O′D, O′′D, O′F ,
and O′′F now respectively intersect this plane in G, H , I, and J . In addition,
the line DF intersects the plane in K, so this point is known as well.

A

B

CD

O’

O"

E

F

G
H

I

J

K

The position of the projection of a point P in the first (resp. second) image
is as before denoted by p′ (resp. p′′). (Clearly, g′ = d′, i′ = f ′, h′′ = d′′, and
j′′ = f ′′.)

We use the obvious fact that the points a′, b′,c′, e′, d′, h′, f ′, j′, k′ and
a′′, b′′, c′′, e′′, g′′, d′′, i′′, f ′′, k′′ are in projective correspondence. Note
that h′, j′, g′′, i′′ are not directly observable in the images. However, we can
measure the projective coordinates of d′ = g′ and i′ = f ′ in the a′, b′, c′, e′

basis, and thus reconstruct g′′, i′′ in the a′′, b′′, c′′, e′′ basis. This yields the
point k′′ as the intersection of the lines g′′i′′ and d′′f ′′ = h′′j′′.

We now use the obvious projective correspondence between the points a′′, b′′,
c′′, g′′, i′′, d′′ = h′′, f ′′ = j′′, k′′ and A, B, C, G, I, H , J , K. From the projec-
tive coordinates of g′′, h′′, i′′, j′′ in the a′′, b′′, c′′, k′′ basis, we reconstruct the
points G,H, I, J in the A,B, C,K basis. The final step of the reconstruction
yields the point O′ as the intersection of the lines DG and FI, and the point
O′′ as the intersection of the lines DH and FJ .

The point P can also be reconstructed directly: we use the C,A,B,D, F basis
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and the following cross-ratios

k0 = [ABC,ABD,ABF,ABP ] ,
k1 = [BCA,BCD,BCF,BCP ] ,
k2 = [CAB,CAD,CAF, CAP ] .

(15.7.3)

Once these three cross-ratios have been computed, P can be reconstructed
as the intersection of the planes ABP , BCP , CAP for any choice of three-
dimensional coordinates for the points A,B, C,D, F .

We detail the construction of k0. The other cross-ratios are obtained by
permuting the points in the basis and their construction is omitted for the sake
of conciseness. The diagram below shows the geometry of the reconstruction.
The baseline O′O′′ intersects the planes ABC, ABD, and ABF in three
(unknown) points E1, E2, and E3, and the visual ray O

′P intersects these
three planes in Q, R, and S respectively.

A B

C D
O"O’

Q R

E1

E2

a’ b’

c’ d’

e’

p’

a" b"

e"

q"

p"

r"

P

S

FE3

f’ f"

s"

As in the four-point case, we use the projective correspondence between the
first image plane equipped with the a′, b′, c′, e′ basis, the plane ABC equipped
with the A,B, C, E1 basis, and the second image plane equipped with the
a′′, b′′, c′′, e′′ basis, to reconstruct the image q′′ of Q in the second image plane.
Likewise, we reconstruct the images r′′, s′′ of the points R, S by exploiting
planar projective correspondences. Since the four points Q,R, S, P project
onto the four points q′′, r′′, s′′, p′′, the latter are collinear, and the cross-ratios
of both four-tuples are the same.

Finally, intersecting the pencil ABC, ABD, ABF , ABP with the planeO′AP ,
we obtain:

k0 = [AQ,AR,AS, AP ] = [q
′′, r′′, s′′, p′′] . (15.7.4)

Similar constructions can be used to compute the cross-ratios k1 and k2.
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Chapter 16

SEGMENTATION BY
CLUSTERING

An attractive broad view of vision is that it is an inference problem: we have some
measurements and a model, and we wish to determine what caused the measure-
ment. There are crucial features that distinguish vision from many other inference
problems: firstly, there is an awful lot of data, and secondly, we don’t know which
of these data items may help with solving the inference problem and which may
not. For example, one huge difficulty in building good object recognition programs
is knowing which pixels to recognise and which to ignore. It is very difficult to tell
whether a pixel lies on the surfaces in figure 16.1 simply by looking at the pixel.
This problem can be addressed by working with a compact representation of the
“interesting” image data that emphasizes the properties that make it “interesting”.
Obtaining such representation is known variously as segmentation, grouping,
perceptual organisation or fitting.
We use the term segmentation for a wide range of activities, because, while

techniques may differ, the motivation for all these activities is the same: obtain
a compact representation of what is helpful in the image. It’s hard to see that
there could be a comprehensive theory of segmentation, not least because what
is interesting and what is not depends on the application. There is certainly no
comprehensive theory of segmentation at time of writing, and the term is used in
different ways in different quarters. In this chapter we describe segmentation pro-
cesses that currently have no probabilistic interpretation. In the following chapter,
we deal with more complex probabilistic algorithms.

16.1 What is Segmentation?

Assume that we would like to recognise objects in an image. There are too many
pixels to handle each individually; instead, we should like some form of compact,
summary representation. The details of what that representation should be depend
on the task, but there are a number of quite general desirable features. Firstly,
there should be relatively few (= not more than later algorithms can cope with)
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components in the representation computed for “typical” pictures. Secondly, these
components should be suggestive. It should be pretty obvious from these compo-
nents whether the objects we are looking for are present or not, again for “typical”
pictures.
Methods deal with different kinds of data set: some are intended for images,

some are intended for video sequences and some are intended to be applied to
tokens — placeholders that indicate the presence of an interesting pattern in an
image, say a spot or a dot or an edge point. Tokens can, in fact, occur in video,
too; an example might be a spot moving according to some parametric rule.
While superficially these methods may seem quite different, there is a strong

similarity amongst them1. Each method attempts to obtain a compact representa-
tion of its data set using some form of model of similarity (in some cases, one has
to look quite hard to spot the model). These general features manifest themselves
in very different problems. We review a few examples.

• Summarizing video: Users may wish to browse large collections of video
sequences. We need to supply a representation that encapsulates “what’s in
a sequence”. One way to do this is to break each sequence into shots —
subsequences that “look similar” — and then represent it with a montage of
frames, one for each shot. This suggests segmenting the sequences into shots.

• Finding machined parts: Assume we wish to find a machined part in
an image (a circumstance that arises far less often than one might think).
Machined objects tend to contain lines — where plane faces meet — and
circles — where holes have been drilled. This suggests segmenting the image
into sets of lines and circles; typically, one would find edges first and then fit
lines and circles to them.

• Finding people: Assume we wish to find people in images. This problem
remains open as of writing, but the general outlines of the solution are clear.
One should look for body segments first, then assemble them. These segments
appear in the image as extended regions; if the people are wearing clothing
that isn’t textured, then they are extended regions of a single colour — we
must look for bars of a constant colour.

• Finding buildings in satellite images: The vast majority of buildings are
polyhedral, particularly at the scale at which they appear in satellite images.
This suggests representing the image in terms of polygonal regions on some
background. Typically, this is done by looking for collections of edge points
that can be assembled into line segments, and then assembling line segments
into polygons.

• Searching a collection of images: For users to be able to search a collection
of images, the images must be represented in a way that both “makes sense” to

1Which is why they appear together!
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the user and is related to the content of the picture. Since the content typically
involves the objects that are present, and objects tend to have coherent colour
and texture, it is natural to try and break the images into regions of coherent
colour and texture, and use these regions as a representation.

Figure 16.1. As these images suggest, an important component of vision involves or-
ganising image information into meaningful assemblies. The human vision system seems
to be able to do so surprisingly well. In each of these three images, blobs are organised
together to form textured surfaces that appear to bulge out of the page (you may feel that
they are hemispheres). The blobs appear to be assembled “because they form surfaces”,
hardly a satisfactory explanation and one that begs difficult computational questions. No-
tice that saying that they are assembled because together they form the same texture also
begs questions (how do we know? in the case of the surface on the left, it might be quite
difficult to write programs that can recognise a single coherent texture. This process of
organisation can be applied to many different kinds of input.

16.1.1 Four Model Problems

Segmentation is a big topic. To help the reader keep track of the diverse methods
and problems involved, this account is structured around four model problems.
These problems are “natural”, in the sense that it is valuable to know more than
one method for solving them, and they appear commonly in applications. Our
problems are:

• Forming image segments: we should like to decompose an image into
“super pixels”, image regions which have roughly coherent colour and texture.
Typically, the shape of these regions isn’t particularly important, but the
coherence is very important. This process is quite widely studied — it is
often referred to as the exclusive meaning of the term “segmentation” — and
usually thought of as a first step in recognition. As we indicated above, one
use of these regions is in organising images in a digital library.
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• Finding body segments: assume we wish to find people in images. One
way to do this is to find putative body segments (torso, upper arm, lower
arm, etc.) in the image, and then reason about the configuration of these
segments. We expect that the body segments will have coherent colour and
texture (it helps to be a bit vague about what the word “coherent” means)
and also will be extended. The segments should look like the images of rather
rough cylinders. This problem is different from the previous problem, because
the shape of the regions is now important.

• Fitting lines to edge points: as we saw above, there are a number of
reasons why it might be useful to fit a set of lines to a set of points. This
problem goes from being quite simple (in the case where we know how many
lines there are, and which point belongs to which line) to being remarkably
subtle (in most other cases). If we try and fit a line to a set of points some
of which do not lie close to any line, the resulting line can be meaningless
unless we are very careful indeed. This illustrates an important, quite general,
principle: ignorance of correspondence can behave like noise. Typically, we
need to estimate both the parameters of the lines and the correspondence
between points and lines simultaneously.

• Fitting a fundamental matrix to a set of feature points: assume we
have two views of a set of feature points. It is typically difficult to be sure
which points correspond to which, though we may have some cues. One
important cue is that, if the correspondence is right, there is a fundamental
matrix connecting the points. We should like to determine this fundamental
matrix, without knowing the correspondence in advance. There are several
reasons this problem is worth solving: firstly, it is impossible to construct
sensible shape representations from multiple views without a solution to this
problem; secondly, solutions to this problem can be used as a cue to whether
a set of points is moving rigidly or not — if a sequence shows two moving
objects, they’ll have different fundamental matrices. Again, correspondence
errors will look like noise in this problem.

We will use these problems to illustrate various segmentation algorithms, but you
should keep in mind that not every technique offers a plausible solution to each of
these model problems.

16.1.2 Segmentation as Clustering

One natural view of segmentation is that we are attempting to determine which
components of a data set naturally “belong together”. This is a problem known as
clustering; there is a wide literature. Generally, we can cluster in two ways:

• Partitioning: here we have a large data set, and carve it up according to
some notion of the association between items inside the set. We would like
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to decompose it into pieces that are “good” according to our model. For
example, we might:

– decompose an image into regions which have coherent colour and texture
inside them;

– decompose an image into extended blobs, consisting of regions that have
coherent colour, texture and motion and look like limb segments;

– take a video sequence and decompose it into shots— segments of video
showing about the same stuff from about the same viewpoint.

• Grouping: here we have a set of distinct data items, and wish to collect sets
of data items that “make sense” together according to our model. Effects like
occlusion mean that image components that belong to the same object are
often separated. Examples of grouping include:

– collecting together tokens that, taken together, form a line;

– collecting together tokens that seem to share a fundamental matrix.

Of course, the key issue here is to determine what representation is suitable for
the problem in hand. Occasionally this is pretty obvious; more often, the question is
subtle. Typically, one has to know what various methods do, and make an informed
choice. Even so, we need to know by what criteria a segmentation method should
decide which pixels (or tokens) belong together and which do not. A fruitful source
of insight is the human vision system, which has to solve a completely general form
of this problem and, remarkably, displays strong and easily evoked preferences for
how tokens are grouped.

16.2 Human vision: Grouping and Gestalt

A key feature of the human vision system is that “context” affects how things are
perceived (for example, see the illusion of figure 16.2). This observation — which
is easily demonstrated experimentally — led the Gestalt school of psychologists to
reject the study of responses to stimuli, and to emphasize grouping as the key to
understanding visual perception. To them, grouping meant the tendency of the
visual system to assemble some components of a picture together and to perceive
them together (this supplies a rather rough meaning to the word “context” used
above). Grouping, for example, is what causes the Müller-Lyer illusion of figure 16.2
— the vision system assembles the components of the two arrows, and the horizontal
lines look different from one another because they are peceived as components of a
whole, rather than as lines. Furthermore, many grouping effects can’t be disrupted
by cognitive input; for example, you can’t make the lines in figure 16.2 look equal
in length by deciding not to group the arrows.
A common experience of segmentation is the way that an image can resolve itself

into a figure — typically, the significant, important object — and a ground —
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Figure 16.2. The famous Muller-Lyer illusion; the horizontal lines are in fact the same
length, though that belonging to the upper figure looks longer. Clearly, this effect arises
from some property of the relationships that form the whole (the gestaltqualität), rather
than from properties of each separate segment.

the background on which the figure lies. However, as figure 16.3 illustrates, what
is figure and what is ground can be profoundly ambiguous, meaning that a richer
theory is required.

Figure 16.3. One view of segmentation is that it determines which component of the
image forms the figure, and which the ground. The figure illustrates one form of ambiguity
that results from this view; the white circle can be seen as figure on the black rectangular
ground, or as ground where the figure is a black rectangle with a circular hole in it — the
ground is then a white square.

The Gestalt school used the notion of a gestalt — a whole or a group —
and of its gestaltqualität — the set of internal relationships that makes it a
whole (e.g. figure 16.2) as central components in their ideas. Their work was
characterised by attempts to write down a series of rules by which image elements
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would be associated together and interpreted as a group. There were also attempts
to construct algorithms, which are of purely historical interest (see [Gordon, 1997]

for an introductory account that places their work in a broad context).
The Gestalt psychologists identified a series of factors, which they felt predis-

posed a set of elements to be grouped. These factors are important, because it is
quite clear that the human vision system uses them in some way. Furthermore, it
is reasonable to expect that they represent a set of preferences about when tokens
belong together that lead to a useful intermediate representation.
There are a variety of factors, some of which postdate the main Gestalt move-

ment:

• Proximity: tokens that are nearby tend to be grouped.

• Similarity: similar tokens tend to be grouped together.

• Common fate: tokens that have coherent motion tend to be grouped to-
gether.

• Common region: tokens that lie inside the same closed region tend to be
grouped together.

• Parallelism: parallel curves or tokens tend to be grouped together.

• Closure: tokens or curves that tend to lead to closed curves tend to be
grouped together.

• Symmetry: curves that lead to symmetric groups are grouped together.

• Continuity: tokens that lead to “continuous” — as in “joining up nicely”,
rather than in the formal sense — curves tend to be grouped.

• Familiar Configuration: tokens that, when grouped, lead to a familiar
object, tend to be grouped together.

These laws are illustrated in figures 16.4, 16.5 and 16.1.
These rules can function fairly well as explanations, but they are insufficiently

crisp to be regarded as forming an algorithm. The Gestalt psychologists had serious
difficulty with the details, such as when one rule applied and when another. It is
very difficult to supply a satisfactory algorithm for using these rules — the Gestalt
movement attempted to use an extremality principle.
Familiar configuration is a particular problem. The key issue is to understand

just what familiar configuration applies in a problem, and how it is selected. For
example, look at figure 16.1; one might argue that the blobs are grouped because
they yield a sphere. The difficulty with this view is explaining how this occurred —
where did the hypothesis that a sphere is present come from? a search through all
views of all objects is one explanation, but one must then explain how this search
is organised — do we check every view of every sphere with every pattern of spots?
how can this be done efficiently?
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Not grouped

Proximity

Similarity

Similarity

Common Fate

Common Region

Figure 16.4. Examples of Gestalt factors that lead to grouping (which are described in
greater detail in the text).

The Gestalt rules do offer some insight, because they offer some explanation for
what happens in various examples. These explanations seem to be sensible, because
they suggest that the rules help solve problems posed by visual effects that arise
commonly in the real world — that is, they are ecologically valid. For example,
continuity may represent a solution to problems posed by occlusion — sections of
the contour of an occluded object could be joined up by continuity (see figure 16.6).
This tendency to prefer interpretations that are explained by occlusion leads to

interesting effects. One is the illusory contour, illustrated in figure 16.8. Here
a set of tokens suggests the presence of an object most of whose contour has no
contrast. The tokens appear to be grouped together because they provide a cue to
the presence of an occluding object, which is so strongly suggested by these tokens
that one could fill in the no-contrast regions of contour.
This ecological argument has some force, because it is possible to interpret most

grouping factors using it. Common fate can be seen as a consequence of the fact
that components of objects tend to move together. Equally, symmetry is a useful
grouping cue because there are a lot of real objects that have symmetric or close
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Parallelism

Symmetry

Continuity

Closure

Figure 16.5. Examples of Gestalt factors that lead to grouping (which are described in
greater detail in the text).

to symmetric contours. Essentially, the ecological argument says that tokens are
grouped because doing so produces representations that are helpful for the visual
world that people encounter. The ecological argument has an appealing, though



442 Segmentation by Clustering Chapter 16

Figure 16.6. Occlusion appears to be an important cue in grouping. It may be possible
to see the pattern on the left as a collection of digits; that on the right is quite clearly
some occluded digits. The black regions on the left and on the right are the same. The
visual system appears to be helped by evidence that separated tokens are separated for a
reason, rather than just scattered.

vague, statistical flavour. From our perspective, Gestalt factors provide interesting
hints, but should be seen as the consequences of a larger grouping process, rather
than the process itself.

16.3 Applications: Shot Boundary Detection and Background
Subtraction

Simple segmentation algorithms are often very useful in significant applications.
Generally, simple algorithms work best when it is very easy to tell what a “useful”
decomposition is. Three important cases are background subtraction — where
anything that doesn’t look like a known background is interesting — shot bound-
ary detection— where substantial changes in a video are interesting — and skin
finding— where pixels that look like human skin are interesting.

16.3.1 Background Subtraction

In many applications, objects appear on a background which is very largely stable.
The standard example is detecting parts on a conveyor belt. Another example is
counting motor cars in an overhead view of a road — the road itself is pretty stable
in appearance. Another, less obvious, example is in human computer interaction.
Quite commonly, a camera is fixed (say, on top of a monitor) and views a room.
Pretty much anything in the view that doesn’t look like the room is interesting.
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Figure 16.7. An example of grouping phenomena in real life. The buttons on an elevator
in the computer science building at U.C. Berkeley used to be laid out as in the top figure.
It was common to arrive at the wrong floor and discover that this was because you’d
pressed the wrong button — the buttons are difficult to group unambiguously with the
correct label, and it is easy to get the wrong grouping at a quick glance. A public-spirited
individual filled in the gap between the numbers and the buttons, as in the bottom figure,
and the confusion stopped because the proximity cue had been disambiguated.

Figure 16.8. The tokens in these images suggest the presence of occluding objects,
whose boundaries don’t contrast with much of the image. Notice that one has a clear
impression of the position of the entire contour of the occluding figures. These contours
are known as illusory contours.

In these kinds of applications, a useful segmentation can often be obtained by
subtracting an estimate of the appearance of the background from the image, and
looking for large absolute values in the result. The main issue is obtaining a good
estimate of the background. One method is simply to take a picture. This approach
works rather poorly, because the background typically changes slowly over time. For
example, the road may get more shiny as it rains and less when the weather dries
up; people may move books and furniture around in the room, etc.
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Form a background estimate B(0).
At each frame F

Update the background estimate, typically by

forming B(n+1) =
waF+

∑
i
wiB

(n−i)

wc
for a choice of weights wa, wi and wc.

Subtract the background estimate from the

frame, and report the value of each pixel where

the magnitude of the difference is greater than some

threshold.

end

Algorithm 16.1: Background Subtraction

An alternative which usually works quite well is to estimate the value of back-
ground pixels using a moving average. In this approach, we estimate the value
of a particular background pixel as a weighted average of the previous values. Typ-
ically, pixels in the very distant past should be weighted at zero, and the weights
increase smoothly. Ideally, the moving average should track the changes in the
background, meaning that if the weather changes very quickly (or the book mover
is frenetic) relatively few pixels should have non-zero weights, and if changes are
slow, the number of past pixels with non-zero weights should increase. This yields
algorithm 1 For those who have read the filters chapter, this is a filter that smooths
a function of time, and we would like it to suppress frequencies that are larger than
the typical frequency of change in the background and pass those that are at or
below that frequency. The approach can be quite successful, but needs to be used
on quite coarse scale images, as figures 16.10 and 16.11 illustrate.

16.3.2 Shot Boundary Detection

Long sequences of video are composed of shots— much shorter subsequences that
show largely the same objects. These shots are typically the product of the editing
process. There is seldom any record of where the boundaries between shots fall.
It is helpful to represent a video as a collection of shots; each shot can then be
represented with a key frame. This representation can be used to search for
videos or to encapsulate their content for a user to browse a video or a set of videos.
Finding the boundaries of these shots automatically — shot boundary detec-

tion — is an important practical application of simple segmentation algorithms.
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Figure 16.9. The figure shows every fifth frame from a sequence of 120 frames of a child
playing on a patterned sofa. The frames are used at an 80x60 resolution, for reasons we
discuss in figure 16.11. Notice that the child moves from one side of the frame to the other
during the sequence.

A shot boundary detection algorithm must find frames in the video that are “sig-
nificantly” different from the previous frame. Our test of significance must take
account of the fact that within a given shot both objects and the background can
move around in the field of view. Typically, this test takes the form of a distance; if
the distance is larger than a threshold, a shot boundary is declared (algorithm 2).
There are a variety of standard techniques for computing a distance:

• Frame differencing algorithms take pixel-by-pixel differences between each
two frames in a sequence, and sum the squares of the differences. These
algorithms are unpopular, because they are slow — there are many differences
— and because they tend to find many shots when the camera is shaking.

• Histogram based algorithms compute colour histograms for each frame, and
compute a distance between the histograms. A difference in colour histograms
is a sensible measure to use, because it is insensitive to the spatial arrangement
of colours in the frame — for example, small camera jitters will not affect the
histogram.

• Block comparison algorithms compare frames by cutting them into a grid
of boxes, and comparing the boxes. This is to avoid the difficulty with colour
histograms, where (for example) a red object disappearing off-screen in the
bottom left corner is equivalent to a red object appearing on screen from the
top edge. Typically, these block comparison algorithms compute an inter-
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a b c

d e

Figure 16.10. Background subtraction results for the sequence of figure 16.9, using
80x60 frames. We compare two methods of computing the background; in a, we show the
average of all 120 frames — notice that the child spent more time on one side of the sofa
than the other, leading the a faint blur in the average there. Pixels whose difference from
the average exceeds a small threshold are given in b, and c shows those whose difference
from the average exceeds a somewhat larger threshold. Notice that, in each case, there are
some excess pixels and some missing pixels. In d, we show a background computed using
a somewhat more sophisticated method (described briefly in section 18.2.5), and in e we
show pixels that this method believes are different from the background. Again, notice
the missing pixels.

frame distance that is a composite — taking the maximum is one natural
strategy — of inter-block distances, computed using the methods above.

• Edge differencing algorithms compute edge maps for each frame, and then
compare these edge maps. Typically, the comparison is obtained by counting
the number of potentially corresponding edges (nearby, similar orientation,
etc.) in the next frame. If there are few potentially corresponding edges,
there is a shot boundary. A distance can be obtained by transforming the
number of corresponding edges.

These are relatively ad hoc methods, but are often sufficient to solve the problem
at hand.

16.4 Image Segmentation by Clustering Pixels

Clustering is a process whereby a data set is replaced by clusters, which are col-
lections of data points that “belong together”. It is natural to think of image
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Figure 16.11. Registration can be a significant nuisance in background subtraction,
particularly for textures. These figures show results for the sequence of figure 16.9, us-
ing 160x120 frames. We compare two methods of computing the background; in a, we
show the average of all 120 frames — notice that the child spent more time on one side
of the sofa than the other, leading the a faint blur in the average there. Pixels whose
difference from the average exceeds a small threshold are given in b, and c shows those
whose difference from the average exceeds a somewhat larger threshold. In d, we show a
background computed using a somewhat more sophisticated method (described briefly in
section 18.2.5), and in e we show pixels that this method believes are different from the
background. Notice that the number of “problem pixels” — where the pattern on the sofa
has been mistaken for the child — has markedly increased. This is because very small
movements can cause the high spatial frequency pattern on the sofa to be misaligned,
leading to large differences.

segmentation as clustering; we would like to represent an image in terms of clusters
of pixels that “belong together”. The specific criterion to be used depends on the
application. Pixels may belong together because they have the same colour and/or
they have the same texture and/or they are nearby, etc.

16.4.1 Segmentation Using Simple Clustering Methods

It is relatively easy to take a clustering method and build an image segmenter from
it. Much of the literature on image segmentation consists of papers that are, in
essence, papers about clustering (though this isn’t always acknowledged).

Simple Clustering Methods

There are two natural algorithms for clustering. In divisive clustering, the entire
data set is regarded as a cluster, and then clusters are recursively split to yield a
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For each frame in an image sequence

Compute a distance between this frame and the

previous frame

If the distance is larger than some threshold,

classify the frame as a shot boundary.

end

Algorithm 16.2: Shot boundary detection using interframe differences

good clustering (algorithm 4). In agglomerative clustering, each data item is
regarded as a cluster and clusters are recursively merged to yield a good clustering
(algorithm 3).

Make each point a separate cluster

Until the clustering is satisfactory

Merge the two clusters with the

smallest inter-cluster distance

end

Algorithm 16.3: Agglomerative clustering, or clustering by merging

There are two major issues in thinking about clustering:

• what is a good inter-cluster distance? Agglomerative clustering uses an inter-
cluster distance to fuse “nearby” clusters; divisive clustering uses it to split
insufficiently “coherent” clusters. Even if a natural distance between data
points is available (which may not be the case for vision problems), there is
no canonical inter-cluster distance. Generally, one chooses a distance that
seems appropriate for the data set. For example, one might choose the dis-
tance between the closest elements as the inter-cluster distance — this tends
to yield extended clusters (statisticians call this method single-link cluster-
ing). Another natural choice is the maximum distance between an element of
the first cluster and one of the second — this tends to yield “rounded” clus-
ters (statisticians call this method complete-link clustering). Finally, one
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Construct a single cluster containing all points

Until the clustering is satisfactory

Split the cluster that yields the two

components with the largest inter-cluster distance

end

Algorithm 16.4: Divisive clustering, or clustering by splitting

could use an average of distances between elements in the clusters — this will
also tend to yield “rounded” clusters (statisticians call this method group
average clustering).

• and how many clusters are there? This is an intrinsically difficult task if
there is no model for the process that generated the clusters. The algorithms
we have described generate a hierarchy of clusters. Usually, this hierarchy is
displayed to a user in the form of a dendrogram— a representation of the
structure of the hierarchy of clusters that displays inter-cluster distances —
and an appropriate choice of clusters is made from the dendrogram (see the
example in figure 16.12).

Building Segmenters Using Clustering Methods

The distance used depends entirely on the application, but measures of colour differ-
ence and of texture are commonly used as clustering distances. It is often desirable
to have clusters that are “blobby”; this can be achieved by using difference in po-
sition in the clustering distance.
The main difficulty in using either agglomerative or divisive clustering methods

directly is that there are an awful lot of pixels in an image. There is no reasonable
prospect of examining a dendrogram, because the quantity of data means that it
will be too big. In practice, this means that the segmenters decide when to stop
splitting or merging by using a set of threshold tests — for example, an agglomera-
tive segmenter may stop merging when the distance between clusters is sufficiently
low, or when the number of clusters reaches some value.
Another difficulty created by the number of pixels is that it is impractical to

look for the best split of a cluster (for a divisive method) or the best merge (for
an agglomerative method). Divisive methods are usually modified by using some
form of summary of a cluster to suggest a good split. A natural summary to use is
a histogram of pixel colours (or grey levels).
Agglomerative methods also need to be modified. Firstly, the number of pix-
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Figure 16.12. Left, a data set; right, a dendrogram obtained by agglomerative clustering
using single link clustering. If one selects a particular value of distance, then a horizontal
line at that distance will split the dendrogram into clusters. This representation makes it
possible to guess how many clusters there are, and to get some insight into how good the
clusters are.

els means that one needs to be careful about the intercluster distance (the distance
between cluster centers of gravity is often used). Secondly, it is usual to try and
merge only clusters with shared boundaries (we probably don’t wish to represent
the US flag as three clusters, one red, one white and one blue). Finally, it can be
useful to merge regions simply by scanning the image and merging all pairs whose
distance falls below a threshold, rather than searching for the closest pair.

16.4.2 Clustering and Segmentation by K-means

Simple clustering methods use greedy interactions with existing clusters to come
up with a good overall representation. For example, in agglomerative clustering we
repeatedly make the best available merge. However, the methods are not explicit
about the objective function that the methods are attempting to optimize. An al-
ternative approach is to write down an objective function that expresses how good a
representation is, and then build an algorithm for obtaining the best representation.
A natural objective function can be obtained by assuming that we know there

are k clusters, where k is known. Each cluster is assumed to have a center; we write
the center of the i’th cluster as ci. The j’th element to be clustered is described by
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a feature vector xj . For example, if we were segmenting scattered points, then x
would be the coordinates of the points; if we were segmenting an intensity image,
x might be the intensity at a pixel.
We now assume that elements are close to the center of their cluster, yielding

the objective function

Φ(clusters, data) =
∑

i∈clusters


 ∑
j∈i‘th cluster

(xj − ci)
T (xj − ci)




Notice that if the allocation of points to clusters is known, it is easy to compute the
best center for each cluster. However, there are far too many possible allocations
of points to clusters to search this space for a minimum. Instead, we define an
algorithm which iterates through two activities:

• Assume the cluster centers are known, and allocate each point to the closest
cluster center.

• Assume the allocation is known, and choose a new set of cluster centers. Each
center is the mean of the points allocated to that cluster.

We then choose a start point by randomly choosing cluster centers, and then iterate
these stages alternately. This process will eventually converge to a local minimum
of the objective function (the value either goes down, or is fixed, at each step; it
is bounded below; and we discount the prospect of symmetries in the objective
function). It is not guaranteed to converge to the global minimum of the objective
function, however. It is also not guaranteed to produce k clusters, unless we modify
the allocation phase to ensure that each cluster has some non-zero number of points.
This algorithm is usually referred to as k-means. It is possible to search for an
appropriate number of clusters by applying k-means for different values of k, and
comparing the results; we defer a discussion of this issue until section 18.3.
One difficulty with using this approach for segmenting images is that segments

are not connected and can be scattered very widely (figures 16.13 and 16.14). This
effect can be reduced by using pixel coordinates as features, an approach that tends
to result in large regions being broken up (figure 16.15).

16.5 Segmentation by Graph-Theoretic Clustering

Clustering can be seen as a problem of cutting graphs into “good” pieces. In effect,
we associate each data item with a vertex in a weighted graph, where the weights
on the edges between elements are large if the elements are “similar” and small if
they are not. We then attempt to cut the graph into connected components with
relatively large interior weights — which correspond to clusters — by cutting edges
with relatively low weights. This view leads to a series of different, quite successful,
segmentation algorithms.
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Choose k data points to act as cluster centers

Until the cluster centers are unchanged

Allocate each data point to cluster whose center is nearest

Now ensure that every cluster has at least

one data point; possible techniques for doing this include .

supplying empty clusters with a point chosen at random from

points far from their cluster center.

Replace the cluster centers with the mean of the elements

in their clusters.

end

Algorithm 16.5: Clustering by K-Means

Figure 16.13. On the left, an image of mixed vegetables, which is segmented using k-
means to produce the images at center and on the right. We have replaced each pixel with
the mean value of its cluster; the result is somewhat like an adaptive requantization, as
one would expect. In the center, a segmentation obtained using only the intensity informa-
tion. At the right, a segmentation obtained using colour information. Each segmentation
assumes five clusters.

16.5.1 Terminology for Graphs

We review terminology here very briefly, as it’s quite easy to forget.

• A graph is a set of vertices V and edges E which connect various pairs of
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Figure 16.14. Here we show the image of vegetables segmented with k-means, assuming
a set of 11 components. The top left figure shows all segments shown together, with the
mean value in place of the original image values. The other figures show four of the
segments. Note that this approach leads to a set of segments that are not necessarily
connected. For this image, some segments are actually quite closely associated with objects
but one segment may represent many objects (the peppers); others are largely meaningless.
The absence of a texture measure creates serious difficulties, as the many different segments
resulting from the slice of red cabbage indicate.

Figure 16.15. Five of the segments obtained by segmenting the image of vegetables
with a k-means segmenter that uses position as part of the feature vector describing a
pixel, now using 20 segments rather than 11. Note that the large background regions that
should be coherent has been broken up because points got too far from the center. The
individual peppers are now better separated, but the red cabbage is still broken up because
there is no texture measure.

vertices. A graph can be written G = {V, E}. Each edge can be represented
by a pair of vertices, that is E ⊂ V × V . Graphs are often drawn as a set of
points with curves connecting the points.

• A directed graph is one in which edges (a, b) and (b, a) are distinct; such a
graph is drawn with arrowheads indicating which direction is intended.

• An undirected graph is one in which no distinction is drawn between edges
(a, b) and (b, a).

• A weighted graph is one in which a weight is associated with each edge.

• A self-loop is an edge that has the same vertex at each end; self-loops don’t
occur in practice in our applications.
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• Two vertices are said to be connected if there is a sequence of edges starting
at the one and ending at the other; if the graph is directed, then the arrows
in this sequence must point the right way.

• A connected graph is one where every pair of vertices is connected.

• Every graph consists of a disjoint set of connected components, that is
G = {V1 ∪ V2 . . . Vn, E1 ∪ E2 . . .En}, where {Vi, Ei} are all connected graphs
and there is no edge in E that connects an element of Vi with one of Vj for
i �= j.

16.5.2 The Overall Approach

It is useful to understand that a weighted graph can be represented by a square
matrix (figure 16.16). There is a row and a column for each vertex. The i, j’th
element of the matrix represents the weight on the edge from vertex i to vertex j;
for an undirected graph, we use a symmetric matrix and place half the weight in
each of the i, j’th and j, i’th element.
The application of graphs to clustering is this: take each element of the collec-

tion to be clustered, and associate it with a vertex on a graph. Now construct an
edge from every element to every other, and associate with this edge a weight repre-
senting the extent to which the elements are similar. Now cut edges in the graph to
form a “good” set of connected components — ideally, the within-component edges
will be large compared to the across-component edges. Each component will be a
cluster. For example, figure ?? shows a set of well separated points and the weight
matrix (i.e. undirected weighted graph, just drawn differently) that results from
a particular similarity measure; a desirable algorithm would notice that this ma-
trix looks a lot like a block diagonal matrix — because intercluster similarities are
strong and intracluster similarities are weak — and split it into two matrices, each
of which is a block. The issues to study are the criteria that lead to good connected
components and the algorithms for forming these connected components.

16.5.3 Affinity Measures

When we viewed segmentation as simple clustering, we needed to supply some
measure of how similar clusters were. The current model of segmentation simply
requires us a weight to place on each edge of the graph; these weights are usually
called affinity measures in the literature. Clearly, the affinity measure depends
on the problem at hand. The weight of an arc connecting similar nodes should be
large, and the weight on an arc connecting very different nodes should be small.

Affinity by Distance

Affinity should go down quite sharply with distance, once the distance is over some
threshold. One appropriate expression has the form

aff(x, y) = exp
{
−
(
(x− y)t(x− y)/2σ2d

)}
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Figure 16.16. On the top left, a drawing of an undirected weighted graph; on the
top right, the weight matrix associated with that graph. Larger values are lighter. By
associating the vertices with rows (and columns) in a different order, the matrix can be
shuffled. We have chosen the ordering to show the matrix in a form that emphasizes the
fact that it is very largely block-diagonal. The figure on the bottom shows a cut of that
graph that decomposes the graph into two tightly linked components. This cut decomposes
the graph’s matrix into the two main blocks on the diagonal.

where σd is a parameter which will be large if quite distant points should be grouped
and small if only very nearby points should be grouped (this is the expression used
for figure ??).

Affinity by Intensity

Affinity should be large for similar intensities, and smaller as the difference increases.
Again, an exponential form suggests itself, and we can use:

aff(x, y) = exp
{
−
(
(I(x) − I(y))t(I(x)− I(y))/2σ2I

)}
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Figure 16.17. On the left, a set of points on the plane. On the right, the affinity matrix
for these points computed using a decaying exponential in distance (section 16.5.3), where
large values are light and small values are dark. Notice the near block diagonal structure
of this matrix; there are two off-diagonal blocks that contain terms that are very close
to zero. The blocks correspond to links internal to the two obvious clusters, and the off
diagonal blocks correspond to links between these clusters.

Affinity by Colour

We need a colour metric to construct a meaningful colour affinity function. It’s
a good idea to use a uniform colour space, and a bad idea to use RGB space,
— for reasons that should be obvious, otherwise, reread section 4.3.2 — and an
appropriate expression has the form

aff(x, y) = exp
{
−
(
dist(c(x), c(y))2/2σ2c

)}
where ci is the colour at pixel i.

Affinity by Texture

The affinity should be large for similar textures and smaller as the difference in-
creases. We adopt a collection of filters f1, . . . , fn, and describe textures by the
outputs of these filters, which should span a range of scales and orientations. Now
for most textures, the filter outputs will not be the same at each point in the texture
— think of a chessboard — but a histogram of the filter outputs constructed over a
reasonably sized neighbourhood will be well behaved. This suggests a process where
we firstly establish a local scale at each point — perhaps by looking at energy in
coarse scale filters, or using some other method — and then compute a histogram
of filter outputs over a region determined by that scale — perhaps a circular region
centered on the point in question. We then write h for this histogram, and use an
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exponential form:

aff(x, y) = exp
{
−
(
(f(x)− f (y))t(f(x) − f(y))/2σ2I

)}
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Figure 16.18. The choice of scale for the affinity affects the affinity matrix. The top
row shows a dataset, which consists of four groups of 10 points drawn from a rotationally
symmetric normal distribution with four different means. The standard deviation in each
direction for these points is 0.2. In the second row, affinity matrices computed for this
dataset using different values of σd. On the left, σd = 0.1, in the center σd = 0.2 and on
the right, σd = 1. For the finest scale, the affinity between all points is rather small; for
the next scale, there are four clear blocks in the affinity matrix; and for the coarsest scale,
the number of blocks is less obvious.

16.5.4 Eigenvectors and Segmentation

In the first instance, assume that there are k elements and k clusters. We can
represent a cluster by a vector with k components. We will allow elements to be
associated with clusters using some continuous weight — we need to be a bit vague
about the semantics of these weights, but the intention is that if a component in
a particular vector has a small value, then it is weakly associated with the cluster,
and if it has a large value, then it is strongly associated with a cluster.
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Extracting a Single Good Cluster

A good cluster is one where elements that are strongly associated with the cluster
also have large values connecting one another in the affinity matrix. Write the
matrix representing the element affinities as A, and the vector of weights linking
elements to the n’th cluster as wn. In particular, we can construct an objective
function

wTnAwn

This is a sum of terms of the form

{association of element i with cluster n} ×

{affinity between i and j} ×

{association of element j with cluster n}

We can obtain a cluster by choosing a set of association weights that maximise this
objective function. The objective function is useless on its own, because scaling wn
by λ scales the total association by λ2. However, we can normalise the weights by
requiring that wTnwn = 1.
This suggests maximising wTnAwn subject to w

T
nwn = 1. The Lagrangian is

wTnAwn + λ
(
wTnwn − 1

)
(where λ is a Lagrange multiplier). Differentiation and dropping a factor of two
yields

Awn = λwn

meaning that wn is an eigenvector of A. This means that we could form a cluster by
obtaining the eigenvector with the largest eigenvalue — the cluster weights are the
elements of the eigenvector. For problems where reasonable clusters are apparent,
we expect that these cluster weights are large for some elements — which belong to
the cluster — and nearly zero for others — which do not. In fact, we can get the
weights for other clusters from other eigenvectors of A as well.

Extracting Weights for a Set of Clusters

In typical vision problems, there are strong association weights between relatively
few pairs of elements. We can reasonably expect to be dealing with clusters that
are (a) quite tight and (b) distinct.
These properties lead to a fairly characteristic structure in the affinity matrix.

In particular, if we relabel the nodes of the graph, then the rows and columns of
the matrix A are shuffled. We expect to be dealing with relatively few collections
of nodes with large association weights; furthermore, that these collections actually
form a series of relatively coherent, largely disjoint clusters. This means that we
could shuffle the rows and columns of M to form a matrix that is roughly block-
diagonal (the blocks being the clusters). Shuffling M simply shuffles the elements
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Figure 16.19. The eigenvector corresponding to the largest eigenvalue of the affinity
matrix for the dataset of example 16.18, using σd = 0.2. Notice that most values are small,
but some — corresponding to the elements of the main cluster — are large. The sign of
the association is not significant, because a scaled eigenvector is still an eigenvector.

of its eigenvectors, so that we can reason about the eigenvectors by thinking about
a shuffled version of M (i.e. figure 16.16 is a fair source of insight).
The eigenvectors of block-diagonal matrices consist of eigenvectors of the blocks,

padded out with zeros. We expect that each block has an eigenvector corresponding
to a rather large eigenvalue — corresponding to the cluster — and then a series of
small eigenvalues of no particular significance. From this, we expect that, if there
are c significant clusters (where c < k), the eigenvectors corresponding to the c
largest eigenvalues each represent a cluster.
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Figure 16.20. The three eigenvectors corresponding to the next three largest eigenvalues
of the affinity matrix for the dataset of example 16.18, using σd = 0.2 (the eigenvector
corresponding to the largest eigenvalue is given in figure 16.19). Notice that most values
are small, but for (disjoint) sets of elements, the corresponding values are large. This
follows from the block structure of the affinity matrix. The sign of the association is not
significant, because a scaled eigenvector is still an eigenvector.
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This means that each of these eigenvectors is an eigenvector of a block, padded
with zeros. In particular, a typical eigenvector will have a small set of large values—
corresponding to its block — and a set of near-zero values. We expect that only one
of these eigenvectors will have a large value for any given component; all the others
will be small (figure 16.20). Thus, we can interpret eigenvectors corresponding to
the c largest magnitude eigenvalues as cluster weights for the first c clusters. One
can usually quantize the cluster weights to zero or one, to obtain discrete clusters;
this is what has happened in the figures.

Construct an affinity matrix

Compute the eigenvalues and eigenvectors of the affinity matrix

Until there are sufficient clusters

Take the eigenvector corresponding to the

largest unprocessed eigenvalue; zero all components corresponding

to elements that have already been clustered, and threshold the

remaining components to determine which element

belongs to this cluster, choosing a threshold by

clustering the components, or

using a threshold fixed in advance.

If all elements have been accounted for, there are

sufficient clusters

end

Algorithm 16.6: Clustering by Graph Eigenvectors

This is a qualitative argument, and there are graphs for which the argument
is decidedly suspect. Furthermore, we have been decidedly vague about how to
determine c, though our argument suggests that poking around in the spectrum of
A might be rewarding — one would hope to find a small set of large eigenvalues,
and a large set of small eigenvalues (figure 16.21).

16.5.5 Normalised Cuts

The qualitative argument of the previous section is somewhat soft. For example,
if the eigenvalues of the blocks are very similar, we could end up with eigenvectors
that do not split clusters, because any linear combination of eigenvectors with the
same eigenvalue is also an eigenvector (figure 16.22).
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Figure 16.21. The number of clusters is reflected in the eigenvalues of the affinity
matrix. The figure shows eigenvalues of the affinity matrices for each of the cases in
figure 16.18. On the left, σd = 0.1, in the center σd = 0.2 and on the right, σd = 1.
For the finest scale, there are many rather large eigenvalues — this is because the affinity
between all points is rather small; for the next scale, there are four eigenvalues rather
larger than the rest; and for the coarsest scale, there are only two eigenvalues rather larger
than the rest.

An alternative approach is to cut the graph into two connected components such
that the cost of the cut is a small fraction of the total affinity within each group.
We can formalise this as decomposing a weighted graph V into two components A
and B, and scoring the decomposition with

cut(A,B)

assoc(A, V )
+
cut(A,B)

assoc(B, V )

(where cut(A,B) is the sum of weights of all edges in V that have one end in A and
the other in B, and assoc(A, V ) is the sum of weights of all edges that have one
end in A). This score will be small if the cut separates two components that have
very few edges of low weight between them and many internal edges of high weight.
We would like to find the cut with the minimum value of this criterion, called a
normalized cut.
We write y is a vector of elements, one for each graph node, whose values are

either 1 or −b. The values of y are used to distinguish between the components
of the graph: if the i’th component of y is 1, then the corresponding node in the
graph belongs to one component, and if it is −b, the node belongs to the other. We
write the affinity matrix as A is the matrix of weights between nodes in the graph
and D is the degree matrix; each diagonal element of this matrix is the sum of
weights coming into the corresponding node, that is

Dii =
∑
j

Aij

and the off-diagonal elements of D are zero. In this notation, and with a little
manipulation, our criterion can be rewritten as:

yT (D −A)y

yTDy
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Figure 16.22. Eigenvectors of an affinity matrix can be a misleading guide to clusters.
The dataset on the top left consists of four copies of the same set of points; this leads
to a repeated block structure in the affinity matrix shown in the top center. Each block
has the same spectrum, and this results in a spectrum for the affinity matrix that has
(roughly) four copies of the same eigenvalue (top right). The bottom row shows the
eigenvectors corresponding to the four largest eigenvalues; notice (a) that the values don’t
suggest clusters and (b) a linear combination of the eigenvectors might lead to a quite
good clustering.

We now wish to find a vector y that minimizes this criterion. The problem we have
set up is an integer programming problem, and because it is exactly equivalent
to the graph cut problem, it isn’t any easier. The difficulty is the discrete values for
elements of y — in principle, we could solve the problem by testing every possible
y, but this involves searching a space whose size is exponential in the number of
pixels which will be slow2. A common approximate solution to such problems is to
compute a real vector y that minimizes the criterion. Elements are then assigned
to one side or the other by testing against a threshold. There are then two issues:
firstly, we must obtain the real vector, and secondly, we must choose a threshold.

Obtaining a Real Vector

The real vector is easily obtained. It is an exercise to show that a solution to

(D −A)y = λDy

is a solution to our problem with real values. The only question is which generalised
eigenvector to use? It turns out that the smallest eigenvalue is guaranteed to be zero,
2As in, probably won’t finish before the universe burns out.
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so the eigenvector corresponding to the second smallest eigenvalue is appropriate.
The easiest way to determine this eigenvector is to perform the transformation
z = D1/2y, and so get:

D−1/2(D −A)D−1/2z = λz

and y follows easily. Note that solutions to this problem are also solutions to

Nz = D−1/2AD−1/2z = µz

and N is sometimes called the normalised affinity matrix.

Choosing a Threshold

Finding the appropriate threshold value is not particularly difficult; assume there
areN nodes in the graph, so that there are N elements in y , and at mostN different
values. Now if we write ncut(v) for the value of the normalised cut criterion at a
particular threshold value v, there are at most N + 1 values of ncut(v). We can
form each of these values, and choose a threshold that leads to the smallest. Notice
also that this formalism lends itself to recursion, in that each component of the
result is a graph, and these new graphs can be split, too. A simpler criterion, which
appears to work in practice, is to walk down the eigenvalues and use eigenvectors
corresponding to smaller eigenvalues to obtain new clusters.

16.6 Discussion

Segmentation is a difficult topic, and there are a huge variety of methods. Surveys
of mainly historical interest are [Riseman and Arbib, 1977; Fu and Mui, 1981;
Haralick and Shapiro, 1985; Nevatia, 1986; Mitiche and Aggarwal, 1985]; more
recent survey are rare, but there is [Pal and Pal, 1993]. One reason is that it is
typically quite hard to assess the performance of a segmenter at a level more useful
than that of showing some examples. Evaluation is easier in the context of a specific
task, and there are several papers dealing with assorted tasks [Hartley et al., 1982;
Yasnoff et al., 1977; Zhang, 1996; Ranade and Prewitt, 1980].
The original clustering segmenter is [Ohlander, 1975; Ohlander et al., 1978].

Clustering methods tend to be rather arbitrary — remember, this doesn’t mean
they’re not useful — because there really isn’t much theory available to predict
what should be clustered and how. It is clear that what we should be doing is
forming clusters that are helpful to a particular application, but this criterion hasn’t
been formalised in any useful way. In this chapter, we have attempted to give the
big picture while ignoring detail, because a detailed record of what has been done
would be unenlightening.
A variety of graph theoretical clustering methods have been used in vision [Wu

and Leahy, 1993; Sarkar and Boyer, 1996; Sarkar and Boyer, 1998; Cox et al.,
1996] and the summary in [Weiss, 1999]. The normalized cuts formalism is due
to [Shi and Malik, 1997; Shi and Malik, 2000]; variants include applications to
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Figure 16.23. The images on top are segmented using the normalised cuts framework,
described in the text, into the components shown. The affinity measures used involved
intensity and texture, as in section 16.5.3. The image of the swimming tiger yields one
segment that is essentially tiger, one that is grass, and four components corresponding to
the lake. Similarly, the railing shows as three reasonably coherent segments. Note the
improvement over k-means segmentation obtained by having a texture measure. Figure
from “Image and video segmentation: the normalized cut framework,” J. Shi et al, Proc.
IEEE Int. Conf. Image Processing, 1998 c© 1998 IEEE

motion segmentation [Shi and Malik, 1998a] and methods for deducing similarity
metrics from outputs [Shi and Malik, 1998b]. There are numerous alternate criteria
(e.g. [Perona and Freeman, 1998; Cox et al., 1996]). We have stressed the graph
theoretical clustering methods because their ability to deal with any affinity function
one cares to name is an attractive feature.
Segmentation is also a key open problem in vision, which is why a detailed record

of what has been done would be huge. Up until quite recently, it was usual to talk
about recognition and segmentation as if they were distinct activities. This view is
going out of fashion — as it should — because there isn’t much point in creating a
segmented representation that doesn’t help with some application; furthermore, if
we can be crisp about what should be recognised, that should make it possible to
be crisp about what a segmented representation should look like.
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Figure 16.24. Three of the first six frames of a motion sequence, which shows a moving
view of a house; the tree sweeps past the front of the house. Below, we see spatio-temporal
segments established using normalised cuts and a spatio-temporal affinity function (sec-
tion 16.5.3). Figure from “Image and video segmentation: the normalized cut framework,”
J. Shi et al, Proc. IEEE Int. Conf. Image Processing, 1998 c© 1998 IEEE

16.6.1 Segmentation and Grouping in People

There is a large literature on the role of grouping in human visual perception. Stan-
dard Gestalt handbooks include [Koffka, 1935; Kanizsa, 1979]. Subjective contours
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were first described by Kanisza; there is a broad summary discussion in [Kanizsa,
234]. Palmer’s authoritative book gives a much broader picture than we can supply
here [Palmer, 1999]. There is a great deal of information about the development
of different theories of vision and the origins of Gestalt thinking in [Gordon, 1997].
Some groups appear to be formed remarkably early in the visual process, a phe-
nomenon known as “pop out” [Triesman, 1982].

16.6.2 Perceptual Grouping

On occasion, a distinction is drawn between perceptual organisation— which is seen
as clustering image tokens into useful groups — and segmentation — which is seen as
decomposing images into regions. We don’t accept this distinction; the advantage of
seeing these problems as manifestations of the same activity is that one can convert
algorithmic advances from one problem to another freely. We haven’t discussed some
aspects of perceptual organisation in great detail, mainly because our emphasis is
on exposition rather than historical accuracy, and these methods follow from the
unified view. For example, there is a long thread of literature on clustering image
edge points or line segments into configurations that are unlikely to have arisen by
accident; we cover some of these ideas in the following chapter, but also draw the
readers attention to [Lowe, 1985; Mohan and Nevatia, 1992; Sarkar and Boyer, 1994;
Sarkar and Boyer, 1992; Sarkar and Boyer, 1993; Amir and Lindenbaum, 1996;
Huttenlocher and Wayner, 1992]. In building user interfaces, it can (as we hinted
above) be very helpful to know what is perceptually salient (e.g. [Saund and Moran,
1995]).

Assignments

Exercises

• We wish to cluster a set of pixels using colour and texture differences. The
objective function

Φ(clusters, data) =
∑

i∈clusters


 ∑
j∈i‘th cluster

(xj − ci)
T (xj − ci)




used in section 16.4.2 may be inappropriate — for example, colour differences
could be too strongly weighted if colour and texture are measured on different
scales.

1. Extend the description of the k-means algorithm to deal with the case
of an objective function of the form

Φ(clusters, data) =
∑

i∈clusters


 ∑
j∈i‘th cluster

(xj − ci)
TS(xj − ci)
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where S is an a symmetric, positive definite matrix.

2. For the simpler objective function, we had to ensure that each cluster
contained at least one element (otherwise we can’t compute the clus-
ter center). How many elements must a cluster contain for the more
complicated objective function?

3. As we remarked in section 16.4.2, there is no guarantee that k-means
gets to a global minimum of the objective function; show that it must
always get to a local minimum.

4. Sketch two possible local minima for a k-means clustering method clus-
tering data points described by a two-dimensional feature vector. Use an
example with only two clusters, for simplicity. You shouldn’t need many
data points. You should do this exercise for both objective functions.

• Read [Shi and Malik, 97] and follow the proof that the normalised cut criterion
leads to the integer programming problem given in the text. Why does the
normalised affinity matrix have a null space? give a vector in its kernel.

• Show that choosing a real vector that maximises the expression

yT (D −W)y

yTDy

is the same as solving the eigenvalue problem

D−1/2WWz = µz

where z = D−1/2y.

• Grouping based on eigenvectors presents one difficulty: how to obtain eigen-
vectors for a large matrix quickly. The standard method is Lanczos’ algo-
rithm; read [], p.xxx-yyy, and implement this algorithm. Determine the time
taken to obtain eigenvectors for a series of images of different sizes. Is your
data consistent with the (known) order of growth of the algorithm?

• This exercise explores using normalised cuts to obtain more than two clusters.
One strategy is to construct a new graph for each component separately, and
call the algorithm recursively. You should notice a strong similarity between
this approach and classical divisive clustering algorithms. The other strategy
is to look at eigenvectors corresponding to smaller eigenvalues.

1. Explain why these strategies are not equivalent.

2. Now assume that we have a graph that has two connected components.
Describe the eigenvector corresponding to the largest eigenvalue.

3. Now describe the eigenvector corresponding to the second largest eigen-
value.
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4. Turn this information into an argument that the two strategies for gen-
erating more clusters should yield quite similar results under appropriate
conditions; what are appropriate conditions?

Programming Assignments

• Build a background subtraction algorithm using a moving average and exper-
iment with the filter.

• Build a shot boundary detection system using any two techniques that appeal,
and compare performance on different runs of video.

• Implement a segmenter that uses k-means to form segments based on colour
and position. Describe the effect of different choices of the number of segments;
investigate the effects of different local minima.



Chapter 17

SEGMENTATION BY
FITTING A MODEL

An alternative view of segmentation is to assert that pixels (tokens, etc.) belong
together, because together they conform to some model. This view is rather similar
to the clustering view; the main difference is that the model is now explicit, and
may involve relations at a larger scale than from token to token. For example,
imagine a program that attempts to assemble tokens into groups that “look like” a
line (in some sense we don’t need to make precise at this point). It isn’t possible
to do this by looking only at pairwise relations between tokens — instead, we must
look at some properties of the collective of tokens.
Typically, fitting involves choosing a model, and then declaring some criterion

by which a good fit can be identified. In the first instance, we will use criteria
which are good but should look rather arbitrary. In section 17.1, we discuss fitting
lines to tokens, an apparently straightforward exercise that quickly becomes rather
subtle; we shall revisit it in the following chapter. In section 17.2, we extend
these ideas to fitting curves, and in section 17.3 we show how to use them to find
body segments. The criteria that we use to fit lines are, in fact, justifiable using a
probabilistic argument, and we introduce the probabilistic approach in section 17.4.
In section 17.5, we introduce the vexed issue of outliers, leading to an algorithm
that searches a data set for components that are consistent with a model. Finally,
in section 17.6, we show the use of this algorithm to fit a fundamental matrix.

17.1 Fitting Lines

Tokens may cluster for other reasons than they are close or have similar colour.
One reason to cluster tokens is that, together, they form a familiar geometric con-
figuration — for example, they all lie on a line or on a circle. Clustering tokens into
structures is often called fitting. Line fitting, in particular, is extremely useful. In
many applications, objects are characterised by the presence of straight lines. For
example, we might wish to build models of buildings using pictures of the buildings
(as in the application in chapter 23). This application uses polyhedral models of

469
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buildings, meaning that straight lines in the image are important. Similarly, many
industrial parts have straight edges of one form or another, and if we wish to recog-
nise industrial parts in an image, straight lines could be helpful. In either case, a
report of all straight lines in the image is an extremely useful segmentation.
There are three problems in line fitting. Firstly, given the points that belong

to a line, what is the line? Secondly, which points belong to which line? Finally,
how many lines are there. We describe the Hough transform, is a method that
promises a solution to all three, in section 17.1.1. In practice, Hough transforms
are not terribly satisfactory. We discuss standard solutions to the first problem in
section 17.1.2, and two of many solutions to the second in section 17.1.3. A more
sophisticated discussion requires a probabilistic model, and we will revisit the topic
in chapter 18.

17.1.1 The Hough Transform

One way to cluster points that could lie on the same structure is to record all the
structures on which each point lies, and then look for structures that get many
votes. This (quite general) technique is known as the Hough transform. We take
each image token, and determine all structures that could pass through that token.
We make a record of this set — you should think of this as voting — and repeat the
process for each token. We decide on what is present by looking at the votes. For
example, if we are grouping points that lie on lines, we take each point and vote for
all lines that could go through it; we now do this for each point. The line (or lines)
that are present should make themselves obvious, because they pass through many
points and so have many votes.

Fitting Lines with the Hough Transform

Hough transforms tend to be most successfully applied to line finding. We will
do this example to illustrate the method and its drawbacks. A line is easily
parametrised as a collection of points (x, y) such that

x cos θ + y sin θ + r = 0

Now any pair of (θ, r) represents a unique line, where r ≥ 0 is the perpendicular
distance from the line to the origin, and 0 ≤ θ < 2π. We call the set of pairs (θ, r)
line space; the space can be visualised as a half-infinite cylinder. There is a family
of lines that passes through any point token. In particular, the lines that lie on the
curve in line space given by r = −x0 cos θ+y0 sin θ all pass through the point token
at (x0, y0).
Because the image has a known size, there is some R such that we are not

interested in lines for r > R — these lines will be too far away from the origin
for us to see them. This means that the lines we are interested in form a bounded
subset of the plane, and we discretize this with some convenient grid (which we’ll
discuss later). The grid elements can be thought of as buckets, into which we will
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Figure 17.1. The Hough transform maps each point like token to a curve of possible
lines (or other parametric curves) through that point. These figures illustrate the Hough
transform for lines. The left hand column shows points, and the right hand column shows
the corresponding accumulator arrays (the number of votes is indicated by the grey level,
with a large number of votes being indicated by bright points). The top shows a set of
20 points drawn from a line next to the accumulator array for the Hough transform of
these points. Corresponding to each point is a curve of votes in the accumulator array;
the largest set of votes is 20. The horizontal variable in the accumulator array is θ and the
vertical variable is r; there are 200 steps in each direction, and r lies in the range [0, 1.55].
In the center, these points have been offset by a random vector each element of which is
uniform in the range [0, 0.05]; note that this offsets the curves in the accumulator array
shown next to the points; the maximum vote is now 6.
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Figure 17.2. The Hough transform for a set of random points can lead to quite large
sets of votes in the accumulator array. As in figure 17.1, the left hand column shows points,
and the right hand column shows the corresponding accumulator arrays (the number of
votes is indicated by the grey level, with a large number of votes being indicated by
bright points). In this case, the data points are noise points (both coordinates are uniform
random numbers in the range [0, 1]); the accumulator array in this case contains many
points of overlap, and the maximum vote is now 4. Figures 17.3 and 17.4 explore noise
issues somewhat further.

sort votes. This grid of buckets is referred to as the accumulator array. Now for
each point token we add a vote to the total formed for every grid element on the
curve corresponding to the point token. If there are many point tokens that are
collinear, we expect that there will be many votes in the grid element corresponding
to that line.

Practical Problems with the Hough Transform

Unfortunately, the Hough transform comes with a number of important practical
problems:

• Quantization errors: an appropriate grid size is difficult to pick. Too coarse
a grid can lead to large values of the vote being obtained falsely, because many
quite different lines correspond to a bucket. Too fine a value of the grid can
lead to lines not being found, because votes resulting from tokens that are not
exactly collinear end up in different buckets, and no bucket has a large vote
(figure 17.1).

• Difficulties with noise: the attraction of the Hough transform is that it
connects widely separated tokens that lie “close” to some form of parametric
curve. This is also a weakness; it is usually possible to find many quite good
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phantom lines in a large set of reasonably uniformly distributed tokens. This
means that, for example, regions of texture can generate peaks in the voting
array that are larger than those associated with the lines sought (figures 17.3
and 17.4).
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Figure 17.3. The effects of noise make it difficult to use a Hough transform robustly. The
plot shows the maximum number of votes in the accumulator array for a Hough transform
of 20 points on a line perturbed by uniform noise, plotted against the magnitude of the
noise. The noise displaces the curves from each other, and quite quickly leads to a collapse
in the number of votes. The plot has been averaged over 10 trials.

The Hough transform is worth talking about, because, despite these difficulties,
it can often be implemented in a way that is quite useful for well-adapted problems.
In practice, it is almost always used to find lines in sets of edge points. Useful
implementation guidelines are:

• Ensure the minimum of irrelevant tokens this can often be done by
tuning the edge detector to smooth out texture, setting the illumination to
produce high contrast edges, etc.

• Choose the grid carefully this is usually done by trial and error. It can
be helpful to vote for all neighbours of a grid element at the same time one
votes for the element.
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Figure 17.4. A plot of the maximum number of votes in the accumulator array for
a Hough transform of a set of points whose coordinates are uniform random numbers
in the range [0, 1], plotted against the number of points. As the level of noise goes up,
the number of votes in the right bucket goes down and the prospect of obtaining a large
spurious vote in the accumulator array goes up. The plots have again been averaged over
10 trials. Compare this figure with figure 17.3, but notice the slightly different scales; the
comparison suggests that it can be quite difficult to pull a line out of noise with a Hough
transform (because the number of votes for the line might be comparable with the number
of votes for a line due to noise). These figures illustrate the importance of ruling out as
many noise tokens as possible before performing a Hough transform.

17.1.2 Line Fitting with Least Squares

We first assume that all the points that belong to a particular line are known, and
the parameters of the line must be found. We adopt the notation that

u =

∑
ui
k

to simplify the presentation.

Least Squares

Least squares is a fitting procedure with a long tradition (which is the only reason we
describe it!). It has the virtue of yielding a simple analysis and the very significant
disadvantage of a substantial bias. For this approach, we represent a line as y =
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ax+ b. At each data point, we have (xi, yi); we decide to choose the line that best
predicts the measured y-coordinate for each measured x coordinate.
This means we want to choose the line that minimises∑

i

(yi − axi − b)
2

and by differentiation, the line is given by the solution to the problem(
y2

y

)
=

(
x2 x
x 1

)(
a
b

)

While this is a standard linear solution to a classical problem, it’s actually not much
help in vision applications because the model is an extremely poor model. The
difficulty is that the measurement error is dependent on coordinate frame — we are
counting vertical offsets from the line as errors, which means that near vertical lines
lead to quite large values of the error and quite funny fits (figure 17.5). In fact, the
process is so dependent on coordinate frame that it doesn’t represent vertical lines
at all.

Figure 17.5. Left: Total least squares models data points as being generated by an
abstract point along the line to which is added a vector perpendicular to the line, with
a length given by a zero mean, Gaussian random variable. This means that the distance
from data points to the line has a normal distribution. By setting this up as a maximum
likelihood problem, we obtain a fitting criterion that chooses a line that minimizes the
sum of distances between data points and the line. Right: Least squares follows the same
general outline, but assumes that the error appears only in the y-coordinate. This yields
a (very slightly) simpler mathematical problem, at the cost of a poor fit.

Total Least Squares

We could work with the actual distance between the point and the line (rather than
the vertical distance). This leads to a problem known as total least squares. We
can represent a line as the collection of points where ax+by+c = 0. Every line can
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be represented in this way, and we can think of a line as a triple of values (a, b, c).
Notice that for λ �= 0, the line given by λ(a, b, c) is the same as the line represented
by (a, b, c). In the exercises, you are asked to prove the simple, but extremely useful,
result that the perpendicular distance from a point (u, v) to a line (a, b, c) is given
by abs(au+ bv + c) if a2 + b2 = 1. In our experience, this fact is useful enough to
be worth memorizing.
To minimize the sum of perpendicular distances between points and lines, we

need to minimize ∑
i

(axi + byi + c)
2

where a2 + b2 = 1 and C is some normalising constant of no interest. Thus, a
maximum-likelihood solution is obtained by maximising this expression. Now using
a Lagrange multiplier λ, we have a solution if

 x2 xy x

xy y2 y
x y 1




 ab
c


 = λ


 2a2b
0




This means that
c = −ax − by

and we can substitute this back to get the eigenvalue problem(
x2 − x x xy − x y
xy − x y y2 − y y

)(
a
b

)
= µ

(
a
b

)

Because this is a 2D eigenvalue problem, two solutions up to scale can be obtained
in closed form (for those who care - it’s usually done numerically!). The scale is
obtained from the constraint that a2 + b2 = 1. The two solutions to this problem
are lines at right angles, and one maximises the likelihood and the other minimises
it.

17.1.3 Which Point is on Which Line?

This problem can be very difficult, because it can involve search over a very large
combinatorial space. One approach is to notice that we very seldom encounter iso-
lated points; instead, we are fitting lines to edge points. We can use the orientation
of an edge point as a hint to the position of the next point on the line. If we are
stuck with isolated points, then both k-means and EM algorithms can be applied.

Incremental Fitting

Incremental line fitting algorithms take connected curves of edge points and fit
lines to runs of points along the curve. Connected curves of edge points are fairly
easily obtained from an edge detector whose output gives orientation (see exercises).
An incremental fitter then starts at one end of a curve of edge points and walks along



Section 17.1. Fitting Lines 477

the curve, cutting off runs of pixels that fit a line well (the structure of the algorithm
is shown in algorithm 1). Incremental line fitting can work very well indeed, despite
the lack of an underlying statistical model. One feature is that it reports groups
of lines that form closed curves. This is attractive when the lines one is interested
in can reasonably be expected to form a closed curve (for example, in some object
recognition applications)because it means that the algorithm reports natural groups
without further fuss. This strategy often leads to occluded edges resulting in more
than one fitted line. This difficulty can be addressed by postprocessing the lines to
find pairs that (roughly) coincide, but the process is somewhat unattractive because
it is hard to give a sensible criterion by which to decide when two lines do coincide.

Put all points on curve list, in order along the curve

empty the line point list

empty the line list

Until there are two few points on the curve

Transfer first few points on the curve to the line point list

fit line to line point list

while fitted line is good enough

transfer the next point on the curve

to the line point list and refit the line

end

transfer last point back to curve

attach line to line list

end

Algorithm 17.1: Incremental line fitting by walking along a curve, fitting a line
to runs of pixels along the curve, and breaking the curve when the residual is too
large

Allocating points to lines with K-means

Assume that points carry no hints about which line they lie on (i.e. there is no
colour, etc. information to help, and, crucially, the points are not linked). We can
attempt to determine which point lies on which line is to use a modified version of
k-means. In this case, the model is that there are k lines, each of which generates
some subset of the data points; the best solution for lines and data points is obtained
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by minimizing ∑
li∈lines

∑
xj∈data due to i’th line

dist(li, xj)
2

over both correspondences and lines. Again, there are too many correspondences
to search this space.
It is easy to modify k-means to deal with this problem. The two phases are:

• allocate each point to the closest line;

• fit the best line to the points allocated to each line.

resulting in the algorithm shown in figure 2. Convergence can be tested by looking
at the size of the change in the lines, at whether labels have been flipped (probably
the best test), or by looking at the sum of perpendicular distances of points from
their lines (which operates as a log likelihood).

Hypothesize k lines (perhaps uniformly at random)
or

hypothesize an assignment of lines to points

and then fit lines using this assignment

Until convergence

allocate each point to the closest line

refit lines

Algorithm 17.2: K-means line fitting by allocating points to the closest line and
then refitting.

17.2 Fitting Curves

In principle, fitting curves is not very different from fitting lines. We minimize the
sum of squared distances between the points and the curve. This generates quite
difficult practical problems: it is usually very hard to tell the distance between a
point and a curve. We can either solve this problem, or apply various approxi-
mations (which are usually chosen because they are computationally simple, not
because they result from clean generative models). We sketch some solutions for
the distance problem for the two main representations of curves.

17.2.1 Implicit Curves

The coordinates of implicit curves satisfy some parametric equation; if this equa-
tion is a polynomial, then the curve is said to be algebraic, and this case is by far
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the most common. Some common cases are given in table 17.1.

Curve equation

Line ax+ by + c = 0

Circle, center (a, b) x2 + y2 − 2ax− 2by + a2 + b2 − r2 = 0
and radius r
Ellipses ax2 + bxy + cy2 + dx+ ey + f = 0

(including circles) where
b2 − 4ac < 0

Hyperbolae ax2 + bxy + cy2 + dx+ ey + f = 0
where

b2 − 4ac > 0
Parabolae ax2 + bxy + cy2 + dx+ ey + f = 0

where
b2 − 4ac = 0

General conic sections ax2 + bxy + cy2 + dx+ ey + f = 0

Table 17.1. Some implicit curves used in vision applications. Note that not all of these
curves are guaranteed to have any real points on them — for example, x2 + y2 + 1 = 0
doesn’t. Higher degree curves are seldom used, because it can be difficult to get stable fits
to these curves.

The Distance from a Point to an Implicit Curve

Now we would like to know the distance from a data point to the closest point on
the implicit curve. Assume that the curve has the form φ(x, y) = 0. The vector
from the closest point on the implicit curve to the data point is normal to the curve,
so the closest point is given by finding all the (u, v) with the following properties:

1. (u, v) is a point on the curve — this means that φ(u, v) = 0;

2. s = (dx, dy)− (u, v) is normal to the curve.

Given all such s, the length of the shortest is the distance from the data point to
the curve.
The second criterion requires a little work to determine the normal. The normal

to an implicit curve is the direction in which we leave the curve fastest; along this
direction, the value of φ must change fastest, too. This means that the normal at
a point (u, v) is

(
∂φ

∂x
,
∂φ

∂y
)

evaluated at (u, v). If the tangent to the curve is T , then we must have T .s = 0.
Because we are working in 2D, we can determine the tangent from the normal, so
that we must have

ψ(u, v; dx, dy) =
∂φ

∂y
(u, v) {dx − u} −

∂φ

∂x
(u, v) {dy − v} = 0
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at the point (u, v). We now have two equations in two unknowns, and in principle
can solve them.

Approximations to the Distance

Notice that for a relatively simple curve we already have a somewhat nasty problem
to solve. A curve with a slightly more complicated geometry — obtained by choosing
φ to be a polynomial of higher degree, say d — leads to quite nasty problems.
This is because the closest point on the curve would be obtained by solving two
simultaneous polynomial equations, both of degree d. It can be shown that this
can lead to as many as d2 solutions, which are usually hard to obtain in practice.
Various approximations to the distance between a point and an implicit algebraic
curve have come into practice.
The best known is algebraic distance; in this case, we measure the distance

between a curve and a point by evaluating the polynomial equation at that point,
that is, we make the approximation:

distance between (dx, dy) and φ(x, y) = 0 = φ(dx, dy)

This approximation can be (rather roughly!) justified when the data points are
quite close to the curve. For a point sufficiently close to the curve and to first
order, φ(dx, dy) increases as (dx, dy) moves normal to the curve — because the
normal to the curve is given by the gradient of φ — and does not increase as
(dx, dy) moves tangent to the curve. One significant difficulty is that, as it stands,
algebraic distance is ill-defined, because many polynomials correspond to the same
curve. In particular, the curve given by µφ(x, y) = 0 is the same as the curve
given by φ(x, y) = 0. This problem can be solved normalising the coefficients of the
polynomial in some way.
We have already seen one example of this process in section 17.1, where we

fitted a line (φ(x, y) = ax + by + c = 0) to a set of points by minimizing the
algebraic distance, subject to the constraint that a2 + b2 = 1. In this case, the
algebraic distance is the same as the actual distance. The choice of normalization
is important. For example, if we try to fit conics (ax2+bxy+cy2+dx+ey+f = 0)
using the constraint b = 1, we cannot fit circles.
An alternative approximation is to use

φ(dx, dy)

|∇φ(dx, dy)|

which has the advantage of not requiring a normalising constant; in the case of a
line, this approximation is exact. Notice that this approximation has the same prop-
erties as algebraic distance — it goes up as one moves along the normal, etc. The
advantage of the approximation is that is somewhat more accurate than algebraic
distance, because it is normalised by the length of the normal. This means that
it can be read — roughly! — as giving the percentage distance along the normal
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Curves Parametric form parameters

Circles centered (rsin(t), rcos(t)) θ = r
at the origin t ∈ [0, 2π)
Circles (rsin(t) + a, rcos(t) + b) θ = (r, a, b)

t ∈ [0, 2π)
Axis aligned (r1sin(t) + a, r2cos(t) + b) θ = (r1, r2, a, b)
ellipses t ∈ [0, 2π)
Ellipses (cos φ (r1sin(t) + a)− sinφ (r2cos(t) + b) , θ = (r1, r2, a, b, φ)

sinφ (r1sin(t) + a) + cos φ (r2cos(t) + b)) t ∈ [0, 2π)
cubic segments (at3 + bt2 + ct+ d, et3 + ft2 + gt + h) θ = (a, b, c, d, e, f, g, h)

t ∈ [0, 1]

Table 17.2. A selection of parametric curves often used in vision applications. It is
quite common to put together a set of cubic curves, with constraints on their coefficients
such that they form a single continuous differentiable curve; the result is known as a cubic
spline.

from the curve to the point. In practice, this approximation is seldom used, mainly
because the use of algebraic distance yields simpler numerical problems.
Both of these approximations are very dangerous. This is because their be-

haviour for data points that are far from the curve is strange and not well under-
stood. As a result, the relationship between a fitted curve and a set of data points
becomes a bit mysterious if the data points don’t lie very close to a curve of that
class. Algebraic distance is used quite widely in practice, because it yields easy
numerical problems and can be used for higher dimensional problems like approx-
imating the distance between points and implicit surfaces. The exact distance is
very difficult to compute for such problems.

17.2.2 Parametric Curves

The coordinates of a parametric curve are given as parametric functions of a
parameter that varies along the curve. Parametric curves have the form:

(x(t), y(t)) = (x(t; θ), y(t; θ)) t ∈ [tmin, tmax]

Table 17.2 shows the form of a variety of useful parametric curves.

The Distance from a Point to a Parametric Curve

Assume we have a data point (dx, dy). The closest point on a parametric curve can
be identified by its parameter value, which we shall write as τ . This point could lie
at one or other end of the curve. Otherwise, the vector from our data point to the
closest point is normal to the curve. This means that s(τ ) = (dx, dy)− (x(τ ), y(τ ))
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is normal to the tangent vector, so that s(τ ).T = 0. The tangent vector is

(
dx

dt
(τ ),
dy

dt
(τ ))

which means that τ must satisfy the equation

dx

dt
(τ ) {dx − x(τ )}+

dy

dt
(τ ) {dy − y(τ )} = 0

Now this is only one equation, rather than two, but the situation is not much better
than that for parametric curves. It is almost always the case that x(t) and y(t)
are polynomials, because it is usually easier to do root finding for polynomials. At
worst, x(t) and y(t) are ratio’s of polynomials, because we can rearrange the left
hand side of our equation to come up with a polynomial in this case, too. However,
we are still faced with a possibly large number of roots.
There is a second difficulty that makes fitting to parametric curves unpopular.

Parametric curves with different coefficients may represent the same curve — for
example, the curve (x(t), y(t)) for t ∈ [0, 1] is the same as the curve (x(2t), y(2t)) for
t ∈ [0, 1/2]. This situation can be very bad, depending on the class of parametric
curves that we use.

17.3 Example: Finding Body Segments by Fitting

A body segment is, rather roughly, a cylinder. We should like to find near-cylinders
reliably. It is surprisingly difficult to do this in a wholly satisfactory fashion (there
remains no standard method). One approach is to study the relationship between
a surface and its outline, and from this derive a model of the appearance of the
boundary of a cylinder. We can then sift through edge points looking for collections
that look like cylinders. Because the geometry is relatively simple, we will think of
this problem as a search for the outline of a general surface of revolution (so the
method can be recycled).

17.3.1 Some Relations Between Surfaces and Outlines

Recall that the outline of a surface is formed by slicing a cone of rays with the
image plane. The cone of rays consists of rays tangent to the surface that pass
through the focal point of the camera — for a perspective camera — or are parallel
— for an affine camera. Call this cone the viewing cone. If the affine camera
is orthographic, which is by far the most common case, then the slice is taken
perpendicular to the rays. The viewing cone is usually easier to analyze than the
outline.

Cones

A cone is a surface obtained by sweeping a family of rays through a point — the
vertex of the cone — along a plane curve, called the generator. Notice that this
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definition is more general than that of a right circular cone, which many people
incorrectly call a cone; right circular cones have a rotational symmetry (figure 17.6).
A cone consists of scaled and translated copies of its generator. Choose a coordinate
frame where the generator can be written as (x(t), y(t), 1). Then the cone can be
written as

(x(t)s, y(t)s, s)

and the vertex occurs at (0, 0, 0) (figure 17.6).

vertex

generator

A right circular
cone

Figure 17.6. Cones are surfaces obtained by sweeping rays through a vertex along a
generator. A right circular cone is a special cone, where the generator is a circle and the
line joining the vertex with the center of the circle is normal to the circle’s plane.

The viewing cone for a cone is a family of planes, all of which pass through
the focal point and the vertex of the cone. This means that the outline of a cone
consists of a set of lines passing through a vertex (figure 17.7). All this should be
obvious (you are asked for a proof in the exercises), but is surprisingly useful.

Focal point

Viewing cone

Outline

Figure 17.7. The viewing cone is a set of planes tangent to the cone, and passing
through both the vertex of the cone and the focal point. The outline of a cone is obtained
by slicing the viewing cone with a plane, and is a set of lines through a single point.
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Surfaces of Revolution

A surface of revolution— or SOR for short — is a surface obtained by rotating
a generating curve around some straight axis. Notice that, locally, a surface of
revolution is a right circular cone — this means that we can think of an SOR as
a set of thin sections of different right circular cones stacked up on top of one
another. This is most easily demonstrated by approximating the generating curve
by a polygon of short line segments tangent to the curve. An alternative is to notice
that the tangent at one point of the generating curve is rotated around the axis,
too, to form a right circular cone.
The viewing cone for an SOR has a symmetry. Imagine the plane through the

axis of the SOR and the focal point; the cone must have a flip symmetry about
this plane. This does not mean that the image curve has this symmetry, because
we are slicing the viewing cone with the image plane to get the image curve, and
the slicing process can disrupt the symmetry (figure 17.8). The effect is governed
by the field of view of the camera, and for the vast majority of practical cameras,
it is tiny.
This means that the outline of an SOR has two “sides”, which correspond to

one another under the symmetry. This symmetry has a line of fixed points, which
is the projection of the axis of the SOR. Now if we take the tangents to the outline
at two corresponding points, they intersect along the projection of the axis. There
are several different proofs: you can observe that this configuration is basically a
cone; alternatively, you could notice that the tangents are one anothers image under
the symmetry, meaning that their intersection is a fixed point and so lies on the
axis. These observations suggest a methods for finding the outlines of surfaces of
revolution.

17.3.2 Using Constraints to Fit SOR Outlines

In principle, we could exploit the symmetry constraint directly by looking for pairs
of edge curves that have a symmetry. This is usually impractical, because curves are
usually broken, etc. meaning that it is unlikely that one will obtain a pair where
more than short segments are symmetric. Instead, it is more usual to construct
local symmetries and then assemble them into conforming groups.

Symmetries and Surfaces of Revolution

Two points on image curves where the tangent is at about the same angle to the
line joining the points (figure 17.9) could be on opposite sides of a symmetry —
we will call this configuration a local symmetry, and the line segment joining the
points the symmetry line.
We could find the outline of a surface of revolution by looking for local symme-

tries whose midpoints lie on a straight line roughly perpendicular to their symmetry
lines. The main difficulty with this strategy is that most images contain an awful
lot of symmetries, and there may be many groups of symmetries that satisfy this
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Focal point

Figure 17.8. A surface of revolution and a focal point together give a plane of symmetry,
that passes through the axis of the SOR and the focal point. The contour generator must
have a mirror symmetry in this plane. This doesn’t mean that the outline has an exact
mirror symmetry, because the outline is obtained by slicing the viewing cone — which
isn’t shown, for simplicity — by a plane that may not be at right angles to the plane of
symmetry. However, the effect is small, and to all intents and purposes the outline of an
SOR can be regarded as having a mirror symmetry.

test. However, the strategy is helpful for cylinders, because it is easier to winnow
out unsatisfactory groups of symmetries.

Cylinders and Body Segments

The local symmetries generated by a cylinder will have midpoints that (roughly)
lie on a straight line, and this line will be (roughly) perpendicular to the symmetry
lines, and the lengths of all the symmetry lines will be (roughly) the same. While
typical images contain an awful lot of local symmetries with these properties, it is
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α α
symmetry
line

Figure 17.9. A local symmetry is a pair of contour points where the tangents to the
contours are at roughly the same angle to the line joining the contours (the symmetry
line). Such symmetries are often seen in the outlines of surfaces of revolution.

just about practical to winnow through them looking for groups that satisfy these
constraints.
Cylinders can be found with a relatively crude algorithm (too crude to display!).

We use a combination of agglomerative clustering and incremental line fitting. Make
each symmetry a cluster. We will build bigger clusters by looking forward and
backward along the axis predicted by the symmetries in the cluster. Given a cluster,
we can predict the orientation of the next symmetries in the cluster (roughly parallel
to the symmetries in the cluster), and the position of their midpoints (along a
line roughly perpendicular to the symmetry lines in the cluster), and their width
(roughly the same as the width of the symmetries in the cluster). If the next
symmetries are sufficiently nearby and sufficiently similar, we add them to the
cluster, and then fit a line to the midpoints. If the line fits the midpoints sufficiently
well, then we accept these new symmetries. We proceed until the cluster cannot
be grown further. We do this for each cluster. It is usually a good idea to have a
second pass that engages in greedy merges between clusters, using the same criteria.

17.4 Fitting as a Probabilistic Inference Problem

Up to this point, our criteria for fitting to a model have been arbitrary. Total
least squares seems like a reasonable criterion, but (of course!) the criterion should
depend on the kind of error model that we expect — how did the tokens come to
not lie on a line in the first place? We return to the problem of fitting a line to
a set of points that are known to have come from the line. It turns out that total
least squares is, quite naturally, a probabilistic criterion. We start with a model
that indicates how image measurements arise.
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Figure 17.10. On the far left, the edges obtained from an image of a sitting human
figure. The subject is wearing very little clothing; the doubled edges at the boundary of
his limbs are characteristic of images of people, as there can be quite sharp variations in
shading across a limb axis. On the left, all local symmetries superimposed on that image.
Notice that there is a very large number of symmetries; this is a characteristic difficulty
with the representation. It is possible to test symmetries to determine whether the shading
pattern across a symmetry corresponds to that across a limb (see[Haddon and Forsyth,
1998c]), and the figure on the right shows symmetries that pass this test. Some, but
not all, of the extended segments consisting of roughly parallel symmetries with roughly
collinear centers are shown on the far right.

Generativemodel: We assume that our measurements are generated by choos-
ing a point along the line, and then perturbing it perpendicular to the line using
Gaussian noise. We assume that the process that chooses points along the line is
uniform — in principle, it can’t be, because the line is infinitely long, but in practice
we can assume that any difference from uniformity is too small to bother with. This
means we have a sequence of k measurements, (xi, yi), which are obtained from the
model (

x
y

)
=

(
u
v

)
+ n

(
a
b

)

where n ∼ N(0, σ), au+bv+c = 0 and a2+b2 = 1. This model yields P (measurements|a, b, c)
(the likelihood) as ∏

i

P (xi, yi|a, b, c)
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Now we could choose either the maximum likelihood or the maximum a posteriori
line, given this model. Typically, we have no particular reason to prefer one line
over another, and maximum likelihood is fine.
Now the log-likelihood is

−
1

2σ2

∑
i

(axi + byi + c)
2

given that a2+b2 = 1. Maximising the likelihood boils down to minimizing the sum
of perpendicular distances between points and lines, as in section 17.1.2. There are
two significant phenomena that we must deal with in using this criterion:

• Robustness: the total least squares criterion places huge weight on large
errors. This could become a serious problem; for example, if one data point lay
a long way from a line that fits all others well (we discuss some mechanisms by
which this can happen below), the resulting fitted line will be heavily biased
by that data point. This phenomenon can become a very serious problem.
For example, if we are fitting a fundamental matrix to a data set, we need
correspondences between data points in left and right images; but if we get
one correspondence wrong, we have a potentially huge error in our data set.
We discuss this difficulty in detail in the following two sections.

• Missing data: we assumed that we knew which points belonged to the line;
it is usually the case that we do not. For example, we might have a set of
measured points, some of which come from a line and others of which are noise.
If we knew which points came from a line, it would be easy to determine what
the line was. Similarly, if we knew what line generated the points, it would
be easy to determine which points had come from the line. The missing data
— which point is noise and which is not — is a crucial component of the
problem. Most segmentation problems can be seen as missing data problems;
we devote most of chapter 18 to this view.

17.5 Robustness

All of the line-fitting methods we have described involve squared error terms. This
can lead to very poor fits in practice, because a single wildly inappropriate data
point can give errors that are dominate those due to many good data points; these
errors can result in a substantial bias in the fitting process (figure 17.11). It ap-
pears to be very difficult to avoid such data points — usually called outliers— in
practice. Errors in collecting or transcribing data points is one important source
of outliers. Another common source is a problem with the model — perhaps some
rare but important effect has been ignored, or the magnitude of an effect has been
badly underestimated. Finally, errors in correspondence are particularly prone to
generating outliers. Practical vision problems usually involve outliers.
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Figure 17.11. Least squares line fitting is extremely sensitive to outliers, both in x
and y coordinates. At the top left, a good least-squares fit of a line to a set of points.
Top-right shows the same set of points, but with the x-coordinate of one point corrupted.
In this case, the slope of the fitted line has swung wildly. Bottom-left shows the same set
of points, but with the y-coordinate of one point corrupted. In this particular case, the x-
intercept has changed. These three figures are on the same set of axes for comparison, but
this choice of axes does not clearly show how bad the fit is for the third case; Bottom-right
shows a detail of this case — the line is clearly a very bad fit.

One approach to this problem puts the model at fault: the model predicts these
outliers occuring perhaps once in the lifetime in the universe, and they clearly occur
much more often than that. The natural response is to improve the model, either
by giving the noise “heavier tails” (section 17.5.1) or by allowing an explicit outlier
model. The second strategy requires a study of missing data problems — we don’t
know which point is an outlier and which isn’t — and we defer discussion until
section 18.2.4 in the following chapter. An alternative approach is to search for
points that appear to be good (section 17.5.2).



490 Segmentation by Fitting a Model Chapter 17

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1

10

0.1

y=x2

Figure 17.12. The function ρ(x;σ) = x2/(σ2+x2), plotted for σ2 = 0.1, 1 and 10, with
a plot of y = x2 for comparison. Replacing quadratic terms with ρ reduces the influence
of outliers on a fit — a point which is several multiples of σ away from the fitted curve
is going to have almost no effect on the coefficients of the fitted curve, because the value
of ρ will be close to 1 and will change extremely slowly with the distance from the fitted
curve.

17.5.1 M-estimators

The difficulty with modelling the source of outliers is that the model might be
wrong. Generally, the best we can hope for from a probabilistic model of a process
is that it is quite close to the right model. Assume that we are guaranteed that
our model of a process is close to the right model — say, the distance between
the density functions in some appropriate sense is less than ε. We can use this
guarantee to reason about the design of estimation procedures for the parameters
of the model. In particular we can choose an estimation procedure by assuming that
nature is malicious and well-informed about statistics1. In this line of reasoning, we
assess the goodness of an estimator by assuming that somewhere in the collection
of processes close to our model is the real process, and it just happens to be the one
that makes the estimator produce the worst possible estimates. The best estimator
is the one that behaves best on the worst distribution close to the parametric model.
This is a criterion which can be used to produce a wide variety of estimators.
AnM-estimator estimates parameters by minimizing an expression of the form∑

i

ρ(ri(xi, θ); σ)

where θ are the parameters of the model being fitted and ri(xi, θ) is the residual

1Generally, sound assumptions for any enterprise; the world is full of opportunities for painful
and expensive lessons in practical statistics
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error of the model on the i’th data point. Generally, ρ(u; σ) looks like u2 for part
of its range, and then flattens out. A common choice is

ρ(u; σ) =
u2

σ2 + u2

The parameter σ controls the point at which the function flattens out; we have
plotted a variety of examples in figure 17.12. There are many other M-estimators
available. Typically, they are discussed in terms of their influence function, which
is defined as

∂ρ

∂θ

This is natural, because our criterion is

∑
i

ρ(ri(xi, θ); σ)
∂ρ

∂θ
= 0

For the kind of problems we consider, we would expect a good influence function
to be antisymmetric — there is no difference between a slight over prediction and
a slight under prediction — and to tail off with large values — because we want to
limit the influence of the outliers.
There are two tricky issues with using M-estimators. Firstly, the extremisation

problem is non-linear and must be solved iteratively. The standard difficulties
apply: there may be more than one local minimum; the method may diverge; and
the behaviour of the method is likely to be quite dependent on the start point. A
common strategy for dealing with this problem is to draw a subsample of the data
set, fit to that subsample using least squares, and use this as a start point for the
fitting process. We do this for a large number of different subsamples, enough to
ensure that there is a very high probability that in that set there is at least one
that consists entirely of good data points.
Secondly, as figures 17.13 and 17.14 indicate, the estimators require a sensible

estimate of σ, which is often referred to as scale. Typically, the scale estimate is
supplied at each iteration of the solution method; a popular estimate of scale is

σ(n) = 1.4826mediani|r
(n)
i (xi; θ

(n−1))|

An M-estimator can be thought of as a trick for ensuring that there is more
probability in the tails than would otherwise occur with a quadratic error. The
function that is minimised looks like distance for small values of x — thus, for
valid data points the behaviour of the M-estimator should be rather like maximum
likelihood — and like a constant for large values of x— meaning that a component
of probability is given to the tails of the distribution. The strategy of the previous
section can be seen as an M-estimator, but with the difficulty that the influence
function is discontinuous, meaning that obtaining a minimum is tricky.
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For s = 1 to s = k
draw a subset of r distinct points, chosen uniformly at random

Fit to this set of points using maximum likelihood

(usually least squares) to obtain θ0s

estimate σ0s using θ
0
s

Until convergence (usually |θns − θ
n−1
s | is small):

take a minimising step using θn−1s , σn−1s

to get θns
now compute σns

report the best fit of this set, using the median of the

residuals as a criterion

Algorithm 17.3: Using an M-estimator to fit a probabilistic model

17.5.2 RANSAC

An alternative to modifying the generative model to have heavier tails is to search
the collection of data points for good points. This is quite easily done by an iterative
process: first, we choose a small subset of points and fit to that subset; then we see
how many other points fit to the resulting object. We continue this process until
we have a high probability of finding the structure we are looking for.
For example, assume that we are fitting a line to a data set that consists of about

50% outliers. If we draw pairs of points uniformly and at random, then about 1/4
of these pairs will consist entirely of good data points. We can identify these good
pairs, by noticing that a large collection of other points will lie close to the line
fitted to such a pair. Of course, a better estimate of the line could then be obtained
by fitting a line to the points that lie close to our current line.
This approach leads to an algorithm — search for a random sample that leads

to a fit on which many of the data points agree. The algorithm is usually called
RANSAC, for RANdom SAmple Consensus, and is displayed in algorithm 4.
To make this algorithm practical, we need to be able to choose three parameters.

How Many Samples are Necessary?

Our samples will consist of sets of points drawn uniformly and at random from the
data set. Each sample will contain the minimum number of points required to fit
the abstraction we wish to fit; for example, if we wish to fit lines, we will draw pairs
of points; if we wish to fit circles, we will draw triples of points, etc. We assume that
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Figure 17.13. The top row shows lines fitted to the second dataset of figure 17.11 using
a weighting function that de-emphasizes the contribution of distant points (the function φ
of figure 17.12). On the left, µ has about the right value; the contribution of the outlier has
been down-weighted, and the fit is good. In the center, the value of µ is too small, so that
the fit is insensitive to the position of all the data points, meaning that its relationship
to the data is obscure. On the right, the value of µ is too large, meaning that the outlier
makes about the same contribution that it does in least-squares. The bottom row shows
close-ups of the fitted line and the non-outlying data points, for the same cases.

we need to draw n data points, and that w is the fraction of these points that are
good (we will need only a reasonable estimate of this number). Now the expected
value of the number of draws k required to get one point is given by

E[k] = 1P (one good sample in one draw) + 2P (one good sample in two draws) + . . .

= wn + 2(1− wn)wn + 3(1− wn)2wn + . . .

= w−n

(where the last step takes a little manipulation of algebraic series). Now we would
like to be fairly confident that we have seen a good sample, so we would wish to
draw rather more than w−n samples; a natural thing to do is to add a few standard
deviations to this number (see section 7.3.2 for an inequality that suggests why this
is the case). The standard deviation of k can be obtained as

SD(k) =

√
1−wn

wn

An alternative approach to this problem is to choose to look at a number of samples
that guarantees a low probability z of seeing only bad samples. In this case, we
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Figure 17.14. The top row shows lines fitted to the third dataset of figure 17.11 using a
weighting function that de-emphasizes the contribution of distant points (the function φ of
figure 17.12). On the left, µ has about the right value; the contribution of the outlier has
been down-weighted, and the fit is good. In the center, the value of µ is too small, so that
the fit is insensitive to the position of all the data points, meaning that its relationship
to the data is obscure. On the right, the value of µ is too large, meaning that the outlier
makes about the same contribution that it does in least-squares. The bottom row shows
close-ups of the fitted line and the non-outlying data points, for the same cases.

have
(1− wn)k = z

which means that

k =
log(z)

log(1− wn)

It is common to have to deal with data where w is unknown. However, each fitting
attempt contains information about w; in particular, if n data points are required,
then we can assume that the probability of a successful fit is wn. If we observe a long
sequence of fitting attempts, we can estimate w from this sequence. This suggests
that we start with a relatively low estimate of w, generate a sequence of attempted
fits, and then improve our estimate of w. If we have more fitting attempts than we
need for the new, the process can stop. The problem of updating the estimate of
w reduces to estimating the probability that a coin comes up heads or tails given a
sequence of fits.

How Far Away is Agreement?

We need to determine whether a point lies close to a line fitted to a sample. We will
do this by determining the distance between the point and the fitted line, and testing



Section 17.5. Robustness 495

Determine:

n --- the smallest number of points required
k --- the number of iterations required
t --- the threshold used to identify a point that fits well
d --- the number of nearby points required
to assert a model fits well

Until there is a k iterations have occurred
draw a sample of n points from the data
uniformly and at random

fit to that set of n points

for each data point outside the sample

test the distance from the point to the line

against t; if the distance from the point to the line
is less than t, the point is close

end

if there are d or more points close to the line
then there is a good fit. Refit the line using all

these points.

end

Use the best fit from this collection, using the

fitting error as a criterion

Algorithm 17.4: RANSAC: fitting lines using random sample consensus

that distance against a threshold d; if the distance is below the threshold, then
the point lies close. In general, specifying this parameter is part of the modelling
process. For example, when we fitted lines using maximum likelihood, there was a
term σ in the model (which disappeared in the manipulations to find an maximum).
This term gives the average size of deviations from the model being fitted.
In general, obtaining a value for this parameter is relatively simple. We generally

need only an order of magnitude estimate, and the same value will apply to many
different experiments. The parameter is often determined by trying a few values
and seeing what happens; another approach is to look at a few characteristic data
sets, fitting a line by eye, and estimating the average size of the deviations.
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How Many Points Need to Agree?

Assume that we have fitted a line to some random sample of two data points. We
need to know whether that line is good or not. We will do this by counting the
number of points that lie within some distance of the line (the distance was deter-
mined in the previous section). In particular, assume that we know the probability
that an outlier lies in this collection of points; write this probability as y. We should
like to choose some number of points t such that yt is small (say, less than 0.05).
There are two ways to proceed. One is to notice that y ≤ (1−w), and to choose

t such that (1−w)t is small. Another is to get an estimate of y from some model of
outliers — for example, if the points lie in a unit square, the outliers are uniform,
and the distance threshold is d, then y ≤ 2

√
2d.

17.6 Example: Using RANSAC to Fit Fundamental Matrices

A point in 3D generates two measurements, one in the left view and one in the
right. We write the actual coordinates of the 3D point as X i, the coordinates in
the left (respectively, right) image as xli (resp. xri), the measured coordinates in
the left (resp., right) image as mri (resp. mri). The fundamental matrix is an
expression of the epipolar constraint. In particular, using the hat to indicate that
we are employing homogenous coordinates, we have that x̂TriF x̂li = 0 for every
point. Here F is the fundamental matrix.

17.6.1 An Expression for Fitting Error

Notice that, if we avoid homogenous coordinates and write xri = (xri, yri)
T , xli =

(xli, yli)
T , the i, j’th element of F as fij and the expression

(f10xri + f11yri + f12)

as dri we can expand the equation to get

yli =
1

dri
((f00xlixri + f01xliyri + f02xli + f20xri + f21yri + f22)

We make this substitution, and now write

xri = (xri, yri)

xli = (xli,
1

dri
((f00xlixri + f01xliyri + f02xli + f20xri + f21yri + f22))

This may not be the best set of coordinates in which to write the problem — if
we’re unlucky, the denominator of the fraction may go to zero, which will create
difficulties. We ignore this issue as being secondary, and proceed.
The constraint will not generally hold for the measured values. We assume

that measurements are subject to additive Gaussian noise of uniform rotationally
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symmetric covariance. We write mli and mri in affine (conventional, or non-
homogenous!) coordinates, too. This means that

P (mli,mri|xri,xli,F) ∝ exp−
1

2σ2

{
(xri −mri)T (xri −mri)+
(xli −mli)T (xli −mli)

}

Now this is a complicated function of the data, with parameters F , xri, yri and xli.
However, with sufficient data points we could, in principle, obtain an extremum.
We can’t do this currently, because we don’t know which points correspond between
left and right images. Furthermore, we should suspect that the sum-of-squares form
of the log-likelihood will lead to robustness problems.

17.6.2 Correspondence as Noise

One way to deal with the correspondence problem is to assume that there is only
a small camera motion between the two views. In turn, we can assert that feature
points whose position in the second view is “close” to their position in the first view,
correspond. This is a fairly dangerous assumption; it can lead to fits that are very
bad, and look quite good. The difficulty is that a correspondence error behaves like
an outlier. An alternative strategy is to search the correspondences for a set that
is consistent with a good fundamental matrix.
This search can be simplified if we attach some representation of the local image

neighbourhood to each point.This means that we can associate a neighbourhood
in the right image with each point in the left image — only the points inside this
neighbourhood could correspond to the relevant points in the left image. We can
do this the other way, too (points in the right image, neighbourhoods in the left)
and come up with a set of possible correspondences. We now apply RANSAC to
this set of possible correspondences.

17.6.3 Applying RANSAC

As we shall see below, seven point correspondences yield a fundamental matrix.
With this information, applying RANSAC to the set of possible correspondences is
relatively straighforward. While we may not know what percentage of correspon-
dences is good, it is possible to estimate this using fitting attempts (as above). The
distance threshold to determine whether a point is an inlier or not is usually of the
order of a pixel or so (this must depend on the quality of the cameras, etc.).

Obtaining a Fundamental Matrix from Seven Points

Each constraint x̂TriF x̂li = 0 yields a single linear equation in the coefficients of the
fundamental matrix for known xri, xli. Furthemore, the equation x̂

T
riF x̂li = 0 is

homogenous in the elements of the fundamental matrix — that is, if U satisfies these
constraints, then so does λU . Finally, recall from chapter 12 that the fundamental
matrix has rank two, and so det(F) = 0.
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This means that we need only seven point correspondences to estimate F . Each
point yields a single homogenous equation in the elements of F . The solution of
seven of these homogenous equations is a two dimensional linear space, which we
can write as λF0 + µF1, for known F0 and F1, and arbitrary λ, µ. But we need an
element of this space with zero determinant; and the equation det(λF0 + µF1) = 0
is a homogenous cubic in λ, µ. We can divide both sides by µ, and solve for λ/µ.
There is either one real root — and so only one solution — or three.

17.7 Discussion

We have covered a few important points from a very large body of technique here.
Fitting is a problem that occurs in any number of contexts; it is almost always
possible, and often helpful, to see a problem as a fitting problem. This means it is
very difficult to supply a useful guide to the literature.
Usually the main difficulties one encounters in practice are: (1) determining dis-

tances (which can be very hard indeed); (2) ensuring that outliers do not overwhelm
good data; and (3) deciding what to fit in the first place.
Approximations to the distance from a point to a curve or to a surface are

discussed in numerous papers: we particularly recommend [Bookstein, 1979; Por-
rill, 1990; Cabrera and Meer, 1996; Agin, 1981; Sabin, 1994; Taubin et al., 1994a;
Sullivan et al., 1994a; Sullivan and Ponce, 1998a].
Robustness hasn’t had as much impact on practices within the vision community

as it probably should have. Good starting points for reading include [Rousseeuw,
1987; Huber, 1981; Stewart, 1999; Meer et al., 1991]. The ideas are genuinely useful,
despite the subject’s tendency to inspire zealotry. We haven’t gone deeply into the
topic, mainly because a superficial acquaintance with the topic is sufficient to deal
with any issues likely to arise in practice. RANSAC is the method of choice for a
number of problems and has had tremendous impact on the structure from motion
community; we recommend reading [Fischler and Bolles, 1981; Torr and Murray,
1997; Hartley and Zisserman, 2000a]. We expect that in future it will be used to
start EM-like methods; more on that later, once we have discussed EM.
We haven’t really stressed fitting as inference. The advantage of thinking about

fitting as inference is that anything one knows about fitting can be exchanged into
knowledge about fitting, too, and the exchange rate seems to be favourable. The
next chapter will show some of that, but you should also be aware that our comments
of the probability chapter apply to pretty much everything in this chapter, too. In
particular, one might use MAP inference — all this would require would be to attach
a prior term to the fitting error. In years gone by, it was fashionable to construct
a prior term that penalised models that wiggled too quickly (a phenomenon widely
confused with a failure to be smooth). This practice seems to have diminished
in the last few years; samples of this literature include [Horn and Schunck, 1981;
Poggio et al., 1985; Bertero et al., 1988].
Fitting can also be used for image reconstruction. One fits a surface to image

data — which is interpreted as a height map — tearing the surface at edges. It is
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then important to account correctly for the cost of tearing vs. the cost of a poor fit.
This general strategy can also be applied to reconstruction of depth maps, stereo
maps, etc. Various constraints are available. In [Grimson, 1981c], the absence of
features is taken to imply smoothness (“No news is good news”). More recent work
accounts for discontinuities in various forms, including tears and creases [Blake and
Zisserman, 1987; Mumford and Shah, 1985; Mumford and Shah, 1988]

Assignments

Exercises

• Prove the simple, but extremely useful, result that the perpendicular distance
from a point (u, v) to a line (a, b, c) is given by abs(au+ bv+ c) if a2+ b2 = 1.

• Derive the eigenvalue problem(
x2 − x x xy − x y
xy − x y y2 − y y

)(
a
b

)
= µ

(
a
b

)

from the generative model for total least squares. This is a simple exercise —
maximum likelihood and a little manipulation will do it — but worth doing
right and remembering; the technique is extremely useful.

• How do we get a curve of edge points from an edge detector that returns
orientation? - give a recursive algorithm.

• A slightly more stable variation of incremental fitting cuts the first few pixels
and the last few pixels from the line point list when fitting the line, because
these pixels may have come from a corner

1. Why would this lead to an improvement?

2. How should one decide how many pixels to omit?

• A conic section is given by ax2 + bxy + cy2 + dx+ ey + f = 0.

1. Given a data point (dx, dy), show that the nearest point on the conic
(u, v) satisfies two equations:

au2 + buv + cv2 + du+ ev + f = 0

and

2(a− c)uv − (2ady + e)u+ (2cdx + d)v + (edx − ddy) = 0

2. These are two quadratic equations. Write u for the vector (u, v, 1). Now
show that we can write these equations as uTM1u = 0 and u

TM2u = 0,
forM1 andM2 symmetric matrices.
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3. Show that there is a transformation T , such that T TM1T = Id and
T TM2T is diagonal.

4. Now show how to use this transformation to obtain a set of solutions
to the equations; in particular, show that there can be up to four real
solutions.

5. Show that there are either four, two or zero real solutions to these equa-
tions.

6. Sketch an ellipse, and indicate the points for which there are four or two
solutions.

• Show that the curve

(
1 − t2

1 + t2
,
2t

1 + t2
)

is a circular arc (the length of the arc depending on the interval for which the
parameter is defined).

1. Write out the equation in t for the closest point on this arc to some data
point (dx, dy); what is the degree of this equation? How many solutions
in t could there be?

2. Now substitute s3 = t in the parametric equation, and write out the
equation for the closest point on this arc to the same data point. What
is the degree of the equation? why is it so high? What conclusions can
you draw?

• Show that the viewing cone for a cone is a family of planes, all of which pass
through the focal point and the vertex of the cone. Now show the outline of
a cone consists of a set of lines passing through a vertex. You should be able
to do this by a simple argument, without any need for calculations.

Programming Assignments

• Implement an incremental line fitter. Determine how significant a difference
results if you leave out the first few pixels and the last few pixels from the line
point list (put some care into building this, as it’s a useful piece of software
to have lying around in our experience).

• Implement a hough transform line finder.

• Count lines with an HT line finder - how well does it work?



Chapter 18

SEGMENTATION AND
FITTING USING

PROBABILISTIC METHODS

All the segmentation algorithms we described in the previous chapter involve es-
sentially local models of similarity. Even though some algorithms attempt to build
clusters that are good globally, the underlying model of similarity compares individ-
ual pixels. Furthermore, none of these algorithms involved an explicit probabilistic
model of how measurements differed from the underlying abstraction that we are
seeking.
We shall now look at explicitly probabilistic methods for segmentation. These

methods attempt to explain data using models that are global. These models will
attempt to explain a large collection of data with a small number of parameters.
For example, we might take a set of tokens and fit a line to them; or take a pair
of images and attempt to fit a parametric set of motion vectors that explain how
pixels move from one to the other.
The key concept is that of a missing data problem. We introduce this problem by

revisiting line fitting, which we now see as a quite general example of a probabilistic
fitting problem. In many segmentation problems, there are several possible sources
of data (for example, a token might come from a line, or from noise); if we knew
from which source the data had come (i.e. whether it came from the line, or from
noise), the segmentation problem would be easy. In section 18.1, we deal with a
number of segmentation problems by phrasing them in this form, and then using
a general algorithm for missing data problems. This leads us to situations where
occasional data items are hugely misleading, and we discuss methods for making
fitting algorithms robust (section 17.5). Finally, we discuss methods for determining
how many elements (lines, curves, segments, etc.) to fit to a particular data set
(section 18.3).

501
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18.1 Missing Data Problems, Fitting and Segmentation

A number of important vision problems can be phrased as missing data problems.
For example, we can think of segmentation as the problem of determining from
which of a number of sources a measurement came. This is a very general view:
segmenting an image into regions involves determining which source of colour and
texture pixels generated the image pixels; segmenting a set of tokens into collinear
groups involves determining which tokens lie on which line; segmenting a motion
sequence into moving regions involves allocating moving pixels to motion models.
There is a standard, quite simple, algorithm for this class of problem.

18.1.1 Missing Data Problems

There are two natural contexts in which missing data are important: in the first,
some terms in a data vector are missing for some instances and present for other
(perhaps someone responding to a survey was embarrassed by a question); in the
second, which is far more common in our applications, an inference problem can
be made very much simpler by rewriting it using some variables whose values are
unknown. We will demonstrate this method and appropriate algorithms with two
examples.

Example: Image Segmentation

At each pixel in an image, we compute a d-dimensional feature vector x, which
encapsulates position, colour and texture information. This feature vector could
contain various colour representations, and the output of a series of filters centered
at a particular pixel. Our image model is that each pixel is produced by a density
associated with one of g image segments. Thus, to produce a pixel, we choose an
image segment, and then generate the pixel from the density associated with that
segment.
We assume that the l’th segment is chosen with probability πl, and we model

the density associated with the l’th segment as a Gaussian, with parameters θl =
(µl,Σl) that depend on the particular segment. This means that we can write the
probability of generating a pixel vector as

p(x) =
∑
i

p(x|θl)πl

This form of model is known as a mixture model (because it is a weighted sum,
or mixture of probability models; the πl are usually called mixing weights). We
shall encounter the form often.
One way to interpret such a mixture model is to think of it as a generative

model. In this view, each pixel in the image is obtained by (a) selecting the
l’th component of the model with probability πl, and then (b) drawing a sample
from p(x|θl). One can visualize this model as a density in feature vector space that
consists of a set of g “blobs”, each of which is associated with an image segment. We
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should like to determine: (1) the parameters of each of these blobs; (2) the mixing
weights and (3) from which component each pixel came (thereby segmenting the
image).
We encapsulate these parameters into a parameter vector, writing the mix-

ing weights as αl and the parameters of each blob as θl = (µl,Σl), to get Θ =
(α1, . . . , αg, θ1, . . . , θg). The mixture model then has the form

p(x|Θ) =
g∑
l=1

αlpl(x|θl)

Each component density is the usual Gaussian:

pl(x|θl) =
1

(2π)d/2 det(Σi)1/2
exp

{
−
1

2
(x− µi)

TΣ−1i (x− µi)

}

The likelihood function for an image is:

∏
j∈observations

(
g∑
l=1

αlpl(xj|θl)

)

Each component is associated with a segment, and Θ is unknown.
The important point is this: if we knew the component from which each pixel

came, then it would be simple to determine Θ. We could use maximum likelihood
estimates for each θl, and then the fraction of the image in each component would
give the αl. Similarly, if we knew Θ, then for each pixel, we could determine the
component that is most likely to have produced that pixel — this yields an image
segmentation. The difficulty is that we know neither.

Example: Fitting Lines to Point Sets

There are g different lines in the plane. The l’th line is parametrised by al and
generates tokens with probability πl. Each token results in a measurement vector
W , and the value of the j’th measurement isW j . For the l’th line, there is a prob-
ability density function describing how it emits tokens, which we write as p(W |al).
This means that the probability density function for a set of measurements of a
token is

p(W ) =
∑
l

πlp(W |al)

This is another mixture model. Under this model, the likelihood of a set of obser-
vations is:

∏
j∈observations

(
g∑
l=1

πlp(W j |al)

)
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We would like to infer al and πl. As in the case of segmentation, if we knew which
point was generated by which line, the problem would be easy. We could estimate
al by line fitting and obtain πl by counting the number of tokens generated by the
l’th line then dividing by the total number of lines. The difficulty is that we have
only the measurements of the tokens, not the association between tokens and lines.

A Formal Statement of Missing Data Problems

Assume we have two spaces, the complete data space X and the incomplete
data space Y. There is a map f , which takes X to Y. This map “loses” the missing
data; for example, it could be a projection. For the example of image segmenta-
tion, the complete data consists of the measurements at each pixel and a set of
variables indicating from which component of the mixture the measurements came;
the incomplete data is obtained by dropping this second set of variables. For the
example of lines and tokens, the complete data space consists of the measurements
of the tokens (position, certainly, but colour and shape could come into this) and
a set of variables indicating from which line the token came; the incomplete data is
obtained by dropping this second set of variables.
There is a parameter space U . For the image segmentation example, the pa-

rameter space consists of the mixing weights and of the parameters of each mixture
component; for the lines and tokens, the parameter space consists of the mixing
weights and the parameters of each line. We wish to obtain a maximum likelihood
estimate for these parameters, given only incomplete data. If we had complete data,
we could use the probability density function for the complete data space, written
pc(x;u). The complete data log-likelihood is

Lc(x;u) = log{
∏
j

pc(xj;u)}

=
∑
j

log (pc(xj;u))

In either of our examples, this log-likelihood would be relatively easy to work with.
In the case of image segmentation, the problem would be to estimate the parameters
for each image segment, given the segment from which each pixel came.In the case
of the lines and tokens, the problem would be to estimate the mixing weights and
parameters, given the line from which each token came.
The problem is that we don’t have the complete data. The probability density

function for the incomplete data space is pi(y;u). Now the probability density
function for the incomplete data space is obtained by integrating the probability
density function for the complete data space over all values that give the same y.
That is

pi(y;u) =

∫
{x|f(x)=y}

pc(x;u)dη

(where η measures volume on the space of x such that f(x) = y). The incomplete
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data likelihood is ∏
j∈observations

pi(yj ;u)

We could form a maximum likelihood estimate for u, given y by writing out the
likelihood and maximising it. This isn’t easy, because both the integral and the
maximisation can be quite difficult to do. The usual strategy of taking logs doesn’t
make things easier, because of the integral inside the log. We have:

Li(y;u) = log


∏
j

pi(yj;u)




=
∑
j

log
(
pi(yj;u)

)

=
∑
j

log

(∫
{x|f(x)=yj}

pc(x;u)dη

)

This form of expression is difficult to deal with. The reason that we are stuck with
the incomplete data likelihood is that we don’t know which of the many possible x’s
that could correspond to the y’s that we observe actually does correspond. Forming
the incomplete data likelihood involves averaging over all such x’s.

Strategy

For each of our examples, if we knew the missing data we could estimate the pa-
rameters effectively. Similarly, if we knew the parameters, the missing data would
follow. This suggests an iterative algorithm:

1. Obtain some estimate of the missing data, using a guess at the parameters;

2. now form a maximum likelihood estimate of the free parameters using the
estimate of the missing data.

and we would iterate this procedure until (hopefully!) it converged. For image
segmentation, this would look like:

1. Obtain some estimate of the component from which each pixel’s feature vector
came, using an estimate of the θl.

2. Now update the θl , using this estimate.

In the case of the tokens and the lines, this would look like:

1. Obtain some estimate of the correspondence between tokens and lines, using
a guess at al;

2. now form a revised estimate of al using the estimated correspondence.
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18.1.2 The EM Algorithm

Although it would be nice if the procedures given above converged, there is no
particular reason to believe that they do. In fact, given appropriate choices in each
stage, they do. This is most easily shown by showing that they are examples of a
general algorithm, the expectation-maximization algorithm.

EM for Mixture Models

Now we assume that the complete data log-likelihood is linear in the missing vari-
ables. This is a case that is very common, because it is associated with mixture
models; all the examples we shall show have this property.
In a mixture model, the missing data consists of variables that indicate the

mixture component from which a data item is drawn (for example, which line a
point came from, or whether it came from noise). We represent this information by
associating with each data point a vector z of g elements (recall that each of our
examples had g components in the mixture). If the j’th data point comes from the
l’th mixture component, then the l’th component of zj (which we write zjl) is one,
otherwise it is zero. Then xj = [yj , zj]. Now if we write the mixture model as

p(y) =
∑
l

πlp(y|al)

the complete data log-likelihood will be

∑
j∈observations

(
g∑
l=1

zlj logp(yj |al)

)

(which is linear in the missing variables).
The key idea in EM is to obtain a set of working values for the missing data

(and so for x) by substituting an expectation for each missing value. In particular,
we will fix the parameters at some value, and then compute the expected value of
each zj, given the value of yj and the parameter values. We then plug the expected
value of zj into the complete data log-likelihood, which is much easier to work with,
and obtain a value of the parameters by maximising that. Now at this point, the
expected values of zj may have changed. We obtain an algorithm by alternating
the expectation step with the maximisation step, and iterate until convergence.
More formally, given us, we form us+1 by:

1. Computing an expected value for the complete data using the incomplete data
and the current value of the parameters. We know the expected value of yj,
and so need compute only the expected values of zj for each j. We write these

values z
(s)
j . We use a superscript to indicate that the expectation depends on

the current value of the parameters. This is referred to as the E-step.

2. Maximizing the complete data log likelihood with respect to u, using the
expected value of the complete data computed in the E-step. That is, we
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compute

us+1 = argmax
u
Lc(x

s;u)

= argmax
u
Lc([y, z

s];u)

This is known as the M-step.

It can be shown that the incomplete data log-likelihood is increased at each step,
meaning that the sequence us converges to a (local) maximum of the incomplete
data log-likelihood (e.g. [Dempster et al., 1977; McLachlan and Krishnan, 1996]).
Of course, there is no guarantee that this algorithm converges to the right local
maximum, and in some of the examples below we will show that finding the right
local maximum can be a nuisance.

18.1.3 The EM Algorithm in the General Case

If the complete data log-likelihood is not linear in the missing data, then we cannot
simply substitute expectations of these variables. We must deal with the missing
variables by taking an expectation of the complete data log-likelihood with respect
to the missing variables conditioned on the current value of the parameter. Assume
that we know an estimate of the parameters u(s). Now we average the complete data
log-likelihood over all values of the complete data, weighting by the probability of
each case given our estimate of the parameters and our knowledge of the incomplete
data. This yields a function Q(u;u(s).

Q(u;u(s) =

∫
Lc(x;u)p(x|u

(s), y)dx

which is a function of the previous estimate of the parameters. We now maximise
this with respect to u to get u(s+1) = argmaxuQ(u;u

(s)). It is a straightforward
exercise (mainly in notation!) to show that this reduces to the algorithm described
for the linear case.

18.2 The EM Algorithm in Practice

Missing data problems turn up all over computer vision. We have collected a va-
riety of examples here to illustrate the general story. The calculations are usually
straightforward; once we have shown a few, we will pass over the rest in silence.

18.2.1 Example: Image Segmentation, Revisited

Assume there are a total of n pixels. The missing data forms an n by g array of
indicator variables I. In each row there is a single one, and all other values are zero
— this indicates the blob from which each pixel’s feature vector came.
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The E-step: The l, m’th element of I is one if the l’th pixel comes from the
m’th blob, and zero otherwise. This means that

E(Ilm) = 1P (l’th pixel comes from the m’th blob) +

0.P (l’th pixel does not come from the m’th blob)

= P (l’th pixel comes from the m’th blob)

Assuming that the parameters are for the s’th iteration are Θ(s), we have:

Ilm =
α
(s)
m pm(xl|θ

(s)
l )∑K

k=1 α
(s)
k pk(xl|θ

(s)
l )

(keeping in mind that α
(s)
m means the value of αm on the s’th iteration!).

M-step: Once we have an expected value of I, the rest is easy. We are essen-
tially forming maximum likelihood estimates of Θs+1. Again, the expected value
of the indicator variables is not in general going to be zero or one; instead, they
will take some value in that range. This should be interpreted as an observation
of that particular case that occurs with that frequency, meaning that the term in
the likelihood corresponding to a particular indicator variable is raised to the power
of the expected value. The calculation yields expressions for a weighted mean and
weighted standard deviation that should be familiar:

α(s+1)m =
1

r

r∑
l=1

p(m|xl,Θ
(s))

µ(s+1)m =

∑r
l=1 xlp(m|xl,Θ

(s))∑r
l=1 p(m|xl,Θ

(s))

Σs+1m =

∑r
l=1 p(m|xl,Θ

(s))
{
(xl −µ

(s)
m )(xl −µ

(s)
m )T

}
∑r
l=1 p(m|xl,Θ

(s))

(again, keeping in mind that α
(s)
m means the value of αm on the s’th iteration!).

It remains to specify appropriate feature vectors, and discuss such matters
as starting the EM algorithm. The results shown in figures 18.1-18.2 use three
colour features — the coordinates of the pixel in L*a*b*, after the image has been
smoothed — and three texture features — which use filter outputs to estimate lo-
cal scale, anisotropy and contrast (figure 18.1); other features may well be more
effective — and the position of the pixel.
What should the segmenter report? One option is to choose for each pixel

the value of m for which p(m|xl,Θs) is a maximum. Another is to report these
probabilities, and build an inference process on top of them.

18.2.2 Example: Line Fitting with EM

An EM line fitting algorithm follows the lines of the example above; the missing
data is an array of indicator variablesM whose k, l’th element mkl is one if point
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a b

c

Figure 18.1. The image of the zebra in (a) is smoothed at varying scales to yield
(b). This smoothing is done using local estimates of scale. These scale measurements
essentially measure the scale of the change around a pixel; at edges, the scale is narrow,
and in stripey regions it is broad, for example. The features that result are shown in (c);
the top three images show the smoothed colour coordinates and the bottom three show
the texture features (ac, pc and c — the scale and anisotropy features are weighted by
contrast). Figure from “Color and Texture Based Image Segmentation Using EM and Its
Application to Content Based Image Retrieval”, S.J. Belongie et al., Proc. Int. Conf.
Computer Vision, 1998 c© 1998 IEEE

k is drawn from line l, zero otherwise. As in that example, the expected value is
given by determining P (mkl = 1|point k, line l’s parameters), and this probability
is proportional to

exp

(
−
distance from point k to line l2

2σ2

)

for σ as above. The constant of proportionality is most easily determined from the
fact that∑
k

P (mkl = 1|point k, line l’s parameters) =
∑
l

P (mkl = 1|point k, line l’s parameters) = 1
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Choose a number of segments

Construct a set of support maps, one per segment,

containing one element per pixel. These support maps

will contain the weight associating a pixel with a segment

Initialize the support maps by either:

Estimating segment parameters from small

blocks of pixels, and then computing weights

using the E-step;

Or randomly allocating values to the support maps.

Until convergence

Update the support maps with an E-Step

Update the segment parameters with an M-Step

end

Algorithm 18.1: Colour and texture segmentation with EM

The maximisation follows the form of that for fitting a single line to a set of
points, only now it must be done g times and the point coordinates are weighted by
the value of lkl. Convergence can be tested by looking at the size of the change in
the lines, or by looking at the sum of perpendicular distances of points from their
lines (which operates as a log likelihood, see question ??).

18.2.3 Example: Motion Segmentation and EM

For example, motion sequences quite often consist of large regions which have quite
similar motion internally. Let us assume for the moment that we have a very short
sequence — two frames — and wish to determine the motion field at each point on
the first frame. We will assume that the motion field comes from a mixture model.
Recall that a general mixture model is a weighted sum of densities — the compo-
nents do not have to have the Gaussian form used in section 18.1.1 (missing data,
the EM algorithm and general mixture models turn up rather naturally together in
vision applications).
A generative model for a motion sequence would have the following form:
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For each pixel location l

For each segment m

Insert α
(s)
m pm(xl|θ

(s)
l )

in pixel location l in the support map m

end

Add the support map values to obtain∑K
k=1 α

(s)
k pk(xl|θ

(s)
l )

and divide the value in location l in each support map by this term

end

Algorithm 18.2: Colour and texture segmentation with EM: - the E-step

For each segment m

Form new values of the segment parameters

using the expressions:

α
(s+1)
m = 1

r

∑r
l=1 p(m|xl,Θ

(s))

µ
(s+1)
m =

∑r

l=1
xlp(m|xl,Θ(s))∑r

l=1
p(m|xl,Θ(s))

Σs+1m =

∑r

l=1
p(m|xl,Θ(s)){(xl−µ(s)m )(xl−µ

(s)
m )

T}∑r

l=1
p(m|xl,Θ(s))

Where p(m|xl,Θ(s)) is the value
in the m’th support map for pixel location l

end

Algorithm 18.3: Colour and texture segmentation with EM: - the M-step

• At each pixel in each image, there is a motion vector connecting it to a pixel
in the next image;
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Figure 18.2. Each pixel of the zebra image (which is the same as that in figure 18.1) is
labelled with the value of m for which p(m|xl,Θ

s) is a maximum, to yield a segmentation.
The images in show the result of this process for K = 2, 3, 4, 5. Each image has K grey-
level values corresponding to the segment indexes. Figure from “Color and Texture Based
Image Segmentation Using EM and Its Application to Content Based Image Retrieval”,
S.J. Belongie et al., Proc. Int. Conf. Computer Vision, 1998 c© 1998 IEEE

• there are a set of different parametric motion fields, each of which is given by
a different probabilistic model;

• the overall motion is given by a mixture model, meaning that to determine
the image motion at a pixel, we firstly determine which component the motion
comes from, and then secondly draw a sample from this component.

This model encapsulates a a set of distinct, internally consistent motion fields —
which might come from, say, a set of rigid objects at different depths and a moving
camera (figure 18.5) — rather well. The separate motion fields are often referred
to as layers and the model as a layered motion model.
Now assume that the motion fields have a parametric form, and that there are

g different motion fields. Given a pair of images, we wish to determine (1) which
motion field a pixel belongs to and (2) the parameter values for each field. All this
should look a great deal like the first two examples, in that if we knew the first,
the second would be easy, and if we knew the second, the first would be easy. This
is again a missing data problem: the missing data is the motion field to which a
pixel belongs, and the parameters are the parameters of each field and the mixing
weights.
Assume that the pixel at (u, v) in the first image belongs to the l’th motion field,

with parameters θl. This means that this pixel has moved to (u, v) +m(u, v; θl) in
the second frame, and so that the intensity at these two pixels is the same up to
measurement noise. We will write I1(u, v) for the image intensity of the first image
at the u, v’th pixel, and so on. The missing data is the motion field to which the
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Figure 18.3. The top figure shows a good fit obtained using EM line fitting. The two bad
examples in the bottom row were run with the right number of lines, but have converged
to poor fits — which can be fairly good interpretations of the data, and are definitely
local minima. This implementation adds a term to the mixture model that models the
data point as arising uniformly and at random on the domain; a point that has a high
probability of coming from this component has been identified as noise. Further examples
of poor fits appear in figure 18.4.

pixel belongs. We can represent this by an indicator variable Vuv,l where

Vuv,l =

{
1, if the u, v’th pixel belongs to the l’th motion field

0, otherwise

}
We assume Gaussian noise with standard deviation σ in the image intensity values,
so the complete data log-likelihood is

L(V,Θ) = −
∑
ij,l

Vuv,l
(I1(u, v)− I2(u+m1(u, v; θl), v +m2(u, v; θl)))2

2σ2
+C

where Θ = (θ1, . . . , θg). Setting up the EM algorithm from here on is straightfor-
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Figure 18.4. More poor fits to the data shown in figure 18.3; for these examples, we have
tried to fit seven lines to this data set. Notice that these fits are fairly good interpretations
of the data; they are local extrema of the likelihood. This implementation adds a term
to the mixture model that models the data point as arising uniformly and at random on
the domain; a point that has a high probability of coming from this component has been
identified as noise. The fit on the bottom left has allocated some points to noise, and fits
the others very well.

Choose k lines (perhaps uniformly at random)

or choose L
Until convergence

e-step:

recompute L, from perpendicular distances
m-step:

refit lines using weights in L

Algorithm 18.4: EM line fitting by weighting the allocation of points to each
line, with the closest line getting the highest weight

ward. As above, the crucial issue is determining

P {Vuv,l = 1|I1, I2,Θ}

These probabilities are often represented as support maps, maps assigning a grey-
level representing the maximum probability layer to each pixel (figure 18.6). The
more interesting question is the appropriate choice of parametric motion model. A
common choice is an affine motion model, where{

m1
m2

}
(i, j; θl) =

{
a11 a12
a21 a22

}{
i
j

}
+

{
a13
a23

}
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Figure 18.5. Frames 1, 15 and 30 of the MPEG flower garden sequence, which is
often used to demonstrate motion segmentation algorithms. This sequence appears
to be taken from a translating camera, with the tree very much closer to the camera
than the house, and a flower garden on the ground plane. As a result, the tree
appears to be translating quickly across the frame, and the house slowly; the plane
generates an affine motion field. Figure from “Representing moving images with
layers,”, by J. Wang and E.H. Adelson, IEEE Transactions on Image Processing,
1994, c© 1994, IEEE

Figure 18.6. On the left, a map indicating to which layer pixels in a frame of
the flower garden sequence belong, obtained by clustering local estimates of image
motion. Each grey level corresponds to a layer, and each layer is moving with
a different affine motion model. This map can be refined by checking the extent
to which the motion of pixel neighbourhoods is consistent with neighbourhoods in
future and past frames, resulting in the map on the center. One of the layers,
and its motion model, is shown on the right. Figure from “Representing moving
images with layers,”, by J. Wang and E.H. Adelson, IEEE Transactions on Image
Processing, 1994, c© 1994, IEEE

and θl = (a11, . . . , a23). Layered motion representations are useful for several rea-
sons: firstly, they cluster together points moving “in the same way”; secondly, they
expose motion boundaries; finally, new sequences can be reconstructed from the
layers in interesting ways (figure 18.7).



516 Segmentation and Fitting using Probabilistic Methods Chapter 18

Figure 18.7. One feature of representing motion in terms of layers is that one
can reconstruct a motion sequence without some of the layers. In this example, the
MPEG garden sequence has been reconstructed with the tree layer omitted. The
figure on the left shows frame 1; that in the center shows frame 15; and that on
the right shows frame 30. Figure from “Representing moving images with layers,”,
by J. Wang and E.H. Adelson, IEEE Transactions on Image Processing, 1994, c©
1994, IEEE

18.2.4 Example: Using EM to Identify Outliers

The line fitters we have described have difficulty with outliers because they en-
counter outliers with a frequency that is wildly underpredicted by the model. Out-
liers are often referred to as being “in the tails” of a probability distribution. In
probability distributions like the normal distribution, there is a large collection of
values with very small probability; these values are the tails of the distribution
(probably because these values are where the distribution tails off). A natural
mechanism for dealing with outliers is to modify the model so that the distribution
has heavier tails (i.e. that there is more probability in the tails).
One way to do this is to construct an explicit model of outliers, which is usually

quite easy to do. We form a weighted sum of the likelihood P (measurements|model)
and a term for outliers P (outliers), to obtain:

(1− λ)P (measurements|model) + λP (outliers)

here λ ∈ [0, 1] models the frequency with which outliers occur, and P (outliers) is
some probability model for outliers; failing anything better, it could be uniform
over the possible range of the data.
The natural way to deal with this model is to construct a variable that indicates

which component generated each point. With this variable, we have a complete
data likelihood function with an easy form. Of course, we don’t know this variable,
but this is a missing data problem, and we know how to proceed here using EM (you
provide the details in the exercises!). The usual difficulties with EM occur here,
too. In particular, it is easy to get trapped in local minima, and we may need to
be careful about the numerical representation adopted for very small probabilities.
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Figure 18.8. EM can be used to reject outliers; here we demonstrate a line fit to the
second data set of figure 17.11. The top row shows the correct local minimum, and the
bottom row shows another local minimum. The first column shows the line superimposed
on the data points using the same axes as figure 17.11; the second column shows a detailed
view of the line, indicating the region around the data points; and the third column shows
a plot of the probability that a point comes from the line, rather than from the noise
model, plotted against the index of the point. Notice that at the correct local minimum,
all but one point is associated with the line, whereas at the incorrect local minimum, there
are two points associated with the line and the others are allocated to noise.

18.2.5 Example: Background Subtraction using EM

As we saw in section 16.3.1, estimating the background can be difficult. Simply
averaging over frames has the difficulty that an object that spends a lot of time
in one place can bias the average quite seriously. We could see this as a missing
variable problem: the image in each frame of video is the same (multiplied by some
constant, to take account of various adjustments made by automatic gain control),
with noise added. We model the noise as coming from some uniform source. This
has the added benefit that every pixel that belongs to noise is not background;
we can obtain the “subtraction” by simply looking at the expected values of the
missing variables at the extremum. The calculations are straightforward; (d) and
(e) in figure 16.10 and 16.11 are obtained in this fashion.

18.2.6 Example: Finding Body Segments with EM

When we found image segments, we were somewhat vague about a spatial model —
we remarked that the position of a pixel could be one of the features encapsulated
in the mixture model, but didn’t discuss how this could be used. Assume that



518 Segmentation and Fitting using Probabilistic Methods Chapter 18

each pixel has a feature vector containing position information, colour information
and texture information. If we allow an arbitrary covariance in the Gaussians that
emit pixels, there could be strong correlations between, say, position and colour;
furthermore, there can be a lot of parameters to estimate, too many to hope obtain
a reasonable estimate. Typically, one deals with this problem by imposing some
form of parametric structure on the covariance — for example, we might set the
covariance between any colour term and any position term to be zero. Now we can
use this strategy to make an attack on the problem of finding body segments: we
impose a structure on the spatial terms as well. For example, we might insist that
an image segment be substantially extended in some direction — that is, that the
covariance of the position terms be an ellipse with a fixed aspect ratio. This is
another example for which we shall omit calculations.

18.2.7 Example: EM and the Fundamental Matrix

Fitting the fundamental matrix can also be seen as a missing data problem —
the missing data is now the correspondence information. Assuming we have n
points in left and right images, we could set up an n × n matrix C to represent
the correspondence. In particular, cij is one if the ith point in the left image
corresponds to the j’th point in the right image and zero otherwise. The detailed
form of the E- and the M-steps are tedious to write out —we leave them to the
exercises, and only sketch them here. The matrix C represents our missing data,
and if we knew this matrix, we could compute a complete data log-likelihood and
solve for the parameters — which are A, and xri, yri and xli for each point —
using an extremisation method. Similarly, given an estimate of the parameters, it
is relatively straightforward to compute the expected value of C (each point in the
left image predicts a point in the right image — the exponential of the distances
between these points and their measurements yields the expected values). Again,
we expect that the expected value of C is generally not an integer, and, as above, we
interpret this weight as a frequency and raise the probability to the relevant power
in computing the likelihood.
This is a method that is unlikely to work well unless started very carefully. The

problem is simple: EM may be able to alleviate the effects of the combinatorial
search component of missing variable problems, but cannot make them disappear.
The space of correspondences represented by C is huge (n!), and a substantial frac-
tion of this space contains few or no good correspondences. Because the algorithm
looks for the best available fundamental matrix given a set of correspondences, a
poor initialisation is likely to lead to serious trouble. This is because the original set
of correspondences may be wrong, leading to a poor estimate of the fundamental
matrix, leading to a prediction of more incorrect correspondences, etc. One possibil-
ity is to start EM with RANSAC. The advantage of this approach over conventional
RANSAC is that, by using EM in the final phase, we can weight the contribution
of conforming correspondences appropriately.
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18.2.8 Difficulties with the EM Algorithm

EM is inclined to get stuck in local minima. These local minima are typically as-
sociated with combinatorial aspects of the problem being studied, as in the line
fitting example or in the fundamental matrix examples. These difficulties follow
from the assumption that the points are interchangeable (see figure 18.3 and fig-
ure 18.4). This can be dodged by noticing that the final configuration of either
fitter is a deterministic function of its start point, and using carefully chosen start
points. One strategy is to start in many different (randomly chosen) configurations,
and sift through the results looking for the best fit. Another is to preprocess the
data using something like a Hough transform to guess good initial line fits. Neither
is guaranteed. A cleaner approach is to notice that we are seldom, if ever, faced
with a cloud of indistinguishable points and required to infer some structure on
that cloud; usually, this is the result of posing a problem poorly. If points are not
indistinguishable and have some form of linking structure, then a good start point
should be much easier to choose.
A second difficulty to be aware of is that some points will have extremely small

expected weights. This presents us with a numerical problem; it isn’t clear what will
happen if we regard small weights as being equivalent to zero (this isn’t usually a
wise thing to do). In turn, we may need to adopt a numerical representation which
allows us to add many very small numbers and come up with a non-zero result.
This issue is rather outside the scope of this book; you should not underestimate
its nuisance value because we don’t treat it in detail.

18.3 How Many are There?

At each stage of our discussion of missing variable problems, we have assumed that
the number of components in the mixture model is known. This is generally not the
case in practice. Finding the number of components is, in essence, a model selection
problem — we will search through the collection of models (where different models
have different numbers of components) to determine which fits the data best (recall
section 21). Generally, the value of the negative log-likelihood is a poor guide to
the number of components because, in general, a model with more parameters will
fit a dataset better than a model with fewer parameters. This means that simply
minimizing the negative log-likelihood as a function of the number of components
will tend to lead to too many components. For example, we can fit a set of lines
extremely accurately by passing a line through each pair of points — there may be
a lot of lines, but the fitting error is zero. We resolve this difficulty by adding a term
that increases with the number of components — this penalty compensates for the
decrease in negative log-likelihood caused by the increasing number of parameters.
It is important to understand that there is no canonical model selection pro-

cess. Instead, we can choose from a variety of techniques, each of which uses a
different discount corresponding to a different extremality principle (and different
approximations to these criteria!).
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18.3.1 Basic Ideas

Model selection is a general problem in fitting parametric models. The problem can
be set up as follows: there is a data set, which is a sample from a parametric model
which is itself a member of a family of models. We wish to determine (1) which
model the data set was drawn from and (2) what the parameters of that model
were. A proper choice of the parameters will predict future samples from the model
— a test set — as well as the data set (which is often called the training set);
unfortunately, these future samples are not available. Furthermore, the estimate of
the model’s parameters obtained using the data set is likely to be biased, because
the parameters chosen ensure that the model fits the training set — rather than
the entire set of possible data — optimally. The effect is known as selection bias.
The training set is a subset of the entire set of data that could have been drawn
from the model, and represents the model exactly only if it is infinitely large. This
is why the negative log-likelihood is a poor guide to the choice of model: the fit
looks better, because it is increasingly biased.
The correct penalty to use comes from the deviance, given by

twice (log-likelihoodof the best model minus log-likelihood of the current
model).

(from Ripley, [Ripley, 1996], p. 348); the best model should be the true model.
Ideally, the deviance would be zero; the argument above suggests that the deviance
on a training set will be larger than the deviance on a test set. A natural penalty to
use is the difference between these deviances averaged over both test and training
sets. This penalty is applied to twice the log-likelihood of the fit — the factor of
two appears for reasons we cannot explain, but has no effect in practice. Let us
write the best choice of parameters as Θ∗ and the log-likelihood of the fit to the
data set as L(x; Θ∗).

18.3.2 AIC — An Information Criterion

Akaike proposed a penalty, widely called AIC1 which leads to minimizing

−2L(x; Θ∗) + 2p

where p is the number of free parameters. There is a collection of statistical debate
about the AIC. The first main point is that it lacks a term in the number of data
points. This is suspicious, because the deviance between a fitted model and the
real model should go down as the number of data points goes up. Secondly, there
is a body of experience that the AIC tends to overfit— that is, to choose a model
with too many parameters which fits the training set well but doesn’t perform as
well on test sets.

1For “An information criterion,” not “Akaike information criterion”, []
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18.3.3 Bayesian methods and Schwartz’ BIC

We discussed Bayesian model selection in section 21, coming up with the expression:

P (model|data) =
P (data|model)

P (data)

=

∫
P (data|model, parameters)P (parameters)d{parameters}

P (data)

∝

∫
P (data|model, parameters)P (parameters)d{parameters}

A number of possibilities now present themselves. We could give the posterior over
the models, or choose the MAP model. The first difficulty is that we need to specify
a prior over the models. For example, in the case of EM based segmentation, we
would need to specify a prior on the number of segments. The second difficulty is
that we need to compute the integral over the parameters. This could be done using
a sampling method ([Evans and Swartz, 2000]). An alternative is to construct some
form of approximation to the integral, which yields another form of the penalty
term.
For simplicity, let us write D for the data, M for the model, and θ for the

parameters. The extent to which data support model i over model j is proportional
to the Bayes factor

P (D|Mi)

P (D|Mj)
=

∫
P (D|Mi, θ)P (θ)dθ∫
P (D|Mj, θ)P (θ)dθ

=
P (Mi|D)

P (Mj|D)

P (Mj)

P (Mi)
∝
P (Mi|D)

P (Mj|D)

Assume that P (D, θ|M) looks roughly normal — i.e. has a single mode, roughly
elliptical level curves, and doesn’t die off too fast. Now write the value of θ at the
mode as θ∗. The Hessian at the mode is a matrix H whose i, j’th element is

∂2 log p(xi; Θ)

∂θi∂θj

evaluated at θ = θ∗.
If we take a Taylor series approximation to the log of P (D, θ|M) as a function

of θ at the mode (θ = θ∗), we get

logP (D, θ|M) = L(D; θ) + log p(θ) + constant

= Φ(θ)

= Φ(θ∗) + (θ − θ∗)TH(θ − θ∗) + O((θ − θ∗)3)

≈ Φ(θ∗) + (θ − θ∗)TH(θ − θ∗)

(the linear term is missing because θ∗ is the mode). Now

P (D|M) =

∫
P (D, θ|M)dθ
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=

∫
expΦ(θ)dθ

≈ expΦ(θ∗)

∫
exp(θ − θ∗)TH(θ − θ∗)dθ

= {exp Φ(θ∗)} (2π)
p
2 |H−1|

1
2

All this implies that

log p(D|M) ≈ L(D; θ∗) + log p(θ∗) +
p

2
log(2π) +

1

2
log |H−1|

Given a reasonable optimisation process and a bit of luck, we could find θ∗ and H,
and evaluate this expression and so the Bayes factor. This analysis offers a criterion

−L(D; θ∗)−

{
logp(θ∗) +

p

2
log(2π) +

1

2
log |H−1|

}

(the signs are to allow comparison with the AIC in section 18.3.2). This might be
difficult to evaluate. A series of approximations starting here leads to a criterion

−L(D; θ∗) +
p

2
logN

called the Bayes information criterion or BIC.

18.3.4 Description Length

Models can be selected by criteria that are not intrinsically statistical; after all, we
are selecting the model and we can say why we want to select it. A criterion that
is somewhat natural is to choose the model that encodes the data set most crisply.
This minimum description length criterion chooses the model that allows the
most efficient transmission of the data set. To transmit the data set, one codes and
transmits the model parameters, and then codes and transmits the data given the
model parameters. If the data fits the model very poorly, then this latter term is
large, because one has to code a noise-like signal.
A derivation of the criterion used in practice is rather beyond our needs. The

details appear in [?]; similar ideas appear in [?; ?]. Surprisingly, the BIC emerges
from this analysis, yielding

−L(D; θ∗) +
p

2
logN

18.3.5 Other Methods for Estimating Deviance

The key difficulty in model selection is that we should be using a quantity we can’t
measure — the model’s ability to predict data not in the training set. Given a
sufficiently large training set, we could split the training set into two components,
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use one to fit the model and the other the test the fit. This is an approach known
as cross-validation.
We can use cross-validation to determine the number of components in a model

by splitting the data set, fitting a variety of different models to one side of the split,
and then choosing the model that performs best on the other side. We expect this
process to estimate the number of components, because a model that has too many
parameters will fit the one data set well, but fit the other badly.
Using a single choice of a split into two components introduces a different form

of selection bias, and the safest thing to do is to average the estimate over all
such splits. This becomes unwieldy if the test set is large, because the number of
splits is huge. The most usual version is leave-one-out cross-validation. In this
approach we fit a model to each set of N − 1 of the training set, compute the error
on the remaining data point, and sum these errors to obtain an estimate of the
model error. The model that minimizes this estimate is then chosen.
To our knowledge, this approach — which is standard for model selection in

other kinds of problems — has not been used in fitting applications. It is certainly
appropriate for estimating the number of components. First, assume that we com-
pute the model error for a model with too few components to describe the image
accurately. In this case, the model error will be large, because for many pixels the
model will be insufficiently flexible to describe the pixel that was left out. Simi-
larly, if we use too many components, the model will predict the left out pixel rather
poorly.

18.4 Discussion

It should be obvious that we think missing variable models are important. EM was
first formally described in the statistical literature by [Dempster et al., 1977]. A very
good summary reference is [McLachlan and Krishnan, 1996], which describes nu-
merous variants. For example, it isn’t necessary to find the maximum of Q(u;u(s));
all that is required is to obtain a better value. As another example, the expectation
can be estimated using stochastic integration methods.

18.4.1 EM and Missing Variable Models

Missing variable models seem to crop up in all sorts of places. All the models we are
aware of in computer vision arise from mixture models (and so have complete data
log-likelihood that is linear in the missing variables) and so we have concentrated on
this case. It is natural to use a missing variable model for segmentation [Belongie
et al., 1998a; Comer and Delp, 2000; Feng and Perona, 1998; Vasconcelos and Lipp-
man, 1997; Adelson and Weiss, 1996; Wells et al., 1995]. The model is in the process
of reforming how we think about multiple images (i.e. both motion and stereo). The
general idea is that the set is decomposed into different layers, where the elements of
a layer share the same motion model [Dellaert et al., 2000; Wang and Adelson, 1993;
Wang and Adelson, 1994; Adelson and Weiss, 1996; Adelson and Weiss, 1995;
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Tao et al., 2000; Weiss, 1997] or lie at the same depth [Brostow and Essa, 1999;
Torr et al., 1999a; Baker et al., 1998], or have some other common property [Darrell
and Pentland, 1995]. Other interesting cases include motions resulting from trans-
parency, specularities, etc. [Darrell and Simoncelli, 1993; Black and Anandan, 1996;
Jepson and Black, 1993; Hsu et al., 1994; Szeliski et al., 2000]. The resulting repre-
sentation can be used for quite efficient image based rendering [Shade et al., 1998].
This is a mixture model. While the problem isn’t always seen as a hidden variable
problem (the hidden variable is the layer to which a pixel belongs, or, equivalently,
that generated it), it should probably be. We expect great things fairly shortly.
EM is an extremely successful inference algorithm, but it isn’t magical. The

primary source of difficulty for the kinds of problem that we have described is
local maxima. It is common for problems that have very large numbers of missing
variables to have large numbers of local maxima. This could be dealt with by
starting the optimization close to the right answer, which rather misses the point.
In practice, many vision problems that can be attacked with EM seem to be easier
than they should be given the number of missing variables — meaning that it is
possible to obtain solutions relatively easily. It would be attractive to be able to
talk about how hard a missing variable problem is.

18.4.2 Model Selection

Model selection is a topic that hasn’t received as much attention as it deserves.
There is significant work in motion, the question being which camera model (ortho-
graphic, perspective, etc.) to apply [Torr, 1999; Torr, 1997; Kinoshita and Linden-
baum, 2000; Maybank and Sturm, 1999]. Similarly, there is work in segmentation of
range data, where the question is to what set of parametric surfaces the data should
be fitted (i.e. are there two planes or three, etc.) [Bubna and Stewart, 2000]. In
reconstruction problems, one must sometimes decide whether a degenerate camera
motion sequence is present [Torr et al., 1999b]. The standard problem in segmen-
tation is how many segments are present [Raja et al., 1998; Belongie et al., 1998a;
Adelson and Weiss, 1996]. If one is using models predictively, it is sometimes bet-
ter to compute a weighted average over model predictions (real Bayesians don’t
do model selection) [Torr and Zisserman, 1998; Ripley, 1996]. We have described
only some of the available methods; one important omission is Kanatani’s geometric
information criterion [Kanatani, 1998].

Assignments

Exercises

• Derive the expressions of section ?? for segmentation. One possible modi-
fication is to use the new mean in the estimate of the covariance matrices.
Perform an experiment to determine whether this makes any difference in
practice.
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• Derive the expressions for EM for motion.

• Supply the details for the case of using EM for background subtraction. Would
it help to have a more sophisticated foreground model than uniform random
noise?

• Describe using leave-one-out cross-validation for selecting the number of seg-
ments

Programming Assignments

• Build an EM background subtraction program. Is it practical to insert a
dither term to overcome the difficulty with high spatial frequencies illustrated
in figure 16.11?

• Build an EM segmenter that uses colour, position (ideally, use texture too) to
segment images; use a model selection term to determine how many segments
there should be. How significant a phenomenon is the effect of local minima?

• Build an EM line fitter that works for a fixed number of lines. Investigate the
effects of local minima. One way to avoid being distracted by local minima is
to start from many different start points, and then look at the best fit obtained
from that set. How successful is this? how many local minima do you have
to search to obtain a good fit for a typical data set? Can you improve things
using a Hough transform?

• Expand your EM line fitter to incorporate a model selection term, so that the
fitter can determine how many lines fit a dataset. Compare the choice of AIC
and BIC.

• Insert a noise term in your EM line fitter, so that it is able to perform robust
fits. What is the effect on the number of local minima? Notice that, if there
is a low probability of a point arising from noise, most points will be allocated
to lines, but the fits will often be quite poor; if there is a high probability of a
point arising from noise, points will be allocated to lines only if they fit well.
What is the effect of this parameter on the number of local minima?

• Construct a RANSAC fitter that can fit an arbitrary (but known) number
of lines to a given data set. What is involved in extending your fitter to
determine the best number of lines?



Chapter 19

TRACKING WITH LINEAR
DYNAMIC MODELS

Tracking is the problem of generating an inference about the motion of an ob-
ject given a sequence of images. Good solutions to this problem have a variety of
applications:

• Motion Capture: if we can track a moving person accurately, then we can
make an accurate record of their motions. Once we have this record, we can
use it to drive a rendering process; for example, we might control a cartoon
character, thousands of virtual extras in a crowd scene, or a virtual stunt
avatar. Furthermore, we could modify the motion record to obtain slightly
different motions. This means that a single performer can produce sequences
they wouldn’t want to do in person.

• Recognition From Motion: the motion of objects is quite characteristic.
We may be able to determine the identity of the object from its motion; we
should be able to tell what it’s doing.

• Surveillance: knowing what objects are doing can be very useful. For ex-
ample, different kinds of trucks should move in different, fixed patterns in an
airport; if they do not, then something is going very wrong. Similarly, there
are combinations of places and patterns of motions that should never occur
(no truck should ever stop on an active runway, say). It could be helpful to
have a computer system that can monitor activities and give a warning if it
detects a problem case.

• Targeting: a significant fraction of the tracking literature is oriented towards
(a) deciding what to shoot and (b) hitting it. Typically, this literature de-
scribes tracking using radar or infra-red signals (rather than vision), but the
basic issues are the same — what do we infer about an object’s future position
from a sequence of measurements? (i.e. where should we aim?)

In typical tracking problems, we have a model for the object’s motion, and some
set of measurements from a sequence of images. These measurements could be the

526



Section 19.1. Tracking as an Abstract Inference Problem 527

position of some image points, the position and moments of some image regions,
or pretty much anything else. They are not guaranteed to be relevant, in the sense
that some could come from the object of interest and some might come from other
objects, or from noise.
Tracking is properly thought of as an inference problem. The moving object has

some form of internal state, which is measured at each frame. We need to combine
our measurements as effectively as possible to estimate the object’s state. There are
two important cases. Either both dynamics and measurement are linear in
which case, the inference problem is straightforward, and has a standard solution. If
we are faced with non-linear dynamics, even very slight non-linearities in system
dynamics have tremendous effects. As a result, inference can be very difficult and
appears to be impossible in general. If the dimension of the state space is low,
there is a useful algorithm that very often works. As tracking through non-linear
dynamics is a somewhat technical activity, we have confined it to its own chapter
(chapter 20). In this chapter, we concentrate on the formulation of tracking through
linear dynamics. Section 19.1 sketches the overall view of tracking as an inference
problem. In section 19.2, we deal with linear dynamics and the Kalman filter. We
then sketch out some examples of tracking applications in section 19.4. The most
interesting current tracking application, tracking people, must wait until we have
discussed non-linear dynamics.

19.1 Tracking as an Abstract Inference Problem

Much of this chapter will deal with the algorithmics of tracking. In particular, we
will see tracking as a probabilistic inference problem. The key technical difficulty
is maintaining an accurate representation of the posterior on object position given
measurements, and doing so efficiently.
We model the object as having some internal state; the state of the object at

the i’th frame is typically written as Xi. The capital letters indicate that this is a
random variable — when we want to talk about a particular value that this variable
takes, we will use small letters. The measurements obtained in the i’th frame are
values of a random variable Y i; we shall write yi for the value of a measurement,
and, on occasion, we shall write Y i = yi for emphasis. There are three main
problems:

• Prediction: we have seen y0, . . . , yi−1 — what state does this set of mea-
surements predict for the i’th frame? to solve this problem, we need to obtain
a representation of P (Xi|Y 0 = y0, . . . ,Y i−1 = yi−1).

• Data association: Some of the measurements obtained from the i-th frame
may tell us about the object’s state. Typically, we use P (Xi|Y 0 = y0, . . . ,Y i−1 =
yi−1) to identify these measurements.

• Correction: now that we have yi — the relevant measurements — we need
to compute a representation of P (Xi|Y 0 = y0, . . . ,Y i = yi).
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19.1.1 Independence Assumptions

Tracking is very difficult without the following assumptions:

• Only the immediate past matters: formally, we require

P (Xi|X1, . . . ,Xi−1) = P (Xi|Xi−1)

This assumption hugely simplifies the design of algorithms, as we shall see;
furthermore, it isn’t terribly restrictive if we’re clever about interpreting Xi
as we shall show in the next section.

• Measurements depend only on the current state: we assume that Y i
is conditionally independent of all other measurements given Xi. This means
that

P (Y i,Y j, . . .Y k|Xi) = P (Y i|Xi)P (Y j , . . . ,Y k|Xi)

Again, this isn’t a particularly restrictive or controversial assumption, but it
yields important simplifications.

These assumptions mean that a tracking problem has the structure of inference on a
hidden Markov model (where both state and measurements may be on a continuous
domain). You should compare this chapter with section 26.4, which describes the
use of hidden Markov models in recognition.

19.1.2 Tracking as Inference

We shall proceed inductively. Firstly, we assume that we have P (X0), which is our
“prediction” in the absence of any evidence. Now correcting this is easy: when we
obtain the value of Y 0 — which is y0 — we have that

P (X0|Y 0 = y0) =
P (y0|X0)P (X0)

P (y0)

=
P (y0|X0)P (X0)∫
P (y0|X0)P (X0)dX0

∝ P (y0|X0)P (X0)

All this is just Bayes rule, and we either compute or ignore the constant of pro-
portionality depending on what we need. Now assume we have a representation of
P (Xi−1|y0, . . . , yi−1).

Prediction

Prediction involves representing

P (Xi|y0, . . . , yi−1)
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Our independence assumptions make it possible to write

P (Xi|y0, . . . , yi−1) =

∫
P (Xi,Xi−1|y0, . . . , yi−1)dXi−1

=

∫
P (Xi|Xi−1, y0, . . . , yi−1)P (Xi−1|y0, . . . , yi−1)dX i−1

=

∫
P (Xi|Xi−1)P (X i−1|y0, . . . , yi−1)dXi−1

Correction

Correction involves obtaining a representation of

P (Xi|y0, . . . , yi)

Our independence assumptions make it possible to write

P (X i|y0, . . . , yi) =
P (Xi, y0, . . . , yi)

P (y0, . . . , yi)

=
P (yi|Xi, y0, . . . , yi−1)P (Xi|y0, . . . , yi−1)P (y0, . . . , yi−1)

P (y0, . . . , yi)

= P (yi|Xi)P (Xi|y0, . . . , yi−1)
P (y0, . . . , yi−1)

P (y0, . . . , yi)

=
P (yi|Xi)P (Xi|y0, . . . , yi−1)∫
P (yi|Xi)P (X i|y0, . . . , yi−1)dX i

19.1.3 Overview

The key algorithmic issue involves finding a representation of the relevant prob-
ability densities that (a) is sufficiently accurate for our purposes and (b) allows
these two crucial sums to be done quickly and easily. The simplest case occurs
when the dynamics are linear, the measurement model is linear, and the noise
models are Gaussian (section 19.2). Non-linearities introduce a host of unpleasant
problems (section 20.1) and we discuss some current methods for handling them
(section 20.2; the appendix gives another method that is unreliable but occasion-
ally useful). We discuss data association in section 20.4, and show some examples
of tracking systems in action in section 19.4.

19.2 Linear Dynamic Models

There are good relations between linear transformations and Gaussian probability
densities. The practical consequence is that, if we restrict attention to linear dy-
namic models and linear measurement models, both with additive Gaussian noise,
all the densities we are interested in will be Gaussians. Furthermore, the question
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of solving the various integrals we encounter can usually be avoided by tricks that
allow us to determine directly which Gaussian we are dealing with.
In the simplest possible dynamic model, the state is advanced by multiplying it

by some known matrix (which may depend on the frame), and then adding a normal
random variable of zero mean, and known covariance. Similarly, the measurement is
obtained by multiplying the state by some matrix (which may depend on the frame),
and then adding a normal random variable of zero mean and known covariance. We
use the notation

x ∼ N(µ,Σ)

to mean that x is the value of a random variable with a normal probability dis-
tribution with mean µ and covariance Σ; notice that this means that, if x is one-
dimensional — we’d write x ∼ N(µ, v) — that its standard deviation is

√
v. We

can write our dynamic model as

xi ∼ N(Dixi−1; Σdi)

yi ∼ N(Mixi; Σmi)

Notice that the covariances could be different from frame to frame, as could the
matrices. While this model appears very limited, it is in fact extremely powerful;
we show how to model some common situations below.

19.2.1 Drifting Points

Let us assume that x encodes the position of a point. If Di = Id, then the point
is moving under random walk — its new position is its old position, plus some
Gaussian noise term. This form of dynamics isn’t obviously useful, because it
appears that we are tracking stationary objects. It is quite commonly used for
objects for which no better dynamic model is known — we assume that the random
component is quite large, and hope we can get away with it.
This model also illustrates aspects of the measurement matrixM. The most

important thing to keep in mind is that we don’t need to measure every aspect of
the state of the point at every step. For example, assume that the point is in 3D:
now ifM3k = (0, 0, 1),M3k+1 = (0, 1, 0) andM3k+2 = (1, 0, 0), then at every third
frame we measure, respectively, the z, y, or x position of the point. Notice that
we can still expect to be able to track the point, even though we measure only one
component of its position at a given frame. If we have sufficient measurements, we
can reconstruct the state — the state is observable. We explore observability in
the exercises.

19.2.2 Constant Velocity

Assume that the vector p gives the position and v the velocity of a point moving
with constant velocity. In this case, pi = pi−1 + (∆t)vi−1 and vi = vi−1. This
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means that we can stack the position and velocity into a single state vector, and
our model applies. In particular,

x =

{
p
v

}
and

Di =

{
Id (∆t)Id
0 Id

}
Notice that, again, we don’t have to observe the whole state vector to make a useful
measurement. For example, in many cases we would expect that

Mi =
{
Id 0

}
i.e. that we see only the position of the point. Because we know that it’s moving
with constant velocity — that’s the model — we expect that we could use these
measurements to estimate the whole state vector rather well.

19.2.3 Constant Acceleration

Assume that the vector p gives the position, vector v the velocity and vector a
the acceleration of a point moving with constant acceleration. In this case, pi =
pi−1 + (∆t)vi−1, vi = vi−1 + (∆t)ai−1 and ai = ai−1. Again, we can stack the
position, velocity and acceleration into a single state vector, and our model applies.
In particular,

x =



p
v
a




and

Di =



Id (∆t)Id 0
0 Id (∆t)Id
0 0 Id




Notice that, again, we don’t have to observe the whole state vector to make a useful
measurement. For example, in many cases we would expect that

Mi =
{
Id 0 0

}
i.e. that we see only the position of the point. Because we know that it’s moving
with constant acceleration — that’s the model — we expect that we could use these
measurements to estimate the whole state vector rather well.

19.2.4 Periodic Motion

Assume we have a point, moving on a line with a periodic movement. Typically, its
position p satisfies a differential equation like

d2p

dt2
= −p
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Figure 19.1. A constant velocity dynamic model, for a point on the line. In this case,
the state space is two dimensional — one coordinate for position, one for velocity. The
figure on the top left shows a plot of the state; each asterisk is a different state. Notice
that the vertical axis (velocity) shows some small change, compared with the horizontal
axis. This small change is generated only by the random component of the model, so
that the velocity is constant up to a random change. The figure on the top right shows
the first component of state (which is position) plotted against the time axis. Notice
we have something that is moving with roughly constant velocity. The figure on the
bottom overlays the measurements (the circles) on this plot. We are assuming that
the measurements are of position only, and are quite poor; as we shall see, this doesn’t
significantly affect our ability to track.

This can be turned into a first order linear differential equation by writing the
velocity as v, and stacking position and velocity into a vector u = (p, v); we then
have

du

dt
=

(
0 1
−1 0

)
u = Su
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Figure 19.2. This figure illustrates a constant acceleration model for a point moving on
the line. On the left, we show a plot of the first two components of state — the position
on the x-axis and the velocity on the y-axis. In this case, we expect the plot to look like
(t2, t), which it does. On the right, we show a plot of the position against time — note
that the point is moving away from its start position increasingly quickly.

Now assume we are integrating this equation with a forward Euler method, where
the steplength is ∆t; we have

ui = ui−1 +∆t
du

dt
= ui−1 +∆tSui−1

=

(
1 ∆t
−∆t 1

)
ui−1

We can either use this as a state equation, or we can use a different integrator. If
we used a different integrator, we might have some expression in ui−1, . . . ,ui−n —
we would need to stack ui−1, . . . ,ui−n into a state vector and arrange the matrix
appropriately (see the exercises). This method works for points on the plane, in
3D, etc. as well (again, see the exercises).

19.2.5 Higher Order Models

Another way to look at a constant velocity model is that we have augmented the
state vector to get around the requirement that P (xi|x1, . . . ,xi−1) = P (xi|xi−1).
We could write a constant velocity model in terms of point position alone, as long
as we were willing to use the position of the i − 2’th point as well as that of the
i− 1’th point. In particular, writing position as p, we would have

P (pi|p1, . . . ,pi−1) = N(pi−1 + (pi−1 − pi−2),Σdi)

This model assumes that the difference between pi and pi−1 is the same as the
difference between pi−1 and pi−2 — i.e. that the velocity is constant, up to the
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random element. A similar remark applies to the constant acceleration model, which
is now in terms of pi−1, pi−2 and pi−3.
We augmented the position vector with the velocity vector (which represents

pi−1 − pi−2) to get the state vector for a constant velocity model; similarly, we
augmented the position vector with the velocity vector and the acceleration vector
(which represents (pi−1 − pi−2) − (pi−2 − pi−3)) to get a constant acceleration
model. We might reasonably want the new position of the point to depend on pi−4
or other points even further back in the history of the point’s track; to represent
dynamics like this, all we need to do is augment the state vector to a suitable size.
Notice that it can be somewhat difficult to visualize how the model will behave.
There are two approaches to determining what Di needs to be; in the first, we know
something about the dynamics and can write it down, as we have done here; in the
second, we need to learn it from data — we put discussion of this topic off.

19.3 Kalman Filtering

An important feature of linear dynamic models is that all the conditional probabil-
ity models we need to deal with are normal. In particular, P (Xi|y1, . . . , yi−1) is
normal; as is P (Xi|y1, . . . , yi). This means that they are relatively easy to repre-
sent — all we need to do is maintain representations of the mean and the covariance
for the prediction and correction phase. In particular, our model will admit a rel-
atively simple process where the representation of the mean and covariance for the
prediction and estimation phase are updated.

19.3.1 The Kalman Filter for a 1D State Vector

The dynamic model is now

xi ∼ N(dixi−1, σ
2
di
)

yi ∼ N(mixi, σ
2
mi)

We need to maintain a representation of P (Xi|y0, . . . , yi−1) and of P (Xi|y0, . . . , yi).
In each case, we need only represent the mean and the standard deviation, because
the distributions are normal.

Notation

Wewill represent the mean of P (Xi|y0, . . . , yi−1) asX
−
i and the mean of P (Xi|y0, . . . , yi)

as X
+

i — the superscripts suggest that they represent our belief about Xi immedi-
ately before and immediately after the i’th measurement arrives. Similarly, we will
represent the standard deviation of P (Xi|y0, . . . , yi−1) as σ

−
i and of P (Xi|y0, . . . , yi)

as σ+i . In each case, we will assume that we know P (Xi−1|y0, . . . , yi−1), meaning

that we know X
+
i−1 and σ

+
i−1.
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Tricks with Integrals

The main reason that we work with normal distributions is that their integrals
are quite well behaved. We are going to obtain values for various parameters as
integrals, usually by change of variable. Our current notation can make appropriate
changes a bit difficult to spot, so we write

g(x;µ, v) = exp

(
−
(x− µ)2

2v

)

We have dropped the constant, and for convenience are representing the variance
(as v), rather than the standard deviation. This expression allows some convenient
transformations; in particular, we have

g(x;µ, v) = g(x− µ; 0, v)

g(m;n, v) = g(n;m, v)

g(ax;µ, v) = g(x;µ/a, v/a2)

We will also need the following fact:∫ ∞
−∞
g(x − u;µ, va)g(u; 0, vb)du ∝ g(x;µ, v

2
a + v

2
b )

(there are several ways to confirm that this is true: the easiest is to look it up in
tables; more subtle is to think about convolution directly; more subtle still is to
think about the sum of two independent random variables). We need a further
identity. We have

g(x; a, b)g(x; c, d) = g(x;
ad+ cb

b+ d
,
bd

b+ d
)f(a, b, c, d)

here the form of f is not significant, but the fact that it is not a function of x is.
The exercises show you how to prove this identity.

Prediction

We have

P (Xi|y0, . . . , yi−1) =

∫
P (Xi|Xi−1)P (Xi−1|y0, . . . , yi−1)dXi−1

Now

P (Xi|y0, . . . , yi−1) =

∫
P (Xi|Xi−1)P (Xi−1|y0, . . . , yi−1)dXi−1)
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∝

∫ ∞
−∞
g(Xi; diXi−1, σ

2
di)g(Xi−1;X

+

i−1, (σ
+
i−1)

2)dXi−1

∝

∫ ∞
−∞
g((Xi − diXi−1); 0, σ

2
di
)g((Xi−1 −X

+

i−1); 0, (σ
+
i−1)

2)dXi−1

∝

∫ ∞
−∞
g((Xi − di(u+X

+
i−1)); 0, (σdi)

2)g(u; 0, (σ+i−1)
2)du

∝

∫ ∞
−∞
g((Xi − diu); diX

+

i−1, σ
2
di)g(u; 0, (σ

+
i−1)

2)du

∝

∫ ∞
−∞
g((Xi − v); diX

+

i−1, σ
2
di
)g(v; 0, (diσ

+
i−1)

2)dv

∝ g(Xi; diX
+

0 , σ
2
di + (diσ

+
i−1)

2)

where we have applied the transformations above, and changed variable twice. All
this means that

X
−
i = diX

+

i−1

(σ−i )
2 = σ2di + (diσ

+
i−1)

2

Correction

We have

P (Xi|y0, . . . , yi) =
P (yi|Xi)P (Xi|y0, . . . , yi−1)∫
P (yi|Xi)P (Xi|y0, . . . , yi−1)dXi

∝ P (yi|Xi)P (Xi|y0, . . . , yi−1)

We know X
−
i and σ

−
i , which represent P (Xi|y0, . . . , yi−1).

Using the notation above, we have

P (Xi|y0, . . . , yi) ∝ g(yi;miXi, σ
2
mi)g(Xi;X

−
i , (σ

−
i )
2)

= g(miXi; yi, σ
2
mi
)g(Xi;X

−
i , (σ

−
i )
2)

= g(Xi;
yi
mi
,
σ2mi
m2i
)g(Xi;X

−
i , (σ

−
i )
2)

and by pattern matching to the identity above, we have

X+i =

(
X
−
i σ
2
mi
+miyi(σ

−
i )
2

σ2mi +m
2
i (σ

−
i )
2

)

σ+i =

√√√√(
σ2mi (σ

−
i )
2

(σ2mi +m
2
i (σ

−
i )
2)

)
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Dynamic Model:

xi ∼ N(dixi−1, σdi)

yi ∼ N(mixi, σmi)

Start Assumptions: x−0 and σ
−
0 are known

Update Equations: Prediction

x−i = dix
+
i−1

σ−i =
√
σ2di + (diσ

+
i−1)

2

Update Equations: Correction

x+i =

(
x−i σ

2
mi +miyi(σ

−
i )
2

σ2mi +m
2
i (σ

−
i )
2

)

σ+i =

√√√√(
σ2mi (σ

−
i )
2

(σ2mi +m
2
i (σ

−
i )
2)

)

Algorithm 19.1: The 1D Kalman filter updates estimates of the mean and covari-
ance of the various distributions encountered while tracking a one-dimensional state
variable using the given dynamic model.

19.3.2 The Kalman Update Equations for a General State Vector

We obtained a 1D tracker without having to do any integration using special prop-
erties of normal distributions. This approach works for a state vector of arbitrary
dimension, but the process of guessing integrals, etc., is a good deal more elaborate
than that shown in section 19.3.1. We omit the necessary orgy of notation — it’s a
tough but straightforward exercise for those who really care (you should figure out
the identities first and the rest follows) — and simply give the result in algorithm 2.
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Dynamic Model:

xi ∼ N(Dixi−1,Σdi)

yi ∼ N(Mixi,Σmi)

Start Assumptions: x−0 and Σ
−
0 are known

Update Equations: Prediction

x−i = Dix
+
i−1

Σ−i = Σdi + Diσ
+
i−1Di

Update Equations: Correction

Ki = Σ
−
i M

T
i

[
MiΣ

−
i M

T
i +Σmi

]−1
x+i = x

−
i + Ki

[
yi −Mix

−
i

]
Σ+i = [Id −KiMi] Σ

−
i

Algorithm 19.2: The Kalman filter updates estimates of the mean and covariance
of the various distributions encountered while tracking a state variable of some fixed
dimension using the given dynamic model.

19.3.3 Forward-Backward Smoothing

It is important to notice that P (Xi|y0, . . . , yi) is not the best available represen-
tation of Xi; this is because it doesn’t take into account the future behaviour of
the point. In particular, all the measurements after yi could affect our represen-
tation of X i. This is because these future measurements might contradict the
estimates obtained to date — perhaps the future movements of the point are more
in agreement with a slightly different estimate of the position of the point. However,
P (Xi|y0, . . . , yi) is the best estimate available at step i.
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Figure 19.3. The Kalman filter for a point moving on the line under our model of
constant velocity (compare with figure 19.1). The state is plotted with open circles, as
a function of the step i. The *-s give x−i , which is plotted slightly to the left of the
state to indicate that the estimate is made before the measurement. The x-s give the
measurements, and the +-s give x+i , which is plotted slightly to the right of the state. The
vertical bars around the *-s and the +-s are 3 standard deviation bars, using the estimate of
variance obtained before and after the measurement, respectively. When the measurement
is noisy, the bars don’t contract all that much when a measurement is obtained (compare
with figure 19.4).

What we do with this observation depends on the circumstances. If our appli-
cation requires an immediate estimate of position — perhaps we are tracking a car
in the opposite lane — there isn’t much we can do. If we are tracking off-line —
perhaps, for forensic purposes, we need the best estimate of what an object was
doing given a videotape — then we can use all data points, and so we want to rep-
resent P (Xi|y0, . . . , yN ). A common alternative is that we need a rough estimate
immediately, and can use an improved estimate that has been time-delayed by a
number of steps. This means we want to represent P (Xi|y0, . . . , yi+k) — we have
to wait till time i+ k for this representation, but it should be an improvement on
P (Xi|y0, . . . , yi).
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Figure 19.4. The Kalman filter for a point moving on the line under our model of
constant acceleration (compare with figure 19.2). The state is plotted with open circles,
as a function of the step i. The *-s give x−i , which is plotted slightly to the left of the
state to indicate that the estimate is made before the measurement. The x-s give the
measurements, and the +-s give x+i , which is plotted slightly to the right of the state. The
vertical bars around the *-s and the +-s are 3 standard deviation bars, using the estimate of
variance obtained before and after the measurement, respectively. When the measurement
is noisy, the bars don’t contract all that much when a measurement is obtained.

Introducing a Backward Filter

Now we have

P (Xi|y0, . . . , yN ) =
P (Xi, yi+1, . . . , yN |y0, . . . , yi)P (y0, . . . , yi)

P (y0, . . . , yN )

=
P (yi+1, . . . , yN |Xi, y0, . . . , yi)P (Xi|y0, . . . , yi)P (y0, . . . , yi)

P (y0, . . . , yN)

=
P (yi+1, . . . , yN |Xi)P (Xi|y0, . . . , yi)P (y0, . . . , yi)

P (y0, . . . , yN )

= P (Xi|yi+1, . . . , yN )P (Xi|y0, . . . , yi)α

where

α =

(
P (yi+1, . . . , yN)P (y0, . . . , yi)

P (Xi)P (y0, . . . , yN)

)
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This term should look like a potential source of problems to you; in fact, we will
be able to avoid tangling with it by a clever trick. What is important about this
form is that we are combining P (Xi|y0, . . . , yi) — which we know how to obtain
— with P (Xi|yi+1, . . . , yN ). We actually know how to obtain a representation of
P (Xi|yi+1, . . . , yN), too. We could simply run the Kalman filter backwards in time,
using backward dynamics, and take the predicted representation ofX i (we leave the
details of relabelling the sequence, etc. to the exercises).

Combining Representations

Now we have two representations of X i: one obtained by running a forward filter,
and incorporating all measurements up to yi; and one obtained by running a back-
ward filter, and incorporating all measurements after yi. We need to combine these
representations. Instead of explicitly determining the value of α (which should look
hard) we can get the answer by noting that this is like having another measure-
ment. In particular, we have a new measurement generated by Xi — that is, the
result of the backward filter — to combine with our estimate from the forward filter.
We know how to combine estimates with measurements, because that’s what the
Kalman filter equations are for.
All we need is a little notation. We will attach the superscript f to the estimate

from the forward filter, and the superscript b to the estimate from the backward
filter. We will write the mean of P (Xi|y0, . . . , yN) as X

∗
i and the covariance of

P (Xi|y0, . . . , yN ) as Σ
∗
i . We regard the representation of X

b
i as a measurement

of Xi with mean X
b,−
i and covariance Σb,−i — the minus sign is because the i’th

measurement cannot be used twice, meaning the backward filter predicts X i using
yN . . .yi+1. This measurement needs to be combined with P (Xi|y0, . . . , yi), which

has meanX
f,+
i and covariance Σf,+i (when we substitute into the Kalman equations,

these will take the role of the representation before a measurement, because the value

of the measurement is now X
b,−
i ).

Substituting into the Kalman equations, we find

K∗i = Σ
f,+
i

[
Σf,+i +Σb,−i

]−1
Σ∗i = [I − Ki] Σ

+,f
i

X
∗
i = X

f,+
i +K∗i

[
X
b,−
i −X

f,+
i

]

It turns out that a little manipulation (exercises!) yields a simpler form, which we
give in algorithm 3. Forward-backward estimates can make a substantial difference,
as figure 19.5 illustrates.



542 Tracking with Linear Dynamic Models Chapter 19

Forward filter:
Obtain the mean and variance of P (Xi|y0, . . . , yi) using the Kalman filter.

These are X
f,+

i and Σf,+i .

Backward filter: Obtain the mean and variance of P (Xi|yi+1, . . . , yN) using

the Kalman filter running backwards in time. These are X
b,−
i and Σb,−i .

Combining forward and backward estimates: Regard the backward esti-
mate as a new measurement forX i, and insert into the Kalman filter equations
to obtain

Σ∗i =
[
(Σf,+i )

−1 + (Σb,−i )
−1
]−1

X
∗
i = Σ

∗
i

[
(Σf,+i )

−1X
f,+

i + (Σb,−i )
−1X

b,−
i

]

Algorithm 19.3: The forward backward algorithm combines forward and backward
estimates of state to come up with an improved estimate.

Priors

In typical vision applications, we are tracking forward in time. This leads to an
inconvenient asymmetry: we may have a good idea of where the object started,
but only a poor one of where it stopped, i.e. we are likely to have a fair prior
for P (x0), but may have difficulty supplying a prior for P (xN ) for the forward-
backward filter. One option is to use P (xN |y0, . . . , yN ) as a prior. This is a
dubious act, as this probability distribution does not in fact reflect our prior belief
about P (xN ) — we’ve used all the measurements to obtain it. The consequences
can be that this distribution understates our uncertainty in xN , and so leads to a
forward-backward estimate that significantly underestimates the covariance for the
later states. An alternative is to use a the mean supplied by the forward filter,
but enlarge the covariance substantially; the consequences are a forward-backward
estimate that overestimates the covariance for the later states (compare figure 19.5
with figure 19.6).
Not all applications have this asymmetry; for example, if we are engaged in a

forensic study of a videotape, we might be able to start both the forward tracker
and the backward tracker by hand, and provide a good estimate of the prior in each
case. If this is possible, then we have a good deal more information which may
be able to help choose correspondences, etc. — the forward tracker should finish
rather close to where the backward tracker starts.
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Figure 19.5. Forward-backward estimation for a dynamic model of a point moving on
the line with constant velocity. We are plotting the position component of state against
time. On the top left, we show the forward estimates, again using the convention that
the state is shown with circles, the data is shown with x’s, the prediction is shown with a
* and the corrected estimate is shown with a +; the bars give one standard deviation in
the estimate. The predicted estimate is shown slightly behind the state and the corrected
estimate is shown slightly ahead of the state. You should notice that the measurements
are very noisy. On the top right we show the backward estimates. Now time is running
backwards (although we have plotted both curves on the same axis) so that the prediction
is slightly ahead of the measurement and the corrected estimate is slightly behind. We
have used the final corrected estimate of the forward filter as a prior; again, the bars
give one standard deviation in each variable. On the bottom, we show the combined
forward-backward estimate. The squares give the estimates of state. Notice the significant
improvement in the estimate.

Smoothing over an Interval

While our formulation of forward-backward smoothing assumed that the backward
filter started at the last data point, it is easy to start this filter a fixed number of
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Figure 19.6. We now show the effects of using a diffuse prior for the position of the
final point in forward-backward estimation for a dynamic model of a point moving on
the line with constant velocity. We are plotting the position component of state against
time. On the top left, we show the forward estimates, again using the convention that
the state is shown with circles, the data is shown with x’s, the prediction is shown with a
* and the corrected estimate is shown with a +; the bars give one standard deviation in
the estimate. The predicted estimate is shown slightly behind the state and the corrected
estimate is shown slightly ahead of the state. You should notice that the measurements
are very noisy. On the top right we show the backward estimates. Now time is running
backwards (although we have plotted both curves on the same axis) so that the prediction
is slightly ahead of the measurement and the corrected estimate is slightly behind; again,
the bars give one standard deviation in each variable. On the bottom, we show the
combined forward-backward estimate. The squares give the estimates of state. Notice the
significant improvement in the estimate.

steps ahead of the forward filter. If we do this, we obtain an estimate of state in real
time (essentially immediately after the measurement), and an improved estimate
some fixed numbers of measurements later. This is sometimes useful. Furthermore,
it is an efficient way to obtain most of the improvement available from a backward
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filter, if we can assume that the effect of the distant future on our estimate is
relatively small compared with the effect of the immediate future. Notice that we
need to be careful about priors for the backward filter here; we might take the
forward estimate and enlarge its covariance somewhat.

19.4 Applications and Examples

Tracking is a technology with a number of possible applications. There are three
dominant topics.

• Vehicle tracking systems could report traffic congestion, accidents and dan-
gerous or illegal behaviour by road users. Traffic congestion reports are useful
for potential road users — who might change their travel plans — and to au-
thorities — who might arrange to remove immobilised vehicles blocking lanes,
etc. Accident reports can be used to alert emergency services; if the tracking
system can read vehicle numberplates, it might use reports of dangerous or
illegal behaviour to send a summons to the vehicle owner.

• Surveillance systems report what people are doing, usually with the aim of
catching people who are doing things they shouldn’t. The police might wish
to know which member of a sports audience threw a bottle onto the field,
for example; or if the same person visited several different banks just before
they were robbed. Customs might wish to know exactly who is loading and
unloading aircraft flying to foreign ports.

• Human-Computer interaction systems use people’s actions to drive vari-
ous devices. For example, the living room might decide for itself, by watching
what people are doing, when low lights and soft music are appropriate. The
television set might change channels when you wave at it. Your computer
might watch what you write on your whiteboard, and make a record of the
contents when you tell it to.

Currently, the most convincing applications are in vehicle tracking. These systems
work reliably under a large range of circumstances. We shall survey vehicle tracking
systems briefly here, and discuss human trackers in chapter 20.

19.4.1 Vehicle Tracking

Systems that can track cars using video from fixed cameras can be used to predict
traffic volume and flow; the ideal is to report on, and act to prevent, traffic problems
as quickly as possible. A number of systems can track vehicles successfully. The
crucial issue is initiating a track automatically. In the two systems we describe here,
the problem is attacked quite differently. Sullivan et al. construct a set of regions
of interest (ROI’s) in each frame [Sullivan et al., 1997]. Because the camera is fixed,
these regions of interest can be chosen to span each lane (figure 19.7); this means
that almost all vehicles must pass directly through a region of interest in a known
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Figure 19.7. Sullivan et al. track vehicles in views of the road from a stationary
camera. Their tracker uses a series of regions of interest registered to the road, which
are shown on the left. They initiate tracks by looking for characteristic edge signatures
in a particular ROI; these signatures are projected onto three distinct coordinate axes —
if the edges projected on these axes have a high enough correlation with the expected
form, then a track is initiated (right). Figure from “Model-based Vehicle Detection and
Classification using Orthographic Approximations,” by G D Sullivan, K D Baker, A D
Worrall, C I Attwood and P R Remagnino, Proc. British Machine Vision Association
Conference, 199x, by permission of the K.D. Baker

direction (there are mild issues if a vehicle chooses to change lanes while in the
ROI, but these can be ignored). Their system then watches for characteristic edge
signatures in the ROI that indicate the presence of a vehicle (figure 19.7). These
signatures can alias slightly — typically, a track is initiated when the front of the
vehicle enters the ROI, another is initiated when the vehicle lies in the ROI, and a
third is initiated close to the vehicle’s leaving — because some of the vehicle’s edges
are easily mistaken for others.
Each initiated track is tracked for a sequence of frames, during which time

it accumulates a quality score — essentially, an estimate of the extent to which
predictions of future position were accurate. If this quality score is sufficiently high,
the track is accepted as an hypothesis. An exclusion region in space and time is
constructed around each hypothesis, such that there can be only one track in this
region, and if the regions overlap, the track with the highest quality is chosen. The
requirement that the exclusion regions do not overlap derives from the fact that
two cars can’t occupy the same region of space at the same time. Once a track
has passed these tests, the position in which and the time at which it will pass
through another ROI can be predicted. The track is finally confirmed or rejected
by comparing this ROI at the appropriate time with a template that predicts the
car’s appearance. Typically, relatively few tracks that are initiated reach this stage
(figure 19.8).
An alternative method for initiating car tracks is to track individual features,

and then group those tracks into possible cars. Beymer et al. use this strategy
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Figure 19.8. In the system of Sullivan et al., tracks are continued if they are of sufficient
quality, measured by comparing the prediction of the track with measurements. Tracks
exclude other tracks: by the time a car reaches the bottom of the view, the system must
decide which track to accept. It does so by comparing the track prediction with another
ROI. This figure plots a series of tracks (position on the vertical axis and time on the
horizontal axis). Notice that the typical alias tracks (that arise because the front of a
car and the back of a car both tend to look rather like a registered car to the track
initiation process) tend to die out quite quickly; the real track, and its exclusion regions,
is indicated. If two tracks attempt to exclude one another, the winner is the track of
the highest quality. Figure from “Model-based Vehicle Detection and Classification using
Orthographic Approximations,” by G D Sullivan, K D Baker, A D Worrall, C I Attwood
and P R Remagnino, Proc. British Machine Vision Association Conference, 199x, by
permission of the K.D. Baker

rather successfully [Beymer et al., 1997]. Because the road is plane and the camera
is fixed, the homography connecting the road plane and the camera can be deter-
mined. This homography can be used to determine the distance between points;
and points can lie together on a car only if this distance doesn’t change with time.
Their system tracks corner points, identified using a second moment matrix (sec-
tion 9.3.3), using a Kalman filter. Points are grouped using a simple algorithm
using a graph abstraction: each feature track is a vertex, and edges represent a
grouping relationship between the tracks. When a new feature comes into view —
and a track is thereby initiated — it is given an edge joining it to every feature



548 Tracking with Linear Dynamic Models Chapter 19

Figure 19.9. The figure on the left shows individual tracks for the system of Beymer et
al. These tracks are obtained by tracking corner points with a Kalman filter. Because the
camera position with respect to the road plane is known, the camera transformation can
be inverted for points lying on a plane parallel to the road plane. This means that we can
determine pairs of points that remain at a constant distance from one another. The figure
on the right shows groups of such points. These groups are assumed to represent vehicles.
Figure from “A Real-Time Computer Vision System for Measuring Traffic Parameters,”
D. Beymer et al., Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 1997
c© 1997, IEEE

track that appears nearby in that frame. If, at some future time, the distance be-
tween points in a track changes by too much, the edge is discarded. An exit region
is defined near where vehicles will leave the frame. When tracks reach this exit
region, connected components are defined to be vehicles. This grouper is successful,
both in example images (figure 19.9) and in estimating traffic parameters over long
sequences (figure 19.10).
The ground plane to camera transformation can provide a great deal of informa-

tion. We have already used this to determine whether points are on rigid objects (by
figuring out velocity on the ground plane and comparing velocities). This allowed
us to assemble features into objects. Now once an object has been tracked, we can
use this transformation to reason about spatial layout and occlusion. Furthermore,
we can track cars from moving vehicles. In this case, there are two issues to manage:
firstly, the motion of the camera platform (so-called ego-motion); and secondly,
the motion of other vehicles. Maybank et al. estimate the ego-motion by matching
views of the road to one another from frame to frame (figure 19.11) [Ferryman et
al., 2000]. With an estimate of the homography and of the ego-motion, we can
now refer tracks of other moving vehicles into the road coordinate system to come
up with reconstructions of all vehicles visible on the road from a moving vehicle
(figure 19.11).
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Figure 19.10. The system of Beymer et al. can produce rather accurate estimates of
traffic flow and traffic velocity. On the left a scatter plot of estimates of flow vs. ground
truth, and on the right a scatter plot of estimates of velocity vs. ground truth. Figure from
“A Real-Time Computer Vision System for Measuring Traffic Parameters,” D. Beymer et
al., Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 1997 c© 1997, IEEE

19.5 Discussion

The Kalman filter is an extremely useful trick. It is regularly rediscovered, and
appears in different guises in different fields. Very often, dynamics that are not
linear can be represented as linear dynamics well enough to fit a Kalman filter. We
refer interested readers to [?; West and Harrison, 1997; Chui, 1991].
We have not discussed the process of fitting a linear dynamic model. The matter

is relatively straightforward if one knows the order of the model, a natural state
space to use, and a reasonable measurement model. Otherwise, things get tricky —
there is an entire field of control theory dedicated to the topic in this case, known
as system identification. We recommend, in the first instance, [?]

Exercises

• A model is observable if **********; show that

1. The point drifting in 3D, where M3k = (0, 0, 1),M3k+1 = (0, 1, 0) and
M3k+2 = (1, 0, 0), is observable.

2. A point moving with constant velocity in any dimension, with the obser-
vation matrix reporting position only, is observable.

3. A point moving with constant acceleration in any dimension, with the
observation matrix reporting position only, is observable.

• A point on the line is moving under the drift dynamic model. In particular,
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Figure 19.11. Once we know the homography to a ground plane, tracks of other vehicles
obtained using the moving camera platform can be referred to the coordinate system
relative to the camera platform on this ground plane. This allows detailed reconstructions
of traffic geometry, illustrated on the left. Furthermore, we can use the movement of fixed
objects on the ground plane (such as the white marks) to estimate the movement of the
camera platform. All this means that we can (a) interpret traffic geometry, for example,
predicting impending collision between the camera platform and some other vehicle and
(b) render views of the traffic from some other platform (shown on the right). Figure
from “Visual Surveillance for Moving Vehicles,” by J.M. Ferryman, S.J. Maybank and
A.D. Worrall, Proc. 1998 IEEE Workshop on Visual Surveillance, c© 1998, IEEE

we have xi ∼ N(xi−1, 1). It starts at x0 = 0.

1. What is its average velocity? (remember, velocity is signed.

2. What is its average speed? (remember, speed is unsigned.

3. How many steps, on average, before its distance from the start point is
greater than two? (i.e. what is the expected number of steps, etc.)

4. How many steps, on average, before its distance from the start point is
greater than ten? (i.e. what is the expected number of steps, etc.)

5. (This one requires some thought.) Assume we have two non-intersecting
intervals, one of length 1 and one of length 2; what is the limit of the ratio
(average percentage of time spent in interval one)/ (average percentage
of time spent in interval two), as the number of steps becomes infinite?
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6. You probably guessed the ratio in the previous question; now run a
simulation and see how long it takes for this ratio to look like the right
answer.

• We said that

g(x; a, b)g(x; c, d) = g(x;
ad+ cb

b+ d
,
bd

b+ d
)f(a, b, c, d)

Show that this is true. The easiest way to do this is to take logs and rearrange
the fractions.

• Assume that we have the dynamics

xi ∼ N(dixi−1, σ
2
di
)

yi ∼ N(mixi, σ
2
mi)

1. P (xi|xi−1) is a normal density with mean dixi−1 and variance σ2di . What
is P (xi−1|xi)?

2. Now show how we can obtain a representation of P (xi|yi+1, . . . , yN )
using a Kalman filter.

Assignments

• Implement a 2D Kalman filter tracker to track something in a simple video se-
quence. We suggest that you use a background subtraction process, and track
the foreground blob. The state space should probably involve the position of
the blob, its velocity, its orientation — which you can get by computing the
matrix of second moments — and its angular velocity.

• If one has an estimate of the background, a a Kalman filter can improve
background subtraction by tracking illumination variations and camera gain
changes. Implement a Kalman filter that does this; how substantial an im-
provement does this offer? Notice that a reasonable model of illumination
variation has the background multiplied by a noise term that is near one —
you can turn this into linear dynamics by taking logs.



Chapter 20

TRACKING WITH
NON-LINEAR DYNAMIC

MODELS

In a linear dynamic model with linear measurements, there is always only one
peak in the posterior; very small non-linearities in dynamic models can lead to a
substantial number of peaks. As a result, it can be very difficult to represent the
posterior: it may be necessary to represent all the peaks to be able to compute
the mean or the covariance. We discuss these difficulties in section 20.1. There is
no general solution to this problem, but there is one mechanism which has proven
useful in some practical problems: we present this, rather technical, mechanism in
section 20.2, and show some applications in section 20.3.
It is quite typical of vision applications that there is some doubt about what

measurements to track — for example, a Kalman filter tracker following a series of
corner points may need to decide which image measurement corresponds to which
track. A poor solution to this problem may lead to apparently good tracks that
bear no relationship to the underlying motions. In section 20.4, we discuss how to
attach measurements to tracks.

20.1 Non-Linear Dynamic Models

If we can assume that noise is normally distributed, linear dynamic models are rea-
sonably easy to deal with, because a linear map takes a random variable with a
normal distribution to another random variable with a (different, but easily deter-
mined) normal distribution. We used this fact extensively in describing the Kalman
filter. Because we knew that everything was normal, we could do most calculations
by determining the mean and covariance of the relevant normal distribution, a
process that is often quite easy if one doesn’t try to do the integrals directly. Fur-
thermore, because a normal distribution is represented by its mean and covariance,
we knew what representation of the relevant distributions to maintain.
Many natural dynamic models are non-linear. There are two sources of problems.

552
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Firstly, in models where the dynamics have the form

xi ∼ N(f(xi−1, i); Σdi)

(where f is a non-linear function), both P (Xi|y0, . . . , yi−1) and P (Xi|y0, . . . , yi)
tend not to be normal. As section 20.1.1 will show, even quite innocuous looking
nonlinearities can lead to very strange distributions indeed. Secondly, P (Y i|Xi)
may not be Gaussian either. This phenomenon is quite common in vision; it
leads to difficulties that are still neither well understood nor easily dealt with (sec-
tion 20.1.2).
Dealing with these phenomena is difficult. There is not, and will never be, a

completely general solution. It is always a good idea to see if a linear model can be
made to work. If one does not, there is the option of linearizing the model locally
and assuming that everything is normal. This approach, known as the extended
Kalman filter tends to be unreliable in many applications. We describe it briefly
in the appendix, because it is useful on occasion. Finally, there is a method that
maintains a radically different representation of the relevant distributions from that
used by the Kalman filter. This method is described in section 20.2. The rest of
this section illustrates some of the difficulties presented by non-linear problems.

20.1.1 Unpleasant Properties of Non-Linear Dynamics

Non-linear models of state evolution can take unimodal distributions — like Gaus-
sians — and create multiple, well-separated modes, phenomena that are very poorly
modeled by a single Gaussian.
This effect is most easily understood by looking at an example. Let us have

the (apparently simple) dynamical model xi+1 = xi + 0.1 ∗ sinxi. Notice that
there is no random component to this dynamical model at all; now let us consider
P (X1), assuming that P (X0) is a Gaussian with very large variance (and so ba-
sically flat over a large range). The easiest way to think about this problem is
to consider what happens to various points; as figure 20.1 illustrates, points in the
range ((2k)π, (2k+ 2)π) move towards (2k+1)π. This means that probability must
collect at points (2k + 1)π (we ask you to provide some details in the exercises).
This nonlinearity is apparently very small. Its effects are very substantial, how-

ever. One way to see what happens is to follow a large number of different points
through the dynamics for many steps. We choose a large collection of points accord-
ing to P (X0), and then apply our dynamic model to them. A histogram of these
points at each step provides a rough estimate of P (Xi), and we can plot how they
evolve, too; the result is illustrated in figure 20.2. As this figure shows, P (Xi) very
quickly looks like a set of narrow peaks, each with a different weight, at (2k+ 1)π.
Representing this distribution by reporting only its mean and covariance involves a
substantial degree of wishful thinking.
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Figure 20.1. The non-linear dynamics xi+1 = xi + 0.1 sin xi cause points n the range
((2k)π, (2k + 2)π) move towards (2k + 1)π. As the figure on the left illustrates, this is
because xi+0.1 sinxi is slightly smaller than xi for xi in the range ((2k + 1)π, (2k + 2)π)
and is slightly larger than xi for xi in the range ((2k)π, (2k + 1)π). In fact, the nonlinearity
of this function looks small — it is hardly visible in a scaled plot. However, as figure 20.2
shows, its effects are very significant.

20.1.2 Difficulties with Likelihoods

There is another reason to believe that P (Xi|y0, . . . , yi) may be very complicated
in form. Even if the dynamics do not display the effects of section 20.1.1, the
likelihood function P (Y i|Xi) can create serious problems. For many important
cases we expect that the likelihood has multiple peaks. For example, consider
tracking people in video sequences. The state will predict the configuration of an
idealised human figure and P (Y i|Xi) will be computed by comparing predictions
about the image with the actual image, in some way. As the configuration of the
idealised human figure changes, it will cover sections of image that aren’t generated
by a person but look as though they are. For example, pretty much any coherent
long straight image region with parallel sides can look like a limb — this means
that as X changes to move the arm of the idealised figure from where it should be
to cover this region, the value of P (Y i|Xi) will go down, and then up again. The
likely result is a function P (Y i|Xi) with many peaks in it.
We will almost certainly need to keep track of more than one of these peaks

This is because the largest peak for any given frame may not always correspond
to the right peak. This ambiguity should resolve itself once we have seen some
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Figure 20.2. On the top, we have plotted the time evolution of the state of a set of
100 points, for 100 steps of the process xi+1 = xi + 0.1 ∗ sinxi. Notice that the points all
contract rather quickly to (2k + 1)π, and stay there. We have joined up the tracks of the
points to make it clear how the state changes. On the bottom left we show a histogram
of the start states of the points we used; this is an approximation to P (x0). The histogram
on the bottom center shows a histogram of the point positions after 20 iterations; this
is an approximation to P (x20). The histogram on the bottom right shows a histogram
of the point positions after 70 iterations; this is an approximation to P (x70). Notice that
there are many important peaks to this histogram — it might be very unwise to model
P (xi) as a Gaussian.

more frames — we don’t expect to see many image assemblies that look like people,
move like people for many frames and yet aren’t actually people. However, until it
does, we may need to manage a representation of P (Xi|y0, . . . , yi) which contains
several different peaks. This presents considerable algorithmic difficulties — we
don’t know how many peaks there are, or where they are, and finding them in a
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high dimensional space may be difficult. One partially successful approach is a form
of random search, known as particle filtering.

20.2 Particle Filtering

The main difficulty in tracking in the presence of complicated likelihood func-
tions or of non-linear dynamics is in maintaining a satisfactory representation of
P (xi|y0, . . . , yi). This representation should be handle multiple peaks in the dis-
tribution, and should be able to handle a high-dimensional state vector without
difficulty. There is no completely satisfactory general solution to this problem (and
there will never be). In this section, we discuss an approach that has been useful
in many applications.

20.2.1 Sampled Representations of Probability Distributions

A natural way to think about representations of probability distributions is to ask
what a probability distribution is for. Computing a representation of a probability
distributions is not our primary objective; we wish to represent a probability distri-
bution so that we can compute one or another expectation. For example, we might
wish to compute the expected state of an object given some information; we might
wish to compute the variance in the state, or the expected utility of shooting at
an object, etc. Probability distributions are devices for computing expectations —
thus, our representation should be one that gives us a decent prospect of computing
an expectation accurately. This means that there is a strong resonance between
questions of representing probability distributions and questions of efficient numer-
ical integration.

Monte Carlo Integration using Importance Sampling

Assume that we have a collection of N points ui, and a collection of weights wi.
These points are independent samples drawn from a probability distribution S(U )
— we call this the sampling distribution; notice that we have broken with our
usual convention of writing any probability distribution with a P . We assume that
S(U ) has a probability density function s(U).
The weights have the form wi = f(ui)/s(ui) for some function f . Now it is a

fact that

E

[
1

N

∑
i

g(ui)wi

]
=

∫
g(U)

f(U )

s(U )
s(U)dU

=

∫
g(U)f(U )dU

where the expectation is taken over the distribution on the collection of N inde-
pendent samples from S(U ) (you can prove this fact using the weak law of large
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numbers). The variance of this estimate goes down as 1/N , and is independent of
the dimension of U .

Representing Distributions using Weighted Samples

If we think about a distribution as a device for computing expectations — which are
integrals — we can obtain a representation of a distribution from the integration
method described above. This representation will consist of a set of weighted points.
Assume that f is non-negative, and

∫
f(U )dU exists and is finite. Then

f(X)∫
f(U )dU

is a probability density function representing the distribution of interest. We shall
write this probability density function as pf (X).
Now we have a collection of N points ui ∼ S(U ), and a collection of weights

wi = f(ui)/s(ui). Using this notation, we have that

E

[
1

N

∑
i

wi

]
=

∫
1
f(U)

s(U)
s(U )dU

=

∫
f(U)dU

Now this means that

Epf [g] =

∫
g(U)pf (U)dU

=

∫
g(U)f(U )dU∫
f(U )dU

= E

[∑
i g(ui)wi∑
i wi

]

≈

∑
i g(ui)wi∑
i wi

(where we have cancelled some N ’s). This means that we can in principle represent
a probability distribution by a set of weighted samples (algorithm 1). There are
some significant practical issues here, however. Before we explore these, we will
discuss how to perform various computations with sampled representations. We
have already shown how to compute an expectation (above, and algorithm 2). There
are two other important activities for tracking: marginalisation, and turning a
representation of a prior into a representation of a posterior.

Marginalising a Sampled Representation

An attraction of sampled representations is that some computations are particularly
easy. Marginalisation is a good and useful example. Assume we have a sampled
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Represent a probability distribution

pf(X) =
f(X)∫
f(U )dU

by a set of N weighted samples {
(ui, wi)

}
where ui ∼ s(u) and wi = f(ui)/s(ui).

Algorithm 20.1: Obtaining a sampled representation of a probability distribution

We have a representation of a probability distribution

pf(X) =
f(X)∫
f(U )dU

by a set of weighted samples {
(ui, wi)

}
where ui ∼ s(u) and wi = f(ui)/s(ui). Then:∫

g(U)pf (U)dU ≈

∑N
i=1 g(u

i)wi∑N
i=1w

i

Algorithm 20.2: Computing an expectation using a set of samples

representation of pf (U) = pf((M ,M)). We write U as two components (M ,N)
so that we can marginalise with respect to one of them.
Now assume that the sampled representation consists of a set of samples which

we can write as {
((mi,ni), wi)

}
In this representation, (mi,ni) ∼ s(M ,N) and wi = f((mi,ni))/s((mi,ni)).
We want a representation of the marginal pf (M) =

∫
pf(M ,N)dN . We will

use this marginal to estimate integrals, so we can derive the representation by
thinking about integrals. In particular∫

g(M)pf (M)dM =

∫
g(M )

∫
pf(M ,N)dNdM

=

∫ ∫
g(M)pf (M ,N)dNdM
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≈

∑N
i=1 g(m

i)wi∑N
i=1 w

i

meaning that we can represent the marginal by dropping the ni components of the
sample (or ignoring them, which may be more efficient!).

Assume we have a sampled representation of a distribution

pf(M ,N)

given by {
((mi,ni), wi)

}
Then {

(mi, wi)
}

is a representation of the marginal,∫
pf (M ,N)dN

Algorithm 20.3: Computing a representation of a marginal distribution

Transforming a Sampled Representation of a Prior into a Sampled Representa-
tion of a Posterior

Appropriate manipulation of the weights of a sampled distribution yields repre-
sentations of other distributions. A particularly interesting case is representing a
posterior, given some measurement. Recall that

p(U |V = v0) =
p(V = v0|U)p(U)∫
p(V = v0|U)p(U)dU

=
1

K
p(V = v0|U)p(U)

where v0 is some measured value taken by the random variable V .
Assume we have a sampled representation of p(U), given by

{
(ui, wi)

}
. We can

evaluate K fairly easily:

K =

∫
p(V = v0|U)p(U)dU

= E

[∑N
i=1 p(V = v0|u

i)wi∑N
i=1 w

i

]

≈

∑N
i=1 p(V = v0|u

i)wi∑N
i=1 w

i
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Now let us consider the posterior.∫
g(U)p(U |V = v0)dU =

1

K

∫
g(U)p(V = v0|U)p(U)dU

≈
1

K

∑N
i=1 g(u

i)p(V = v0|ui)wi∑N
i=1 w

i

≈

∑N
i=1 g(u

i)p(V = v0|ui)wi∑N
i=1 p(V = v0|u

i)wi

(where we substituted the approximate expression for K in the last step). This
means that, if we take

{
(ui, wi)

}
and replace the weights with

w′i = p(V = v0|u
i)wi

the result
{
(ui, w′i)

}
is a representation of the posterior.

Assume we have a representation of p(U) as{
(ui, wi)

}

Assume we have an observation V = v0, and a likelihood model p(V |U). The
posterior, p(U |V = v0) is represented by

{
(ui, w′i)

}

where
w′i = p(V = v0|u

i)wi

Algorithm 20.4: Transforming a sampled representation of a prior into a sampled
representation of a posterior.

20.2.2 The Simplest Particle Filter

Assume that we have a sampled representation of P (Xi−1|y0, . . . , yi−1), and we
need to obtain a representation of P (Xi|y0, . . . , yi). We will follow the usual two
steps of prediction and correction.
We can regard each sample as a possible state for the process at step X i−1. We

are going to obtain our representation by firstly representing

P (X i,Xi−1|y0, . . . , yi−1)



Section 20.2. Particle Filtering 561

and then marginalising out Xi−1 (which we know how to do). The result is the
prior for the next state, and, since we know how to get posteriors from priors, we
will obtain P (Xi|y0, . . . , yi).

Prediction

Now

p(X i,Xi−1|y0, . . . , yi−1) = p(X i|Xi−1)p(X i−1|y0, . . . , yi−1)

Write our representation of p(X i−1|y0, . . . , yi−1) as{
(uki−1, w

k
i−1)

}
(the superscripts index the samples for a given step i, and the subscript gives the
step).
Now for any given sample uki−1, we can obtain samples of p(Xi|Xi−1 = u

k
i−1)

fairly easily. This is because our dynamic model is

xi = f(xi−1) + ξi

where ξi ∼ N(0,Σmi). Thus, for any given sample u
k
i−1, we can generate samples

of p(X i|Xi−1 = uki−1) as {
(f(uki−1) + ξ

l
i, 1)

}
where ξli ∼ N(0,Σmi). The index l indicates that we might generate several such
samples for each uki−1.
We can now represent p(Xi,Xi−1|y0, . . . , yi−1) as{

((f(uki−1) + ξ
l
i,u

k
i−1), w

k
i−1)

}
(notice that there are two free indexes here, k and l; by this we mean that, for each
sample indexed by k, there might be several different elements of the set, indexed
by l).
Because we can marginalise by dropping elements, the representation of P (xi|y0, . . . , yi−1)

is given by {
(f(uki−1) + ξ

l
i, w

k
i−1)

}
(we walk through a proof in the exercises). We will reindex this collection of samples
— which may have more than N elements — and rewrite it as{

(uk,−i , w
k,−
i )

}
assuming that there are M elements. Just as in our discussion of Kalman filters,
the superscript ‘−’ indicates that this our representation of the i’th state before a
measurement has arrived. The superscript k gives the individual sample.
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Correction

Correction is simple: we need to take the prediction, which acts as a prior, and turn
it into a posterior. We do this by choosing an appropriate weight for each sample,
following algorithm 4. The weight is

p(Y i = yi|Xi = s
k,−
i )w

k,−
i

(you should confirm this by comparing with algorithm 4). and our representation
of the posterior is {

(sk,−i , p(Y i = yi|Xi = s
k,−
i )w

k,−
i )

}
The Tracking Algorithm

In principle, we now have most of a tracking algorithm — the only missing step is
to explain where the samples of p(X0) came from. The easiest thing to do here is to
start with a diffuse prior of a special form that is easily sampled — a Gaussian with
large covariance might do it — and give each of these samples a weight of 1. It is a
good idea to implement this tracking algorithm to see how it works (exercises!); you
will notice that it works poorly even on the simplest problems (figure 20.3 compares
estimates from this algorithm to exact expectations computed with a Kalman filter).
The algorithm gives bad estimates because most samples represent no more than
wasted computation. In jargon, the samples are called particles.
If you implement this algorithm, you will notice that weights get small very fast;

this isn’t obviously a problem, because the mean value of the weights is cancelled in
the division, so we could at each step divide the weights by their mean value. If you
implement this step, you will notice that very quickly one weight becomes close to
one and all others are extremely small. It is a fact that, in the simple particle filter,
the variance of the weights cannot decrease with i (meaning that, in general, it will
increase and we will end up with one weight very much larger than all others).
If the weights are small, our estimates of integrals are likely to be poor. In

particular, a sample with a small weight is positioned at a point where f(u) is
much smaller than p(u); in turn (unless we want to take an expectation of a function
which is very large at this point) this sample is likely to contribute relatively little
to the estimate of the integral.
Generally, the way to get accurate estimates of integrals is to have samples

that lie where the integral is likely to be large — we certainly don’t want to miss
these points. We are unlikely to want to take expectations of functions that vary
quickly, and so we would like our samples to lie where f(u) is large. In turn, this
means that a sample whose weight w is small represents a waste of resources —
we’d rather replace it with another sample with a large weight. This means that
the effective number of samples is decreasing — some samples make no significant
contribution to the expectations we might compute, and should ideally be replaced
(figure 20.3 illustrates this important effect). In the following section, we describe
ways of maintaining the set of particles that lead to effective and useful particle
filters.
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Figure 20.3. The simple particle filter behaves very poorly, as a result of a phenomenon
called sample impoverishment, which is rather like quantisation error. In this example,
we have a point on the line drifting on the line (i.e. xi ∼ N(xi−1, σ2)). The measurements
are corrupted by additive Gaussian noise. In this case, we can get an exact representation of
the posterior using a Kalman filter. In the figure on the left, we compare a representation
obtained exactly using a Kalman filter with one computed from simple particle filtering.
We show the mean of the posterior as a point with a one standard deviation bar (previously
we used three standard deviations, but that would make these figures difficult to interpret).
The mean obtained using a Kalman filter is given as an x; the mean obtained using a
particle filter is given as an o; we have offset the standard deviation bars from one another
so as to make the phenomenon clear. Notice that the mean is poor, but the standard
deviation estimate is awful, and gets worse as the tracking proceeds. In particular, the
standard deviation estimate woefully underestimates the standard deviation — this could
mislead a user into thinking the tracker was working and producing good estimates, when
in fact it is hopelessly confused. The figure on the right indicates what is going wrong;
we plot the tracks of ten particles, randomly selected from the 100 used. Note that
relatively few particles ever lie within one standard deviation of the mean of the posterior;
in turn, this means that our representation of P (xi+1|y0, . . . , y0) will tend to consist of
many particles with very low weight, and only one with a high weight. This means that
the density is represented very poorly, and the error propagates.

20.2.3 A Workable Particle Filter

Particles with very low weights are fairly easily dealt with — we will adjust the col-
lection of particles to emphasize those that appear to be most helpful in representing
the posterior. This will help us deal with another difficulty, too. In discussing the
simple particle filter, we did not discuss how many samples there were at each stage
— if, at the prediction stage, we drew several samples of P (X i|Xi−1 = s

k,+
i−1) for

each sk,+i−1, the total pool of samples would grow as i got bigger. Ideally, we would
have a constant number of particles N . All this suggests that we need a method to
discard samples, ideally concentrating on discarding unhelpful samples. There are
a number of strategies that are popular.
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Resampling the Prior

At each step i, we have a representation of P (Xi−1|y0, . . . , yi−1) via weighted
samples. This representation consists of N (possibly distinct) samples, each with
an associated weight. Now in a sampled representation, the frequency with which
samples appear can be traded off against the weight with which they appear. For
example, assume we have a sampled representation of P (U) consisting of N pairs
(sk, wk). Form a new set of samples consisting of a union of Nk copies of (sk, 1),
for each k. If

Nk∑
kNk

= wk

this new set of samples is also a representation of P (U) (you should check this).
Furthermore, if we take a sampled representation of P (U) using N samples,

and draw N ′ elements from this set with replacement, uniformly and at random,
the result will be a representation of P (U), too (you should check this, too). This
suggests that we could (a) expand the sample set and then (b) subsample it to get
a new representation of P (U). This representation will tend to contain multiple
copies of samples that appeared with high weights in the original representation.
This procedure is equivalent to the rather simpler process of making N draws

with replacement from the original set of samples, using the weights wi as the
probability of drawing a sample. Each sample in the new set would have weight 1;
the new set would predominantly contain samples that appeared in the old set with
large weights. This process of resampling might occur at every frame, or only when
the variance of the weights is too high.

Resampling Predictions

A slightly different procedure is to generate several samples of P (Xi|Xi−1 = s
k,+
i−1)

for each sk,+i−1, make N draws, with replacement, from this set using the weights wi
as the probability of drawing a sample, to get N particles. Again, this process will
emphasize particles with larger weight over those with smaller weights.

The Consequences of Resampling

Figure 20.4 illustrates the improvements that can be obtained by resampling. Re-
sampling is not a uniformly benign activity, however: it is possible — but unlikely
— to lose important particles as a result of resampling, and resampling can be
expensive computationally if there are many particles.

20.2.4 If’s, And’s and But’s — Practical Issues in Building Par-
ticle Filters

Particle filters have been extremely successful in many practical applications in
vision, but can produce some nasty surprises. One important issue has to do with
the number of particles; while the expected value of an integral estimated with
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Initialization: Represent P (X0) by a set of N samples{
(sk,−0 , w

k,−
0 )

}
where

sk,−0 ∼ Ps(S)

and
wk,−0 = P (sk,−0 )/Ps(S = s

k,−
0 )

Ideally, P (X0) has a simple form and s
k,−
0 ∼ P (X0) and w

k,−
0 = 1.

Prediction: Represent P (Xi|y0, yi−1) by{
(sk,−i , w

k,−
i )

}
where

sk,−i = f(sk,+i−1) + ξ
k
i

wk,−i = wk,+i−1

and
ξki ∼ N(0,Σdi

Correction: Represent P (X i|y0, yi) by{
(sk,+i , w

k,+
i )

}
where

sk,+i = sk,−i

wk,+i = P (Y i = yi|Xi = s
k,−
i )w

k,−
i

Resampling: Normalise the weights so that
∑
iw
k,+
i = 1 and compute the

variance of the normalised weights. If this variance exceeds some threshold,
then construct a new set of samples by drawing, with replacement, N samples
from the old set, using the weights as the probability that a sample will be
drawn. The weight of each sample is now 1/N .

Algorithm 20.5: A practical particle filter resamples the posterior.
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Initialization: Represent P (X0) by a set of N samples{
(sk,−0 , w

k,−
0 )

}
where

sk,−0 ∼ Ps(S)

and
wk,−0 = P (sk,−0 )/Ps(S = s

k,−
0 )

Ideally, P (X0) has a simple form and s
k,−
0 ∼ P (X0) and w

k,−
0 = 1.

Prediction: Represent P (Xi|y0, yi−1) by{
(sk,−i , w

k,−
i )

}
where

sk,l,−i = f(sk,+i−1) + ξ
l
i

wk,l,−i = wk,+i−1

and
ξli ∼ N(0,Σdi

and the free index l indicates that each sk,+i−1 generates M different values of

sk,l,−i . This means that there are now MN particles.

Correction: We reindex the set of MN samples by k. Represent P (Xi|y0, yi)
by {

(sk,+i , w
k,+
i )

}
where

sk,+i = sk,−i

wk,+i = P (Y i = yi|Xi = s
k,−
i )w

k,−
i

Resampling: As in algorithm 5.

Algorithm 20.6: An alternative practical particle filter.

a sampled representation is the true value of the integral, it may require a very
large number of particles before the variance of the estimator is low enough to be
acceptable. It is difficult to say how many particles will be required to produce
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Figure 20.4. Resampling hugely improves the behaviour of a particle filter. We now
show a resampled particle filter tracking a point drifting on the line (i.e. xi ∼ N(xi−1, σ

2)).
The measurements are corrupted by additive Gaussian noise, and are the same as for
figure 20.3. In the figure on the left, we compare an exact representation obtained using
a Kalman filter with one computed from simple particle filtering. We show the mean of
the posterior as a point with a one standard deviation bar. The mean obtained using
a Kalman filter is given as an ‘x’; the mean obtained using a particle filter is given as
an ‘o’; we have offset the standard deviation bars from one another so as to make the
phenomenon clear. Notice that estimates of both mean and standard deviation obtained
from the particle filter compare well with the exact values obtained from the Kalman filter.
The figure on the right indicates where this improvement came from; we plot the tracks
of ten particles, randomly selected from the 100 used. Because we are now resampling
the particles according to their weights, particles that tend to reflect the state rather well
usually reappear in the resampled set. This means that many particles lie within one
standard deviation of the mean of the posterior, and so the weights on the particles tend
to have much smaller variance, meaning the representation is more efficient.

usable estimates. In practice, this problem is usually solved by experiment.
Unfortunately, these experiments may be misleading. You can (and should!)

think about a particle filter as a form of search — we have a series of estimates of
state, which we update using the dynamic model, and then compare to the data;
estimates which look as though they could have yielded the data are kept, and the
others are discarded. The difficulty is that we may miss good hypotheses. This
could occur if, for example, the likelihood function had many narrow peaks. We
may end up with updated estimates of state that lie in some, but not all of these
peaks; this would result in good state hypotheses being missed. While this problem
can (just!) be caused to occur in one dimension, it is particularly serious in high
dimensions. This is because real likelihood functions can have many peaks, and
these peaks are easy to miss in high dimensional spaces. It is extremely difficult
to get good results from particle filters in spaces of dimension much greater than
about 10.
The problem can be significant in low dimensions, too — its significance depends,
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essentially, on how good a prediction of the likelihood we can make. This problem
manifests itself in the best-known fashion when one uses a particle filter to track
people. Because there tend to be many image regions that are long, roughly straight,
and coherent, it is relatively easy to obtain many narrow peaks in the likelihood
function — these correspond, essentially, to cases where the configuration for which
the likelihood is being evaluated has a segment lying over one of these long, straight
coherent image regions. While there are several tricks for addressing this problem
— all involve refining some form of search over the likelihood— there is no standard
solution yet.

20.3 Tracking People with Particle Filters

Tracking people is difficult. The first difficulty is that there is a great deal of state
to a human — there are many joint angles, etc. that may need to be represented.
The second difficulty is that it is currently very hard to find people in an image —
this means that it can be hard to initiate tracks. Most systems come with a rich
collection of constraints that must be true before they can be used. This is because
people have a large number of degrees of freedom: bits of the body move around,
we can change clothing, etc., which means it is quite difficult to predict appearance.
People are typically modelled as a collection of body segments, connected with

rigid transformations. These segments can be modelled as cylinders — in which
case, we can ignore the top and bottom of the cylinder and any variations in view,
and represent the cylinder as an image rectangle of fixed size — or as ellipsoids.
The state of the tracker is then given by the rigid body transformations connecting
these body segments (and perhaps, various velocities and accelerations associated
with them).
Both particle filters and (variants of) Kalman filters have been used to track

people. Each approach can be made to succeed, but neither is particularly robust.
There are two components to building a particle filter tracker: firstly, we need a
motion model and secondly, we need a likelihood model.
We can use either a strong motion model — which can be obtained by attaching

markers to a model and using them to measure the way the model’s joint angles
change as a function of time — or a weak motion model — perhaps a drift model.
Strong motion models have some disadvantages: perhaps the individual we are
tracking moves in a funny way; and we will need different models for walking,
walking carrying a weight, jogging and running (say). The difficulty with a weak
motion model is that we are pretty much explicitly acknowledging that each frame
is a poor guide to the next.
Likelihood models are another source of difficulties, because of the complexity

of the relationship between the tracker’s state and the image. The likelihood func-
tion (P (image features|person present at given configuration)) tends to have many
local extrema. This is because the likelihood function is evaluated by, in essence,
rendering a person using the state of the tracker and then comparing this rendering
to the image. Assume that we know the configuration of the person in the previous
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Figure 20.5. A typical likelihood computation identifies points in the image that provide
evidence that a person is present. In one use of a particle filter for tracking people,
Deutscher, Blake and Reid look for two types of evidence: the first is boundary information,
and the second is “non-background” information. Boundary points are estimated using an
edge detector, and “non-background” points are obtained using background subtraction;
the figure on the left illustrates these types of point. On the far left, the image; center
left, points near edges obtained using smoothed gradient estimates; near left, points
where there is motion, obtained using background subtraction. Now each particle gives
the state of the person, and so can be used to determine where each body segment lies in
an image; this means we can predict the boundaries of the segments and their interiors,
and compute a score based on the number of edge points near segment boundaries and
the number of “non-background” points inside projected segments (near right shows
sample points that look for edges and far right shows sample points that look for moving
points). Figure from “Articulated Body Motion Capture by Annealed Particle Filtering,”
J. Deutscher, A. Blake and I. Reid, Proc. Computer Vision and Pattern Recognition 2000
c© 2000, IEEE

image; to assess the likelihood of a particular configuration in the current image,
we use the configuration to compute a correspondence between pixels in the current
image and in the previous image. The simplest likelihood function can be obtained
using the sum of squared differences between corresponding pixel values — this
assumes that clothing is rigid with respect to the human body, that pixel values
are independent given the configuration, and that there are no shading variations.
These are all extremely dubious assumptions.
Of course, we choose which aspects of an image to render and to compare; we

might use edge points instead of pixel values, to avoid problems with illumination.
Multiple extrema in the likelihood can be caused by: the presence of many extended
coherent regions, which look like body segments, in images; the presence of many
edge points unrelated to the person being tracked (this is a problem if we use edge
points in the comparison); changes in illumination; and changes in the appearance
of body segments caused by clothing swinging on the body. The result is a tendency
for trackers to drift (see, for example, the conclusions in [Sidenbladh et al., 2000b];
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the comments in [Yacoob and Davis, 2000]).
In all of the examples we show, the tracker must be started by hand. An alter-

native to using a strong motion model is to use a weak motion model and rely on
the search component of particle filtering. The best example of this approach is a
device, due to Deutscher et al., known as an annealed particle filter (figure 20.6),
which essentially searches for the global extremum through a sequence of smoothed
versions of the likelihood [Deutscher et al., 2000]. However, clutter creates peaks
that can require intractable numbers of particles. Furthermore, this strategy re-
quires a detailed search of a high dimensional domain (the number of people being
tracked times the number of parameters in the person model plus some camera
parameters).

20.4 Data Association

Not every aspect of every measurement conveys information about the state of the
object being tracked. In fact, we have been somewhat disingenuous up to this point,
and not really talked about what is in yi at all. Usually, there are measurements
that are informative and measurements that are not informative (usually referred
to as clutter).
Determining which measurements are informative is usually referred to as data

association. Typically, one wishes to map a series of measurements to a series of
tracks. The main work in this problem relates to tracking moving objects (aero-
planes, missiles, etc., all conveniently belonging to the bad guys) with radar returns.
Typically, there may be many radar returns at any given timestep — we should like
to update our representations of the motion of the objects being tracked without
necessarily knowing which returns come from which object. As we have seen, track-
ing algorithms are complicated, but not particularly difficult. Data association is
probably the biggest source of difficulties in vision applications. We will confine our
discussion to the case where there is a single moving object. The problem here is
that some pixels in the image are very informative about that object, and some are
not — which should we use to guide our tracking process?

20.4.1 Choosing the Nearest — Global Nearest Neighbours

In the easiest case, we need to track a single object moving in clutter. For example,
we might be tracking a ball moving on a fixed or very slowly varying background.
We segment the image into regions, with the reasonable expectation that the ball
tends to produce one region, and that the segmentation of the background might
change with time. Intuitively, it would be very difficult to confuse the ball with a
background region, because we have a strong model of how the ball is moving. This
means we would have to be unlucky if there was a new background region that (a)
was easily confused with the ball region and (b) confused the dynamic model. This
suggests one fairly popular strategy for data association: the r’th region offers a
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Figure 20.6. If a weak motion model is used to track a person with a particle filter,
the likelihood function can create serious problems. This is because the state is high-
dimensional, and there are many local peaks in the likelihood — even for a person on
a black background, as in these images. It is quite possible that none of our particles
are near the peaks, meaning that the filter’s representation becomes unreliable. One
way to deal with this is to search the likelihood by annealing it. This process creates a
series of increasingly smooth approximations to the likelihood, whose peaks lie close to
or on the peaks of the likelihood. We weight particles with a smoothed approximation,
then resample the particles according to their weights, allow them to drift, then weight
them with a less smooth approximation, etc. The result is a random search through the
likelihood that should turn up the main local minima. This yields a tracker that can
track people on simple backgrounds, but requires only very general motion models — the
tracker illustrated above models human motion as drift. Figure from “Articulated Body
Motion Capture by Annealed Particle Filtering,” J. Deutscher, A. Blake and I. Reid, Proc.
Computer Vision and Pattern Recognition 2000 c© 2000, IEEE
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measurement yri , and we choose the region with the best value of

P (Y i = y
r
i |y0, . . . , yi−1) =

∫
P (Y i = y

r
i |Xi, y0, . . . , yi−1)P (X i|y0, . . . , yi−1)dXi

=

∫
P (Y i = y

r
i |Xi)P (Xi|y0, . . . , yi−1)dxi

Determining P (Y i = yi|y0, . . . , yi−1) is a particularly easy calculation with the
Kalman filter. We know how Y i is obtained from X i — we take a normal random

variable with mean X
−
i , and covariance Σ

−
i , apply the linear operator Di to it, and

add some other random variable. The output of the linear operator must have mean

DiX
−
i and covariance DiΣ

−
i D

T . To this we are going to add a random variable
with zero mean and covariance Σmi ; the result must have mean

DiX
−
i

and covariance

DiΣ
−
i D

T + Σmi

In figure 20.7, we have plotted bounds on the position of an expected measurement
for a Kalman filter following various dynamic models.
Notice that this strategy can be relatively robust, depending on the accuracy

of the dynamic model. If we have a good dynamic model, anything that is eas-
ily confused with the object being tracked must be more similar to the predicted
measurement than the real object does. This means that an occasional misidentifi-
cation may not create major problems, because one is unlikely to find a region that
is both similar to the predicted measurement and able to throw off the dynamic
model badly. In figure 20.8, we show a Kalman filter tracking the state of a point by
choosing the best measurement at each step; it does not always correctly identify
the point, but its estimate of state is always good.
Notice that what we are doing here is using only measurements that are con-

sistent with our predictions. This may or may not be dangerous: it can be very
easy to track non-existent objects this way — or to claim to be tracking an object
without ever obtaining a measurement from it. If the dynamic model itself can give
only weak predictions — i.e. the object doesn’t really behave like that, or Σdi is
consistently large — we may have serious problems, because we will need to rely on
the measurements. These problems occur because the error can accumulate — it is
now relatively easy to continue tracking the wrong point for a long time, and the
longer we do this the less chance there is of recovering the right point. Figure 20.9
shows a Kalman filter becoming hopelessly confused in this manner.

20.4.2 Gating and Probabilistic Data Association

Again, we assume that we are tracking a single object in clutter, and use the example
of tracking a ball moving on a fixed or very slowly varying background. Instead



Section 20.4. Data Association 573

0 5 10 15 20 25
-15

-10

-5

0

5

10

15

20

25

30

35

0 5 10 15 20 25
-20

0

20

40

60

80

100

120

140

160

180

Figure 20.7. Data association for a Kalman filter for a point moving on the line under
our model of constant velocity on the left and constant acceleration on the right. Compare
with figure 19.1 for the constant velocity model and with figure 19.2 for the constant
acceleration model. We have used the conventions of figure 19.3. We have now overlaid 3
standard deviation bars for the measurement (the dashed bars passing through the state).
These are obtained using the estimate of state before a measurement, and our knowledge
of the variance of the measurement process. Notice that the measurements lie within these
windows.

of choosing the region most like the predicted measurement, we could exclude all
regions that are too different, and then use all others, weighting them according to
their similarity to the prediction.
The first step is called gating. We exclude all measurements that are too differ-

ent from the predicted measurement. What “too different” means rather depends
on the application: if we are too aggressive in excluding measurements, we may
find nothing left. It is usual to exclude measurements which lie more than some
number — commonly, three — of standard deviations from the predicted mean. A
more sophisticated strategy is required if the object being tracked has more than
one dynamic behaviour; for example, military aircraft often engage in high-speed
maneuvers. In cases like this, it is common to have several gates, and to take all
measurements that lie in the tightest gate that contains any measurements.
The next step is called probabilistic data association, usually abbreviated

PDA. Assume that, in the gate, we have a set of N regions, each producing a vector
of measurements yki , where the superscript indicates the region. We have a set of
possible hypotheses to deal with: either no region comes from the object, which
we shall call h0, or region k comes from the object, which we shall call hk. The
measurement we report is

Eh [yi] =
∑
j

P (hj|y0, . . . , yi−1)y
j
i

where the expectation is taken over the space of hypotheses (which is why we have
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Figure 20.8. Predictions of the point position can identify “good” measurements for
a Kalman filter. We are using a Kalman filter to identify a point, moving with constant
velocity on a line, and with a small Σdi at every stage. There are also 10 drifting points.
This plot shows position plotted against time for the drifting points — which are shown
with a solid line — and for the point that is being tracked. The trajectory of the point that
should be tracked is shown in a dashed line, and each measurement on this trajectory is
shown with a square. We have used the conventions of figure 19.3 (i.e. the state is plotted
with open circles, as a function of the step i; the ’*’-s give x−i , which is plotted slightly to
the left of the state to indicate that the estimate is made before the measurement; the ’x’-s
give the measurements, and the ’+’-s give x+i , which is plotted slightly to the right of the
state; the vertical bars around the ’*’-s and the ’+’-s are 3 standard deviation bars, using
the estimate of variance obtained before and after the measurement, respectively; we have
overlaid one standard deviation bars in each case). This filter chooses the measurement at
each step by choosing the measurement that maximizes P (yri |y0, . . . ,yi−1); notice that it
doesn’t choose the right measurement at every step (i.e. the x is not always in the square),
but it maintains a very good estimate of the state (i.e. the +’s are close to the circles).

given it the subscript h). Now the probability that none of the measurements comes
from the object depends on the details of our detection process. For some detection
processes, this parameter can be calculated; for example, in chapter 4 of [Blackman
and Popoli, 1999], there is a worked example for a radar system. In other cases we
will need to search for a value of the parameter that results in good behaviour on a
set of training examples. Assume that we have calculated or learned this parameter,
which we can write as β. We must also assume that either the object is not detected,
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Figure 20.9. If the dynamic model is not sufficiently constrained, then choosing the
measurement that gives the best P (yri |y0, . . . ,yi−1) can lead to disaster. On the left, 20
steps of a Kalman filter following a point moving periodically on the line with 20 drifting
points in the background. We are using the conventions of figure 19.3 again. Now Σdi is
relatively large for each step, and so it is easy to follow the wrong measurement for some
way. It looks as though the filter is tracking the state well, but in fact as the figure on the
right — which gives 100 steps— shows, it quickly becomes hopelessly lost.

or only one measurement comes from the object. Now

P (hj|y0, . . . , yi−1) =

∫
P (hj|Xi)P (Xi|y0, . . . , yi−1)dXi

= P (Y i = y
j
i |y0, . . . , yi−1)P (object detected)

= P (Y i = y
j
i |y0, . . . , yi−1)(1 − β)

(in what follows, we write P (hj|y0, . . . , yi−1) as pj). In practice, this method is
usually used with a Kalman filter. To do so, we report the measurement

y′i =
∑
j

pjy
j
i

to the Kalman update equations. Note that the term for not having a measurement
appears here as the factor (1− β) in the expressions for the pj; but our uncertainty
about which measurement should contribute to the update should also appear in
the covariance update. We modify the covariance update equations to take the form

Σ+i = (1−β) [Id −KiMi] Σ
−
i +βΣ

−
i +Ki


∑
j

pj(Hix
−
i − y

j
i )(Hix

−
i − y

j
i )
T − y′i(y

′
i)
T




Here the first term is the update for the standard Kalman filter weighted by the
probability that one observation is good, the second term deals with the prospect
that all observations are bad, and the third term contributes uncertainty due to the
correspondence uncertainty.
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20.5 Discussion

Space has forced us to omit some topics, important in radar tracking and likely
to become important in vision. Firstly, the radar community is accustomed to
generating tracks automatically; this practice is not unknown in vision, but most
trackers are initialized by hand. Secondly, the radar community is accustomed to
tracking multiple targets, with multiple returns; this complicates data association
significantly, which is now seen as a weighted matching problem and dealt with using
one of the many exact algorithms for that problem. Thirdly, the radar community
is accustomed to dealing with tracking for objects that can switch dynamic model
— this leads to so-called IMM filters, where a series of filters with distinct dynamic
models propose different updates, and these proposals are weighted by evidence and
updated (for a good general summary of tracking practice in radar, see [Blackman
and Popoli, 1999]). There is a little work on this topic in the vision community, but
it tends to be somewhat difficult to do with a particle filter (actually, this means it
needs an inconvenient number of particles; you can do pretty much anything with
a particle filter, if you have enough particles).

20.5.1 The Particle Filter

We have been able to provide only a brief overview of a subject that is currently
extremely active. We have deliberately phrased our discussion rather abstractly,
so as to bring out the issues that are most problematic, and to motivate a view
of particle filters as convenient approximations. Particle filters have surfaced in
a variety of forms in a variety of literatures. The statistics community, where
they originated, knows them as particle filters (e.g. [Kitagawa, 1987]; see also the
collection [Doucet et al., 2001]). In the AI community, the method is sometimes
called survival of the fittest [Kanazawa et al., 1995]. In the vision community, the
method is sometimes known as condensation [Isard and Blake, 1996; Blake and
Isard, 1996; Blake and Isard, 1998].
Particle filters have been the subject of a great deal of work in vision. Much

of the work attempts to sidestep the difficulties with likelihood functions that we
sketched in the particle filtering section (see, in particular, the annealing method
of [Deutscher et al., 2000] and the likelihood corrections of [Sullivan et al., 1999]).
Unfortunately, all uses of the particle filter have been relentlessly top-down — in
the sense that one updates an estimate of state and then computes some comparison
between an image and a rendering, which is asserted to be a likelihood. While this
strategy represents an effective end-run around data association, it means that we
are committed to searching rather nasty likelihoods.
There is a strong analogy between particle filters and search. This can be used

to give some insight into what they do and where they work well. For example, a
high dimensional likelihood function with many peaks presents serious problems to
a particle filter. This is because there is no reason to believe that any of the particles
each step advances will find a peak. This is certainly not an intrinsic property of the
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technique — which is just an algorithm — and is almost certainly a major strategic
error. The consequence of this error is that one can track almost anything with a
particle filter (as long as the dimension of the state space is small enough) but it
has to be initialized by hand. This particular ghost needs to be exorcised from the
party as soon as possible.
The exorcism will probably involve thinking about how to come up with clean

probabilistic models that (a) allow fast bottom-up inference and (b) don’t involve
tangling with likelihoods with as complex a form as those commonly used. We
expect an exciting struggle with this problem over the next few years.
Particle filters are an entirely general inference mechanism (meaning that they

can be used to attack complex inference problems uniting high level and low level
vision [Isard and Blake, 1998b; Isard and Blake, 1998a]). This should be regarded as
a sign that it can be very difficult to get them to work, because there are inference
problems that are, essentially, intractable. One source of difficulties is the dimension
of the state space — it is silly to believe that one can represent the covariance of a
high-dimensional distribution with a small number of particles, unless the covariance
is very strongly constrained. A particular problem is that it can be quite hard to tell
when a particle filter is working — obviously, if the tracker has lost track, there is a
problem, but the fact that the tracker seems to be keeping track is not necessarily
a guarantee that all is well. For example, the covariance estimates may be poor; we
need to ask for how long the tracker will keep track; etc.
One way to simplify this problem is to use tightly parametrised motion models.

This reduces the dimension of the state space in which we wish to track, but at the
cost of not being able to track some objects or of being compelled to choose which
model to use. This approach has been extremely successful in applications like
gesture recognition [Black and Jepson, 1998]; tracking moving people [Sidenbladh
et al., 2000a]; and classifying body movements [Rittscher and Blake, 1999]. A
tracker could track the state of its own platform, instead of tracking a moving
object [Dellaert et al., 1999].
There are other methods for maintaining approximations of densities. One

might, for example, use a mixture of Gaussians with a constant number of compo-
nents. It is rather natural to do data association by averaging, which will result in
the number of elements in the mixture going up at each step; one is then supposed
to cluster the elements and cull some components. We haven’t seen this method
used in vision circles yet.

20.5.2 Starting a People Tracker

Desiderata for a tracking application are:

• that tracks are initiated automatically;

• that tracks can be discarded automatically, as necessary (this means that the
occasional erroneous track won’t affect the count of total objects);

• that the tracker can be shown to work robustly over long sequences of data.
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We discussed relatively few of the many kinematic human trackers, because none can
meet these tests. It would be nice if this remark were obsolete by the time this book
reaches its readers, but we don’t think this will be the case (which is why we made
it!). Tracking people on a general background remains extremely challenging; the
difficulty is knowing how to initiate the track, which is hard because the variations
in the appearance of clothing mean that it is generally difficult to know which
pixels come from a person. Furthermore, the inference problem is very difficult,
because the conditional independence assumptions that simplify finding people no
longer apply — the position of the upper arm in frame n, say, depends on both the
position of the torso in frame n and the position of the upper arm in frame n − 1.
It is possible to evade this difficulty in the first instance by assembling multi-frame
motion vectors [Song et al., 1999; Song et al., 2000b], but these too have unpleasant
dependencies over time (the motion of the upper arm in frame n, etc.), and the
consequences of ignoring these dependencies are unknown.
Typically, current person trackers either initialize the tracker by hand, use ag-

gressively simplified backgrounds which have high contrast with the moving person,
or use background subtraction. These tricks are justified, because they make it
possible to study this (extremely important) problem, but they yield rather uncon-
vincing applications.
There is currently (Feb, 2001) no person tracker that represents the configuration

of the body and can start automatically; all such trackers use manual starting
methods. One way to start such a tracker would be to find all possible people,
and then track them. But finding people is difficult, too. No published method
can find clothed people in arbitrary configurations in complex images. There are
three standard approaches to finding people described in the literature. Firstly, the
problem can be attacked by template matching (section ??; examples include [Oren
et al., 1997a], where upright pedestrians with arms hanging at their side are detected
by a template matcher; [Niyogi and Adelson, 1995; Liu and Picard, 1996; Cutler
and Davis, 2000], where walking is detected by the simple periodic structure that it
generates in a motion sequence; [Wren et al., 1995; Haritaoglu et al., 2000], which
rely on background subtraction — that is, a template that describes “non-people”).
Matching templates to people (rather than to the background) is inappropriate
if people are going to appear in multiple configurations, because the number of
templates required is too high. This motivates the second approach, which is to
find people by finding faces (section ??, and [Poggio and Sung, 1995; Rowley et al.,
1996a; Rowley et al., 1996b; Rowley et al., 1998a; Rowley et al., 1998c; Sung and
Poggio, 1998]). The approach is most successful when frontal faces are visible.
The third approach is to use the classical technique of search over correspondence

(search over correspondences between point features is an important early formu-
lation of object recognition; the techniques we describe have roots in [Faugeras
and Hebert, 1986; Grimson and Lozano-Pérez, 1987; Thompson and Mundy, 1987a;
Huttenlocher and Ullman, 1987a]). In this approach, we search over correspondence
between image configurations and object features. There are a variety of examples in
the literature (for a variety of types of object; see, for example, [Huang et al., 1997a;
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Ullman, 1996]). Perona and collaborators find faces by searching for correspon-
dences between eyes, nose and mouth and image data, using a search controlled by
probabilistic considerations [Leung et al., 1995b; Burl et al., 1995]. Unclad people
are found by [Fleck et al., 1996; Forsyth and Fleck, 1999], using a correspondence
search between image segments and body segments, tested against human kine-
matic constraints. A much improved version of this technique, which learns the
model from data, appears in [Ioffe and Forsyth, 1998].
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II Appendix: The Extended Kalman Filter, or EKF

We consider non-linear dynamic models of the form

xi ∼ N(f(xi−1, i); Σdi)

Again, we will need to represent with P (xi|y0, . . . , yi−1) (for prediction) and P (xi|y0, . . . , yi)
(for correction). We take the position that these distributions can be represented
by supplying a mean and a covariance. Typically, the representation works only
for distributions that look rather like normal distributions — a big peak at one
spot, and then a fast falloff. To obtain an extended Kalman filter, we linearize the
dynamics about the current operating point, and linearize the measurement model.
We do not derive the filter equations (it’s a dull exercise in Laplace’s approximation
to integrals), but simply present them in algorithm 7. We write the Jacobian of a
function g — this is the matrix whose l, m’th entry is

∂fl

∂xm

— as J (g), and when we want to show that it has been evaluated at some point
xj , we write J (g;xj).
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Dynamic Model:

xi ∼ N(f(xi−1, i),Σdi)

yi ∼ N(h(xi, i),Σmi)

Start Assumptions: x−0 and Σ
−
0 are known

Update Equations: Prediction

x−i = f(x
+
i−1)

Σ−i = Σdi + J (f ;x
+
i−1)

−TΣ+i−1J (f ;x
+
i−1)

−1

Update Equations: Correction

Ki = Σ
−
i J

T

h;x−i

[
J (h;x−i )Σ

−
i J (h;x

−
i )
T + Σmi

]−1
x+i = x

−
i +Ki

[
yi − h(x

−
i , i)

]
Σ+i =

[
Id− KiJ (h;x

−
i )
]
Σ−i

Algorithm 20.7: The extended Kalman filter maintains estimates of the mean and
covariance of the various distributions encountered while tracking a state variable
of some fixed dimension using the given non-linear dynamic model.
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Chapter 21

RANGE DATA

This chapter discusses range images that store, instead of
brightness or color information, the depth at which the ray associated with each

pixel first intersects the scene observed by a camera. In a sense, a range image is
exactly the desired output of stereo, motion, or other shape-from vision modules.
In this chapter, however, we will focus our attention on range images acquired
by active sensors, that project some sort of light pattern on the scene, using it to
avoid the difficult and costly problem of establishing correspondences and construct
dense and accurate depth pictures. After a brief review of range sensing technology,
this chapter will discuss image segmentation, multiple-image registration and three-
dimensional model construction, and object recognition, and explore the aspects of
these problems that are specific to the range data domain.

21.1 Active Range Sensors

Triangulation-based range finders date back to the early seventies (e.g., [Agin, 1972;
Shirai, 1972]). They function along the same principles as passive stereo vision
systems, one of the cameras being replaced by a source of controlled illumination
(structured light) that avoids the correspondence problem mentioned in Chapter 13.
For example, a laser and a pair of rotating mirrors may be used to sequentially scan
a surface. In this case, as in conventional stereo, the position of the bright spot
where the laser beam strikes the surface of interest is found as the intersection of
the beam with the projection ray joining the spot to its image. Contrary to the
stereo case, however, the laser spot can normally be identified without difficulty
since it is in general much brighter than the other scene points (in particular when
a filter tuned to the laser wavelength is inserted in front of the camera), altogether
avoiding the correspondence problem.
Alternatively, the laser beam can be transformed by a cylindrical lens into a

plane of light (Figure 21.1). This simplifies the mechanical design of the range finder
since it only requires one rotating mirror. More importantly, perhaps, it shortens
the time required to acquire a range image since a laser stripe –the equivalent of a
whole image column– can be acquired at each frame. It should be noted that this
setup does not introduce matching ambiguities since the spot associated with each

584
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pixel can be retrieved as the (unique) intersection of the corresponding projection
ray with the plane of light.

Surface

Camera

Laser
p

P

Figure 21.1. A range sensor using a plane of light to scan the surface of an object.

Variants of these two techniques include using multiple cameras to improve
measurement accuracy and exploiting (possibly time-coded) two-dimensional light
patterns to improve data acquisition speed. The main drawbacks of the active tri-
angulation technology are relatively low acquisition speed, missing data at points
where the laser spot is hidden from the camera by the object itself, and missing
or erroneous data due to specularities. The latter difficulty is actually common to
all active ranging techniques: a purely specular surface will not reflect any light
in the direction of the camera unless it happens to lie in the corresponding mirror
direction. Worse, the reflected beam may induce secondary reflections giving false
depth measurements. Additional difficulties include keeping the laser stripe in fo-
cus during the entire scanning procedure, and the loss of accuracy inherent in all
triangulation techniques as depth increases.
Several triangulation-based scanners are commercially available today. Figure

21.2 shows an example obtained using the Minolta VIVID range finder, that can
acquire a 200× 200 range image together with a registered 400 × 400 color image
in 0.6s, within an operating range of 0.6 to 2.5m.
The second main approach to active ranging involves a signal transmitter, a

receiver, and electronics for measuring the time of flight of the signal during its
round trip from the range sensor to the surface of interest. This is the princi-
ple used in the ultrasound domain by the Polaroid range finder, commonly used
in autofocus cameras from that brand and in mobile robots, despite the fact that
the ultrasound wavelength band is particularly susceptible to false targets due to
specular reflections. Time-of-flight laser range finders are normally equipped with
a scanning mechanism, and the transmitter and receiver are often coaxial, elimi-
nating the problem of missing data common in triangulation approaches. There
are three main classes of time-of-flight laser range sensors: pulse time delay tech-
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Figure 21.2. Range data captured by the Minolta VIVID scanner. As in most of the
figures in this chapter, the mesh of (x, y, z(x, y)) points associated with the image is shown
in perspective. Reprinted from [Hebert, 2000], Figure 6.

nology directly measures the time of flight of a laser pulse; AM phase-shift range
finders measure the phase difference between the beam emitted by an amplitude-
modulated laser and the reflected beam, a quantity proportional to the time of flight;
finally, FM beat sensors measure the frequency shift (or beat frequency) between a
frequency-modulated laser beam and its reflection, another quantity proportional
to the round-trip flight time.
Time-of-flight range finders face the same problems as any other active sensors

when imaging specular surfaces. They can be relatively slow due to long integration
time at the receiver end. The speed of pulse-time delay sensors is also limited by the
minimum resolvable interval between two pulses. AM phase-shift range finders suffer
from inherent ambiguities since depth differences corresponding to phase shifts that
are multiples of 2π cannot be resolved. This is a relatively minor problem since
absolute range can normally be recovered by exploiting spatial coherence in the
image, i.e., starting from the image points closest to the sensor, absolute depth can
be propagated from one ambiguity interval to the next by a simple region-growing
procedure. Compared to triangulation-based systems, time-of-flight sensors have
the advantage of offering a greater operating range (up to tens of meters), which is
very valuable in outdoor robotic navigation tasks.
Figure 21.3 shows range data acquired by a high-end AM phase-shift scanner

[Hancock et al., 1998], capable of acquiring 150,000 samples per second at a maxi-
mum range of 57m with an accuracy of 34mm.
As noted earlier, many range finders are now available commercially for a wide

range of prices and applications. New technologies also continue to emerge, includ-
ing range sensors equipped with acoustico-optical scanning systems and capable of
extremely high image acquisition rates, and range cameras that eliminate scanning
altogether, using instead a large array of receivers to analyze a laser pulse covering
the entire field of view. Figure 21.4 shows an example of the latter technology,
with images acquired by the Zcam range camera from 3DVSystems, which records
full-frame registered range and color images at 30Hz with a depth resolution of
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Figure 21.3. Range data captured by the AM phase shift range finder described in
[Hancock et al., 1998]: (left) range and intensity images; (right) perspective plot of the
range data. Reprinted from [Hebert, 2000], Figure 5.

up to 10bits. To learn more, the interested reader should consult [Hebert, 2000]

for an excellent discussion of current range finder technology, including a dozen of
representative commercial products.

Figure 21.4. Range and color images captured by the Zcam range camera from 3DVSys-
tems. Reprinted from [Hebert, 2000], Figure 10.

21.2 Range Data Segmentation

This section adapts some of the edge detection and segmentation methods intro-
duced in Chapters ?? and ?? to the specific case of range images. As will be
shown in the rest of this section, the fact that surface geometry is readily available
greatly simplifies the segmentation process, mainly because this provides objec-
tive, physically-meaningful criteria for finding surface discontinuities and merging
contiguous patches with a similar shape. But let us start by introducing some ele-
mentary notions of analytical differential geometry, which will turn out to form the
basis for the approach to edge detection in range images discussed in this section.
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Technique: Analytical Differential Geometry

Here we revisit the notions of differential geometry introduced in Chapter 27 in an ana-
lytical setting. Specifically, we consider a parametric surface defined as the smooth (i.e.,
indefinitely differentiable) mapping x : U ⊂ IR2 → IR3 that associates with any couple
(u, v) in the open subset U of IR2 the coordinate vector x(u, v) of a point in some fixed
coordinate system. To ensure that the tangent plane is everywhere well defined, we will

assume that the partial derivatives xu
def
= ∂x/∂u and xv

def
= ∂x/∂v are linearly indepen-

dent. Indeed, let α : I ⊂ IR → U denote a smooth planar curve, with α(t) = (u(t), v(t)),

then β
def
= x ◦ α is a parameterized space curve lying on the surface. According to the

chain rule, a tangent vector to β at the point β(t) is u′(t)xu+ v
′(t)xv , and it follows that

the plane tangent to the surface in x(u, v) is parallel to the vector plane spanned by the
vectors xu and xv . The (unit) surface normal is thus

N =
1

|xu × xv |
(xu × xv).

Let us consider a vector t = u′xu+v
′xv in the tangent plane at the point x. It is easy

to show that the second fundamental form is given by

II(t, t) = t · dN(t) = eu′2 + 2fu′v′ + gv′2,

where1

e = −N · xuu, f = −N · xuv , g = −N · xvv.

Now if we define the first fundamental form as the bilinear form that associates with
two vectors in the tangent plane their dot product, i.e.,

I(u,v)
def
= u · v,

then we have
I(t, t) = |t|2 = Eu′2 + 2Du′v′ +Gv′2,

where
E = xu · xu, F = xu · xv , G = xv · xv .

It follows immediately that the normal curvature in the direction t is given by

κt =
II(t, t)

I(t, t)
=
eu′2 + 2fu′v′ + gv′2

Eu′2 + 2Du′v′ +Gv′2
.

Likewise, it is easily shown that the matrix associated with the differential of the Gauss
map in the basis (xu,xv) of the tangent plane is

dN(t) =

(
e f
f g

)(
E F
F G

)−1
;

thus, since the Gaussian curvature is equal to the determinant of the operator dN , it is
given by

K =
eg − f2

EG− F 2
.

1The definition of e, f and g is in keeping with the orientation conventions defined in Chapter
27. These coefficients are usually defined with opposite signs (e.g. [do Carmo, 1976; Struik, 1988]).
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Asymptotic and principal directions are also easily found by using this parameteriza-
tion: since an asymptotic direction verifies II(t, t) = 0, the corresponding values of u′ and
v′ are the (homogeneous) solutions of eu′2 + 2fu′v′ + gv′2 = 0. The principal directions,
on the other hand, can be shown to verify

v′2 −u′v′ u′2

E F G

e f g

= 0. (21.2.1)

Example 1. An important example of parametric surface is provided by Monge patches:
consider the surface x(u, v) = (u, v, h(u, v)). In this case we have


N =

1

(1 + h2u + h
2
v)
1/2

(
−hu
−hv
1

)
,

E = 1+ h2u, F = huhv , G = 1 + h
2
v ,

e = −
huu

(1 + h2u + h
2
v)
1/2 , f = −

huv

(1 + h2u + h
2
v)
1/2 , g = −

hvv

(1 + h2u + h
2
v)
1/2 ,

and the Gaussian curvature has a simple form:

K =
huuhvv − h

2
uv

(1 + h2u + h
2
v)
2
.

Example 2. Another fundamental example is provided by the local parameterization of
a surface in the coordinate system formed by its principal directions. This is of course
a special case of a Monge patch. Writing that the origin of the coordinate system lies
in the tangent plane immediately yields h(0, 0) = hu(0, 0) = hv(0, 0) = 0. As expected,
the normal is simply N = (0, 0, 1)T at the origin, and the first fundamental form is the
identity there.
As shown in the exercises, it follows easily from (21.2.1) that a necessary and sufficient

condition for the coordinate curves of a parameterized surface to be principal directions
is that f = F = 0 (this implies, for example, that the lines of curvature of a surface of
revolution are its meridians and parallels). In our context we already know that F = 0 and
this condition reduces to huv(0, 0) = 0. The principal curvatures in this case are simply
κ1 = e/E = −huu(0, 0) and κ2 = g/G = −hvv(0, 0).
In particular, we can write a Taylor expansion of the height function in the neighbor-

hood of (0, 0) as

h(u, v) = h(0, 0)+uhu(0, 0)+vhv(0, 0)+
1

2
(u, v)

(
huu(0, 0) huv(0, 0)
huv(0, 0) hvv(0, 0)

)(
u

v

)
+ε(u2+v2)3/2,

which shows that the best second-order approximation to the surface in this neighborhood
is the paraboloid defined by

h(u, v) = −
1

2
(κ1u

2 + κ2v
2),

i.e., the expression already encountered in Chapter 27.
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21.2.1 Finding Step and Roof Edges in Range Images

This section presents a method for finding instances of various types of edge models
in range images [Ponce and Brady, 1987]. This technique combines tools from
analytical differential geometry and scale-space image analysis to detect and locate
depth and orientation discontinuities in range data. Figure 21.5 shows a 128× 128
range image of a motor oil bottle that will serve to illustrate the concepts introduced
in this section. This picture was acquired using the INRIA range finder [Boissonnat
and Germain, 1981], with a depth accuracy of about 0.5mm.

(a) (b)

roof

step

step

step

roof

Figure 21.5. An oil bottle: (a) a range image of the bottle and (b) a sketch of its depth
and orientation discontinuities.

The surface of the oil bottle presents two types of surface discontinuities: steps,
where the actual depth is discontinuous, and roofs, where the depth is continuous
but the orientation changes abruptly. As shown in the next section, it is possible to
characterize the behavior of analytical models of step and roof edges under Gaussian
smoothing and to show that they respectively give rise to parabolic points and ex-
trema of the dominant principal curvature in the corresponding principal direction.
This is the basis for the multi-scale edge detection scheme outlined in Algorithm
21.1 below.

Edge Models

In the neighborhood of a discontinuity, the shape of a surface changes much faster in
the direction of the discontinuity than in the orthogonal direction. Accordingly, we
will assume in the rest of this section that the direction of the discontinuity is one
of the principal directions, with the corresponding (dominant) principal curvature
changing rapidly in this direction, while the other one remains roughly equal to
zero. This will allow us to limit our attention to cylindrical models of surface
discontinuities, i.e., models of the form z(x, y) = h(x). These models are of course
only intended to be valid in the neighborhood of an edge, with the direction of the
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1. Smooth the range image with Gaussian distributions at a set of scales σi
(i = 1, . . . , 4). Compute the principal directions and curvatures at each
point of the smoothed images zσi(x, y).

2. Mark in each smoothed image zσi (x, y) the zero-crossings of the Gaussian
curvature and the extrema of the dominant principal curvature in the corre-
sponding principal direction.

3. Use the analytical step and roof models to match the features found across
scales and output the points lying on these surface discontinuities.

Algorithm 21.1: The model-based edge-detection algorithm of Ponce and Brady
[1987].

x, z plane being aligned with the corresponding dominant principal direction.
In particular, a step edge can be modeled by two sloped half-planes separated

by a vertical gap, with normals in the x− z plane. This model is cylindrical and it
is sufficient to study its univariate formulation (Figure 21.6(left)), whose equation
is

z =

{
k1x+ c when x < 0,
k2x+ c+ h when x > 0.

(21.2.2)

k1
k1

k2

k2

x

z

x

z

c

h

Step Model Roof Model

Figure 21.6. Edge models: a step consists of two half-planes separated by a distance
h at the origin, and a roof consists of two half-planes meeting at the origin with different
slopes. After [Ponce and Brady, 1987, Figure 4].

In this expression, c and h are constants, h measuring the size of the gap and
k1 and k2 the slopes of the two half-planes. Introducing the new constants k =
(k1 + k2)/2 and δ = k2 − k1, it is easy to show (see exercises) that convolving the
z function with the second derivative of a Gaussian yields

z′′σ
def
=
∂2

∂σ2
Gσ ∗ z =

1

σ
√
2π
(δ −

hx

σ2
) exp(−

x2

2σ2
). (21.2.3)

In particular, the corresponding curvature κσ vanishes in xσ = σ
2δ/h. This
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point is only at the origin when k1 = k2 and its position is a quadratic function
of σ otherwise. This suggests identifying step edges with zero-crossings of one of
the principal curvatures (or equivalently of the Gaussian curvature), whose position
changes with scale. To characterize qualitatively the behavior of these features as
a function of σ, let us also note that since z′′σ = 0 in xσ, we have

κ′′σ

κ′σ
(xσ) =

z′′′′σ

z′′σ
(xσ) = −2

δ

σ
;

in other words, the ratio of the second and first derivatives of the curvature is
independent of σ.
An analytical model for roof edges is obtained by taking h = 0 and δ �= 0 in the

step model (Figure 21.6(right)). In this case, it is easy to show (see exercises) that

κσ =
1

σ
√
2π

δ exp(−
x2

2σ2
)

1 +
(
k +

δ
√
2π

∫ x/σ
0

exp(−
u2

2
)du

)23/2
. (21.2.4)

It follows that, when x2 = λx1 and σ2 = λσ1, we must have κσ2 (x2) =
κσ1(x1)/λ. In turn, the maximum value of |κσ| must be inversely proportional
to σ, and it is reached at a point whose distance from the origin is proportional to
σ. This maximum tends toward infinity as σ tends toward zero, indicating that roofs
can be found as local curvature extrema. In actual range images, these extrema
should be sought in the direction of the dominant principal direction, in keeping
with our assumptions about local shape changes in the vicinity of surface edges.

Computing the Principal Curvatures and Directions

According to the models derived in the previous section, instances of step and roof
edges can be found as zero crossings of the Gaussian curvature and extrema of the
dominant principal curvature in the corresponding direction. Computing these dif-
ferential quantities requires estimating the first and second partial derivatives of the
depth function at each point of a range image. This can be done, as in Chapter ??,
by convolving the images with the derivatives of a Gaussian distribution. However,
range images are different from usual pictures: for example, the pixel values in a
photograph are usually assumed to be piecewise constant in the neighborhood of
step edges,2 which is justified for Lambertian objects since the shape of a surface
is, to first order, piecewise-planar near an edge, with a piecewise-planar intensity
in that case. On the other hand, piecewise-constant (local) models of range images
are of course unsatisfactory. Likewise, the maximum values of contrast along the
significant edges of a photograph are usually assumed to have roughly the same

2This corresponds to taking k1 = k2 = 0 in the model given in the previous section; note that
in that case zero crossings do not move as scale changes.



Section 21.2. Range Data Segmentation 593

magnitude. In range images, however, there are two different types of step edges:
the large depth discontinuities that separate solid objects from each other and from
their background, and the much smaller gaps that usually separate patches of the
same surface.
The edge detection scheme discussed in this section is aimed at the latter class

of discontinuities. Blindly applying Gaussian smoothing across object boundaries
will introduce radical shape changes that may overwhelm the surface details we are
interested in (Figure 21.7(top and middle)).

Figure 21.7. Smoothing a range image. Top: a slice of the range image shown in Figure
21.5. The background has been thresholded away. Middle: result of Gaussian smoothing.
Bottom: smoothing using computational molecules. Reprinted from [Ponce and Brady,
1987], Figure 14.

This suggests finding the major depth discontinuities first (thresholding will suf-
fice in many cases), then somehow restricting the smoothing process to the surface
patches enclosed by these boundaries. This can be achieved by convolving the range
image with computational molecules [Terzopoulos, 1984], i.e., linear templates that,
added together, form a 3× 3 averaging mask, e.g.,

1
2
1
+ 2 4 2 +

2

4
2
+

1
2

1
=

1 2 1

2 12 2
1 2 1

.

Repeatedly convolving the image with the 3×3 mask (normalized so its weights
add to one) yields, according to the central limit theorem, a very good approxi-
mation of Gaussian smoothing with a mask whose σ value is proportional to

√
n

after n iterations. To avoid smoothing across discontinuities, the molecules crossing
these discontinuities are not used, while the remaining ones are once again normal-
ized so the total sum of the weights is equal to one. The effect is shown in Figure
21.7(bottom).
After the surface has been smoothed, the derivatives of the height function can

be computed via finite differences. The gradient of the height function is computed
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by convolving the smoothed image with the masks:

∂

∂x
=
1

6

−1 0 1

−1 0 1
−1 0 1

and
∂

∂y
=
1

6

1 1 1

0 0 0
−1 −1 −1

,

and the Hessian is computed by convolving the smoothed image with the masks

∂2

∂x2
=
1

3

1 −2 1
1 −2 1
1 −2 1

,
∂2

∂x∂y
=
1

4

−1 0 1

0 0 0
1 0 −1

and
∂2

∂y2
=
1

3

1 1 1

−2 −2 −2
1 1 1

.

Once the derivatives are known, the principal directions and curvatures are easily
computed. Figure 21.8 shows the two sets of principal directions found for the oil
bottle after 20 iterations of the molecules. As expected, they lie along the meridians
and parallels of this surface of revolution.

Figure 21.8. The two principal direction fields for the oil bottle. Reprinted from [Brady
et al., 1985], Figure 18.

Matching Features Across Scales

Given the principal curvatures and directions, parabolic points can be detected as
(non-directional) zero-crossings of the Gaussian curvature, while local extrema of
the dominant curvature along the corresponding principal direction can be found
using the non-maximum suppresion techniques discussed in Chapter ??. Figure
21.9(a) shows the features found after 20, 40, 60, and 80 iterations of the molecule-
based smoothing operator. Although there is a considerable amount of noise at
fine resolutions (e.g., after 20 iterations only), the situation improves as smooth-
ing proceeds. Features due to noise can also be eliminated, at least in part, via
thresholding of the zero-crossing slope for parabolic points, and of the curvature
magnitude for extrema of principal curvatures (Figure 21.9(b)).
Nonetheless, experiments show that smoothing and thresholding are not suf-

ficient to eliminate as much as possible all irrelevant features. In particular, as
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(a) (b)

Figure 21.9. Features found at various scales (a) before and (b) after thresholding. Note
that the thresholds in (b) have been chosen empirically to eliminate most false features
while retaining those corresponding to true surface discontinuities. Still, artefacts such as
the extrema of curvature parallel to the axis of the bottle subsist. Reprinted from [Ponce
and Brady, 1987], Figure 12.

illustrated by Figure 21.9, curvature extrema parallel to the axis of the oil bottle
show up more and more clearly as smoothing proceeds. These are due to the fact
that points near the occluding boundary of the bottle do not get smoothed as much
by the computational molecules as points closer to its center, giving rise to artificial
curvature extrema.
A multi-scale approach to edge detection solves this problem. Features are

tracked from coarse to fine scales, all features at a given scale not having an ancestor
at a coarser one being eliminated. The evolution of the principal curvatures and
their derivatives is also monitored. Surviving parabolic features such that the ratio
κ′′σ/κ

′
σ remains (roughly) constant across scales are output as step edge points, while

directional extrema of the dominant curvature such that σκσ remains (roughly)
constant are output as roof points. Finally, since, for both our models, the distance
between the true discontinuity and the corresponding zero crossing or extremum
increases with scale, the finest scale is used for edge localization. Figure 21.10
shows the results of applying this strategy to the oil bottle and a human face mask.

21.2.2 Segmenting Range Images into Planar Regions

We saw in the last section that edge detection is implemented by quite different
processes in photographs and range data. The situation is similar for image seg-
mentation into regions. In particular, meaningful segmentation criteria are elusive
in the intensity domain because pixel brightness is only a cue to physical properties
such as shape or reflectance. In the range domain however, geometric information
is directly available, making it possible to use, say, the average distance between
a set of surface points and the plane best fitting them as an effective segmenta-
tion criterion. The region growing technique of Faugeras and Hebert [1986] is a
good example of this approach. This algorithm iteratively merges planar patches
by maintaining a graph whose nodes are the patches and arcs associated with their
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(a) (b)

Figure 21.10. Edge detection results: (a) the three step edges and two roof disconti-
nuities of the oil bottle have been correctly identified; (b) the eye, mouth, nose and brow
boundaries of a mask have been found as roof edges. Reprinted from [Ponce and Brady,
1987], Figures 16 and 22.

common boundary link adjacent patches. Each arc is assigned a cost correspond-
ing to the average error between the points of the two patches and the plane best
fitting these points. The best arc is always selected, and the corresponding patches
are merged. Note that the remaining arcs associated with these patches must be
deleted while new arcs linking the new patch to its neighbors are introduced. The
situation is illustrated by Figure 21.11.
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Figure 21.11. This diagram illustrates one iteration of the region growing process
during which the two patches incident to the minimum-cost arc labelled a are merged.
The heap shown in the bottom part of the figure is updated as well: the arcs a, b, c and e
are deleted, and two new arcs f and g are created and inserted in the heap.
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The graph structure is initialized by using a triangulation of the range data, and
it is efficiently updated by maintaining a heap of active arcs. The triangulation can
either be constructed directly from a range image (by splitting the quadrilaterals as-
sociated with the pixels along one of their diagonals), or from a global surface model
constructed from multiple images as described in the next section. The heap storing
the active arcs can be represented, for example, by an array of buckets indexed by
increasing costs, which supports fast insertion and deletion (Figure 21.11(bottom)).
Figure 21.12 shows an example, where the complex shape of an automobile part is
approximated by 60 planar patches.

(a) (b)

Figure 21.12. The Renault part: (a) photo of the part and (b) its model. Reprinted
from [Faugeras and Hebert, 1986], Figures 1 and 6.

21.3 Range Image Registration and Model Construction

Geometric models of real objects are useful in manufacturing, e.g., for process and
assembly planning or inspection. Closer to the theme of this book, they are also key
components of many object recognition systems, and are more and more in demand
in the entertainment industry, as synthetic pictures of real objects now routinely
appear in feature films and video games (we will come back to this issue in much
greater detail in Chapter 23). Range images are an excellent source of data for
constructing accurate geometric models of real objects, but a single picture will, at
best, show half of the surface of a given solid, and the construction of complete object
models requires the integration of multiple range images. This section addresses
the dual problems of registering multiple images in the same coordinate system and
fusing the three-dimensional data provided by these pictures into a single integrated
surface model.
Before attacking these two problems, let us introduce quaternions, that will

provide us with linear methods for estimating rigid transformations from point
and plane correspondences in both the registration context of this section and the
recognition context of the next one.
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Technique: Quaternions

Quaternions were invented by Hamilton [1844]. Like complex numbers in the plane,
they can be used to represent rotations in space in a very convenient manner. A quaternion
q is defined by its real part, a scalar a, and its imaginary part, a vector α in IR3, and it
is usually denoted by q = a + α. This is justified by the fact that real numbers can be
identified with quaternions with a zero imaginary part, and vectors can be identified with
quaternions with a zero real part, while addition between quaternions is defined by

(a+α) + (b+ β)
def
= (a+ b) + (α+ β).

The multiplication of a quaternion by a scalar is defined naturally by λ(a + α)
def
=

λa+ λα, and these two operations give the set of all quaternions the structure of a four-
dimensional vector space.
It is also possible to define a multiplication operation that associates with two quater-

nions the quaternion

(a+ α)(b+ β)
def
= (ab− α · β) + (aβ + bα+α× β).

Quaternions, equipped with the operations of addition and multiplication as defined
above, form a non-commutative field, whose zero and unit elements are respectively the
scalars 0 and 1.
The conjugate of the quaternion q = a+α is the quaternion q̄

def
= a−α with opposite

imaginary part. The squared norm of a quaternion is defined by

|q|2
def
= qq̄ = q̄q = a2 + |α|2,

and it is easily verified that |qq′| = |q||q′| for any pair of quaternions q and q′.
Now, it can be shown that the quaternion

q = cos
θ

2
+ sin

θ

2
u

represents the rotation R of angle θ about the unit vector u in the following sense: if α is
some vector in IR3, then

Rα = qαq̄. (21.3.1)

Note that |q| = 1 and that −q also represents the rotationR. Reciprocally, the rotation
matrix R associated with a given unit quaternion q = a+α with α = (b, c, d)T is

R =

(
a2 + b2 − c2 − d2 2(bc− ad) 2(bd + ac)
2(bc + ad) a2 − b2 + c2 − d2 2(cd − ab)
2(bd − ac) 2(cd+ ab) a2 − b2 − c2 + d2

)
,

a fact easily deduced from (21.3.1). (Note that the four parameters a, b, c, d are not inde-
pendent since they satisfy the constraint a2 + b2 + c2 + d2 = 1.)
Finally, if q1 and q2 are unit quaternions, andR1 andR2 are the corresponding rotation

matrices, the quaternions q1q2 and −q1q2 are both representations of the rotation matrix
R1R2.
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21.3.1 Registering Range Images Using the Iterative Closest-
Point Method

Besl and McKay [1992] have proposed an algorithm capable of registering two sets
of three-dimensional points, i.e., of computing the rigid transformation that maps
the first point set onto the second one. Their algorithm simply minimizes the
average distance between the two point sets by iterating over the following steps:
first establish correspondences between scene and model features by matching every
scene point to the model point closest to it, then estimate the rigid transformation
mapping the scene points onto their matches, and finally apply the computed dis-
placement to the scene. The iterations stop when the change in mean distance
between the matched points falls below some preset threshold. Pseudocode for this
iterated closest-point (or ICP) algorithm is given below.

Function ICP(Model, Scene);
begin
E’ ← +∞;
(Rot, Trans) ← Initialize-Registration(Scene, Model);
repeat
E ← E’;
Registered-Scene ← Apply-Registration(Scene, Rot, Trans);
Pairs ← Return-Closest-Pairs(Registered-Scene, Model);
(Rot, Trans, E’) ← Update-Registration(Scene, Model, Pairs, Rot, Trans);
until |E’ − E| < τ ;

return (Rot, Trans);
end.

Algorithm 21.2: The iterative closest-point algorithm of Best and McKay [1992].
The auxiliary function Initialize-Registration uses some global registration method,
based on moments for example, to compute a rough initial estimate of the rigid trans-
formation mapping the scene onto the model. The function Return-Closest-Pairs
returns the indices (i, j) of the points in the registered scene and the model such that
point number j is the closest to point number i. The function Update-Registration
estimates the rigid transformation between selected pairs of points in the scene and
the model, and the function Apply-Registration applies a rigid transformation to all
the points in the scene.

It can be shown that Algorithm 21.2 always converges to a local minimum of the
error E (this is intuitively clear since the registration stage decreases the average
error at each iteration, while the closest point determination decreases the individual
error as well). This does not guarantee of course, convergence to a global minimum,
and a reasonable guess for the rigid transformation sought by the algorithm must
be provided. A variety of methods are available for that purpose, including roughly
sampling the set of all possible transformations, and using the moments of both the
scene and model point sets to estimate the transformation.
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Finding the Closest-Point Pairs

At every iteration of the algorithm, finding the closest point M in the model to a
given (registered) scene point S takes (naively) O(n) time, where n is the number
of model points. In fact, various algorithms can be used to answer such a nearest-
neighbor query in IR3 in O(logn) time at the cost of additional preprocessing of
the model, using for example k-d trees [Friedman et al., 1977] (for which the log-
arithmic query time only holds on average) or more complex data structures. For
example, the general randomized algorithm of [Clarkson, 1988] takes preprocess-
ing time O(n2+ε), where ε is an arbitrarily small positive number, and query time
O(logn). The efficiency of repeated queries can also be improved by caching the
results of previous computations. For example, Simon et al. [1994] store at each
iteration of the ICP algorithm the k closest model points to each scene point (a
typical value for k is 5). Since the incremental update of the rigid transformation
is normally small, it is likely that the closest neighbor of a point after an iteration
will be among its k closest neighbors from the previous one. It is in fact possible
to determine efficiently and conclusively whether the closest point is in the cached
set, see [Simon et al., 1994] for details.

Estimating the Rigid Transformation

Under the rigid transformation defined by the rotation matrixR and the translation
vector t, a point xmaps onto the point x′ = Rx+t. Thus, given n pairs of matching
points xi and x

′
i, with i = 1, . . . , n, we seek the rotation matrix R and translation

vector t minimizing the error

E =

n∑
i=1

|x′i −Rxi − t|
2.

Let us first note that the value of t minimizing E must satisfy

0 =
∂E

∂t
= −2

n∑
i=1

(x′i −Rxi − t),

or

t = x′0 −Rx0, where x0
def
=
1

n

n∑
i=1

xi and x′0
def
=
1

n

n∑
i=1

x′i (21.3.2)

denote respectively the centroids of the two sets of points xi and x
′
i.

Introducing the centered points yi = xi − x0 and y
′
i = x

′
i − x0 (i = 1, . . . , n)

yields

E =

n∑
i=1

|y′i −Ryi|
2,
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Quaternions can now be used to minimize E as follows: let q denote the quater-
nion associated with the matrix R, we use the fact that |q|2 = 1 and the multiplica-
tivity properties of the quaternion norm to write

E =

n∑
i=1

|y′i − qyiq̄|
2|q|2 =

n∑
i=1

|y′iq− qyi|
2.

As shown in the exercises, this allows us to rewrite the rotational error as E =
qTBq, where B =

∑n
i=1A

T
i Ai, and

Ai =

(
0 yTi − y

′T
i

y′i − yi [yi + y
′
i]×

)
.

Note that the matrix Ai is antisymmetric with (in general) rank 3, but that
the matrix B will have, in the presence of noise, rank 4. As shown in Chapter
6, minimizing E under the constraint |q|2 = 1 is a (homogeneous) linear least-
squares problem whose solution is the eigenvector of B associated with the smallest
eigenvalue of this matrix. Once R is known, t is obtained from (21.3.2).

Results

Figure 21.13 shows an example, where two range images of an African mask are
matched by the algorithm. The average distance between matches is 0.59mm for
this 9cm object.

(a) (b) (c)

Figure 21.13. Registration results: (a) a range image serving as model for an African
mask; (b) a (decimated) view of the model, serving as scene data; (c) a view of the two
datasets overlaid after registration. Reprinted from [Besl and McKay, 1992], Figures 12–14.

This method is not limited to models consisting to clouds of three-dimensional
points, but applies as well to any model that supports the construction of closest-
point pairs. Figure 21.14 shows an example where a range image is matched to a
spline model of the mask. In this case, the patch point closest to a scene point is
retrieved by a simple optimization process, initialized at the center of the patch for
example (see exercises).
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(a) (b)

Figure 21.14. More registration results: (a) a parametric surface serving as model
for the mask; (b) registration of this model and the range image shown in Figure 21.13.
Reprinted from [Besl and McKay, 1992], Figures 15 and 16.

21.3.2 Fusing Multiple Range Images

Given a set of registered range images of a solid object, it is possible to construct
an integrated surface model of this object. In the approach proposed by Curless
and Levoy [1996], this model is constructed as the zero set S of a volumetric density
function D : IR3 → IR, i.e., as the set of points (x, y, z) such that D(x, y, z) = 0.
Like any other level set of a continuous density function, S is by construction guar-
anteed to be a closed, “watertight” surface, although it may have several connected
components (Figure 21.15)

0D=D

0z=zPlane

z

y

x

Level curve

Figure 21.15. A 2D illustration of volumetric density functions and their level sets. In
this case, the “volume” is of course the (x, y) plane, and the “surface” is a curve in this
plane, with two connected components in the example shown here.

The trick, of course, is to construct an appropriate density function from reg-
istered range measurements. Curless and Levoy embed the corresponding surface
fragments into a cubic grid, and assign to each cell of this grid, or voxel, a weighted
sum of the signed distances between its center and the closest point on the surface
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intersecting it (Figure 21.16(left)). This averaged signed distance is the desired den-
sity function, and its zero set can be found using classical techniques, such as the
marching cubes algorithm develop by Lorensen and Cline [1987] to extract isodensity
surfaces from volumetric medical data.

OO

A

B

Cb
ca

observations of the same scene

Merging different Filling

the gaps

Figure 21.16. A 2D illustration of the Curless-Levoy method for fusing multiple range
images. In the left part of the figure, three views observed by the same sensor located
at the point O are merged by computing the zero set of a weighted average of the signed
distances between voxel centers (e.g., points A, B and C) and surface points (e.g., a, b
and c) along viewing rays. In general, distances to different sensors would be used instead.
The light grey area in the right part of the figure is the set of voxels marked as empty in
the gap-filling part of the procedure.

Missing surface fragments corresponding to unobserved parts of the scene are
handled by initially marking all voxels as unseen, or equivalently assigning them
a depth equal to some large positive value (standing for +∞), then assigning as
before to all voxels close to the measured surface patches the corresponding signed
distance, and finally carving out (i.e., marking as empty, or having a large negative
depth standing for −∞) the voxels that lie between the observed surface patches
and the sensor (Figure 21.16(right)).
Figure 21.17 shows an example of model built from multpiple range images of a

Buddha statuette acquired with a Cyberware 3030 MS optical triangulation scanner,
as well as a physical model constructed from the geometric one via stereolithography
[Curless and Levoy, 1996].

21.4 Object Recognition

We now turn to actual object recognition from range images. The registration
techniques introduced in the previous section will play a crucial role in the two
algorithms discussed in this one.
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Figure 21.17. 3D Fax of a statuette of a Buddha. From left to right: photograph
of the statuette; range image; integrated 3D model; model after hole filling; physical
model obtained via stereolithography. Reprinted from [Curless and Levoy, 1996],
Figure 10.

21.4.1 Matching Piecewise-Planar Surfaces Using Interpretation
Trees

The recognition algorithm proposed by Faugeras and Hebert [1986] is a recursive
procedure exploiting rigidity constraints to efficiently search an interpretation tree
for the path(s) corresponding to the best sequence(s) of matches. The basic proce-
dure is given in pseudocode in Algorithm 21.3 below. To correctly handle occlusions
(and the fact that, as noted earlier, a range finder will “see”, at best, one half of
the object facing it), the algorithm must consider, at every stage of the search, the
possibility that a model plane may not match any scene plane. This is done by
always incorporating in the list of potential matches of a given plane a token “null”
plane.

Selecting Potential Matches

The selection of potential matches for a given model plane is based on various criteria
depending on the number of correspondences already established, with each new
correspondence providing new geometric constraints and more stringent criteria. At
the beginning of the search, we only know that a model plane with area A should
only be matched to scene planes with a compatible area, i.e., in the range [αA, βA].
Reasonable values for the two thresholds might be 0.5 and 1.1, which allows for some
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Function Match(model, scene, pairs, rot, trans);
begin
bestpairs ← nil; bestscore ← 0;
for Π in model do
for Π′ in Potential-Matches(scene, pairs, Π, rot, trans) do
rot ← Update-Registration-2(pairs, Π, Π′, rot, trans);
(score, newpairs) ← Match(model−Π, scene−Π′ , pairs+(Π,Π′), rot, trans);
if score>bestscore then bestscore ← score; bestpairs ← newpairs endif;
endfor;
endfor;

return bestpairs;
end.

Algorithm 21.3: The plane-matching algorithm of Faugeras and Hebert [1986].
The recursive function Match returns the best set of matching plane pairs found by
recursively visiting the interpretation tree. It is initially called with an empty list of
pairs and nil values for the rotation and translation arguments rot and trans. The
auxiliary function Potential-Matches returns the subset of the planes in the scene
that are compatible with the model plane Π and the current estimate of the rigid
transformation mapping the model planes onto their scene matches (see text for
details). The auxiliary function Update-Registration-2 uses the matched plane pairs
to update the current estimate of the rigid transformation.

discrepency between the unoccluded areas, and also affords a degree of occlusion
up to 50%.
After the first correspondence has been established, it is still too early to try and

estimate the rigid transformation mapping the model onto the scene, but it is clear
that the angle between the normals to any matching planes should be (roughly)
equal to the angle θ between the normals to the first pair of planes, say lie in the
interval [θ− ε, θ+ ε]. The normals to the corresponding planes lie in a band of the
Gauss sphere, and they can be efficiently retrieved by discretizing this sphere and
associating to each cell a bucket that stores the scene planes whose normal falls into
it (Figure 21.18).
A second pairing is sufficient to complete determine the rotation separating the

model from its instance in the scene: this is geometrically clear (and will be con-
firmed analytically in the next section) since a pair of matching vectors constrains
the rotation axis to lie in the plane bisecting these vectors. Two pairs of matching
planes determine the axis of rotation as the intersection of the corresponding bisect-
ing planes, and the rotation angle is readily computed from either of the matches.
Given the rotation and a third model plane, one can predict the orientation of the
normal to its possible matches in the scene, which can be efficiently recovered using
once again the discrete Gauss sphere mentioned before.
After three pairings have been found, the translation can also be estimated and
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θ

θ+ε

θ−ε

u

v

Figure 21.18. Finding all vectors v that make an angle in the [θ − ε, θ + ε] range with
a given vector u. It should be noted that the unit sphere does not admit tesselations with
an arbitrary level of detail by regular (spherical) polygons. The tesselation shown in the
diagram is made of hexagons with unequal edge lengths. See, for example, [Horn, 1986,
Chap. 16] for a discussion of this problem and various tesselation schemes.

used to predict the distance between the origin and any scene plane matching a
fourth scene plane. The same is true for any further pairing.

Estimating the Rigid Transformation

Let us consider a plane Π defined by the equation n · x − d = 0 in some fixed
coordinate system. Here n denotes the unit normal to the plane and d its (signed)
distance from the origin. Under the rigid transformation defined by the rotation
matrix R and the translation vector t, a point x maps onto the point x′ = Rx+ t,
and Π maps onto the plane Π′ whose equation is n′ · x′ − d′ = 0, with{

n′ = Rn,
d′ = n′ · t + d.

Thus, estimating the rigid transformation that maps n planes Πi onto the match-
ing planes Π′i (i = 1, . . . , n) amounts to finding the rotation matrixR that minimizes
the error

Er =

n∑
i=1

|n′i −Rni|
2

and the translation vector t that minimizes

Et =

n∑
i=1

(d′i − di −n
′
i · t)

2.

The rotation R minimizing Er can be computed, exactly as in Section 21.4.1, by
using the quaternion representation of matrices and solving an eigenvector problem.
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The translation vector t minimizing Et is the solution of a (non-homogeneous)
linear least-squares problem, whose solution can be found using the techniques
presented in Chapter 6.

Results

Figure 21.19 shows recognition results obtained using a bin of Renault parts such
as the one shown in Figure 21.12. The range image of the bin has been segmented
into planar patches using the technique presented in Section 21.2.2. The matching
algorithm is run three times on the scene, with patches matched during each run
removed from the scene before the next iteration. As shown by the figure, the three
instances of the part present in the bin are correctly identified, and the accuracy of
the pose estimation process is attested by the reprojection into the range image of
the model in the computed pose.

(a) (b)

(c) (d)

Figure 21.19. Recognition results: (a) a bin of parts, and (b)-(d) the three instances of
the Renault part found in that bin. In each case, the model is shown both by itself in the
position and orientation estimated by the algorithm, as well as superimposed (dotted lines)
in this pose over the corresponding planes of the range image. Reprinted from [Faugeras
and Hebert, 1986], Figures 14–16.

21.4.2 Matching Free-Form Surfaces Using Spin Images

As demonstrated in Section 21.2.1, differential geometry provides a powerful lan-
guage for describing the shape of a surface locally, i.e., in a small neighborhood of
each one of its points. On the other hand, the region-growing algorithm discussed



608 Range Data Chapter 21

in Section 21.2.2 is aimed at constructing a globally consistent surface description in
terms of planar patches. We introduce in this section a semi-local surface represen-
tation, the spin image of Johnson and Hebert [1998; 1999], that captures the shape
of a surface in a relatively large neighborhood of each one of its points. As will be
shown in the rest of this section, the spin image is invariant under rigid transfor-
mations, and it affords an efficient algorithm for pointwise surface matching, thus
completely bypassing segmentation in the recognition process.

Spin Image Definition

Let us assume as in Section 21.2.2 that the surface of interest is given in the form
of a triangular mesh. The (outward-pointing) surface normal at each vertex can be
estimated by fitting a plane to this vertex and its neighbors, turning the triangula-
tion into a net of oriented points. Given an oriented point P , the spin coordinates of
any other point Q can now be defined as the (nonnegative) distance α separating Q
from the (oriented) normal line in P and the (signed) distance β from the tangent
plane to Q (Figure 21.20).

β
α

Σ

Spin map

P

n

Q

Figure 21.20. Definition of the spin map associated with a surface point P : the spin
coordinates (α,β) of the point Q are respectively defined by the lengths of the projections
of
−−→
PQ onto the tangent plane and its surface normal. Note that there are three other

points with the same (α, β) coordinates as Q in this example.

Accordingly, the spin map sP : Σ → IR
2 associated with P is defined for any

point Q on Σ as

sP (Q)
def
= (|
−−→
PQ×n|︸ ︷︷ ︸

α

,
−−→
PQ · n︸ ︷︷ ︸
β

).

As shown by Figure 21.20, this mapping is not injective. This is not surprising
since the spin map only provides a partial specification of a cylindrical coordinate
system: the third coordinate that would normally record the angle between some
reference vector in the tangent plane and the projection of

−−→
PQ into this plane is

missing. The principal directions are obvious choices for such a reference vector,
but focussing on the spin coordinates avoids their computation, a process that is
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susceptible to noise since it involves second derivatives and may be ambiguous for
(almost) planar or spherical patches.
The spin image associated with an oriented point is a histogram of the α, β

coordinates in a neighborhood of this point (Figure 21.20(b)). Concretely, the
α, β plane is divided into a rectangular array of δα × δβ bins that accumulate the
total surface area spanned by points with α, β values in that range.3 As shown
in [Carmichael et al., 1999] and the exercises, each triangle in the surface mesh
maps onto a region of the α, β plane whose boundaries are hyperbola arcs. Its
contribution to the spin image can thus be computed by scan-converting this region
and assigning to each bin that it traverses the area of the patch where the triangle
intersects the annular region of IR3 associated with the bin (Figure 21.21).
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Figure 21.21. Spin image construction: the triangle shown in the left of the diagram
maps onto a region with hyperbolic boundaries in the spin image; the value of each bin
intersected by this region is incremented by the area of the portion of the triangle that
intersects the annulus associated with the bin. After [Carmichael et al., 1999, Figure 3].

A key parameter of spin images is the support distance d that limits to a sphere
of radius d centered in P the range of the support points used to construct the
image. This sphere must be large enough to provide good descriptive power but
small enough to support recognition in the presence of clutter and occlusion. In
practice, an appropriate choice for d might be a tenth of the object’s diameter
[Johnson and Hebert, 1998]: thus, as noted earlier, the spin image is indeed a semi-
local description of the shape of a surface in an extended neighborhood of one of its
points.
Robustness to clutter can be improved by limiting the range of surface normals

at the support points to a cone of half-angle θ centered in n. As in the support
distance case, choosing the right value for θ involves a tradeoff between descriptive
power and insensitivity to clutter; a value of 60◦ has empirically been shown to
be satisfactory in [Johnson and Hebert, 1999]. The last parameter defining a spin

3The corresponding point sets may actually be divided into several connected components: for
example, for small enough values of δα and δβ there are four connected components in the example
shown in Figure 21.20, corresponding to small patches centered at the points having the same α,β
coordinates as Q.
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image is its size (in pixels), or equivalently, given the support distance, its bin size
(in meters). As shown in [Johnson and Hebert, 1998], an appropriate choice for the
bin size is the average distance between mesh vertices in the model. Figure 21.22
shows the spin images associated with three oriented points on the surface of a
rubber duck.

Figure 21.22. Three oriented points on the surface of a rubber duck and the corre-
sponding spin images. The α, β coordinates of the mesh vertices are shown besides the
actual spin images. Reprinted from [Johnson and Hebert, 1998], Figure 3.

Matching Spin Images

One of the most important features of spin images is that they are (obviously)
invariant under rigid transformations. Thus an image comparison technique such
as correlation can in principle be used to match the spin images associated with
oriented points in the scene and the object model. Things are not that simple,
however: we already noted that the spin map is not injective; in general, it is not
surjective either, and empty bins (or equivalently zero-valued pixels) may occur for
values of α and β that do not correspond to physical surface points (see the blank
areas in Figure 21.22 for example). Occlusion may cause the appearance of zero
pixels in the scene image, while clutter may introduce irrelevant non-empty bins.
It is therefore reasonable to restrict the comparison of two spin images to their
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common non-zero pixels. In this context, Johnson and Hebert [1998] have shown
that

S(I ,J)
def
= [Arctanh(C(I,J))]2 −

3

N − 3

is an appropriate similarity measure for two spin images whose overlap regions
containN pixels and are represented by the vectors I and J of IRN . In this formula,
C(I,J) denotes the normalized correlation of the vectors I and J , and Arctanh
denotes the hyperbolic arc tangent function. Armed with this similarity measure, we
can now outline a recognition algorithm that uses spin images to establish pointwise
correspondences.

Off-line:

Compute the spin images associated with the oriented points of a surface
model and store them into a table.

On-line:

1. Form correspondences between a set of spin images randomly selected in the
scene and their best matches in the model table using the similarity measure
S to rank-order the matches.

2. Filter and group correspondences using geometric consistency constraints,
and compute the rigid transformations best aligning the matched scene and
model features.

3. Verify the matches using the ICP algorithm.

Algorithm 21.4: The algorithm of Johnson and Hebert [1998; 1999] for pointwise
matching of free-form surfaces using spin images.

The various stages of this algorithm are mostly straightforward. Let us note
however that the filtering/grouping step relies on comparing the spin coordinates
of model points relative to the other mesh vertices in their group with the spin
coordinates of the corresponding scene points relative to their own group. Once
consistent groups have been identified, an initial estimate of the rigid transformation
aligning the scene and the model is computed from (oriented) point matches using
the quaternion-based registration technique described in Section 21.3.1. Finally,
consistent sets of correspondences are verified by iteratively spreading the matching
process to their neighbors, updating along the way the rigid transformation that
aligns the scene and the model.
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Results

The matching algorithm presented in the previous section has been extensively
tested in recognition tasks with cluttered indoor scenes that contain both industrial
parts and various toys [Johnson and Hebert, 1998; Johnson and Hebert, 1999]. It has
also been used in outdoor navigation/mapping tasks with very large datasets cov-
ering thousands of squared meters of terrain [Carmichael et al., 1999]. Figure 21.23
shows sample recognition results in the toy domain.

(a)

(b)

Figure 21.23. Spin-image recognition results: (a) a cluttered image of toys and the
mesh constructed from the corresponding range image; (b) recognized objects overlaid on
the original pictures.

21.5 Notes

Excellent surveys of active range finding techniques can be found in [Jarvis, 1983;
Nitzan, 1988; Besl, 1989; Hebert, 2000]. The model-based approach to edge detec-
tion presented in Section 21.2.1 is only one of the many techniques that have been
proposed for segmenting range pictures using notions from differential geometry
(see, for example, [Fan et al., 1987; Besl and Jain, 1988]). An alternative to the
computational molecules used to smooth a range image in that section is provided
by anisotropic diffusion, where the amount of smoothing at each point depends on
the value of the gradient [Perona and Malik, 1990c].
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The method for segmenting surfaces into (almost) planar patches presented in
Section 21.2.2 is easily extended to quadric patches (see [Faugeras and Hebert,
1986] and the exercises). Extensions to higher-order surface primitives is more
problematic, in part because surface fitting is more difficult in that case. There is a
vast amount of literature on the latter problem, using superquadrics (e.g., [Pentland,
1986; Bajcsy and Solina, 1987; Gross and Boult, 1988]) and algebraic surfaces (e.g,
[Taubin et al., 1994b; Keren et al., 1994; Sullivan et al., 1994b]) for example.
Alternatives to the Curless and Levoy [1996] approach to the fusion of multiple

range images include the Delaunay triangulation algorithm of Boissonnat [1984],
the zippered polygonal meshes of Turk and Levoy [1994] and the crust technique
of Amenta et al. [1998]. The quaternion-based approach to the estimation of rigid
transformations described in this chapter was developed independently by Faugeras
and Hebert [1986] and Horn [1987]. The recognition technique discussed in Section
21.4.1 is closely related to other algorithms using interpretation trees to control
the combinatorial cost of feature matching in the two- and three-dimensional cases
[Gaston and Lozano-Pérez, 1984; Ayache and Faugeras, 1986; Grimson and Lozano-
Pérez, 1987; Huttenlocher and Ullman, 1987a].
The spin images discussed in Section 21.4.2 have been used to establish pointwise

correspondences between range images and surface models. Related approaches to
this problem include the structural indexing method of Stein and Medioni [1992]

and the point signatures proposed by Chua and Jarvis [1996]. A (local) variant of
the same idea will be discussed in Chapter 25 in the context of object recognition
from photographs [Schmid and Mohr, 1997a]. To conclude, let us note that the
original algorithm described in Section 21.4.2 has been extended in various direc-
tions: a scene can now be matched simultaneously to several models using principal
component analysis (see Chapter 25 and [Johnson and Hebert, 1999]), while learn-
ing techniques are used to prune false matches in cluttered scenes [Carmichael et
al., 1999].

21.6 Assignments

Exercises

1. Step model: compute zσ(x) = Gσ∗z(x), where z(x) is given by (21.2.2). Show
that z′′σ is given by (21.2.3). Conclude that κ

′′
σ/κ

′
σ = −2δ/h in the point xσ

where z′′σ and κσ vanish.

2. Roof model: show that κσ is given by (21.2.4).

3. Use (21.2.1) to show that a necessary and sufficient condition for the coor-
dinate curves of a parameterized surface to be principal directions is that
f = F = 0.

4. Show that the lines of curvature of a surface of revolution are its meridians
and parallels.
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5. Calculate the Gaussian curvature of an SHGC.

6. Show that the matrix Ai constructed in Section 21.3.1 is equal to

Ai =

(
0 yTi − y

′T
i

y′i − yi [yi + y
′
i]×

)
.

7. As mentioned earlier, the ICP method can be extended to various types of ge-
ometric models. We consider here the case of polyhedral models and piecewise
parametric patches.

(a) Give a method for computing the point Q in a polygon that is closest to
some point P .

(b) Give a method for computing the point Q in the parametric patch x :
I×J → IR3 that is closest to some point P . Hint: use Newton iterations.

8. Develop a linear least-squares method for fitting a quadric surface to a set of
points under the constraint that the quadratic form has unit Frobenius form.

9. Show that a surface triangle maps onto a patch with hyperbolic edges in α, β
space.

Programming Assignments

The datasets for the followingmachine problems can be found on the CD companion
of this book.

1. Implement molecule-based smoothing and the computation of principal direc-
tions and curvatures.

2. Implement the region-growing approach to plane segmentation described in
this chapter.

3. Implement an algorithm for computing the lines of curvature of a surface
from its range image. Hint: use a curve-growing algorithm analogous to the
region-growing algorithm for plane segmentation.

4. Implement the Besl-McKay ICP registration algorithm.

5. Marching squares in the plane: develop and implement an algorithm for find-
ing the zero set of a planar density function. Hint: work out the possible ways
a curve may intersect the edges of a pixel, and use linear interpolation along
these edges to identify the zero set.

6. Implement the registration part of the Faugeras-Hebert algorithm.



Chapter 22

APPLICATION: FINDING IN
DIGITAL LIBRARIES

Large collections of digital pictures seem to spring up quite easily. Some collections
of pictures are being digitized in the hope of better conservation, easier distribu-
tion, and better access. Others are intrinsically digital; examples include individual
collections of family photographs (which can be big, and digital); the web, which
is a big, disorganised collection; home videos (again, some collections are big and
many are now digital).
Tools for interacting with collections of documents or of data are now quite so-

phisticated. Typically, one can search a collection using various kinds of text match-
ing; one can cluster collections of text; and one can use data mining techniques.
Data mining involves using statistical fitting procedures to look for trends that were
not previously known (this useful pastime used to be known as “exploratory data
analysis”, a less exciting name, and is sometimes called “data dredging” by those
who disapprove). Generally, a significant component of the value of a collection
comes from the presence of such tools. To see why this might be, imagine visiting
a large secondhand book shop that has its books sorted by, say, the colour of the
dust-jacket; even though the collection may be very large, it’s hard to imagine that
you’d use the shop unless you were desparate.
It is currently difficult to organize or search image collections in a satisfactory

fashion, meaning they are somewhat analogous to a poorly organised bookshop. The
difficulty lies in building appropriate representations of the image information. It
is no help to try and annotate each picture by hand, because preparing a good text
description of an image is difficult. Furthermore, some collections are enormous
(tens of millions of pictures [Enser, 1995]). Indexing a large collection by hand
involves a substantial volume of work. Furthermore, there is the prospect of having
to reindex sections of the collection; for example, if a news event makes a previously
unknown person famous, it would be nice to know if the collection contained pictures
of that person. Finally, it is often very hard to know what a picture is about.
Despite all these difficulties, any technology that helps manage collections of

pictures has a tremendous range of practical applications. One important tool is

615
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search — find me a picture matching these criteria — but this is by no manner of
means the only need. We might wish to organise the pictures in a way that supports
browsing, so that pictures with similar content are near to one another. We might
wish to search for trends, or to have tools that identify important changes.
Typical applications include:

• Planning and government: there is a lot of satellite imagery of the earth,
which can be used to inform important political debates. For example, how
far does urban sprawl extend? what acreage is under crops? how large will
the maize crop be? how much rainforest is left?, etc. (e.g. [Smith, 1996]).

• Military intelligence: satellite imagery can contain important military in-
formation. Typical queries involve finding militarily interesting changes — for
example, is there a concentration of force? how much damage was caused by
the last bombing raid? what happened today? etc. — occuring at particular
places on the earth (e.g. [Mundy, 1995; Mundy, 1997; Mundy and Vrobel,
1994]).

• Stock photo and stock footage: commercial libraries — which often have
extremely large and very diverse collections — survive by selling the rights
to use particular images (e.g. [Armitage and Enser, 1997; Enser, 1995; Enser,
1993]).

• Access to museums: museums are increasingly creating web views of their
collections, typically at restricted resolutions, to entice viewers into visit-
ing the museum (e.g. [Holt and Hartwick, 1994a; Holt and Hartwick, 1994b;
Psarrou et al., 1997]). Ideally, viewers should be able to browse the collection
to get a sense of what is at the museum.

• Trademark and copyright enforcement: as electronic commerce grows,
so does the opportunity for automatic searches to find violations of trademark
or of copyright (e.g. [Eakins et al., 1998; Jain and Vailaya, 1998; Kato et al.,
1988; Kato and Fujimura, 1989; ?; ?]). For example, at time of writing,
the owner of rights to a picture could register it with an organisation called
BayTSP, who would then search for stolen copies of the picture on the web.

• Indexing the web: indexing web pages appears to be a profitable activity.
Users may also wish to have tools that allow them to avoid offensive images
or advertising. A number of tools have been built to support searches for
images on the web using techniques described below (e.g. [Cascia et al., 1998;
Chang et al., 1997b; Smith and Chang, 1997]).

• Medical information systems: recovering medical images “similar” to a
given query example might give more information on which to base a diagnosis
or to conduct epidemiological studies (e.g. [Congiu et al., 1995; Wong, 1998]).
Furthermore, one might be able to cluster medical images in ways that suggest
interesting and novel hypotheses to experts.
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• Image data mining: the attraction of data mining is that one can go on
“fishing expeditions” using large data sets. Sometimes a data mining method
will suggest a genuinely useful or novel hypothesis that can be verified by
domain experts. Many image collections could support a similar activity. For
example, there is a large collection of digitised images of Buddhist art, which
is collected together with geolocation data (where was the object found?) and
various expert comments, etc. If we could recover representations from the
images, we could look for, say, trends in the depiction of the human figure
across both space and time.

The core issue for all of these applications is the nature of the underlying repre-
sentation of the images. Once we have decided on a representation, it is relatively
easy to search (by finding images with a representation like this); to organise (by
putting images with similar representations near to one another); or to search for
trends (by looking for relationships between components of representations). One
(possibly desirable) representation would be a complete description of all the ob-
jects present in an image. There is little prospect of generating descriptions like
this using computer programs in the foreseeable future. However, quite crude rep-
resentations seem to have been helpful to date. In this chapter, we first review some
general material on information retrieval. We then show a series of current methods
for organising and searching image collections using computer vision tools.

22.1 Background: Organizing Collections of Information

Information retrieval is the study of systems that recover items from collections
using various kinds of information. The topic is interesting to us because informa-
tion retrieval researchers have become adept at performance analysis, which is often
quite difficult.

22.1.1 How Well does the System Work?

Typically, the performance of information retrieval systems is described in terms
of recall — the percentage of relevant items actually recovered — and precision
— the percentage of recovered items actually relevant. The word “relevant” is the
difficulty here — to make these measurements, we need to know what items are
relevant to a query. This is a question on which competent human informants can
differ.

What is a good system?

Typically, as one changes the configuration of a system to make the recall go up,
the precision will go down. It is tempting to believe that good systems should have
high recall and high precision, but this is not the case. Instead, what is required
for a system to be good depends on the application.
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Patent searches: Patents are invalidated by the existence of “prior art”, ma-
terial that predates the patent and contains similar ideas. This means that it is
valuable to be able to search for such material, either to check that it doesn’t exist
(when applying for a patent) or to find it (and so overturn an inconvenient patent).
It can be expensive to patent an idea, and it is often catastrophic for the patent
owner (and lucrative for the challenger) when a patent is overturned. This means
that it is usually much cheaper to pay someone to wade through irrelevant material
than it is to miss relevant material. This means that very high recall is essential,
even at the cost of low precision.
Web and email filtering: There is a quite widespread demand for web and

email filtering services. For example, US companies are often anxious that a sub-
stantial volume of internal email containing sexually explicit pictures may create
legal liabilities to do with harassment. One way such services might be delivered
would be to have a program that searched email traffic for problem pictures. A
manager would expect to get a warning, and to be shown the pictures that the
program thinks are problematic. At time of writing, there are several vendors of
such programs; it isn’t yet clear whether this is a lucrative application, so they may
have gone out of business when you read this. In an application like this, high recall
is not important, although it wouldn’t present a problem. If the program has only
10% recall, it will still be difficult to get more than a small number of pictures past
it. High precision is very important, because of the “boy who cried wolf” effect.
People tend to ignore systems that generate large numbers of false alarm, and so
would not use — and, more important, not pay for upgrades and maintenance on
— a system that had low precision.
Looking for a news item: There are various services that provide stock

photographs or video footage to news organisations. These collections tend to have
many photographs of celebrities — one would expect a good stock photo service
to have many thousands of photographs of Nelson Mandela, or Princess Di, etc.
This means that a high recall search can be a serious nuisance — no picture editor
really wants to wade through thousands of pictures. Typically, staff at stock photo
organisations use their expertise and interviews with customers to provide only a
very small subset of relevant pictures.

Assessing Systems

It is usually quite difficult to assess a system properly. It is common to plot precision
at various different levels of recall (obtained by varying match thresholds), and then
average these plots over “typical” queries. One can weight recall and precision to
reflect their relative importance in a particular application, and compute an average
“utility” score, too. Good experiments are quite hard to do, and, what is worse,
bad experiments are quite easy to do. This because it is often quite hard to tell
what is relevant (i.e. what should have been recovered by a query — what pictures
should the query term “queen” return?). It is even harder to tell how many relevant
items appear in a large collection (imagine counting all the pictures relevant to the
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term “queen” in a collection of ten million). It’s obviously a bad idea to use the
system being tested to determine what pictures are relevant (this could lead to an
inaccurate claim of 100% recall!), which means we have to find some other way to
count the relevant items in the collection. If we count carelessly — in particular, if
we undercount — then our estimate of the system’s recall is higher.

22.1.2 What do Users want?

The most comprehensive study of the behaviour of users of image collections is
Enser’s work on the then Hulton-Deutsch collection [Armitage and Enser, 1997;
Enser, 1993; Enser, 1995] (the collection has been acquired by a new owner since
these papers were written, and is now known as the Hulton-Getty collection). This
is a collection of prints, negatives, slides and the like, used mainly by media pro-
fessionals. Enser studied the request forms on which client requests are logged; he
classified requests into four semantic categories, depending on whether a unique
instance of an object class is required or not and whether that instance is refined.
Significant points include the fact that the specialised indexing language used gives
only a “blunt pointer to regions of the Hulton collections” ([Enser, 1993], p. 35)
and the broad and abstract semantics used to describe images. For example, users
requested images of hangovers, physicists and the smoking of kippers. All these
concepts are well beyond the reach of current image analysis techniques. As a re-
sult, there are few cases where one can obtain a tool that directly addresses a need.
For the foreseeable future, the main constraint on the design of tools for finding
images will be our quite limited understanding of vision.
However, useful tools can be built even with a limited understanding of vision

(this extremely important point seems to be quite widely missed). It is hard to
measure success. Enser suggests that the most reliable measure of the success of
Hulton-Getty’s indexing system is that the organisation is profitable. This test is a
bit difficult to apply in practice, but there are a number of products available. IBM
has produced a product for image search — QBIC (for Query By Image Content)
— which has appeared in mass market advertising and appears to be successful.
Similarly, Virage — a company whose main product is an image search engine —
appears to be thriving (the company is described at [vir, ]; a description of their
technology appears in [Hampapur et al., 1997]).

22.1.3 Searching for Pictures

Rather roughly, there are three ways to represent an image: at the iconic level,
where one is interested in exact pixel values; at the compositional level, where
one is interested in the overall appearance of the image; or at the level of object
semantics, where one is interested in the things depicted in the image.
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Iconic Matching

In iconic matching, we are seeking images that look as much like an example picture
— which we might draw, or supply — as possible. The ideal match would have
exactly the same pixel value in each location. The best known system of this form
is due to Jacobs et al. of the University of Washington [?], who applies a series of
filters to images at different scales, and then compares the filter responses for the
example image and other images. Scale can be used to structure this comparison;
if coarse scale responses match poorly, then there may be no reason to check fine
scale responses.
Iconic matchers are helpful only if the user knows what the picture being sought

looks like. This situation doesn’t arise all that often for “naive” users (users who
don’t know the collection very well), but there are some important applications
where iconic matching is very helpful. One is in copyright protection. It is very
easy to steal digital images — that is, use them without paying a fee to the copyright
owner. With an appropriate iconic matcher, it is also quite easy to find thieves.
The process works something like this. The copyright owner registers the im-

age with an organisation that specializes in finding thieves, and pays a fee. This
organisation then uses some form of spider to search the web, downloading images
as it goes. These images are compared to the collection of registered images, using
an iconic matcher; any hit generates a stiff letter from a lawyer, and the prospect
of fines and copyright fees. While some extra work needs to be done to ensure
that cropped and rotated images match, and that the matching process is efficient,
matching based on filter responses is quite sufficient for this application.
There are other applications for iconic matching. For example, it is apparently

the case that the vast majority of child pornography in current circulation is rel-
atively old, dating to the 1970’s or before. Furthermore, agencies investigating a
charge of child pornography need to determine whether the material involved is new
material — in which case, there is more to do than just prosecute for possession
or distribution, because the material documents what may be ongoing abuse. This
need can be met by matching to a reference library of known material. Furthermore,
this matching process can be used to connect investigations, by connecting prose-
cutors in different jurisdictions prosecuting cases involving different defendants but
the same material. At time of writing, law enforcement agencies apparently do not
use a reference collection in this way, but such use is the subject of quite extensive
discussions. We won’t discuss iconic matching further in this chapter, as our main
interest is in organising collections.

Matching Using the Whole Image

In some applications — for example, finding trademark infringements — the struc-
ture of the whole image is important. In these applications, we think of the image
as an arrangement of coloured pixels, rather than a picture of objects. This abstrac-
tion is often called appearance. The distinction between appearance and object
semantics is somewhat empty — how do we know what’s in an image except by
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its appearance? — but the approach is very important in practice, because it is
quite easy to represent appearance automatically. This is because we don’t need to
segment the image.
Appearance is particularly helpful when the composition of the image is im-

portant. For example, one could search for stock photos using a combination of
appearance cues and keywords, and require the user to exclude images with the
right composition but the wrong semantics. The central technical problem in us-
ing appearance to represent images is defining a useful notion of image similarity;
section ?? illustrates a variety of different strategies.

Object Level Semantics

Enser’s study suggests that people using stock photo collections are searching for
images with particular semantics (e.g. “smoking kippers”). It is very difficult to
cope with such queries using appearance tools. Furthermore, it is almost never pos-
sible to construct object recognition programs that can deal with semantic queries.
However, we can build representations that try to respect object level semantics.
Typically, this involves segmenting images and then building representations around
the segments. It is not known how to build finding tools that can handle high-
level semantic queries, nor how to build a user interface for a general finding tool;
nonetheless, current technology can produce quite useful tools for various special
cases (section ??).

22.1.4 Structuring and Browsing

Searching for images raises some very difficult problems (for example, assume you
had a perfect object recognition system; how would you describe the picture you
wanted? as [Armitage and Enser, 1997; Enser, 1995; Enser, 1993] show, using hu-
man indexers and language doesn’t seem to work even close to perfectly). Computer
programs are nowhere near as effective as people are at describing images, meaning
that search tools can be quite erratic in practice.
However, search is often not as important as it seems. Typically, it is hard to

frame a helpful search unless one has some kind of model of what lies in a collection.
For example, think about how you behave in a new shop; you first attempt to
determine the kinds of things it stocks, and then look for things that you expect to
be able to find. You wouldn’t ask an assistant in a bookshop for a motorcar. This
suggests that browsing is an important interaction, though it is likely to be helpful
only if the collection is appropriately organised. Ideally, browsing tools should:

• display images that are “similar” — this could mean that they look similar,
or have similar appearance, or lie close to one another in the collection, or
contain similar content, etc. — in a way that makes their similarity apparent;

• display a representation of clusters of images that makes it easy for a user to
get a sense of what is in the collection (for example, similar clusters might be
close together; big clusters might be large; etc.);
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• provide some form of interaction that makes it possible to see the collection
at different levels of detail (perhaps one wants to see only the elements of a
particular cluster, or to see a summary of all the images near a set of clusters)
and to move through the collection in different “directions”.

Browsing and search tools naturally complement one another. A user could first
browse the collection, and then frame a search. Having searched, the user might
then choose to look at items “near” to any hits returned by the search tool.
Building useful browsing tools also requires an effective notion of image similar-

ity. Constructing a good user interface for such systems is difficult (as the examples
below will indicate); desirable features include a clear and simple query specifica-
tion process, and a clear presentation of the internal representation used by the
program, so that failures are not excessively puzzling. Typically, users are expected
to offer an example image or to fill in a form-based interface to search for the first
image, and then can move around the collection by clicking on samples offered by
the browsing tool.

22.2 Summary Representations of the Whole Picture

Images are often highly stylised, particularly when the intent of the artist is to
emphasize a particular object or a mood. This means that the overall layout of
an image can be a guide to what it depicts, so that useful query mechanisms can
be built by looking for images that “look similar” to a sample image, a sketched
sample, or textual specification of appearance. The success of such methods rests
on the sense in which images look similar. It is important to convey to the user
the sense in which images look similar, because otherwise mildly annoying errors
can become extremely puzzling. A good notion of similarity is also important for
efficient browsing, because a user interface that can tell how different images are,
can lay out a display of images to suggests the overall structure of the section of
the collection being displayed.

22.2.1 Histograms and Correlograms

A popular measurement of similarity compares counts of the number of pixels in
particular colour categories. For example, a sunset scene and a pastoral scene would
be very different by this measure, because the sunset scene contains many red,
orange and yellow pixels and the pastoral scen will have a preponderance of green
(grass), blue (sky) and perhaps white (cloud) pixels (e.g. figure 22.1). Furthermore,
sunset scenes will tend to be similar; all will have many red, orange and yellow pixels
and few others.
A colour histogram is a record of the number of pixels in an image or a region

that fall into particular quantization buckets in some colour space (RGB is popular,
for reasons we cannot explain). If the colour histogram for an image of an object
fits into the histogram for an image (in the sense illustrated in figure ??), then
it is possible that that object is present in the image — if the illumination is not
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Figure 22.1. Results from a query to the Calphotos collection at U.C. Berke-
ley, that sought pastoral scenes. The query was composed by searching for images
that contain many green and light blue pixels. As the results suggest, such colour
histogram queries can be quite effective.

expected to vary all that much. This test can be quite sensitive to viewing direction
and scale, because the relative number of pixels of a given colour can change sharply.
Nonetheless, it has the advantage of being quick and easy, and applies to things like
clothing which may have bright colours but little or no recognisable shape.
Colour histogram matching has been extremely popular; it dates back at least

to the work of Swain and Ballard [Swain and Ballard, 1991], and has been used in a
number of systems used in practice [Flickner et al., 1995; Holt and Hartwick, 1994b;
Ogle and Stonebraker, 1995]. The usefulness of colour histograms is slightly surpris-
ing, given how much image information the representation discards; for example,
Chappelle et al. at ATT have shown that images from the Corel collection1 can
be classified by their category in the collection using colour histogram information
alone [Chapelle et al., 1999].

1A collection of 60, 000 images quite commonly used in vision research; available in three series
from the Corel corporation, ********
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There is no record in a colour histogram of where coloured pixels are with re-
spect to one another. Thus, for example, pictures of the French and UK flags are
extremely similar according to a colour histogram measure — each has red, blue
and white pixels in about the same number; it is the spatial layout of the pixels that
differs. One problem that can result is that pictures taken from slightly different
viewing positions look substantially different by a colour histogram measure. This
effect can be alleviated by considering the probability that a pixel of some colour lies
within a particular pixel of another colour (which can be measured by counting the
number of pixels at various distances). For small movements of the camera, these
probabilities will be largely unchanged, so that similarity between these colour cor-
relograms yields a measure of similarity between images. Requiring that colour
correlograms be similar provides another measure of image similarity. The compu-
tational details have been worked out by Zabih and colleagues [Huang et al., 1997b;
Huang and Zabih, 1998].

22.2.2 Textures and Textures of Textures

Colour histograms contain no information about the layout of colour pixels. An
explicit record of layout is the next step. For example, a snowy mountain image
will have bluer regions on top, whiter regions in the middle, then a bluer region
at the bottom (the lake at the foot of the mountain), whereas a waterfall image
will have a darker region on the left and right and lighter vertical stripe in the
center. These layout templates were introduced by Lipson, Grimson and Sinha at
MIT; they can be learned for a range of images, and appear to provide a significant
improvement over a colour histogram [Lipson et al., 1997].
Looking at image texture is a natural next step, because texture is the difference

between, say, a field of flowers (many small orange blobs) and a single flower (one
big orange blob), or a dalmation and a zebra. Most people know texture when
they see it, though the concept is either difficult or impossible to define. Typically,
textures are thought of as spatial arrangements of small patterns — for example,
a tartan is an arrangement of small squares and lines, and the texture of a grassy
field is an arrangement of thin bars.
The usual strategy for finding these subpatterns is to apply a linear filter to the

image (see chapters ?? and ??), where the kernel of the filter looks similar to the
pattern element. From filter theory, we have that strong responses from these filters
suggest the presence of the particular pattern; several different filters can be applied,
and the statistics of the responses in different places then yield a decomposition of
the picture into spotty regions, barred regions, and the like [Ma and Manjunath,
1997a; Malik and Perona, 1989; Malik and Perona, 1990].
A histogram of filter responses is a first possible description of texture. For exam-

ple, one might query for images with few small yellow blobs. This mechanism is used
quite successfully in the Calphotos collection at Berkeley (http://elib.cs.berkeley.edu/photos;
there are many thousands of images of California natural resources, flowers and
wildlife). As figure 22.3 illustrates, a combination of colour and blob queries can be
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Query

Returned images

False positives

False negatives

Figure 22.2. Spatial layout of coloured regions is a natural guide to the content of
many types of image. The figure on the top left shows a layout of coloured regions
that suggests a scene showing snowy mountains; top right, the figures recovered by
this criterion that actually do show snowy mountains; center, views of mountains
that were in the collection but not recovered and bottom, images that meet the
criterion but do not actually show a view of a snowy mountain. Figures from “Con-
figuration based scene classification and image indexing,” P. Lipson, E. Grimson
and P. Sinha. Proc. IEEE Conf. on Computer Vision and Pattern Recognition,
1997 c© 1997, IEEE

used to find quite complex images.
Texture histograms have some problems with camera motion; as the camera

approaches the scene, details get bigger in the image. A strategy for minimizing the
impact of this effect is to define a family of allowable transformations on the image—
for example, scaling the image by a factor in some range. We now apply each of these
transformations, and measure the similarity between two images as the smallest
difference that can be obtained using a transformation. For example, we could scale
one image by each legal factor and look for the smallest difference between colour
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Figure 22.3. One advantage of queries that deal with colour and texture composi-
tion is that they can be specified fairly easily. The UC Berkeley digital library uses
a form interface. Left: Specifying a query to the Calphotos collection using colour
and texture information. The query selected images that have a horizon, and some
red or yellow blobs, with the intention of finding views of fields of flower. Right:
Images obtained from the Calphotos collection using the query specified on the left.

and texture histograms. This earth-movers distance — due to Rubner, Tomasi
and Guibas at Stanford — allows a wide variety of transformations; furthermore,
in [Rubner et al., 1998], it has been coupled with a process for laying out images that
makes the distance between images in the display reflect the dissimilarity between
images in the collection. This approach allows for rapid and intuitive browsing
(figure 22.4).
The spatial layout of textures is a powerful cue. For example, in aerial images,

housing developments have a fairly characteristic texture, and the layout of this
texture gives cues to the region sought. In the Netra system, built by Ma and
Manjunath at U.C. Santa Barbara, textures are classified into into stylised families
(yielding a “texture thesaurus”) which are used to segment very large aerial images;
this approach exploits the fact that, while there is a very large family of possible
textures, only some texture distinctions are significant. Users can then use example
regions to query a collection for similar views; for example, obtaining aerial pictures
of a particular region at a different time or date to keep track of such matters as the
progress of development, traffic patterns, or vegetation growth (figure 22.5; [Ma
and Manjunath, 1998; Ma and Manjunath, 1997a; Manjunath and Ma, 1996c;
Manjunath and Ma, 1996a]).
Regions of texture responses form patterns, too. For example, if an image shows
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a pedestrian in a spotted shirt, then there will be many strong responses from spot
detecting filters; the region of strong responses will look roughly like a large bar. A
group of pedestrians in spotted shirts will look like a family of bars, which is itself a
texture. These observations suggest applying texture finding filters to the outputs
of texture finding filters — perhaps recurring several times — and using measures
of similarity of these responses as a measure of image similarity. This approach —
due to DeBonet and Viola at MIT — involves a large number of features, so it is
impractical to ask users to fill in a form. One way to proceed is to have the user
specify some example images which illustrate the type of pictures being sought. We
then choose a small random subset of the collection to serve as negative examples
(this works because a picture chosen at random is almost certainly not something
the user is looking for). We now use an efficient mechanism to build a classifier
— which classifies images as relevant or irrelevant — using this set of positive and
negative examples (the details would take us somewhat out of our way; chapter ??
gives some more information on classifiers). Figure 22.6 gives one example of the
method in use.

22.3 Representations of Parts of the Picture

The tools described in this section try to estimate object-level semantics more or
less directly. Typically, such systems first segment the image and focus on some of
the image segments.
Structure in a collection is helpful in finding semantics, because it can be used to

guide the choice of particular search mechanisms. Photobook — due to Pentland,
Picard and Sclaroff at MIT— is a system that provides three main search categories:
shape Photobook searches for isolated objects (for example, tools or fishes) using
contour shape measured as elastic deformations of a contour; appearance Photobook
can find faces using a small number of principal components; and texture Photobook
uses a texture representation to find textured swatches of material [Pentland et al.,
1996]

22.3.1 Segmentation

Humans decompose images into pieces corresponding to the objects we are interested
in, and classification is one way to achieve this segmentation. Segmentation is
a crucial idea, because it means that irrelevant information can be discarded in
comparing images. For example, if we are searching for an image of a tiger, it
should not matter whether the background is snow or grass; the tiger is the issue.
However, if the whole image is used to generate measures of similarity, a tiger on
grass will look very different from a tiger on snow. These observations suggest
segmenting an image into regions of pixels that belong together in an appropriate
sense, and then allowing the user to search on the properties of particular regions.
The most natural sense in which pixels belong together is that they come from a
single object; currently, it is almost never possible to use this criterion, because we
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don’t know how to tell when this is the case. However, objects usually result in
image regions of coherent colour and texture, so that pixels that belong to the same
region have a good prospect of belonging to an object.
VisualSEEK — due to Smith and Chang at Columbia — automatically breaks

images into regions of coherent colour, and allows users to query on the spatial
layout and extent of coloured regions. Thus, a query for a sunset image might
specify an orange background with a yellow blob lying on that background [Smith
and Chang, 1996].
Blobworld is a system built at Berkeley by Carson et al. that represents images in

terms of a collection of regions of coherent colour and texture [Belongie et al., 1998b;
Carson et al., 1999; Carson et al., 1997; Carson and Ogle, 1996]. The representation
is displayed to the user, with region colour and texture displayed inside elliptical
blobs, which represent the shape of the image regions. The shape of these regions
is represented crudely, because details of the region boundaries are not cogent.
A user can query the system by specifying which blobs in an example image are
important, and what spatial relations should hold (figure 22.7). These queries can
incorporate text information, too; as figure 22.9 and figure ?? indicate, images and
text complement one another. Section 22.3.4 shows some of the uses that can be
made of this complementary nature.

22.3.2 Template matching

Some objects have quite characteristic appearance for a wide range of viewing di-
rections and conditions. Template matching is an object recognition strategy that
finds objects by matching image patches with example templates. We discuss these
mechanisms in detail in chapter ??, with considerable emphasis on face finding
(which we summarize here for convenience). A natural application of template
matching is to construct whole-image templates that correspond to particular se-
mantic categories (figure 22.14 and [Chang et al., 1998b]). These templates can
be constructed off-line, and used to simplify querying by allowing a user to use an
existing template, rather than compose a query.
Face finding is a particularly good case for template matching. Frontal views of

faces are extremely similar, particularly when the face is viewed at low resolution
— the main features are then a dark bar at the mouth, dark blobs where the eyes
are, and lighter patches at the forehead, nose and mouth. This means that faces
can be found, independent of the identity of the person, by looking for this pattern.
Typical face finding systems extract small image windows of a fixed size, prune
these windows to be oval, correct for lighting across the window, and then use a
learned classifier to tell whether a face is present in the window [Rowley et al., 1996a;
Rowley et al., 1996b; Rowley et al., 1998a; Poggio and Sung, 1995]. This process
works for both large and small faces, because windows are extracted from images at
a variety of resolutions (windows from low resolution images yield large faces, and
those from high resolution images yield small faces). Because the pattern changes
when the face is tilted to the side, this tilt must be estimated and corrected for;
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this is done using a mechanism learned from data [Rowley et al., 1998c]. Knowing
where the faces are is extremely useful, because many natural queries refer to the
people present in an image or a video.

22.3.3 Shape and correspondence

If object appearance can vary, template matching becomes more difficult as one is
forced to adopt many more templates. There is a good template matching system
for finding pedestrians, which appears to work because pedestrians tend to be seen
at low resolution with their arms at their sides [Oren et al., 1997a]. However,
building a template matching system to find people is intractable, because clothing
and configuration can vary too widely. The general strategy for dealing with this
difficulty is to look for smaller templates — perhaps corresponding to “parts” —
and then look for legal configurations.
One version of this technique involves finding “interest points” — points where

combinations of measurements of intensity and its derivatives take on unusual values
(for example, at corners). As Schmid and Mohr of INRIA and Zisserman of Oxford
have shown, the spatial arrangement of these points is quite distinctive in many
cases. For example (as figure 22.10 illustrates) the arrangement of interest points in
an aerial view of Marseille is unaffected by the presence of cars; this means that one
can recover and register aerial images of the same region taken at different times
of day using this technique. Furthemore, once interest points have been matched,
an image-image transformation is known, which can be used to register the images.
Registration yields further evidence to support the match, and can be used to
compare, say, traffic by comparing the two images at specific points.
This form of correspondence reasoning extends to matching image components

with object parts at a more abstract level. People and many animals can be thought
of as assemblies of cylinders (corresponding to body segments). A natural finding
representation uses grouping stages assemble image components that could corre-
spond to appropriate body segments or other components.
Forsyth of U.C. Berkeley and Fleck of HP Labs have used this representation

for two cases; the first example identifies pictures containing people wearing little
or no clothing. This is an interesting example: firstly, it is much easier than finding
clothed people, because skin displays very little variation in colour and texture
in images, whereas the appearance of clothing varies very widely; secondly, many
people are interested in avoiding or finding images based on whether they contain
unclad people. This program has been tested on an usually large and unusually
diverse set of images; on a test collection of 565 images known to contain lightly
clad people and 4289 control images with widely varying content, one tuning of the
program marked 241 test images and 182 control images (more detailed information
appears in [Forsyth et al., 1996; Forsyth and Fleck, 1996]). The second example
used a representation whose combinatorial structure — the order in which tests were
applied — was built by hand, but where the tests were learned from data. This
program identified pictures containing horses, and is described in greater detail
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in [Forsyth and Fleck, 1997a]. Tests used 100 images containing horses, and 1086
control images with widely varying content; for a typical configuration, the program
marks 11 images of horses and 4 control images.

22.3.4 Clustering and Organising Collections

An alternative strategy to searching for particular segments (or groups of segments
with suggestive relations) is to cluster images. Typically, we would like to form
clusters of images that “are similar”; this should include similarity in semantics as
well as similarity in visual appearance.
It is a remarkable fact that, while text and images are separately ambiguous,

jointly they tend not to be. The writers of text descriptions of images tend to leave
out what is visually obvious (the colour of flowers, etc.) and to mention properties
that are very difficult to infer using computer vision (the species of the flower, say).
This suggests that one should attempt to form clusters of images using both image
information and the text associated with the images. Using text involves us in a
series of issues that are somewhat out of our remit. Firstly, words are ambiguous
(“bank” as in money, or on which the wild thyme grows?). Secondly, words very
often come in sentences, or worse, paragraphs, and we need to decide which words
to ignore and which to use. Third, we need to know how to manage association
between words and picture elements in models.
Barnard and colleagues have scratched the surface of this potentially very in-

teresting topic [?; ?]. They have demonstrated their work on two collections: a
set of images released by the Corel corporation, each of which comes with a small
set of keywords, and a collection of pictures of art belonging to the Fine Arts Mu-
seum of San Francisco, each of which comes with a free text annotation written by
volunteers (who did not have computerised analysis in mind when they wrote the
annotations). The free text is reduced to a collection of nouns, verbs, adjectives
and adverbs by a part-of-speech tagger [?]. A sense is selected for words using a
voting strategy which compares possible senses for each word with possible senses
for nearby words, on the assumption that nearby words have similar senses. Finally,
the images and words are clustered by fitting a generative model.
The generative model is, in essence, a mixture model. Each component of the

mixture emits words and blobs — image regions, whose features encode colour,
texture and shape rather roughly — with probabilities that are conditionally inde-
pendent given the component and vary from component to component. This model
can be fitted to the image data using an EM algorithm; once it is fitted, an image
belongs to the mixture component that is most likely to have produced it. There
is no reason to believe that this is the best way to proceed, but it does produce
rather good clusters; figure 22.13 shows some clusters obtained for the corel data
set, comparing clustering based on image data with clustering based on text data
and clustering based on both cues.
Now good clusters can be used in a number of ways. Clearly, they should yield

a browsing mechanism, although that demonstrated by Barnard et al. is primitive.
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We have more, however; by fitting a generative model, we have constructed a joint
probability distribution for image features and words. This means that we can
(a) search for pictures using words (which Barnard et al. call “auto-illustrate”)
and (b) search for words using pictures (“auto-annotate” — but you should notice
that this is rather like object recognition). Either can be startlingly successful with
appropriate clusters. Figure ?? shows an auto illustration result.

22.4 Video

While video represents a richer source of information than still images, the issues re-
main largely the same. Videos are typically segmented into shots— short sequences
that contain similar content — and techniques of the form described applied within
shots. We described shot boundary detection briefly in section 16.3.2.
The motion of individual pixels in a video is often called optic flow and is mea-

sured by attempting to find pixels in the next frame that correspond to a pixel in
this (correspondence being measured by similarity in colour, intensity and texture).
In principle, there is an optic flow vector at each pixel, forming a motion field. In
practice, it is extremely hard to measure optic flow reliably at featureless pixels,
because they could correspond to pretty much anything. For example, consider the
optic flow of an egg rotating on its axis; there is very little information about what
the pixels inside the boundary of the egg are doing, because each looks like the
other.
Motion fields can be extremely complex; however, particularly if there are no

moving objects in the frame, it is possible to classify motion fields corresponding to
the camera shot used. For example, a pan shot will lead to strong lateral motion,
and a zoom leads to a radial motion field. This classification is usually obtained by
comparing the measured motion field with a parametric family (e.g. [Sawhney and
Ayer, 1996; Smith and Kanade, 1997]).
Complex motion sequences are difficult to query without segmentation, because

much of the motion may be irrelevant to the query; for example, in a soccer match,
the motion of many players may not be significant. In Chang’s system VideoQ,
developed at Columbia, motion sequences are segmented moving blobs and then
queried on the colour and motion of a particular blob (figure 22.14 and [Chang et
al., 1997a; Chang et al., 1998a]).
The Informedia project at CMU has studied preparing detailed skims of video

sequences. In this case, a segment of video is broken into shots, shots are annotated
with the camera motion in shot, with the presence of faces, with the presence of
text in shot, with keywords from the transcript and with audio level (figure 22.15).
This information yields a compact representation — the “skim” — which gives the
main content of the video sequence (details in [Smith and Kanade, 1997; Wactlar
et al., 1996] and [Smith and Christel, 1995; Smith and Hauptmann, 1995].



632 Application: Finding in digital libraries Chapter 22

22.5 Discussion

This area is easily the most interesting application of computer vision. It is quite an
old area (important early papers include [Chang and Yang, 1983; Kato et al., 1992;
Kato et al., 1988; ?]), but has undergone a recent period of popularity, probably
because it is now possible to solve some problems that were simply unmanageable
30 years ago (for this problem, having more disk, faster computers, etc. can make
a huge difference). We have tried to give pointers into the (huge) literature in the
text, but are conscious that the relatively large interest in the area means that
things go out of date quickly.
For applications where the colours, textures and layout of the image are all

strongly correlated with the kind of content desired, a number of usable tools exist
to find images based on content. Because colour, texture and layout are at best a
rough guide to image content, puzzling search results are pretty much guaranteed.
There is not yet a clear theory of how to build interfaces that minimize the impact
of this effect. The most widely adopted strategy is to allow quite fluid browsing.
Successful performance at serious applications requires techniques that get some

notion of semantics from an image. In particular, to build tools that work well, we
will need to engage with deep and poorly understood problems in object recogni-
tion. As we shall see in the following chapters, object recognition seems to require
segmenting images into coherent pieces and reasoning about both the pieces (as in
face finding) and the relationships between those pieces. This rather vague view
of recognition can be exploited to produce segmented representations that allow
searches for objects independent of their backgrounds; furthermore, some special
cases of object recognition can be handled explicitly. It is not known how to build
a system that could search for a wide variety of objects; building a user interface
for such a system would present substantial problems, too.



Section 22.5. Discussion 633

Figure 22.4. Images laid out according to their similarity using the earth mover’s
distance (EMD). The EMD can be computed very fast so that displays like this
— where distances between images on the display reflect the EMDs between them
as faithfully as possible — can be created online. The figure on the top shows a
large number of pictures returned from a query. This display suggests the overall
collection at a glance, and a mouse click in the neighborhood of pictures that look
similar to what the user is looking for tells the retrieval system where to search next
(the black circle in the image on the top shows where the user clicked; this leads
to the display on the bottom right, and in turn to that on the bottom left).
With this technology, users browse and navigate in an image database, just as they
would browse through a department store. Because of the large number of images
displayed, and their spatially intuitive layout, users quickly form a mental model
of what is in the database, and rapidly learn where to find the pictures they need.
Figure from “A metric for distributions with applications to image databases” by
Y. Rubner, C. Tomasi, and L.J. Guibas, Proc. 1998 IEEE Int. Conf. Computer
Vision, c© 1998, IEEE
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Figure 22.5. A texture-based search in a collection of aerial images. Aerial images
are often huge, and so the interface must take account of the size, both in preparing
queries and in returning results. Top — or (a) — shows queries on a very large
aerial image; the user can query using image tiles or regions. Bottom left — or
(b) — shows a query: the user has identified a tile that contains aircraft; two similar
tiles retrieved by the system are shown on the right. Bottom right — or (c) —
another query: the user has identified a tile containing vegetation; again, similar
tiles retrieved by the system are shown on the right. Figure from “Browsing large
satellite and aerial photographs” by B.S. Manjunath and W.Y. Ma, Proc IEEE Int.
Conf. Image Processing, 1996, c© 1996, IEEE
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Examples chosen
by user

Images recov ered in response

Figure 22.6. Querying using the “texture of textures” approach. The user has
identified three pictures of cars as positive examples; these would respond strongly
to large horizontal bar filters, among others. The system then chooses a collection
of images at random (to represent irrelevant images); this data is then used to build
a classifier to identify other images that are likely to be relevant. This query results
in a number of returned images, containing several images of cars. Figure from
“Boosting image retrieval” by K. Tieu and P. Viola, Proc. 2000 IEEE Computer
Vision and Pattern Recognition c© 2000, IEEE



636 Application: Finding in digital libraries Chapter 22

Figure 22.7. A Blobworld query for images of roses. Users of image databases
generally want to find images containing particular objects, not images with par-
ticular global statistics. The Blobworld representation facilitates such queries by
representing each image as a collection of regions (or “blobs”) which correspond
to objects or parts of objects. The image is segmented into regions automatically,
and each region’s color, texture, and shape characteristics are encoded. The user
constructs a query by selecting regions of interest (on the left). Blobworld recovers
images and scores matches on similarity, producing the result on the right. The
Blobworld version of each retrieved image is shown, with matching regions high-
lighted; displaying the system’s internal representation in this way makes the query
results more understandable and aids the user in creating and refining queries. Ex-
periments show that queries for distinctive objects such as tigers and cheetahs have
much higher precision using the Blobworld system than using a similar system based
only on global color and texture descriptions. Blobworld is described in greater de-
tail in [Belongie et al., 1998b; Carson et al., 1999]; a demonstration version can be
found at http://elib.cs.berkeley.edu.
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Figure 22.8. Blobworld also allows simple text queries. On the left, a query for
images to which the word “rose” is attached. The figure on the right shows the top
of the set of images recovered. Notice the presence of roseate spoonbills and rose
beetles among the pictures of roses; words tend to be ambiguous.

Figure 22.9. Images and words are complementary to a remarkable extent. In
figure 22.7, there are images that contained red blobs that did not happen to be
roses; similarly, in figure ??, the word “rose” is ambiguous. On the left, a query
for images containing a big red blob, and have the word “rose” is attached. The
figure on the right shows the top of the set of images recovered. Most are pictures
of flowers.
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Figure 22.10. Images can be queried by detecting “interest points” on the image
and then matching on configurations of these points, based on their geometric dis-
tribution and the grey level pattern surrounding each point. The matching process is
very efficient (it uses ‘indexing’), and is tolerant of missing points in the configura-
tion. In the example shown here, the image on the top right can be correctly retrieved
from a collection of paintings, aerial images and images of 3D objects using any of
the images on the top left. Interest points used during the matching process, shown
in white, for a query image (small inset on left) and the best match (bottom left).
Additional evidence is obtained from the image-image transformation to confirm the
match is correct; on the right, edges which match under this transformation in the
query (inset) and the result (bottom right). Notice that the two images have been
taken from different viewpoints so that the building’s shape differs between images.
Also the scenes are not identical because cars have moved. Further details are given
in [Schmid and Mohr, 1997b]; figure by kind permission of A. Zisserman.
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Figure 22.11. Images of horses recovered using a body plan representation, from a
test collection consisting of 100 images containing horses, and 1086 control images
with widely varying content. Note that the method is relatively insensitive to aspect,
but can be fooled by brown, horse-shaped regions. More details appear in [Forsyth
and Fleck, 1997a]. Figure from “Body Plans,” by D.A. Forsyth and M.M. Fleck,
Proc. Computer Vision and Pattern Recognition, 1997, c© 1997, IEEE
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words image data

words and image datawords and image data

Figure 22.12. The top right figure shows a collection of images from a cluster, where
the images were clustered using words alone. You should notice a general ocean theme,
but the images themselves look quite different; there are divers on a background of blue
sea, coral, etc. On the top left, a collection of images from a cluster, where images were
clustered using image segment features alone. Now the images look similar, but are not
semantically coherent; some are pictures of coral, and others are pictures of flowers. On
the bottom, two clusters obtained using both text and image segment features. Generally,
the pictures share a theme and look similar; these are both desirable properties.
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Figure 22.13. On the left a block of text from Moby Dick. This text is processed
to obtain nouns, verbs, adjectives and adverbs and the terms are disambiguated by a
voting process. The resulting text is used as a query to Barnard et al.’s joint probability
model, where the search returns images that have high joint probability with the collection
of words. On the right, the images returned by this query. The query appears to be
very successful (among other things, there’s a picture of a whaleboat with sailors in it
harpooning a whale).
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Figure 22.14. Video can be represented by moving blobs; sequences can then be
queried by specifying blob properties and motion properties desired. The left col-
umn shows queries for various types of moving blob, sketched in the user interface
for Chang’s VideoQ system. The right column shows frames from two sequences
returned. Figure from “A Fully Automated Content-Based Video Search Engine
Supporting Spatiotemporal Queries,” S-F. Chang et al., IEEE Transactions on Cir-
cuits and Systems for Video Technology, 1998, c© 1998, IEEE
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Figure 22.15. Characterizing a video sequence to create a skim. The video is
segmented into scenes. Camera motions are detected along with significant objects
(faces and text). Bars indicate frames with positive results. Word relevance is
evaluated in the transcript. More information appears in [Smith and Kanade, 1997];
figure by kind permission of T. Kanade. Permission granted for Library Trends
article; reproduced in the fervent hope that permission will be granted for the
book, too



Chapter 23

APPLICATION:
IMAGE-BASED RENDERING

Why spend so much energy trying to reconstruct the three-dimensional structure
of a scene from two, three or many pictures? This question may seem silly: after
all, people do it all the time, using stereo, motion, and other depth cues, so it must
be useful, if only to avoid bumping into things and getting hurt, or to distinguish
interesting –and potentially dangerous– objects from the inoffensive background.
Still, for many years, building a range map from a stereo pair or a motion sequence
seemed more like an end than a means, and visual robot navigation remains, even
today, a relatively small (but of course quite important) field of computer vision.
Likewise, it has never been clearly established that stereopsis, or, for that matter,
any kind of range data, provides a more suitable input to the recognition process
than regular pictures (close one eye and look at a photograph of your mother, it is
a safe bet that you will still recognize her; similar arguments hold for traditional
application fields of stereo vision, say military intelligence).
But things are changing: the entertainment industry, from computer games to

television advertising and feature films, demands synthetic pictures of real scenes,
possibly mixed with images of artificial objects and actual film footage. This is what
image-based rendering –defined here as the synthesis of new views of a scene from
pre-recorded pictures– is all about, and the topic of this chapter. We present below
a number of representative approaches to image-based rendering, dividing them,
rather arbitrarily, into (1) techniques that first recover a three-dimensional scene
model from a sequence of pictures, then render it with classical computer graphics
tools (naturally, these approaches are often related to stereo and motion analysis,
see Section 23.1), (2) methods that do not attempt to recover the camera or scene
parameters, but construct instead an explicit representation of the set of all possible
pictures of the observed scene, then use the image position of a small number of
tie points to specify a new view of the scene and transfer all the other points into
the new image, in the photogrammetric sense already mentioned in Chapter 12
(Section 23.2), and finally (3) approaches that model images by a two-dimensional
set of light rays (or more precisely by the value of the radiance along these rays)

644
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and the set of all pictures of a scene by a four-dimensional set of rays, the light field
(Section 23.3). Figure 23.1 illustrates this taxonomy.

n II II

Image
New

ModelPre-Recorded  Images Control

1 2

Figure 23.1. Approaches to image-based rendering. From top to bottom: three-
dimensional model construction from image sequences; transfer-based image synthesis; the
light field. From left to right, the diagram illustrates the image-based rendering pipeline:
a model of the scene of interest (that may or may not be a three-dimensional model in
the conventional sense of the world) is constructed from sample images and used to render
new images of the scene. The rendering engine may be controlled by a joystick (or equiva-
lently by the specification of rotation, translation and scale parameters), or in the case of
transfer-based techniques, by setting the image position of a small number of tie points.

23.1 Constructing 3D Models from Image Sequences

This section addresses the problem of building and rendering a three-dimensional
object model from a sequence of pictures. It is of course possible to construct such
a model by fusing registered depth maps acquired by range scanners as described
in Chapter 21, but we will focus instead in the rest of this section on the somewhat
different case where the input images are digitized photographs or film clips of a
rigid or dynamic scene.

23.1.1 Scene Modeling from Registered Images

We first examine the (relatively) simple case where a number or pictures of the
same scene (say half a dozen, or more) have been taken under carefully controlled
laboratory conditions, so that all images are registered in the same global coordinate
system. We will address the more general case of cameras with unknown extrinsic
parameters in the following sections.
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Volumetric Reconstruction

Imagine that someone (maybe yourself, armed with your favorite mouse, or, why
not, the elusive perfect segmentation program) has delineated the outline of an
object in a collection of registered pictures. It is impossible to uniquely recover the
object shape from these image contours, even from an arbitrary large (or for that
matter, infinite) number of pictures since, as observed in Chapter 27, the concave
portions of the object will be forever hidden from the keenest observer. Still, it seems
that we should be able to reconstruct a reasonable approximation of the surface from
a large enough (or maybe “interesting enough”) set of pictures. There are two main
global constraints imposed on a solid shape by its image contours: (1) the shape
should lie in the volume defined by the intersection of the viewing cones attached to
each image, and (2) the cones should be tangent to its surface (there are of course
other local constraints: for example, as shown in Chapter 27, convex (resp. concave)
parts of the contour should be the projections of convex (resp. saddle-shaped)
parts of the surface). Baumgart exploited the first of these constraints in his 1974
PhD thesis as he constructed polyhedral models of various objects by intersecting
the polyhedral cones associated with polygonal approximations of their silhouettes
(Figure 23.2(a)). Interestingly, his goal was to construct object models appropriate
for recognition rather than computer graphics (which was of course in its infancy
then). It is probably fair to say that Baumgart’s research did not really change
the way we think about recognition. But it certainly had a great impact on solid
modeling: Baumgart invented the so-called Euler operators that provide a robust
approach to the computation of various boolean operations between solids. Closer
to us, Baumgart’s ideas spawned a number of approaches to object modeling from
silhouettes, including the technique presented in the rest of this section [Sullivan
and Ponce, 1998b], that also incorporates the tangency constraint associated with
the viewing cones: as in Baumgart’s system, a polyhedral approximation of the
observed object is first constructed by intersecting the visual cones associated with
a few registered photographs (Figure 23.2(b)). The vertices of this polyhedron are
used as the control points of a smooth spline surface, which is deformed until it
is tangent to the visual rays. We will focus on the second step of this approach,
concerned with the construction and deformation of the spline surface.

Spline Construction. A spline curve is a piecewise-polynomial parametric curve
that satisfies certain smoothness conditions [Farin, 1993]. For example, it may be
Ck, i.e., differentiable with continuous derivatives of order up to k, with k usually
taken to be 1 or 2, or Gk, i.e., not necessarily differentiable everywhere, but with
continuous tangents in the G1 case, and continuous curvatures in the G2 case. Spline
curves are usually constructed by patching together Bézier arcs. A Bézier curve of
degree n is a polynomial parametric curve defined as the barycentric combination
of n+ 1 control points Pi (i = 0, 1, . . . , n), i.e.,

P (t) =

n∑
i=0

b
(n)
i (t)Pi,
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(a) (b) (c)

(d)

(e)

(f)

Figure 23.2. Constructing object models by intersecting (polyhedral) viewing cones.
Yesterday: (a) sample photograph; (b) silhouettes; (c) polyhedral model. Reprinted from
[Baumgart, 1974], Figure 9.6. Today: (d) six photographs of a teapot; (e) the raw inter-
section of the cones; (f) the triangulation obtained by splitting each face into triangles and
simplifying the resulting mesh. Reprinted from [Sullivan and Ponce, 1998b], Figure 3.

where the polynomials b
(n)
i (t)

def
=
(
n
i

)
ti(1−t)n−i are called the Bernstein polynomials

of degree n.1 A Bézier curve interpolates its first and last control points, but not
the other ones (Figure 23.3)(a). The tangents at its endpoints are along the first
and last line segments of the control polygon formed by the control points.
The definition of Bézier arcs and spline curves naturally extends to surfaces: a

triangular Bézier patch of degree n is a parametric surface defined as a barycentric
combination of a triangular array of control points Pijk:

P (u, v) =
∑

i+j+k=n

bnijk(u, v, 1− u− v)Pijk,

1This is indeed a barycentric combination (as defined in Chapter 14) since the Bernstein poly-
nomials are easily shown to always add to 1. In particular, Bézier curves are affine constructs, a
very desirable property since it allows the definition of these curves purely in terms of their control
points and independently of the choice of any external coordinate system.
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Figure 23.3. Bézier curves and patches: (a) a cubic Bézier curves and its control
polygon; (b) a quartic triangular Bézier patch and its control mesh. Tensor-product Bézier
patches can also be defined using a rectangular array of control points [Farin, 1993], and
they are, in fact, more commonly used in computer-aided geometric design than their
triangular counterparts. Triangular patches are, however, more appropriate for modeling
free-form closed surfaces.

where the homogeneous polynomials bnijk(u, v, w)
def
= n!
i!j!k!u

ivjwk are the trivariate
Bernstein polynomials of degree n. In the rest of this section, we will use quartic
(n = 4) Bézier patches, each defined by fifteen control points (Figure 23.3(b)).
By definition, a G1 triangular spline is a network of triangular Bézier patches

that share the same tangent plane along their common boundaries. A necessary (but
not sufficient) condition for G1 continuity is that all control points surrounding a
common vertex be coplanar. These points define the boundary curves of the patch
(each of which is itself a Bézier curve). We will first construct these points, then
construct the remaining (internal) control points to ensure that the resulting spline
is indeed G1 continuous. As discussed in [Loop, 1994], a set of coplanar points Qi
(i = 1, . . . , p) can be created as a barycentric combination of p other points Cj
(j = 1, . . . , p) in general position (in our case, the centroids of the p triangles Tj
adjacent to a vertex V of the input triangulation, Figure 23.4(left)) as

Qi =

p∑
j=1

1

p

{
1 + cos

π

p
cos

(
[2(j − i)− 1]

π

p

)}
Cj.

This construction places the pointsQi in a plane that passes through the centroid
O of the points Ci. Translating this plane so that O coincides with the vertex V
yields a new set of points Ai that all lie in a plane passing through V (Figure
23.4(center)).
Since cubic Bézier curves are defined by four points, we can interpret two adja-

cent vertices V and V ′ and the points Ai and A
′
i associated with the corresponding
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Figure 23.4. Construction of a triangular spline over a triangular polyhedral mesh.
From left to right: the cubic boundary control points, the boundary curves surrounding
a mesh vertex, and the construction of internal control points from tangent specification.
After [Sullivan and Ponce, 1998b], Figures 1 and 2.

edge as the control points of a cubic curve. This construction yields a set of cubic
curves that interpolate the vertices of the control mesh and form the boundaries of
triangular patches. Once these curves have been constructed, the control points on
both sides of a boundary can be chosen to satisfy inter-patch G1 continuity. In this
construction, the cross-boundary tangent field linearly interpolates the tangents at
the two endpoints of the boundary curve. At the endpoint V , the tangent t across
the curve that contains the point Ai is taken to be parallel to the line joining Ai−1
to Ai+1. The tangent t

′ is obtained by a similar construction. The interior con-
trol points F , F ′ and G, G′ (Figure 23.4(right)) are constructed by solving the set
of linear equations obtained associated with this geometric condition [Chiyokura
and Kimura, 1983]. However, there are not enough degrees of freedom in a quartic
patch to allow the simultaneous setting of the interior points for all three bound-
aries. Thus each patch must be split three ways, using for example the method
of Shirman and Sequin [1987] to ensure continuity among the new patches: per-
forming degree elevation on the boundary curves replaces them by quartic Bézier
curves with the same shape (see exercises). Three quartic triangular patches can
then be constructed from the boundaries as shown in Figure 23.5. The result is a
set of three quartic patches for each mesh face which are G1 continuous across all
boundaries.

Spline Deformation. Given a triangulation such as the one shown in Figure 23.2(b)
it is possible to construct a G1 triangular spline approximation of the modeled ob-
ject’s surface. This section shows how to deform this spline to ensure that it is tan-
gent to the viewing cones associated with the input photographs. The shape of the
spline surface S is determined by the position of its control vertices Vj (j = 1, . . . , p).
We denote by Vjk (k = 1, 2, 3) the coordinates of the point Vj in some reference
Euclidean coordinate system, and use these 3p coefficients as shape parameters.
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Figure 23.5. Splitting a patch three ways to enforce G1 continuity: the white points
are the control points obtained by raising the degree of the control curves, and the grey
points are the remaining control points, computed to ensure G1 continuity. Reprinted
from [Sullivan and Ponce, 1998b], Figure 2.

Given a set of rays Ri (i = 1, . . . , q), we minimize the energy function

1

q

q∑
i=1

d2(Ri, S) + λ

r∑
i=1

∫∫
[|Puu|

2 + 2|Puv|
2 + |Pvv|

2] dudv

with respect to the parameters Vjk of S. Here, d(R, S) denotes the distance between
the ray R and the surface S, the integral is a thin-plate spline energy term used to
enforce smoothness in areas of sparse data, and λ is a constant weight introduced to
balance the distance and smoothness terms. The variables u and v in this integral
are the patch parameters and the summation is done over the r patches that form
the spline surface. The signed distance between a ray and a surface patch can be
computed using Newton’s method. For rays that do not intersect the surface, we de-
fine d(R, S) = min{|

−−→
QP |, Q ∈ R, P ∈ S}, and compute the distance by minimizing

|
−−→
QP |2. For those rays which intersect the surface, we follow Brunie, Lavallée, and
Szeliski [1992] and measure the distance to the farthest point from the ray that lies
on the surface in the direction of the surface normal at the corresponding occluding
contour point. In both cases, Newton iterations are initialized from a sampling of
the surface S.
During surface fitting, we deform the spline to minimize the mean-squared ray-

surface distance using a simple gradient descent technique. Although each distance
is computed numerically, its derivatives with respect to the surface parameters Vjk
are easily computed by differentiating the constraints satisfied by the surface and
ray points where the distance is reached (see exercises).
This three object models shown in Figure 23.6 have been constructed with the

method described in this section. This technique does not require establishing any
correspondence across the input pictures, but the scope of its current implementa-
tion is limited to static scenes. In contrast, the approach presented next is based



Section 23.1. Constructing 3D Models from Image Sequences 651

Figure 23.6. Shaded and texture-mapped models of a teapot, a gargoyle and a dinosaur.
The teapot was constructed from six registered photographs; the gargoyle and the dinosaur
models were each built from nine images. Reprinted from [Sullivan and Ponce, 1998b],
Figures 4 and 5.

on multi-camera stereopsis, and as such requires correspondences, but it handles
dynamic scenes as well as static ones.



652 Application: Image-Based Rendering Chapter 23

Virtualized Reality

Kanade and his colleagues [1997] have proposed the concept of Virtualized Reality
as a new visual medium for manipulating and rendering pre-recorded and synthetic
images of real scenes captured in a controlled environment. The first physical im-
plementation of this concept at Carnegie-Mellon University consisted of a geodesic
dome equipped with 10 synchronized video cameras hooked to consumer-grade
VCRs. As of this writing, the latest implementation is a “3D Room” (Figure 23.7),
where a volume of 20× 20× 9 cubic feet is observed by 49 color cameras connected
to a PC cluster, with the capability of digitizing in real-time the synchronized video
streams of all cameras.

Figure 23.7. The 3D Room. There are 49 cameras total, ten of which are mounted
on each wall, with the remaining nine cameras mounted on the ceiling. Reprinted from
[Kanade et al., 1998], Figure 1.

The internal and external parameters of all cameras are first measured in the
same world coordinate system using the algorithm proposed by Tsai [1987b] and
presented in Chapter 6. Three-dimensional scene models are then acquired by fus-
ing dense depth maps acquired via multi-baseline stereo (see [Okutami and Kanade,
1993] and Chapter 13). One such map is acquired by each camera and a small num-
ber of its neighbors (between three and six). Every range image is then converted
to a surface mesh that can be rendered using classical computer graphics techniques
such as texture mapping. As shown by Figure 23.8, images of a scene constructed
from a single depth map may exhibit gaps. These gaps can be filled by rendering
in the same image the meshes corresponding to adjacent cameras.
It is also possible to directly merge the surface meshes associated with different

cameras into a single surface model. This task is challenging since: (1) multiple,
conflicting measurements of the same surface patches are available in areas where
the fields of view of several cameras overlap, and (2) certain scene patches are not
observed by any camera. Both problems can be solved using the volumetric tech-
nique for range image fusion proposed by Curless and Levoy [1996] and introduced
in Chapter 21.
Once a global surface model has been constructed, it can of course be texture-

mapped as before. Synthetic animations can also be obtained by interpolating two
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Figure 23.8. Multi-baseline stereo. From left to right: the range map associated with
a cluster of cameras; a texture-mapped image of the corresponding mesh, observed from a
different viewpoint; note the dark areas associated with depth discontinuities in the map; a
texture-mapped image constructed from two adjacent camera clusters; note that the gaps
have been filled. Reprinted from [Kanade and Narayanan, 1995], Figures 3 and 8.

arbitrary views in the input sequence. First, the surface model is used to establish
correspondences between these two views: the optical ray passing through any point
in the first image is intersected with the mesh and the intersection point is repro-
jected in the second image, yielding the desired match.2 Once the correspondences
are known, new views are constructed by linearly interpolating both the positions
and colors of matching points. As discussed in [Saito et al., 1999], this simple algo-
rithm only provides an approximation of true perspective imaging, and additional
logic has to be added in practice to handle points that are visible in the first image
but not in the second one. Nevertheless, it can be used to generate realistic ani-
mations of dynamic scenes with changing occlusion patterns, as demonstrated by
Figure 23.9.

23.1.2 Scene Modeling from Unregistered Images

This section addresses again the problem of acquiring and rendering three-dimensional
object models from a set of images, but, this time, the positions of the cameras ob-
serving the scene are not known a priori and they must be recovered from image
information using methods related to those presented in Chapters 14 and 15. The
techniques presented in this section are, however, explicitly geared toward computer
graphics applications.

2Classical narrow-baseline methods like correlation would be ineffective in this context since
the two views may be very far from each other. A similar method is used in the Façade system
described later in this chapter to establish correspondences between widely separated images when
the rough shape of the observed surface is known.
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Figure 23.9. Virtualized Reality: (a) a sequence of synthetic images; note that occlusion
in the two elliptical regions of the first view is handled correctly; (b) the corresponding
mesh model. Reprinted from [Saito et al., 1999], Figures 5 and 11.

The Façade System

The Façade system for modeling and rendering architectural scenes from digitized
photographs was developed at UC Berkeley by Debevec, Taylor and Malik [1996].
This system takes advantage of the relatively simple overall geometry of many
buildings to simplify the estimation of scene structure and camera motion, and it
uses the simple but powerful idea of model-based stereopsis, to be described in a
minute, to add detail to rough building outlines. Figure 23.10 shows an example.
Façade models are constrained hierarchies of parametric primitives such as boxes,

prisms and solids of revolution. These primitives are defined by a small number of
coefficients (e.g., the height, width, and breadth of a box) and related to each other
by rigid transformations. Any of the parameters defining a model is either a con-
stant or a variable, and constraints can be specified between the various unknowns
(e.g., two blocks may be constrained to have the same height). Model hierarchies are
defined interactively with a graphical user interface, and the main computational
task of the Façade system is to use image information to assign definite values to
the unknown model parameters.
The overall system is divided into three main components: The first one, or

photogrammetric module, recasts structure and motion estimation as a non-linear
optimization problem involving relatively few variables, namely the positions and
orientations of the cameras used to photograph a building and the parameters of the
building model. The input to this optimization procedure is a set of correspondences
between line segments selected by hand in the photographs and the corresponding
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Figure 23.10. Façade model of the Berkeley Campanile. From left to right: a pho-
tograph of the Campanile, with selected edges overlaid; the 3D model recovered by pho-
togrammetric modeling; reprojection of the models into the photograph; a texture-mapped
view of the model. Reprinted from [Debevec et al., 1996], Figure 2.

parts of the parametric model. We saw in Chapter 6 that the mapping between a
line with Plücker coordinate vector ∆ and its image with homogeneous coordinates
δ can be represented by ρδ = M̃∆, where M̃ is a 3× 6 matrix whose row vectors
are exterior products of the rows of the projection matrixM. Here, ∆ is a function
of the model parameters, and M̃ depends on the corresponding camera position
and orientation.
Let us consider an image edge e of length l, whose endpoints have homogeneous

coordinates p0 = (u0, v0, 1)
T and p1 = (u1, v1, 1)

T . To measure the discrepancy
between e and the predicted line δ, it is convenient to represent the points of e as
barycentric combinations of p0 and p1 and introduce the signed distance h : [0, 1]→
IR between the points of e and δ. Following Chapter 6, we have

h(t) =
1

|[δ]2|
p(t) · δ =

1

|[M̃∆]2|
[(1− t)p0 + tp1]

TM̃∆,

where [a]2 denotes the vector formed by the first two coordinates of the vector
a ∈ IR3. In particular, the discrepancy measure can be chosen to be the integral of
h2 over the edge, which, in turn, is easily shown to be equal to

E =

∫ 1
0

h2(t)dt =
l

3
(h(0)2 + h(0)h(1) + h(1)2),

and the recovery of the model and camera parameters reduces to the non-linear
minimization of the average of this measure taken over all edge correspondences and
cameras. As shown in [Debevec et al., 1996] and the exercises, when the orientation
of some of the model edges is fixed relative to the world coordinate system, an initial
estimate for these parameters is easily found using linear least squares.
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The second main component of Façade is the view-dependent texture-mapping
module, that renders an architectural scene by mapping different photographs onto
its geometric model according to the user’s viewpoint (Figure 23.11). Conceptu-
ally, the cameras are replaced by slide projectors that project the original images
onto the model. Of course, each camera will only see a portion of a building (Fig-
ure 23.11(top)), and several photographs must be used to render a complete model.
On the other hand, certain parts of a building will in general be observed by sev-
eral cameras, so the renderer must not only pick, but also appropriately merge,
the pictures relevant to the synthesis of a virtual view. The solution adopted in
Façade is to assign to each pixel in a new image a weighted average of the values
predicted from the overlapping input pictures, with weights inversely proportional
to the angle between the corresponding light rays in the input and virtual views
(Figure 23.11(bottom)).

Figure 23.11. View-dependent texture mapping: the top part of the figure shows images
projected onto a model from two camera positions (note how portions of the model that
lie within the viewing frustrum of each camera are shadowed by the model itself and thus
cannot be texture-mapped). The bottom-left part of the figure is a composite of these two
pictures obtained with the weighted-average method described in the text. The bottom-
right image is a composite obtained from twelve photographs. Reprinted from [Debevec
et al., 1996], Figure 12.

The last component of Façade is the model-based stereopsis module, that uses
stereo pairs to add fine geometric detail to the relatively rough scene description
constructed by the photogrammetric modeling module. The main difficulty in using
stereo vision in this setting is the wide separation of the cameras, which prevents the



Section 23.2. Transfer-Based Approaches to Image-Based Rendering 657

straightforward use of correlation-based matching techniques. The solution adopted
in Façade is to exploit a priori shape information to map the stereo images into the
same reference frame (Figure 23.12(top)). Specifically, given key and offset pictures,
the offset image can be projected onto the scene model before being rendered from
the key camera’s viewpoint, yielding a warped offset picture very similar to the
key image (Figure 23.12(bottom)). In turn, this allows the use of correlation to
establish correspondences between these two images, and thus between the key and
offset images as well. Once the matches between these two pictures have been
established, stereo reconstruction reduces to the usual triangulation process.

Actual
Surface

O’O

P

Q

p’

Key and warped Offset image
  offset images

surface
model

q

p

e e’

Figure 23.12. Model-based stereopsis. Top: synthesis of a warped offset image. The
point p′ in the offset image is mapped onto the point Q of the surface model, then repro-
jected onto the point q of the warped offset image. The actual surface point P observed
by both cameras projects onto the point p of the key image. Note that the point q must
lie on the epipolar line ep, which facilitates the search for matches as in the conventional
stereo case. Note also that the disparity between p and q along the epipolar line measures
the discrepancy between the modelled and actual surfaces. After [Debevec et al., 1996],
Figure 15. Bottom, from left to right: a key image, an offset image, and the corresponding
warped offset image. Reprinted from [Debevec et al., 1996], Figure 13.

23.2 Transfer-Based Approaches to Image-Based Rendering

This section explores a completely different approach to image-based rendering.
In this framework, an explicit three-dimensional scene reconstruction is never per-



658 Application: Image-Based Rendering Chapter 23

formed. Instead, new images are created directly from a (possibly small) set of views
among which point correspondences have been established by feature tracking or
conventional stereo matching. This approach is related to the classical transfer
problem from photogrammetry, already mentioned in Chapter 12: given the image
positions of a number of tie points in a set of reference images and in a new image,
and given the image positions of a ground point in the reference images, predict the
position of that point in the new image.
Transfer-based techniques for image-based rendering were introduced in the pro-

jective setting by Laveau and Faugeras [1994], who proposed to first estimate the
pairwise epipolar geometry between reference views, then reproject the scene points
into a virtual image, itself specified by the positions of the new optical center in two
reference pictures (i.e., the epipoles) and the position of four tie points in the new
view. By definition, the epipolar geometry constrains the possible reprojections of
points in the reference images. In the new view, the projection of the scene point
is at the intersection of two epipolar lines associated with the point and two refer-
ence pictures. Once the feature points have been reprojected, realistic pictures are
synthesized using ray tracing and texture mapping.
As noted by Laveau and Faugeras, however, since the Euclidean constraints

associated with calibrated cameras are not enforced, the rendered images are in
general separated from the “correct” pictures by arbitrary planar projective trans-
formations unless additional scene constraints are taken into account. The rest of
this section explores two affine variants of the transfer-based approach that circum-
vent this difficulty. Both techniques construct a parameterization of the set of all
images of a rigid scene: in the first case (Section 23.2.1), the vector space structure
of the affine image space is used to render synthetic objects in an augmented real-
ity system. Because the tie points in this case are always geometrically valid image
features (e.g., the corners of calibration polygons, see Figure 23.13), the synthesized
images are automatically Euclidean ones. In the second instance (Section 23.2.2),
the metric constraints associated with calibrated cameras are explicitly taken into
account in the image space parameterization, guaranteeing once again the synthesis
of correct Euclidean images.
Let us note again a particularity of transfer-based approaches to image-based

rendering, already mentioned in the introduction: because no three-dimensional
model is ever constructed, a joystick cannot be used to control the synthesis of an
animation: instead, the position of tie points must be specified interactively by a
user. This is not a problem in an augmented reality context, but whether this is a
viable user interface for virtual reality applications remains to be shown.

23.2.1 Affine View Synthesis

Here we address the problem of synthesizing new (affine) images of a scene from
old ones, without setting an explicit three-dimensional Euclidean coordinate system.
Recall from Chapter 14 that if we denote the coordinate vector of a scene point P
in some world coordinate system by P = (x, y, z)T , and denote by p = (u, v)T the
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coordinate vector of the projection p of P onto the image plane, the affine camera
model can be written as

p = o +MP , where M =

(
aT

bT

)
, (23.2.1)

o is the position of the projection into the image of the object coordinate system’s
origin, and a and b are vectors in IR3.
Let us consider four (non-coplanar) scene points, say P0, P1, P2 and P3. We

can choose (without loss of generality) these points as an affine world basis so their
coordinate vectors are

P 0 =


 00
0


 , P 1 =


 10
0


 , P 2 =


 01
0


 , P 3 =


 00
1


 .

Of course the points Pi (i = 1, 2, 3) will not in general be at a unit distance from

P0, nor will the vectors
−−→
P0Pi and

−−−→
P0Pj be orthogonal to each other when i �= j.

This is irrelevant since we work in an affine setting. Since the 3 × 3 matrix whose
columns are P 1, P 2 and P 3 is the identity matrix, (23.2.1) can be rewritten as

p = o +MP = o +

(
aT

bT

)
[P 1|P 2|P 3]


xy
z


 .

Finally, since we have chosen P0 as the origin of the world coordinate system,
we have o = p0 and we obtain

p = p0 + xp1 + yp2 + zp3. (23.2.2)

This is not terribly surprising (affine projections preserve affine coordinates), but
interesting: for example, it follows from (23.2.2) that x, y and z can be computed
from m ≥ 2 images through linear least squares. Once these values are known, new
images can be generated by specifying the image positions of the points p0, p1, p2, p3
and using (23.2.2) to compute all the other point positions. In addition, since the
affine representation of the scene is truely three-dimensional, the relative depth of
scene points can be computed and used to eliminate hidden surfaces in the z-buffer
part of the graphics pipeline. This is the method proposed by Kutulakos and Vallino
[1998], and it is of course intimately related to the method proposed by Koenderink
and Van Doorn [1990] to estimate affine structure from two images.
It should be noted that specifying arbitrary positions for the points p0, p1, p2, p3

will (in general) give rise to affinely-deformed pictures. This is not a problem in
augmented reality applications, where graphical and physical objects co-exist in the
image. In this case, the anchor points p0, p1, p2, p3 can be chosen among true image
points, guaranteed to be in the correct Euclidean position. Figure 23.13 shows an
example, where synthetic objects have been overlaid on real images.
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Figure 23.13. Augmented reality experiment. The (affine) world coordinate system is
defined by corners of the black polygons. Reprinted from [Kutulakos and Vallino, 1998],
Figure 14.

This approach can be extended to longer input image sequences. Suppose we
observe a fixed set of points Pi (i = 0, . . . , n− 1) with coordinate vectors P i, and
let pi denote the coordinate vectors of the corresponding image points. Writing
(23.2.1) for all the scene points yields


 p0
. . .
pn−1


 =



P T0 0T 1 0
0T P T0 0 1
. . . . . . . . . . . .
P Tn−1 0T 1 0

0T P Tn−1 0 1




ab
o


 .

In other words, the set of affine images of n points is an eight-dimensional
vector space V embedded in IR2n and parameterized by the vectors a, b and o.
Given m ≥ 2 views of the n points, a basis for this vector space can be identified
by performing the singular value decomposition of the 2n×m matrix

 p(1)0 . . . p
(m)
0

. . . . . . . . .
p
(1)
n−1 . . . p

(m)
n−1




where p
(j)
i denotes the position of the image point number i in frame number j.

Once a basis for V has been constructed, new images can be constructed by assigning
arbitrary values to a, b and o. For interactive image synthesis purposes, a more
intuitive control of the imaging geometry can be obtained by specifying as before
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the position of four image points, solving for the corresponding values of a, b and
o, then computing the remaining image positions.

23.2.2 Euclidean View Synthesis

As discussed earlier, a drawback of the method presented in the previous section
is that specifiying arbitrary positions for the points p0, p1, p2, p3 will (in general)
yield affinely-deformed pictures. This can be avoided by taking into account from
the start the Euclidean constraints associated with calibrated cameras: we saw in
Chapter 14 that a weak perspective camera is an affine camera satisfying the two
constraints

a · b = 0 and |a|2 = |b|2. (23.2.3)

The previous section showed that the affine images of a fixed scene form an eight-
dimensional vector space V . Now, if we restrict our attention to weak perspective
cameras, the set of images becomes the six-dimensional subspace defined by the two
polynomial constraints (23.2.3). Similar constraints apply to paraperspective and
true perspective projection, and they also define a six-dimensional variety (i.e., a
subspace defined by polynomial equations) in each case (see [Genc and Ponce, 1998]

and the exercises).
Let us suppose that we observe three points P0, P1, P2 whose images are not

collinear. We can choose (without loss of generality) a Euclidean coordinate system
such that the coordinate vectors of the four points in this system are

P 0 =


 00
0


 , P 1 =


 10
0


 , P 0 =


 pq
0


 ,

where p and q are nonzero but (a priori) unknown. Let us denote as before by
pi the projection of the point Pi (i = 0, 1, 2). Since P0 is the origin of the world
coordinate system, we have o = p0. We are also free to pick p0 as the origin of the
image coordinate system (this amounts to submitting all image points to a known
translation), so (23.2.1) simplifies into

p =MP =

(
aTP
bTP

)
. (23.2.4)

Now, applying (23.2.4) to P1, P2 and P yields

u
def
=


 u1u2
u


 = Aa and v

def
=


 v1v2
v


 = Ab, (23.2.5)

where

A
def
=


P T1P T2
P T


 =


 1 0 0
p q 0
x y z


 .
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In turn, this implies that

a = Bu and b = Bv, (23.2.6)

where

B
def
= A−1 =


 1 0 0
λ µ 0
α/z β/z 1/z


 and



λ
def
= −p/q,

µ
def
= 1/q,

α
def
= −(x + λy)

β
def
= −µy.

Using (23.2.6) and letting C
def
= z2BTB, the weak perspective constraints (14.4.2)

can be rewritten as {
uT Cu− vTCv = 0,
uT Cv = 0,

(23.2.7)

with

C =


 ξ1 ξ2 α
ξ2 ξ3 β
α β 1


 and



ξ1 = (1 + λ

2)z2 + α2,
ξ2 = λµz

2 + αβ,
ξ3 = µ

2z2 + β2.

Equation (23.2.7) defines a pair of linear constraints on the coefficients ξi (i =
1, 2, 3), α and β; they can be rewritten as(

dT1
dT2

)
ξ = 0, (23.2.8)

where

d1
def
=




u21 − v
2
1

2(u1u2 − v1v2)
u22 − v

2
2

2(u1u− v1v)
2(u2u− v2v)
u2 − v2


 , d2

def
=




u1v1
u1v2 + u2v1
u2v2

u1v + uv1
u2v + uv2
uv


 and ξ

def
=




ξ1
ξ2
ξ3
α
β
1


 .

When the four points P0, P1, P2, and P are rigidly attached to each other, the
five structure coefficients ξ1, ξ2, ξ3, α and β are fixed. For a rigid scene formed by
n points, choosing three of the points as a reference triangle and writing (23.2.8)
for the remaining ones yields a set of 2n − 6 quadratic equations in 2n unknowns,
which do indeed define a parameterization of the set of all weak perspective images
of the scenes. This is the Parameterized Image Variety (or PIV) of Genc and Ponce
[1998].
Note again that the weak perspective constraints (23.2.8) are linear in the five

structure coefficients. Thus, given a collection of images and point correspondences,
these coefficients can be estimated through linear least squares. Once the vector ξ
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has been estimated, arbitrary image positions can be assigned to the three reference
points. Equation (23.2.8) yields, for each feature point, two quadratic constraints
on the two unknowns u and v. Although this system should a priori admit four
solutions, it admits, as shown in the exercises, exactly two real solutions. In fact,
given n point correspondences and the image positions of the three tie points, it
can also be shown [Genc and Ponce, 1998] that the pictures of the remaining n− 3
points can be determined in closed form up to a two-fold ambiguity.
Once the positions of all feature points have been determined, the scene can

be rendered by triangulating these points and texture mapping the triangles. In-
terestingly, hidden-surface removal can also be performed via traditional z-buffer
techniques even though no explicit three-dimensional reconstruction is performed:
the idea is to assign relative depth values to the vertices of the triangulation, and
it is closely related to the method used in the affine structure from motion theorem
from Chapter 14. Let Π denote the image plane of one of our input images, and Π′

the image plane of our synthetic image. To render correctly two points P and Q
that project onto the same point r′ in the synthetic image, we must compare their
depths (Figure 23.14).
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Figure 23.14. Z-buffering. Reprinted from [Genc and Ponce, 1998], Figure X.

Let R denote the intersection of the viewing ray joining P to Q with the plane
spanned by the reference points A0, A1 and A2, and let p, q, r denote the projections
of P , Q and R into the reference image. Suppose for the time being that P and
Q are two of the points tracked in the input image; it follows that the positions
of p and q are known. The position of r is easily computed by remarking that
its coordinates in the affine basis of Π formed by the projections a0, a1, a2 of the
reference points are the same as the coordinates of R in the affine basis formed
by the points A0, A1, A2 in their own plane, and thus are also the same as the
coordinates of r′ in the affine basis of Π′ formed by the projections a′0, a

′
1, a

′
2 of the

reference points.
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The ratio of the depths of P and Q relative to the plane Π is simply the ratio
pr/qr. Not that deciding which point is actually visible requires orienting the line
supporting the points p, q, r, which is simply the epipolar line associated with the
point r′. A coherent orientation should be chosen for all epipolar lines (this is easy
since they are all parallel to each other). Note that this does not require explicitly
computing the epipolar geometry: given a first point p′, one can orient the line pr,
then use the same orientation for all other point correspondences. The orientations
chosen should also be consistent over successive frames, but this is not a problem
since the direction of the epipolar lines changes slowly from one frame to the next,
and one can simply choose the new orientation so that it makes an acute angle with
the previous one.
The parameterized image variety approach to image-based rendering as pre-

sented above was implemented in [Genc and Ponce, 1998] and examples of synthetic
pictures constructed using this method are shown in Figure 23.15. Movies can be
found in the CD accompanying this book.

Figure 23.15. Images synthesized using parameterized image varieties.

23.3 The Light Field

This section discusses a very different approach to image-based rendering, whose
only similarity with the techniques discussed in the previous section is that, like
them, it does not require the construction of any implicit or explicit 3D model of a
scene. Let us consider for example a panoramic camera that optically records the
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radiance along rays passing through a single point and covering a full hemisphere
(see, for example, [Peri and Nayar, 1997] and Figure 23.16(a)). It is possible to
create any image observed by a virtual camera whose pinhole is located at this
point by mapping the original image rays onto virtual ones. This allows a user
to arbitrarily pan and tilt the virtual camera and interactively explore his or her
visual environment. Similar effects can be obtained by stitching together close-by
images taken by a hand-held camcorder into a mosaic (see, for example, [Shum and
Szeliski, 1998] and Figure 23.16(b)), or by combining the pictures taken by a camera
panning (and possibly tilting) about its optical center into a cylindrical mosaic (see,
for example, [Chen, 1995] and Figure 23.16(c)).

Synthetic Images

Mosaics
Cylindrical

MosaicsCameras
Panoramic

Figure 23.16. Constructing synthetic views of a scene from a fixed viewpoint.

These techniques have the drawback of limiting the viewer motions to pure ro-
tations about the optical center of the camera. A more powerful approach can be
devised by considering the plenoptic function [Adelson and Bergen, 1991] that as-
sociates with each point in space the (wavelength-dependent) radiant energy along
a ray passing through this point at a given time (Figure 23.17(a)). The light field
[Levoy and Hanrahan, 1996] is a snapshot of the plenoptic function for light trav-
elling in vacuum in the absence of obstacles. This relaxes the dependence of the
radiance on time and on the position of the point of interest along the correspond-
ing ray (since radiance is constant along straight lines in a non-absorbing medium),
and yields a representation of the plenoptic function by the radiance along the four-
dimensional set of light rays. These rays can be parameterized in many different
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ways, e.g., using the Plücker coordinates introduced in Chapter 6, but a convenient
parametrization in the context of image-based rendering is the light slab, where each
ray is specified by the coordinates of its intersections with two arbitrary planes (Fig-
ure 23.17(b)).

P

v

Field of
view

u

v

s

t

L(u,v,s,t)

Figure 23.17. The plenoptic function and the light field: (left) the plenoptic function
can be parameterized by the position P of the observer and the viewing direction v; (right)
the light field can be parameterized by the four parameters u, v, s, t defining a light slab. In
practice, several light slabs are necessary to model a whole object and obtain full spherical
coverage.

The light slab is the basis for a two-stage approach to image-based rendering:
during the learning stage, many views of a scene are used to create a discrete version
of the slab that can be thought of as a four-dimensional lookup table. At synthesis
time, a virtual camera is defined and the corresponding view is interpolated from
the lookup table. The quality of the synthesized images depends of course on the
number of reference images. The closer the virtual view is to the reference images,
the better the quality of the synthesized image. Note that constructing the light
slab model of the light field does not require establishing correspondences between
images. Figure 23.18 shows two aspects of a light slab constructed from a set of
synthetic pictures, where the pinhole of the (virtual) camera is constrained to lie in
the (u, v) plane: Figure 23.18(a) shows a 2D slice of a slab, corresponding to a given
(u, v) location, or equivalently to a given image of the scene. Figure 23.18(b), on the
other hand, shows the slice associated with a given (s, t) sample, or equivalently, a
given scene point. This slab slice can also be thought of as the 2D slice of the BRDF
corresponding to the illumination pattern used during image acquisition. In fact, it
should be noted that, unlike most other methods for image-based rendering, that
rely on texture mapping and thus assume (implicitly) that the observed surfaces are
Lambertian, light-field techniques can be used to render (under a fixed illumination)
pictures of objects with arbitrary BRDFs.
In practice, a sample of the light field is acquired by taking a large number of

images and mapping pixel coordinates onto slab coordinates. Figure 23.19 illustrates
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Figure 23.18. Two aspects of a light slab. See text for details. Reprinted from [Levoy
and Hanrahan, 1996], Figure 6.

the general case: the mapping between any pixel in the (x, y) image plane and the
corresponding areas of the (u, v) and (s, t) plane defining a light slab is a planar
projective transformation. Hardware- or sotware-based texture mapping can thus
be used to populate the light field on a four-dimensional rectangular grid. In the
experiments described in [Levoy and Hanrahan, 1996], light slabs are acquired in
the simple setting of a camera mounted on a planar gantry and equipped with a
pan-tilt head so it can rotate about its optical center and always point toward the
center of the object of interest. In this context, all calculations can be simplified by
taking, as in Figure 23.18, the (u, v) plane to be the plane in which the camera’s
optical center is constrained to remain.
At rendering time, the projective mapping between the (virtual) image plane

and the two planes defining the light slab can once again be used to efficiently
synthesize new images. Figure 23.20 shows sample pictures generated using the
light field approach. The top three image pairs were generated using synthetic
pictures of various objects to populate the light field. The last pair of images was
constructed by using the planar gantry mentioned earlier to acquire 2048 256× 256
images of a toy lion, grouped into four 32× 16 light slabs.
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Figure 23.19. The acquisition of a light slab from images and the synthesis of new
images from a light slab can be modeled via projective transformations between the (x, y)
image plane and the (u, v) and (s, t) planes defining the slab.

An important issue is the size of the light slab representation: the raw input
images of the lion take 402MB of disk space. There is of course much redundancy
in these pictures, as in the case of successive frames in a motion sequence. A simple
but effective two-level approach to image (de)compression is proposed in [Levoy and
Hanrahan, 1996]: the four-dimensional light slab is first decomposed into 24 tiles of
color values. These tiles are encoded using vector quantization [Gersho and Gray,
1992], a lossy compression technique where the 48-dimensional vectors representing
the original tiles are replaced by a relatively small set of reproduction vectors,
called codewords, that best approximate in the mean-squared-error sense the input
vectors. The light slab is thus represented by a set of indices in the codebook formed
by all codewords. In the case of the lion, the codebook is relatively small (0.8MB)
and the size of the set of indices is 16.8MB. The second compression stage consists
of applying the gzip implementation of entropy coding [Ziv and Lempel, 1977] to
the codebook and the indices. The final size of the representation is only 3.4MB,
corresponding to a compression rate of 118:1. At rendering time, entropy decoding
is performed as the file is loaded in main memory. Dequantization is performed on
demand during display, and it allows interactive refresh rates.

23.4 Notes

Image-based rendering is a quickly expanding field. To close this chapter, let us
just mention a few alternatives to the approaches already mentioned in the previous
sections.
Variants of the volumetric approach to object modeling from registered silhou-

ettes presented in Section 23.1 use polyhedra [Connolly and Stenstrom, 1989] or
octrees [Srivastava and Ahuja, 1990] to represent the cones and their intersection,
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Figure 23.20. Images synthesized with the light field approach. Reprinted from [Levoy
and Hanrahan, 1996], Figure 15.
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and include a commercial system, Sphinx3D [Niem and Buschmann, 1994], for
automatically constructing polyhedral models from images. See also [Kutulakos
and Seitz, 1999] for related work. The tangency constraint has also been used in
various approaches for reconstructing a surface from a continuous sequence of out-
lines under known or unkown camera motions [Arbogast and Mohr, 1991; Cipolla
and Blake, 1992; Vaillant and Faugeras, 1992; Cipolla et al., 1995; Boyer, 1996;
Cross et al., 1999; Joshi et al., 1999]. Variants of the view interpolation method
discussed in Section 23.1 include [Williams and Chen, 1993; Seitz and Dyer, 1995;
Seitz and Dyer, 1996].
Transfer-based approaches to image-based rendering include, besides those dis-

cussed in Section 23.2, [Havaldar et al., 1996; Avidan and Shashua, 1997].
As briefly mentioned in Section 23.3, a number of techniques have been devel-

oped for interactively exploring a user’s visual environment from a fixed viewpoint.
These include a commercial system, QuickTime VR, developed at Apple by Chen
[1995], and algorithms that reconstruct pinhole perspective images from panoramic
pictures acquired by special-purpose cameras (see, for example, [Peri and Nayar,
1997]). Similar effects can be obtained in a less controlled setting by stitching
together close-by images taken by a hand-held camcorder into a mosaic (see, for
example, [Shum and Szeliski, 1998]). Variants of the light field approach discussed
in Section 23.3 include [McMillan and Bishop, 1995; Gortler et al., 1996].

23.5 Assignments

Exercises

1. De Casteljeau construction of Bézier curves.

2. Degree elevation of a Bézier curve.

3. Structure and motion from silhouettes: the orthographic case in the plane.

4. Show that the construction of the points Qi in Section 23.1.1 places these
points in a plane that passes through the centroid O of the points Ci

5. Differentiation of error functions defined implicitly.

6. Computing an error measure between imagee edges and predicted lines: show
that the integral of the signed distance h introduced in Section 23.1 over the
edge where it is defined is equal to

E =

∫ 1
0

h2(t)dt =
l

3
(h(0)2 + h(0)h(1) + h(1)2).

7. Linear methods for computing initial model parameters in the Façade system
when some of the edge orientations are known.
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8. Show that the set of all projective images of a fixed scenes is an eleven-
dimensional variety.

9. Show that the set of all perspective images of a fixed scene (for a camera with
constant intrinsic parameters) is a six-dimensional variety.

10. In this exercise we show that (23.2.8) only admits two solutions.

(a) Show that (23.2.7) can be rewritten as{
X2 − Y 2 + e1 − e2 = 0,
2XY + e = 0,

(23.5.1)

where {
X = u+ αu1 + βu2 ,
Y = v + αv1 + βv2 ,

and e, e1 and e2 are coefficients depending on u1, v1, u2, v2 and the
structure parameters.

(b) Show that the variables X and Y defined by (23.5.1) are the u and v
coordinates of the affine motion field.

(c) Show that the solutions of (23.5.1) are given by

X′ = 4

√
(e1 − e2)2 + e2 cos(

1

2
arctan(e, e1 − e2)),

Y ′ = 4
√
(e1 − e2)2 + e2 sin(

1

2
arctan(e, e1 − e2)),

and (X′′, Y ′′) = (−X′,−Y ′). (Hint: use a change of variables to rewrite
(23.5.1) as a system of trigonometric equations.)
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Chapter 24

CORRESPONDENCE AND
POSE CONSISTENCY

This chapter poses object recognition as a correspondence problem — which image
feature corresponds to which feature on which object? This simple view of recog-
nition — which will naturally focus on the relationship between object features,
image features and camera models — is useful.
We will discuss a variety of different algorithms that use this correspondence

approach. The key observation underlying these algorithms is that objects do not
scatter features in the image; if we know correspondences for a small set of features,
it is fairly easy to obtain correspondences for a much larger set. This is because
cameras are fairly orderly, and have relatively few degrees of freedom.
There are a number of practical reasons to understand the relationship between

the position of image features, and the position and orientation of an object. In
section 24.6, we describe one application, which uses the techniques from the rest
of the chapter to register medical images with actual patients so that a surgeon can
see where features in the image lie on the patient.

24.1 Initial Assumptions

All the algorithms we discuss assume that there is a collection of geometric models
of the objects that should be recognised. This collection is usually referred to as
the modelbase. We shall assume that, if information about an object turns out to
be useful in an algorithm, we can ensure it is in the modelbase.
All the algorithms we describe in this chapter are of a single type, usually known

as hypothesize and test. Each algorithm will:

• Hypothesize a correspondence between a collection of image features and a
collection of object features, and then use this to generate a hypothesis about
the projection from the object coordinate frame to the image frame. There are
a variety of different ways of generating hypotheses. When camera intrinsic
parameters are known, the hypothesis is equivalent to a hypothetical position
and orientation — pose — for the object.

674
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• Use this projection hypothesis to generate a rendering of the object. This step
is usually known as backprojection1.

• Compare the rendering to the image, and, if the two are sufficiently similar,
accept the hypothesis.

For this approach to be effective, we must generate relatively few hypotheses, rela-
tively quickly, and have good methods for comparing renderings and images. The
process of comparison is usually called verification and can be quite unreliable; we
describe verification techniques in section 24.5. Generally, these methods compute
some score of the hypothesis that an object is present at a particular pose, which
we shall call the verification score.
This approach works for point features and for curved surfaces, although the

details are very much more difficult for curved surfaces. The vast majority of the
literature deals with object models that consist of geometric features that project
like points. This means that different views of the object give different views of
the same set of features — though some may be occluded, etc. — rather than of
different sets of features. We shall deal mainly with this case (which is by far the
most useful in practice). However, in section 24.7, we describe some methods for
obtaining and verifying hypotheses for images of curved surfaces.
We generally avoid detailed discussion of the question of what features should

be matched. Most of the algorithms that we describe involve a certain amount of
search amongst features — clearly, if we can describe features well, then this search
is going to be reduced. For example, if our features are simply image points —
perhaps obtained by intersecting edge curves — all points are equivalent and there
may be a fair amount of search. If, instead, our points are described by the interest
operators of section ??, then the number of available correspondences goes down,
and so does the amount of search required.

24.1.1 Obtaining Hypotheses

The main difference between algorithms is the mechanism by which hypotheses are
obtained. The most obvious approach is to take all M geometric features in the
image and all N geometric features on each of the L objects, and enumerate all the
possible correspondences between object and image features — i.e. image feature 3
corresponds to feature 5 on object 7, etc. This is a terrible algorithm, because the
number of possible correspondences is enormous — O(LMN ).
Geometric constraints between object points limit the size of this space. For

example, if we were matching 3D models to 3D data, we would expect pairs of
points on the model to be the same distance apart as corresponding pairs of points
on the data. Any correspondence for which this constraint is violated can be ignored,
whatever the other components. This reasoning is equivalent to pruning a search
tree — the approach of searching an aggressively pruned search tree is known as an

1For no reason we know; “projection”, “forward projection” or “rendering” all seem more
reasonable names.
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interpretation tree algorithm, after work of Grimson and Lozano-Pérez [Grimson
and Lozano-Perez, 1984].
Geometric constraints also apply when 3D models must be matched to 2D data.

This is because the parameters of the projection model can usually be determined
from a fairly small number of point correspondences. Once these parameters are
known, the position of all other projected features is known too — this is a con-
straint, because we can’t choose the position of these features arbitrarily. We can
exploit these constraints by determining the projection parameters explicitly from
a small number of correspondences, and then using the projection model to predict
other correspondences (section 24.2 describes this well established strategy, which
appears to originate with Hébert)
In fact, it isn’t necessary to determine the projection parameters, by the follow-

ing argument. Once we have established a correspondence between a small number
of object features and a small number of image features — the base set — the cam-
era constraints could be used to predict the position of other image features. This
means that, in an appropriate sense, the position of the other image features is fixed
relative to the base set. By an appropriate interpretation of this relative position,
we can obtain measurements that are independent of the projection parameters,
and use these to identify the object (section 24.4).

24.2 Obtaining Hypotheses by Pose Consistency

Assume we have an image of some object obtained using a camera model of known
type, but with unknown parameters — for example, we might be viewing an object
in a calibrated perspective camera with unknown extrinsic parameters with respect
to the object frame. If we hypothesize a match between a sufficiently large group
of image features and a sufficiently large group of object features, then we can
recover the missing camera parameters from this hypothesis (and so render the rest
of the object). Methods of this form (algorithm 1) are known as pose consistency
methods. We will describe this family of methods — whose general form is shown
in figure 1 — with a set of examples. This form of algorithm is increasingly being
called alignment2; the term refers to the idea that the object is being aligned with
its image.
We are really dealing with a family of methods here, because the details depend

on what is known about the camera and whether the objects are two- or three-
dimensional. We call a group that can be used to yield a camera hypothesis a
frame group (there can be both object and image frame groups).

2The name was coined for a relatively recent version of the algorithm, which appears in the
literature in many forms. It is only relatively recently that the similarity between these forms has
become apparent.
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For all object frame groups O
For all image frame groups F
For all correspondences C between
elements of F and elements
of O

Use F, C and O to infer the missing parameters
in a camera model

Use the camera model estimate to render the object

If the rendering conforms to the image,

the object is present

end

end

end

Algorithm 24.1: Alignment: matching object and image groups to infer a camera
model

24.2.1 Pose Consistency for Perspective Cameras

Assume we have a perspective camera for which the intrinsic parameters are known.
This camera is viewing an object in the modelbase. Let us work in the object’s co-
ordinate system — the extrinsic parameters now boil down to the position and
orientation of the camera in the object’s frame. Now if we use algorithm 1, we have
correspondences between a group of image features in an image coordinate system
and a group of object features in the object coordinate system. From this informa-
tion we can determine the extrinsic parameters of the camera (as in section ??);
but once the extrinsic parameters are known, the entire camera is known, and we
can use this to render the rest of the object.
There is a variety of frame groups available for this problem. Typically, good

frame groups contain “few” features of several different types (to reduce the number
of correspondences to be searched). Groups that have been popular include:

• three points;

• three directions — often known as a trihedral vertex— and a point (which
is necessary to establish scale);

• and a dihedral vertex (two directions emanating from a shared origin) and
a point.
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Figure 24.1. Pose consistency techniques work well for 3D objects, as long as one is
using features that behave like points. This figure shows results from [?] (and is taken from
page 50 of Ullman’s book in the fervent hope that MIT press will give permission); three
distinct polyhedral objects have been identified within an image. The top left image shows
three objects on a table; at the top right we have edge points for that image; bottom left,
the edge points chosen to form features (edge points with particular geometrical properties)
and at the bottom right, the outlines of the polyhedra recognised superimposed the edge
points. In this case, hypotheses were obtained by searching correspondences between
pairs of image feature points and pairs of model points, and the camera model is affine
uncalibrated.

Usually, directions are obtained by using line segments. This is attractive, because
it is quite often the case that it is quite likely that part of a line segment will appear,
but it is often difficult to localise the endpoints exactly.

The Intrinsic Parameters

It is quite common in the literature to assume that the intrinsic parameters of
the camera are unknown, too. This doesn’t change the problem all that much —
although we might need to use more complicated frame groups — but it does offer
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some opportunities for more aggressive consistency reasoning. In images with more
than one object we can require that the intrinsic camera parameters are the same
for different objects.
The line of reasoning is quite simple. Firstly, we use algorithm 1 to recognise

individual objects. Associated with each object is a camera solution. Now for each
pair of recognised objects, we compare the intrinsic parameters of the camera solu-
tion: if they are (sufficiently) different, then the two hypotheses are incompatible.

24.2.2 Affine and Projective Camera Models

Calibrating perspective cameras is complicated, because the extrinsic parameters
involve a rotation. It is often possible to use a camera model that allows simpler
calibration, at the possible cost of greater ambiguity in the model identity. The two
important simplifications are:

• Affine cameras, which model a perspective view as an affine transformation
followed by an orthographic projection.

• Projective cameras, which model a perspective view as a projective trans-
formation followed by perspective projection.

We will deal with each case in some detail; remember, the only real issue here is how
to obtain a camera model from an hypothesized correspondence between an object
frame group and an image frame group — the rest is supplied by algorithm 1.

Affine Cameras

In homogeneous coordinates we can write an affine camera as ΠA, where A is a
general affine transformation and Π is an orthographic camera transformation. For
reference, this means that

Π =


 1 0 0 0
0 1 0 0
0 0 0 1




and

A =



a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
0 0 0 1




We use capital letters for points on the model, small letters for points in the image,
and subscripts to denote correspondence (so that p1 = ΠAP 1).
One possible frame group consists of four points. In this case, we must deter-

mine the camera — essentially, A — from a correspondence between four image
points and four object points Now assume we have a (hypothesized) correspon-
dence between four image points (pi) and four object points (P i). We can interpret
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pi = ΠAP i as two linear equations in the first two rows of A, that is(
pi0
pi1

)
=

(
a00Pi0 + a01Pi1 + a02Pi2 + a03
a10Pi0 + a11Pi1 + a12Pi2 + a13

)

There are eight elements in the first two rows of A, and with four points in general
position we can solve these equations to obtain a unique solution for the first two
rows ofA. Notice that the rest of A doesn’t contribute to the projection, and doesn’t
need to be known to compute the projection of all other points. This means that
knowing the first two rows of A is all we need to know to generate a backprojection.
Some models that are distinct under rotations and translations are ambiguous

under affine cameras. Assume that one model is given by a set of points P j and a
second is given by Qj and there is some affine transformation B such that for each
j, P j = BQj . These models can’t be distinguished under an affine camera. A view
of the first model in an affine camera is a set of image points pj = ΠA1P j and a
view of the second model in some other affine camera is given by a set of image
points qj = ΠA2Qj. Now if A2 = A1B, then we have that

qj = ΠA2Qj = ΠA1BQj = ΠA1P j = pj

that is, that there is an affine camera that makes the second model look exactly like
a view of the first model in some other affine camera — so they are indistinguishable.

Projective Cameras

In homogeneous coordinates we can write a projective camera as ΠA, where A is
a general projective transformation and Π is a perspective camera transformation.
For reference, this means that

Π =


 1 0 0 0
0 1 0 0
0 0 1 0




and

A =



a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33




Again, we use capital letters for points on the model, small letters for points in the
image, and subscripts to denote correspondence (so that p1 = ΠAP 1). Notice that,
because we are working in homogenous coordinates, A and λA represent the same
transformation if λ �= 0.
One possible frame group consists of five points. In this case, we must determine

the camera — essentially, A— from a correspondence between five image points and
five object points Now assume we have a (hypothesized) correspondence between
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five image points (pi) and five object points (P i). We can interpret pi = ΠAP i as
two non-linear equations in the first two rows of A, that is(

pi0
pi1

)
=

1

a30Pi0 + a31Pi1 + a32Pi2 + a33

(
a00Pi0 + a01Pi1 + a02Pi2 + a03
a10Pi0 + a11Pi1 + a12Pi2 + a13

)

There are twelve elements in the first three rows of A, and with five points in
general position we can solve these equations to obtain a unique solution for the
first three rows of A. Notice that the rest of A doesn’t contribute to the projection,
and doesn’t need to be known to compute the projection of all other points. This
means that knowing the first three rows of A is all we need to know to generate a
backprojection. Notice also that all we have done here is to repeat — in significantly
less detail — the activities of section 24.2.2.
Some models that are distinct under affine cameras (and so under rotations

and translations) are ambiguous under projective cameras. Assume that one model
is given by a set of points P j and a second is given by Qj and there is some
projective transformation B such that for each j P j = BQj. These models can’t be
distinguished under a projective camera. A view of the first model in a projective
camera is a set of image points pj = ΠA1P j and a view of the second model in
some other projective camera is given by a set of image points qj = ΠA2Qj . Now
if A2 = A1B, then we have that

qj = ΠA2Qj = ΠA1BQj = ΠA1P j = pj

that is, that there is a projective camera that makes the second model look ex-
actly like a view of the first model in some other projective camera — so they are
indistinguishable.

24.2.3 Linear Combinations of Models

The case of an affine camera used the correspondences to perform explicit camera
calibration. We can hide the camera calibration process with a little linear alge-
bra. We use homogeneous coordinates, and can write a general uncalibrated affine
camera as ΠA, where A is a general affine transformation and

Π =


 1 0 0 0
0 1 0 0
0 0 0 1




We use capital letters for points on the model, small letters for points in the image,
and subscripts to denote correspondence (so that p1 = ΠAP 1).
Let us identify one point on the model as an origin, and consider offsets from that

point (this means that translations can be ignored). Use the notation vi = pi − p0
and V i = P i −P 0. Now obtain three views of the object in different general affine
cameras — with affine transformations A, B and C, so that for the i’th point on
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the object we have

vAi = ΠAV i

vBi = ΠBV i

vCi = ΠCV i

Because Π contains a lot of zeros, and the fourth row of V i is zero, we can simplify
things considerably with these three views.
Write the j’th row of A as aT j . We now have

vAi = (a
T
0 .V i,a

T
1 .V i, 0)

T

vBi = (b
T
0 .V i, b

T
1 .V i, 0)

T

vCi = (c
T
0 .V i, c

T
1 .V i, 0)

T

We would now like to generate some arbitrary new view of the object, which
could be obtained by applying ΠD to the points, where D is some new affine trans-
formation. To obtain this view, we must first decide where p0 lies; having done so,
we need the vDi for the i’th point.
Now vDi = (d

T
0 .V i,d

T
1 .V i, 0). Assuming that A, B and C are general, we have

that dj must be a fixed linear combination of aj , bj and cj , say

dj = λ(aj)aj + λ(bj)bj + λ(cj)cj

Then we have that

vDi = (λ(a0)a
T
0 .V i+λ(b0)b

T
0 .V i+λ(c0)c

T
0 .V i, λ(a1)a

T
1 .V i+λ(b1)b

T
1 .V i+λ(c1)c

T
1 .V i, 0)

which means that, given three unknown affine views of the object, we can recon-
struct a fourth by determining the values of these λ’s.
This strategy has become known as linear combinations of models. Gen-

erating hypotheses with this method requires searching correspondences, too; we
select some image points to be p0, p1, etc. and then solve for the λ values. Once
these are known, we can render the object, although additional ingenuity is required
for hidden line removal. Notice that the approach is simply an alternative version
of affine camera calibration. It has the attractive feature that the object model
is constructed from three views of the object in a fairly simple way. It turns out
that an object model is also easily constructed from three views for the approach
of section 24.4, too.

24.3 Obtaining Hypotheses by Pose Clustering

Most objects have many frame groups. This means that there should be many cor-
respondences between object and image frame groups that will verify satisfactorily.
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Each of these correspondences should yield approximately the same estimate of po-
sition and orientation for the object with respect to the camera (or the camera with
respect to the object — it doesn’t matter which we work with). However, image
frame groups that come from noise (or clutter, a term used for objects that are
not of interest and not in the modelbase) are likely to yield estimates of pose that
are uncorrelated. This motivates the use of some form of clustering method to filter
hypotheses before verification.
For each object, we set up an accumulator array that represents pose space —

each element in the accumulator array corresponds to a “bucket” in pose space. Now
we take each image frame group, and hypothesize a correspondence between it and
every frame group on every object. For each of these correspondences, we determine
pose parameters and make an entry in the accumulator array for the current object
at the pose value. If there are large numbers of votes in any object’s accumulator
array, this can be interpreted as evidence for the presence of that object at that
pose; this evidence can be checked using a verification method. It is important to
note the similarity between this method (which is given in algorithm 2) and the
Hough transform (section 17.1.1).
There are two difficulties with these methods (which mirror the difficulties in

using the Hough transform in practice).

1. In an image containing noise or texture that generates many spurious frame
groups, the number of votes in the pose arrays corresponding to real objects
may be smaller than the number of spurious votes (the details are in [Grimson
and Huttenlocher, 1990b]).

2. Choosing the size of the buckets in the pose arrays is difficult; buckets that
are too small mean that there is no accumulation of votes (because it is hard
to compute pose accurately); buckets that are too large mean that too many
buckets will have enough votes to trigger a verification attempt.

We can improve the noise resistance of the method by not counting votes for objects
at poses where the vote is obviously unreliable — for example, in cases where, if
the object was at that pose, the object frame group would be invisible. These
improvements are sufficient to yield working systems (figure 24.2).

24.4 Obtaining Hypotheses Using Invariants

Pose clustering methods collect correspondences that imply similar hypotheses about
camera calibration and pose. Another way to obtain object hypotheses is to use
measurements that are independent of the camera properties. This approach is
most easily developed for images of planar objects, but can be applied to other
cases as well [Huang, 1981; Forsyth et al., 1992a; Forsyth, 1996].
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For all objects O
For all object frame groups F (O)
For all image frame groups F (I)
For all correspondences C between
elements of F (I) and elements
of F (O)

Use F (I), F (O) and C to infer object pose P (O)

Add a vote to O’s pose space at the bucket
corresponding to P (O).

end

end

end

end

For all objects O
For all elements P (O) of O’s pose space that have
enough votes

Use the P (O) and the
camera model estimate to render the object

If the rendering conforms to the image,

the object is present

end

end

Algorithm 24.2: Pose clustering: voting on pose, correspondence and identity

24.4.1 Invariants for Plane Figures

Recall that an affine camera can be written as ΠA, where A is a general affine
transformation and Π is a orthographic camera transformation. Assume we have
a set of model points P j , which are coplanar; without loss of generality, we can
assume they lie on the z = 0 plane. Now we have


 pi0pi1
1


 = ΠA



Pi0
Pi1
0
1
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Figure 24.2. Pose clustering methods use frame-bearing groups to generate pose esti-
mates, and then cluster these estimates. Top: two models used in an early pose clustering
system. Center left: edge points marked for an image used in testing. Center right:
edges of models that are found, overlaid on the image. Bottom left: a new view of the
layout of the models in space, to indicate their pose; notice the curious pose of the aircraft
off the runway. Bottom right: for each framebearing group, some views are better than
others because the estimate of pose will be more stable; next to the model of the aircraft,
we see a sphere representing different viewpoints, with light regions corresponding to high
error views of the pair of features marked on the model
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(using the notation of section 24.2.2). We can substitute for Π and A to obtain
 pi0pi1
1


 =


 a00 a01 a03
a10 a11 a13
0 0 1




 Pi0Pi1
1




This is important; it means that views of a set of coplanar points in an affine camera
are generated by plane affine transformations— this means that we can abstract
away the camera, and reason only about the effect of these transformations on the
model.
A similar result applies to views of plane points in a projective camera — in

this case, the transformation is a plane projective transformation. To get this
result, recall that a projective camera can be written as ΠA, where A is a general
projective transformation and Π is a perspective camera transformation. Assume
we have a set of model points P j, which are coplanar; without loss of generality,
we can assume they lie on the z = 0 plane. Now we have


 pi0pi1
1


 = ΠA



Pi0
Pi1
0
1




(using the notation of section 24.2.2). We can substitute for Π and A to obtain

(
pi0
pi1

)
=

1

a20Pi0 + a21Pi1 + a23

(
a00 a01 a03
a10 a11 a13

) Pi0Pi1
1




Recalling that we are working in homogenous coordinates, a more convenient form
is: 

 pi0pi1
pi2


 =


 a00 a01 a03
a10 a11 a13
a20 a21 a23




 Pi0Pi1
Pi3




Again, this means that views of a set of coplanar points in a projective camera
are generated by these plane projective transformations — this means that we can
abstract away the camera, and reason only about the effect of these transformations
on the model.

Affine Invariants for Co-planar Points

Assume we have a model which is a set of coplanar points. Choose three of these
points P 0, P 1 and P 2. This gives a coordinate frame, and any other point P i in
the model can be expressed as P 0 + µi1(P 1−P 0) + µi2(P 2 −P 0) — it takes only
a little linear algebra to compute the µ values associated with each points.
Now the camera takes model points P i to image points pi. For an uncalibrated

affine camera viewing a set of plane points, the effect of the camera can be written



Section 24.4. Obtaining Hypotheses Using Invariants 687

as an (unknown) plane affine transformation. We can write the camera as C. Now

pi = CP i

= C(P 0 + µi1(P 1 − P 0) + µi2(P 2 −P 0))

= (1− µi1 − µi2)(CP 0) + µi1(CP 1) + µi2(CP 2)

= (1− µi1 − µi2)p0 + µi1p1 + µi2p2
= p0 + µi1(p1 − p0) + µi2(p2 − p1)

This means that the µij describe the geometry of the object, and are independent
of the view — i.e. if we compute the µij in the model plane or in some affine view,
we will obtain the same values. Measurements with this property are often referred
to as affine invariants (other constructions for affine invariants are given in the
exercises).

Projective Invariants for Co-planar Points and Lines

In homogenous coordinates, we can write the relationship between image points and
(plane) model points as pi = AP i, where A is a general 3x3 matrix. Now we have
that

det
[
pipjpk

]
det [piplpm]

det
[
pipjpl

]
det [pipkpm]

=
det [(AP i)(AP j)(AP k)]

det [(AP i)(AP l)(APm)]

det [(AP i)(AP j)(AP l)]

det [(AP i)(AP k)(APm)]

=
detAdet [P iP jP k]

detAdet [P iP lPm]

detAdet [P iP jP l]

detAdet [P iP kPm]

=
det [P iP jP k]

det [P iP lPm]

det [P iP jP l]

det [P iP kPm]

(as long as no two of i, j, k, l, and m are the same and no three of the points are
collinear). There are other arrangements of determinants that are invariant as well
(see the exercises).

Plane Algebraic Curves and Projective Transformations

Algebraic curves consist of all points on the plane where a polynomial vanishes.
A line is an algebraic curve. If we write points in homogenous coordinates as
pi = [pi0, pi1, pi2]

T
, a line is is the locus of points p for which l0p0+ l1p1+ l2p2 = 0

— we can write this as lTp = 0, where the line is represented by l. Now if our
points transform by p = AP , then the lines will transform by l = A−TL. This is
easiest to see by observing that

lTp = lTAP = LTA−1AP

so that if p lies on line l, then P lies on line L.
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Because lines transform (basically) like points, we have

det [liljlk]

det [lilllm]

det [liljll]

det [lilklm]
=
det

[
(A−TLi)(A−TLj)(A−TLk)

]
det [(A−TLi)(A−TLl)(A−TLm)]

det
[
(A−TLi)(A−TLj)(A−TLl)

]
det [(A−TLi)(A−TLk)(A−TLm)]

=
detAdet [LiLjLk]

detAdet [LiLlLm]

detAdet [LiLjLl]

detAdet [LiLkLm]

=
det [LiLjLk]

det [LiLlLm]

det [LiLjLl]

det [LiLkLm]

(as long as no two of i, j, k, l, and m are the same and no three of the lines pass
through a single point).
In fact, algebraic invariants abound in the projective case. Useful examples

occur in particular for plane conics. A plane conic is the locus of points x such
that xtMx = 0, where x is the vector of homogenous coordinates describing a
point, and the matrixM contains the coefficients of the conic. Now if we transform
the coordinate system somehow (say, by observing the points in a camera), then
we have x′ = Px for some plane projective transformation P. The equation of
the conic in the new coordinate system can be obtained by noticing that the new
equation must vanish for every point that used to lie on the old conic — that is,
for every point for which the old conic’s equation vanished in the old coordinate
frame. In particular, if we invert the transformation and plug the resulting point
into the old conic’s equation, we should get a zero. This line of reasoning means
thatM′ = P−tMP−1 is the equation of the conic in the new frame.
Now assume that we have two conics, M and N . Each transforms in this

fashion, meaning that AMN =M−1N transforms to A′MN = PM
−1NP−1, which

we observe. This means, in turn, that the eigenvalues of A′MN are the same as
AMN . We can observe both AMN —by looking at the “model” — and A′MN — by
looking at the image— but only up to a constant scale factor. This means that the
eigenvalues we observe may have been scaled by a constant but unknown factor;
however, appropriate ratios of eigenvalues will be invariant. A useful example is
trace(AMN )3/det(AMN ).
It is quite easy to construct invariants for mixed sets of points and lines, too.

For example, assume we have a set of points pi and a set of lines lj. Notice that

lTi pkljpl

lTi plljpk
=
LTi A

−1AP kL
T
j A

−1AP l

LTi A
−1AP lL

T
j A

−1AP k

=
LTi P kL

T
j P l

LTi P lL
T
j P k

which means that this expression is invariant, too (as long as i and j are not equal
and k and l are not equal).
Projective invariants for various mixtures of points, lines and conics are known,

and have been used successfully in object recognition (some examples are explored
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in exercises ??-??). Projective invariants are known for plane algebraic curves of
higher degree, but are of little practical significance because such curves are seldom
encountered in practice and are hard to fit accurately.

24.4.2 Geometric Hashing

Geometric hashing is an algorithm that uses geometric invariants to vote for
object hypotheses. You should keep pose clustering in mind as an analogy — we
will be voting again — but we are now voting on geometry rather than on pose.
The idea was originally developed for uncalibrated affine views of plane models, and
is easiest to explain in this context.
For any set of three points on the model, we can use the techniques of sec-

tion 24.4.1 to compute values of µ1 and µ2 for every other point in the model. We
now set up a table indexed by the values of µ1 and µ2. For every model in the
modelbase and for every group of three points on that model, we compute the µ’s
for every other point. Using these µ’s as an index, insert an entry recording the
name of the model and the three points on the model that gave rise to the values
obtained. Thus, a pair of µ’s acts as an hypothesis about the identity of the model
and three points on that model.
Now we have the table, we can find the model by searching correspondences.

We take any triple of image points, and compute the µ’s for every other point in
the image. We recover the contents of the table indexed by all of these µ’s. If
the triple corresponds to a triple on the object, then we are going to obtain many
votes for the combination of the object and the three points. Hopefully, noise votes
will be uncorrelated, meaning that there will be a lot of uncoordinated votes for
various triples on various objects, and many votes for an object triple combination.
This implies that, if we have many votes for the same object and the same three
points on that object, the object may well be present. Notice that this set of three
points can act as a frame group for verification purposes. Voting on the µ values is
sketched in figure 3.
This algorithm can be generalised to work for other geometric groups than points

(see the assignments!). If we have uncalibrated affine views of 3D objects, then there
are three µ’s for each point, and we cannot determine them uniquely for each point,
but the method extends (see the assignments, again!). As with pose clustering and
the hough transform (which is really what this method is), it is difficult to choose
the size of the buckets; it is hard to be sure what “enough” means; and there is
some danger that the table will get clogged [Grimson and Huttenlocher, 1990a].

24.4.3 Invariants and Indexing

Geometric hashing searches correspondences, but does so extracting acceptable la-
bels from a hash table. The main feature of geometric hashing is that we do not
need to search over models at recognition time — the hash table has been preloaded
in a way that avoids this. This is a desirable feature, usually called indexing. One
version of indexing applies in alignment when different models have different types
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For all groups of three image points T (I)
For every other image point p

Compute the µ’s from p and T (I)

Obtain the table entry at these values

if there is one, it will label the three points in T (I)
with the name of the object

and the names of these particular points.

Cluster these labels;

if there are enough labels, backproject and verify

end

end

end

Algorithm 24.3: Geometric hashing: voting on identity and point labels

of frame group; clearly, an image frame group of a particular kind need only be
checked against the models for which that type of frame group applies.
The trick in geometric hashing is to look for image groups that contained infor-

mation that was independent of the object pose and changed from object to object
(the µ’s). These µ’s then generate object information. Geometric hashing explores
all possible groups of points. The motivating trick can be extended to all sorts of
other geometric features as well. We shall call groups of features that carry informa-
tion that is independent of object pose and changes from object to object invariant
bearing groups — we have seen some examples in section 24.4.1. Assume that
we know the different types of invariant-bearing group that are available. We can
now modify the alignment algorithm to come up with the algorithm of figure 4.
This approach could be extremely efficient if invariant bearing groups were dis-

tinctive, in the sense that there are very few model feature groups with the same
values of the invariants. We also need to be able to measure the values of the in-
variants accurately. Notice that we have to look at every model feature group with
the same values as the image feature group, because we don’t know which group we
might have. This is, again, a search over correspondences, with a reasonable hope
that the correspondences to be searched could be few.
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For each type T of invariant-bearing group
For each image group G of type T

Determine the values V of the invariants of G

For each model feature group M of type T whose invariants
have the values V

Determine the transformation that takes M to G

Render the model using this transformation

Compare the result with the image, and accept if

similar

end

end

end

Algorithm 24.4: Invariant indexing using invariant bearing groups

Indexing in Uncalibrated Perspective Views with Lines and Conics

There are numerous invariant bearing groups that can be plugged into the general
algorithm given above. The process works best with plane objects viewed in un-
known perspective cameras, where invariants of the imaging transformations are
quite freely available. Generally, the most useful cases appear to be the invariants
of three kinds of groups: five lines; two conics; and a conic and two lines.
Given these functions, a typical system works like this:

• Extract primitive groups: Images are passed through an edge detector,
and conics and lines are fitted to groups of edge points. The edge points are
discarded, and the fitted curves retained. It is excessively onerous to look
at all groups of five line segments to form invariants. It is also unnecessary,
because objects do not consist of scattered lines, so that open curves of line
segments are all that is required. These are groups where, at at least one end
point of each line segment, there is an end point of another segment nearby.

• Index using invariants: Relevant assemblies of lines and conics are used to
obtain object hypotheses, usually by indexing in arrays using quantised values
of the invariants. Typically there are one or two invariants available for each
type of group, and relatively small numbers of models, so that using an array
is not particularly wasteful. The size of the quantisation buckets is usually



692 Correspondence and Pose Consistency Chapter 24

determined by trial and error; a wise implementer searches the neighbours of a
selected bucket, too. Again, the fact that there are only one or two invariants
for each type of group means that this is not too wasteful.

• Back-project and verify: For each object hypothesis, the transformation
that takes the model group to the image group is determined. This transfor-
mation is used to backproject the model, and verification proceeds.

Figure 24.3. These figures illustrate the overall structure of a system that recognises
plane objects using invariants. At the top left is an image; top right shows edge points that
have been fitted with lines or conics; and at the bottom, outline points from the objects
that have been recognised and verified have been overlaid. Figure from “Efficient model
library access by projectively invariant indexing functions,” by C.A. Rothwell et al., Proc.
Computer Vision and Pattern Recognition, 1992, c© 1992, IEEE

Invariant Indexing for Plane Curves

One source of geometric invariants is to use covariant constructions — con-
structions that commute with the transformation in mind, meaning that if you
perform the construction and transform the result, you get the same result as if you
transform the geometry and then perform the construction. In this approach, the
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construction yields a coordinate frame that is then transformed into some conve-
nient universal coordinate frame, and measurements are made in that frame (usually
called a canonical frame). Since the measurements are made in a fixed coordi-
nate frame, any property measured in a canonical frame is an invariant. You should
notice the similarity of this idea to that used in geometric hashing — the µ’s there
are measured in a canonical frame.
For example, take a curve and construct a line that is tangent to it at two

distinct points (closed plane curves that are not convex have such lines — convex
closed curves do not, and for open curves there are no guarantees). Now apply
a transformation so that one of the points of tangency lies at the origin and the
tangent line lies on the x-axis. In this coordinate system any measurement you care
to take is an invariant, if you are careful about the fact that you may not know
which point to place at the origin. This freedom brings with it a troubling question:
given we can make many different invariant measurements, which should we make?

1

2 3

4

Figure 24.4. Because tangency and incidence are covariant (i.e. a tangent in one
coordinate system will, when transformed, be a tangent in the other coordinate system),
constructions based around tangency and incidence yield canonical coordinate frames.
This figure shows a construction called the M-curve construction. For a curve shaped like
the letter M (upside-down, by convention!), a bitangent yields two points (1 and 4) from
which tangents can be produced to meet the curve at 2 and 3; this yields a total of four
points. Since any set of four points with no three collinear can be mapped to any other
such set, we can take these points to the unit square on the plane, and look at the curve
in this coordinate system the canonical frame. Any measurement in this system will be
invariant.
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24.5 Verification

Accurate verification requires good tests for whether a rendering of an object model
is similar to an image. The choice of test depends on the amount of information
about the world available to generate the rendering. For example, if the lighting in
the world and the camera response to illumination are both known precisely — for
a system that viewed parts on a conveyor belt this might be possible — then we
could reasonably expect the rendering to predict image pixel values accurately. In
this case, comparing pixel values would be a sensible test.
Usually, all we know about the illumination is that it is bright enough to have

generated an hypothesis. This means that comparisons should be robust to changes
in illumination. The only test used in practice is to render the silhouette of the
object, and then compare it to edge points in an image. We describe some other
possible tests, too.

24.5.1 Edge Proximity

A natural test is to overlay object silhouette edges on the image, using the camera
model, and then score the hypothesis by comparing these points with actual image
edge points. The usual score is the fraction of the length of predicted silhouette
edges that lie nearby actual image edge points. This is invariant to rotation and
translation in the camera frame, which is a good thing, but changes with scale,
which may not be a bad thing. It is usual to allow edge points to contribute
to a verification score only if their orientation is similar to the orientation of the
silhouette edge to which they are being compared. The principle here is that the
more detailed the description of the edge point, the more likely one is to know
whether it came from the object.
It is a bad idea to include invisible silhouette components in the score, so the

rendering should be capable of removing hidden lines. The silhouette is used be-
cause edges internal to a silhouette may have low contrast under a bad choice of
illumination. This means that their absence may be evidence about the illumination
rather than the presence or absence of the object.
Edge proximity tests can be quite unreliable. Even orientation information

doesn’t really overcome these difficulties. When we project a set of model bound-
aries into an image, the absence of edges lying near these boundaries could well be
a quite reliable sign that the model isn’t there, but the presence of edges lying near
the boundaries is not a particularly reliable sign the object is there. This is because
there are a lot of different sources of edges, and we have no guarantee that the edges
being used in the scoring process are the right ones.
A poor pose estimate can lead to silhouette edges on the backprojected object

lying a long way from the actual image edges. For example, if we have an object
that projects to a long thin region, like a spanner, and we estimate its image plane
orientation using one end, the backprojected edges at the other end may lie a long
way from the image edge points we are interested in (figure 24.5). This is an example



Section 24.5. Verification 695

of error propagation — essentially, the camera estimate is good for features nearby
those used to obtain it, but increasingly bad for those a long way away. Several
fixes are possible:

• Maximize over the pose estimate: The situation can sometimes be im-
proved by maximising the verification score with respect to the pose. This
doesn’t always work; if the original pose estimate is poor, the object may
indeed lie close to edges, but to the wrong edges — think about an attempt
to verify the presence of an object on a textured background. Furthermore,
the optimisation can be hard, particularly if the nearby test is a threshold on
distance.

• Count only edges for which the camera estimate is reliable: To our
knowledge, this has never been tried in practice. The advantage of the ap-
proach is that it should deal with issues like the example of figure 24.5 rela-
tively easily; the disadvantage is that one may not use a large portion of the
object in the verification process, meaning that there is a very good prospect
of false positives.

Counting the wrong edges in the score is another major source of difficulties. In
textured regions, there are many edge points in small collections. The whole point
of verification is to use the model to link up image evidence that is too hard to
gather together in the hypothesis formation stage, so we can’t exclude small groups
of edge points from the score. This means that, in highly textured regions, it is
possible to get high verification scores for almost any model at almost any pose (for
example, see figure 24.5); notice that the fact that we are counting similarity in
edge orientation in the verification score hasn’t made any difference here.
We can tune the edge detector to smooth texture heavily, in the hope that

textured regions will disappear. This is a dodge, and a dangerous one, because it
usually affects the contrast sensitivity so that the objects disappear, too. It can be
made to work acceptably, and is widely used.

24.5.2 Similarity in Texture, Pattern and Intensity

If we score edge matches, then texture is not much more than a nuisance. However,
some objects have quite distinctive textures — for example, camouflage paint —
and this should probably be used. We could describe model regions using texture
descriptors (like the statistics of filter outputs in a region in chapter 11), and then
compare those descriptors with the image. The comparison would need to estimate
the significance of the difference between the image and the backprojected object
regions. The most promising approach appears to be comparing the probability of
obtaining the image region covered by the object region by drawing a texture from
the object family, with the probability of obtaining this texture when an object is
absent.
Comparing silhouette edges ignores a great deal of useful information. If objects

are patterned — meaning there are large scale coloured regions like the markings
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Figure 24.5. Edge orientation can be a deceptive cue for verification, as this figure illus-
trates. The edge points marked on the image come from a model of a spanner, recognised
and verified with 52 % of its outline points matching image edge points with corresponding
orientations. Unfortunately, the image edge points come from the oriented texture on the
table, not from an instance of the spanner. As the text suggests, this difficulty could be
avoided with a much better description of the spanner’s interior as “untextured”, which
would be a poor match to the oriented texture of the table. Figure from “Efficient model
library access by projectively invariant indexing functions,” by C.A. Rothwell et al., Proc.
Computer Vision and Pattern Recognition, 1992, c© 1992, IEEE

on a soda can — we could compare backprojected pattern edges as well. A more so-
phisticated approach would compare backprojected pattern regions with the image
regions by using texture descriptors (which should agree on the absence of texture)
and perhaps descriptions of hue and saturation (some examples of this approach
appear in []).
We do not usually have enough information about illumination to predict object

intensities. As a result, intensities tend to be ignored in practice in verification.
This is a mistake. Many differences in intensity patterns seldom, if ever, come from
light sources — for example, only very strange light sources like movie projectors
generated textured intensity patterns. This suggests that one could probably obtain
a verification score by comparing differences in absolute intensity with differences
that have arisen in practice, and differences that could not arise in practice.

24.5.3 Example: Bayes Factors and Verification

Verification can be thought of as model selection. We are comparing the model that
the pattern in a region is a result of the presence of some object with the model that
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it appeared without the object there. We could set this up as a Bayesian model
selection exercise; this gives a useful way to think about using texture and intensity
information in verification.
Assume we must determine whether a camouflaged aircraft is present in a cal-

ibrated perspective camera at some hypothesized pose. We would like to do this
using texture and illumination features. Camouflage painters use a system of marks
that is quite stylised but is not the same from aircraft to aircraft.
A natural set of features to use to describe the texture is to use filters whose

scale depends on object pose — which we shall write as θ, and take histograms of
their squared output; we might also apply larger scale filters to the filter outputs,
and histogram their outputs, too. The domain in which to compute these features
follows from the object pose — we could predict it by backprojection. Assume we
have a set of features, y(θ); we can now take many pictures of the relevant aircraft,
to estimate a conditional distribution f(y|θ, aircraft).
Similarly, we can measure a variety of other cases, too, say: f(y|θ, bush),

f(y|θ, tarmac), f(y|θ, grass) and f(y|θ, building), which might be an exhaustive
set of cases for views around an airfield. In this case, θ determines the domain on
which the features are measured and the scale of the filters.
The Bayes factor compares posterior likelihoods for models. Thus, we would

like to test:
f(aircraft|y)

f(anything else|y)

If this fraction is very large, that suggests that we have strong evidence that an
aircraft is present; if it is very small, we have strong evidence that it is absent. We
can rewrite the fraction as:∫

f(y|θ, aircraft)π(θ)dθπaircraft∫
f(y|θ, anything else)π(θ)dθπanything else

and the denominator is:

∫ 

f(y|θ, bush)π(bush|anything else)+
f(y|θ, grass)π(grass|anything else)+
f(y|θ, runway)π(runway|anything else)+
f(y|θ, buildings)π(buildings|anything else)


 π(θ)dθπanything else

where π(bush|anything else) measures how probable it is that a region that is not
an aircraft is bush — we might estimate this from area measurements in aerial pho-
tographs — πanything else is an estimate of how reliable our hypothesis generating

process is and π(θ) is an estimate of the probability of the pose, given our estimate
— this might be a fairly narrow distribution, peaked about the estimate from our
hypothesis generating process.
Notice the advantages of this process: we are accounting for the uncertainty in

our pose estimate, essentially by adding in weighted versions of the match quality
at nearby poses; we are verifying on the extent to which the pattern looks like an
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aircraft and unlike other things in a fairly flexible way — if the camouflage painters
change their work practices, then we know what to do; and we are accounting for
the different types of clutter individually.

24.6 Application: Registration in Medical Imaging Systems

There are numerous problems where pose is far more important than recognition.
Many recognition algorithms were designed in the expectation that a selection of
industrial parts would be scattered in a bin or on a table; it turns out that pro-
duction engineers are quite careful to ensure that their parts do not get mixed up,
but would often like very accurate measurements of pose. Medical applications are
similar, in that it is usually known what is being looked at, but there is a crucial
need for an accurate measurement of where it is.

24.6.1 Imaging Modes

There are a variety of imaging technologies available, including magnetic reso-
nance imaging (MRI) which uses magnetic fields to measure the density of pro-
tons, and is typically used for descriptions of organs and soft tissue; computed
tomography imaging (CTI or CT), which measures the density of X-ray absorb-
tion, and is typically used for descriptions of bones; nuclear medical imaging
(NMI), which measures the density of various injected radio-active molecules, and
is typically used for functional imaging; and ultra-sound imaging, which mea-
sures variations in the speed of ultrasound propagation, and is often used to obtain
information about moving organs (figure 24.6 illustrates these modes). All of these
techniques can be used to obtain slices of data, which allow a 3D volume to be
reconstructed. A standard problem is to segment these volumes into various struc-
tures; figure 24.7 shows an MRI image with the brain, brain ventricles and tumour
segmented. Since tumours are essentially fixed with respect to the skull and skin,
this data gives us the position of the tumour with respect to the head.
Registration in medical imaging is almost always a 3D from 3D problem, and the

only transformations to care about are 3D rotations and translations. Geometric
hashing is the dominant mechanism, because it can be used to search correspon-
dences efficiently. The literature differs largely in the matter of what data is used.

24.6.2 Applications of Registration

In brain surgery applications, surgeons are attempting to remove tumours while
doing the minimum of damage to a patient’s faculties. We shall show examples
due to Grimson et al., []. The general approach is to obtain images of the patients
brain, segment these images to show the tumour, and then display the images to the
surgeon. The display is overlaid on pictures of the patient on the table, obtained
using a camera near the surgeon’s view, to cue the surgeon to the exact position
of the tumour. Various methods exist for attaching functional tags to the image
of the brain — usually, one stimulates a region of the brain, and watches to see
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Figure 24.6. Images obtained with four different imaging modes. On the top left, an
MRI image of a cross-section of the skull; on the top right, a CTI image of a cross-section
of the skull; on the bottom left, an NMI image of a brain; and on the bottom right,
a USI image of a foetus in a womb. Notice how each modality shows different detail
in different ways; there is high-resolution detail of the brain in the MRI image and of
the skull in the CTI image. The NMI image is at low resolution, but (in fact) reflects
function, because regions that respond strongly have taken up some reagent. Finally,
the USI image has a significant noise component, but shows details of soft tissue — you
should be able to see a leg, the body, the head and a hand of the foetus. Data obtained
from Nicholas Ayache’s paper, “Medical Computer Vision, Virtual Reality and Robotics -
Promising Research Tracks”, page 6, in fervent hope that permission will be granted.

what happens — and this information can also be displayed to the surgeon, so that
the impact of any damage done can be minimized. The problem here is pure pose
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estimation; we need to know the pose of the brain image and the brain measurements
with respect to the person on the table.
Reconstructive surgery offers similar applications. For example, in facial

reconstruction, in a planning phase, surgeons can be allowed to work out a sequence
of activities on a visualisation of a patient’s skull. The results of this visualisation
will need to be displayed to the surgeons when they operate, again registered to a
view of the patient.
Diagnostic applications include creating 3D visualisations to display results

from many different imaging modes. For example, a surgeon may have images from
MRI — which quite often has relatively high resolution — and PET — which are
linked to functional properties. It is natural to wish to fuse these images, and so
they need to be registered.

24.6.3 Geometric Hashing Techniques in Medical Imaging

The main differences between algorithms in applications is the type of measurement
used for geometric hashing. We discuss a few cases below.

Point Correspondences

We have seen how to search point correspondences. For example, head MRI data
can be registered to a patient’s head on a table by obtaining 3D measurements of
the head with a laser ranger on the operating table, and using these to register with
the skin points on the MRI data. We can hash pairs of skin points from the MRI
on their distance apart and the angle between their normals, and then query with
pairs of points from the laser data. Pairs with similar distances apart and similar
angles could correspond. With a corresponding pair, we can estimate pose, and then
check the total error of this pose estimate. While there is no true correspondence
— neither the skin points in the MRI image nor the laser ranger data consists of
isolated points; they are samples from surfaces — the sampling is sufficiently dense
that it is possible to obtain good initial hypotheses about pose. If the error in the
registration is then measured sensibly — counting only error components normal to
the surface to avoid being put off by small localisation errors — an excellent pose
estimate can be obtained by minimising the error. Grimson is the main proponent
of such systems, one of which is illustrated in figure 24.8; details appear in [].

Curves

Curves can be used to drive geometric hashing, too. In this case, we fit a surface
to the dataset, and then mark significant curves on this surface. Using parabolic
curves is impractical, because some datasets have many flat regions; Ayache [] has
successfully used curves where the maximum normal curvature is an extremal along
the curves of maximun normal curvature on the surface. Whatever curve is used, at
any point on a curve we have a complete 3D frame (the Serret-Frenet frame), and
we can use this frame as a canonical frame to obtain measurements for geometric
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Figure 24.7. On the top left, a single slice of MRI data, with an automatically acquired
segmentation overlaid. The segmentation outlines the brain, vacuoles within the brain, and
the tumour. MRI produces a sequence of slices, which yield a volume model; a view of
a segmented volume model, with different colours showing different regions, is shown at
the top right. Once this data is obtained, it is registered to a patient lying on a table.
Registration is obtained using depth data, measured by a laser ranger; the bottom figure
shows a camera view of a patient with laser ranger data overlaid. Data obtained from Eric
Grimson’s web site http://www.ai.mit.edu/people/welg/welg.html, in the fervent hope
that permission will be granted

hashing. Natural choices include the curvature and torsion of the curve, and the
angle between the curve normal and the surface normal.

Frame Pairs

Given two coordinate frames, the transformation from one to the other is invari-
ant to a shared transformation, and so can be used to supply indexes for hashing



702 Correspondence and Pose Consistency Chapter 24

Figure 24.8. The figure on the top left shows skin data overlaid on a view of a patient to
indicate the success of the registration process. Once data is registered to a patient, a num-
ber of uses are available. At the top right, we see a view of a patient on an operating table
with MRI imagery showing part of the brain and a tumour overlaid for the surgeon’s infor-
mation. At the bottom, we see imagery obtained by registering the position of a surgical
instrument with the MRI data set — this means that the position of the surgical instru-
ment can be displayed to the surgeon, however deep the instrument is within tissue. Data
obtained from Eric Grimson’s web site http://www.ai.mit.edu/people/welg/welg.html,
in the fervent hope that permission will be granted

(figure 24.9). We call this cue a frame pair. A natural way to obtain these pairs
is to fit a surface to the dataset, identify significant curves or points, and then use
local frames. For a significant point on a surface — for example, an umbilic point
— a frame can be obtained from the normal and the two directions of extremal
curvature. For any point on a significant curve, we can use either the Serret Frenet
frame, or the frame on the surface (or compare the two frames). Ayache and his
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group have emphasized the use of curves and of frame pairs; details appear in [].

Figure 24.9. Curve matching by geometric hashing can be used to match slices to
datasets, too. On the top left, we see a surface corresponding to a skull, extracted from
a CTI image. The curve is obtained from another slice of data. On the top right, we see
this curve aligned with the surface, using geometric hashing (in this case, we would fill the
hash table with curves corresponding to each plane section of the surface and hash on the
plane). Below, we see the curve superimposed on the plane extracted from the 3D image.
Data obtained from Nicholas Ayache’s paper, “Medical Computer Vision, Virtual Reality
and Robotics - Promising Research Tracks”, page 33, in fervent hope that permission will
be granted.

24.7 Curved Surfaces and Alignment

Curved surfaces can be aligned, too. The hypothesis generating process can be more
complicated, but rendering and verification are straightforward generalisations.
The natural strategy is to find frame bearing groups that behave like points;

for example, if a curved surface has points painted on it, or if three surfaces meet
discontinuously at points, the hypothesis generating process behaves like those de-
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scribed above. A geometric model of the surface can then be projected into the
image, and used to verify as below.
A more difficult approach sees alignment as minimisation, rather like the linear

combinations of models approach discussed above. In this approach, the outline
of the surface is predicted as a function of the pose of the surface. We can adopt
as an objective function the sum of the minimum distances of selected edge points
from this outline, and minimize the objective function over pose, as figure 24.10
illustrates. The mechanics of predicting outline curves is simplified for algebraic
surfaces; all examples in the literature use algebraic surfaces as an example for this
reason. The details appear in []. Algebraic surfaces are so rigid that a single outline
completely determines the surface geometry; masochists can look up the details
in [].

Figure 24.10. An algebraic surface is viewed in a calibrated perspective camera. The
contour generator is clearly an algebraic curve (because we can write down a set of polyno-
mial equations that it satisfies) and the outline is also an algebraic curve. This curve is a
function of the pose of the surface. The figure on the left shows a family of curves obtained
by overlaying the outline of a surface on an image, and obtaining pose by minimizing the
sum of the minimum distances between selected edge points and the outline. The curves
come from different points in the minimization processs. The figure on the right shows
two different algebraic surfaces aligned successfully with image contours; the surfaces used
identify two different bottles.

24.8 Discussion

Typically, systems built around the algorithms described in this chapter can recog-
nise small numbers of objects in quite cluttered scenes. They are important because
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pose recovery and registration is useful in applications, and because their weaknesses
point out important issues in recognition.
The term “alignment” is due to Huttenlocher and Ullman [Huttenlocher and

Ullman, 1987b; Huttenlocher and Ullman, 1990]; it is a convenient term for a general
class of algorithm that reasons about pose consistency. It is hard to determine
who used the approach first; see [Roberts, 1965a; Faugeras et al., 1984; Chin and
Dyer, 1986], for a start. Alignment is quite general because for most conceivable
images of most conceivable objects, some form of camera consistency constraint
applies and can be exploited. It is also quite noise resistant— meaning that we
can find objects even in heavily cluttered images — because relatively little image
evidence needs to be collected to construct an object hypothesis. Testing a large
hypothesis robustly tends to be easier than assembling a large hypothesis, because
the hypothesis under test gives very strong constraints on what image evidence can
contribute to a decision (the noise behaviour of some alignment algorithms has been
studied in detail [Grimson et al., 1994; Sarachik and Grimson, 1993; Grimson et al.,
1992; Grimson et al., 1990]). As a result, alignment algorithms are very widely used
and there are numerous variants.
However, alignment scales poorly with increasing numbers of models. Linear

growth in the number of models occurs because the modelbase is flat - there is
no hierarchy, and every model is treated in the same way. Furthermore, while
constrained search for a model that is present can be efficient, showing that a
model is absent is very expensive [Grimson, 1992].
Pose clustering is due to Thompson and Mundy [Thompson and Mundy, 1987b].

The analogy to the Hough transform means that the method can behave quite
badly in the presence of noise [Grimson and Huttenlocher, 1988; Grimson and
Huttenlocher, 1990b]. Geometric hashing in various forms is due to Lamdan,
Schwartz and Wolfson [Lamdan et al., 1988; Lamdan et al., 1990; Wolfson, 1990;
Wolfson and Lamdan, 1988]. The use of various invariants for indexing recognition
hypotheses is described in [Forsyth et al., 1991]; in collections and books [Mundy and
Zisserman, 1992; Mundy et al., 1993; Rothwell, 1995]; and in various papers [Zisser-
man et al., 1995; Rothwell et al., 1992; Rothwell et al., 1995; Forsyth et al., 1992b;
Barrett et al., 1991; Barrett et al., 1990]. One lively area of research that we
have not described is the measurement of invariant properties of 3D objects from
multiple, uncalibrated views [Barrett et al., 1992; Barrett and Payton, 1993]; an-
other is the process of computing invariant values conditioned on some model
knowledge [Weinshall, 1993; Shashua, 1995b]. There has been some work in vi-
sion circles on methods for deriving invariants, too [Csurka and Faugeras, 1998;
Csurka and Faugeras, 1999].
Pose consistency can be used in a variety of forms. For example, recognition

hypotheses yield estimates of camera intrinsic parameters. This means that if there
are several objects in an image, all must give consistent estimates of camera intrinsic
parameters [Forsyth et al., 1994].
Each algorithm attempts to get enough information to perform verification with

as little trouble as possible, while trying to reduce the number of spurious verifi-
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cation attempts. This dependency on image level verification is inconsistent with
model abstraction — we could not verify that a picture contained a fish by looking at
pixel values or edges if we did not have exact details of its species, configuration, and
the like. Most applications of recognition desperately need abstraction. For exam-
ple, if we want to search the Internet for pictures of the Pope, we don’t want to have
to know his exact geometry. Similarly, if we want to deploy our automatic motor car
on real roads, it has to be able to decide what it should swerve to avoid and what it
may run down. Instead of matching features (like points and lines), we might match
tokens (where a token might be a hairy patch, or an eye, or something of the sort)
to models containing tokens. Here, the abstraction is in the token [Ettinger, 1988;
Ullman, 1996].
The main role of verification is to find evidence for an hypothesis that could not

be collected in other ways; since collecting evidence is poorly understood, current
recognition systems work well when verification works well, and badly otherwise.
Verification will work well when sufficient evidence is used, and scored appropriately.
Unfortunately, it is difficult to translate these platitudes into algorithms. For a topic
that is so central to the performance of recognition systems, verification has been
extremely poorly studied, but see [Grimson and Huttenlocher, 1991] Verification
based on generic evidence — say, edge points — has the difficulty that we cannot
tell which evidence should be counted. Similarly, if we use specific evidence —
say a particular camouflage pattern — we will have problems with abstraction.
Template matching and appearance based vision, which we discuss in greater detail
in chapter ??, can be seen as mechanisms to involve more kinds of evidence in the
verification process.

24.8.1 Medical applications

This is not a topic on which we speak with any authority. Valuable surveys are [Dun-
can and Ayache, 2000; Gerig et al., 1994; Ayache, 1995]. The three main topics
appear to be: segmentation, which is used to identify regions of (often 3D) im-
ages that correspond to particular organs; registration, which is used to construct
correspondences between images of different modalities and between images and
patients; and analysis of both morphology — how big is this? has it grown? —
and function. McInerney and Terzopolous survey the use of deformable models
in [McInerney and Terzopolous, 1996]. There are surveys of registration methods
and issues in [Maintz and Viergever, 1998; Lavallee, 1996] and a comparison between
registration output and “ground truth” in [West and Others, 1997].

Assignments

Exercises

• Assume that we are viewing objects in a calibrated perspective camera, and
wish to use a pose consistency algorithm for recognition.
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1. Show that three points is a frame group.

2. Show that a line and a point is not a frame group.

3. Explain why it is a good idea to have frame groups composed of different
types of feature.

4. Is a circle and a point not on its axis a frame group?

• We have a set of plane points P j ; these are subject to a plane affine transfor-
mation. Show that

det [P iP jP k]

det [P iP jP l]

is an affine invariant (as long as no two of i, j, k and l are the same, and no
three of these points are collinear).

• Use the result of the previous exercise to construct an affine invariant for:

1. Four lines;

2. Three coplanar points;

3. A line and two points (these last two will take some thought).

•• In chamfer matching, at any step, a pixel can be updated if the distances
from some or all of its neighbours to an edge are known; Borgefors counts
the distance from a pixel to a vertical or horizontal neighbour as 3 and to a
diagonal neighbour as 4 to ensure the pixel values are integers. Why does this
mean

√
2 is approximated as 4/3? Would a better approximation be a good

idea?

• One way to improve pose estimates is to take a verification score, and then
optimize it as a function of pose. We said that this optimization could be
hard, particularly if the test to tell whether a backprojected curve was close
to an edge point was a threshold on distance. Why would this lead to a hard
optimisation problem?

• We said that for an uncalibrated affine camera viewing a set of plane points,
the effect of the camera can be written as an unknown plane affine transfor-
mation. Prove this. What if the camera is an uncalibrated perspective camera
viewing a set of plane points?

• Prepare a summary of methods for registration in medical imaging other than
the geometric hashing idea we discussed. You should keep practical constraints
in mind, and you should indicate which methods you favour, and why.

• Prepare a summary of non-medical applications of registration and pose con-
sistency.
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Programming Assignments

1. Representing an object as a linear combination of models is often represented
as abstraction, because we can regard adjusting the coefficients as obtaining
the same view of different models. Furthermore, we could get a parametric
family of models by adding a basis element to the space. Explore these ideas
by building a system for matching rectangular buildings where the width,
height and depth of the building are unknown parameters. You should extend
the linear combinations idea to handle orthographic cameras — this involves
constraining the coefficients to represent rotations.



Chapter 25

FINDING TEMPLATES
USING CLASSIFIERS

There are a number of important object recognition problems that involve looking
for image windows which have a simple shape and stylised content. For example,
frontal faces appear as oval windows, and (at a coarse scale) all faces look pretty
much the same — a dark horizontal bar at the eyes and mouth, a light vertical
bar along the nose, and not much texture on the cheeks and forehead. As another
example, a camera mounted on the front of a car will always see relevant stop signs
as having about the same shape and appearance.
This suggests a view of object recognition where we take all image windows

of a particular shape and test them to tell if the relevant object is present. If
we don’t know how big the object will be, we can search over scale, too; if we
don’t know its orientation, we might search over orientation as well, etc. Generally,
this approach is referred to as template matching. There are some objects that
can be found very effectively with a template matcher. Faces and roadsigns are
important examples. Secondly, while many objects appear to be hard to find with
simple template matchers (it would be hard to find a person this way, because the
collection of possible image windows that represent a person is immense), there
is some evidence that reasoning about relations between many different kinds of
templates can be an effective way to find objects. In chapter 26, we explore this
line of reasoning further.
The main issue to study in template matching is how one builds a test that

can tell whether an oval represents a face or not. Ideally, this test will be obtained
using a large set of examples. The test is known as a classifier — a classifier is
anything that takes a feature set as an input and produces a class label. In this
chapter, we describe a variety of techniques for building classifiers, with examples
of their use in vision applications. We first present the key ideas and terminology
used (section 25.1); we then show two successful classifiers built using histograms
(section 25.2); for more complex classifiers, we need to choose the features a classi-
fier should use, and we discuss two methods in (section 25.3). Finally, we describe
two different methods for building classifiers with current applications in vision.

709
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Section 25.4 is an introduction to the use of neural nets in classification; and sec-
tion 25.5 describes a very useful classifier known as a support vector machine.

25.1 Classifiers

Classifiers are built by taking a set of labelled examples and using them to come
up with a rule that will assign a label to any new example. In the general problem,
we have a training data set (xi, yi); each of the xi consists of measurements of the
properties of different types of object, and the yi are labels giving the type of the
object that generated the example. We know the relative costs of mislabelling each
class, and must come up with a rule that can take any plausible x and assign a
class to it.
The cost of an error significantly affects the decision that is made. In sec-

tion 25.1.1, we study this question. It will emerge that the probability of a class
label given a measurement is the key matter. In section 25.1.2, we discuss meth-
ods for building appropriate models in a general way. Finally, we discuss how to
estimate the performance of a given classifier (section 25.1.5).

25.1.1 Using Loss to Determine Decisions

The choice of classification rule must depend on the cost of making a mistake.
For example, doctors engage in classification all the time — given a patient, they
produce the name of a disease. A doctor who decided that a patient suffering from
a dangerous and easily treated disease is well, is going to have problems. It would
be better to err on the side of misclassifying healthy patients as sick even if doing
so involves treating some healthy patients unnecessarily.
The cost depends on what is misclassified to what. Generally, we write outcomes

as (i → j), meaning that an item of type i is classified as an item of type j. Each
outcome has its own cost, which is known as a loss. Hence, we have a loss function
which we shall write as L(i→ j), meaning the loss incurred when an object of type
i is classified as having type j. Since losses associated with correct classification
should not affect the design of the classifier, L(i → i) must be zero; but the other
losses could be any positive numbers.
The risk function of a particular classification strategy is the expected loss

when using it, as a function of the kind of item. The total risk is the total
expected loss when using the classifier. Thus if there were two classes, the total risk
of using strategy s would be:

R(s) = Pr {1→ 2|using s}L(1→ 2) + Pr {2→ 1|using s}L(2→ 1)

The desirable strategy is one that minimizes this total risk.

Building a Two Class Classifier that Minimizes Total Risk

Assume that the classifier can choose between two classes, and we have a known
loss function. There is some boundary in the feature space — which we call the
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decision boundary— such that points on one side belong to class one and points
on the other side to class two.
We can resort to a trick to determine where the decision boundary is. It must

be the case that, for points on the decision boundary of the optimal classifier, either
choice of class has the same expected loss — if this wasn’t so, we could obtain a
better classifier by always choosing one class (and so moving the boundary). This
means that, for measurements on the decision boundary, choosing class one yields
the same expected loss as choosing class two.
A choice of class one for a point x at the decision boundary yields an expected

loss

P {class is 2|x}L(2→ 1) + P {class is 1|x}L(1→ 1) = P {class is 2|x}L(2→ 1) + 0

= p(2|x)L(2→ 1)

(you should watch the one’s and two’s closely here). Similarly, a choice of class two
for this point yields an expected loss

P {class is 1|x}L(1→ 2) = p(1|x)L(1→ 2)

and these two terms must be equal. This means our decision boundary consists of
the points x where

p(1|x)L(1→ 2) = p(2|x)L(2→ 1)

We can come up with an expression that is often slightly more practical, by using
Bayes’ rule. Rewrite our expression as

p(x|1)p(1)

p(x)
L(1→ 2) =

p(x|2)p(2)

p(x)
L(2→ 1)

and clear denominators to get

p(x|1)p(1)L(1→ 2) = p(x|2)p(2)L(2→ 1)

This expression identifies points x on a class boundary; we now need to know how
to classify points off a boundary.
At points off the boundary, we must choose the class with the lowest expected

loss. Recall that, if we choose class two for a point x, the expected loss is

p(1|x)L(1→ 2)

etc. This means that we should choose class one if

p(1|x)L(1→ 2) > p(2|x)L(2→ 1)

and class two if

p(1|x)L(1→ 2) < p(2|x)L(2→ 1)
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A Classifier for Multiple Classes

From now on, we shall assume that L(i → j) is zero for i = j and one otherwise –
that is, that each outcome has the same loss. In some problems, there is another
option, which is to refuse to decide which class an object belongs to. This option
involves some loss, too, which we shall assume to be d < 1 (if the loss involved in
refusing to decide is greater than the loss involved in any decision, then we’d never
refuse to decide).
For our loss function, the best strategy — which is known as the Bayes clas-

sifier — is given in algorithm 1. The total risk associated with this rule is known
as the Bayes risk — this is the smallest possible risk that we can have in using
a classifier. It is usually rather difficult to know what the Bayes classifier — and
hence the Bayes risk — is, because the probabilities involved are not known exactly.
In a few cases it is possible to write the rule out explicitly. One way to tell the
effectiveness of a technique for building classifiers is to study the behaviour of the
risk as the number of examples increases — for example, one might want the risk
to converge to the Bayes risk in probability if the number of examples is very large.
The Bayes risk is seldom zero, as figure 25.1 illustrates.

For a loss function

L(i→ j) =




1 i �= j
0 i = j
d < 1 no decision

the best strategy is

• if Pr {k|x} > Pr {i|x} for all i not equal to k, and if this proba-
bility is greater than 1− d, choose type k

• if there are several classes k1...kj for which Pr {k1|x} =
Pr {k2|x} = ... = Pr {kj|x} > Pr {i|x} for all i not in k1, ..kj,
choose uniformly and at random between k1, ..kj

• if for all k we have Pr {k|x} > Pr {i|x} ≤ 1− d, refuse to decide.

Algorithm 25.1: The Bayes classifier classifies points using the posterior proba-
bility that an object belongs to a class, the loss function, and the prospect of refusing
to decide.

25.1.2 Overview: Methods for Building Classifiers

Usually, we do not know Pr {x|k} exactly — which are often called class-conditional
densities— or Pr {k}, and must determine a classifier from an example data set.
There are two rather general strategies:

• Explicit probability models: we can use the example data set to build
a probability model (of either the likelihood or the posterior, depending on
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Figure 25.1. This figure shows typical elements of a two class classification problem. We
have plotted p(class|x) as a function of the feature x. Assuming that L(1→ 2) = L(2→ 1),
we have marked the classifier boundaries. In this case, the Bayes risk is the sum of the
amount of the posterior for class one in the class two region and the amount of the posterior
for class two in the class one region (the hatched area in the figures). For the case on the
left, the classes are well separated, which means that the Bayes risk will be small; for the
case on the right, the Bayes risk is rather large.

taste). There are a very wide variety of ways of doing this, some of which
we shall see in the following sections. In the very simplest case, we know
that the class-conditional densities come from some known parametric form
of distribution. In this case, we can compute estimates of the parameters from
the data set, and plug these estimates into the Bayes rule. This strategy is
often known as a “plug-in” classifier (section 25.1.3). This approach covers
other parametric density models and other methods of estimating parameters.
One subtlety is that the “best” estimate of a parameter may not give the best
classifier, because the parametric model may not be correct. Another subtlety
is that a good classifier may be obtained using a parametric density model that
is not a very accurate description of the data (see figure 25.2). In many cases,
it is hard to obtain a satisfactory model with a small number of parameters.
More sophisticated modelling tools (such as neural nets, which we deal with
in some detail in section 25.4) provide very flexible density models that can
be fitted using data.

• Determining decision boundaries directly: Quite bad probability mod-
els can produce good classifiers, as figure 25.2 indicates. This is because the
decision boundaries are what determine the performance of a classifier, not
the details of the probability model (the main role of the probability model
in the Bayes classifier is to identify the decision boundaries). This suggests
that we might ignore the probability model, and attempt to construct good
decision boundaries directly. This approach is often extremely successful; it is
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particularly attractive when there is no reasonable prospect of modelling the
data source. One strategy assumes that the decision boundary comes from
one or another class, and constructs an extremisation problem to choose the
best element of that class. A particularly important case comes when the data
is linearly separable— which means that there exists a hyperplane with all
the positive points on one side and all the negative points on the other — and
thus that a hyperplane is all that is needed to separate the data (section 25.5).

x

P(1|x)

P(2|x)

Figure 25.2. The figure shows posterior densities for two classes. The optimal decision
boundary is shown as a dashed line. Notice that, while a normal density may provide
rather a poor fit to the posteriors, the quality of the classifier it provides depends only
on how well it predicts the position of the boundaries. In this case, assuming that the
posteriors are normal may provide a fairly good classifier, because P (2|x) looks normal,
and the mean and covariance of P (1|x) look as though they would predict the boundary
in the right place.

25.1.3 Example: A Plug-in Classifier for Normal Class-conditional
Densities

An important plug-in classifier occurs when the class-conditional densities are known
to be normal. We can either assume that the priors are known, or estimate the pri-
ors by counting the number of data items from each class. Now we need to provide
the parameters for the class-conditional densities. We do this as an estimation
problem, using the data items to estimate the mean µk and covariance Σk for each
class. Now, since log a > log b implies a > b, we can work with the logarithm of the
posterior. This yields a classifier of the form in algorithm 2.
The term δ(x;µk,Σk) in this algorithm is known as the Mahalanobis dis-

tance(e.g. see [Ripley, 1996]). The algorithm can be interpreted geometrically as
saying that the correct class is the one whose mean is closest to the data item, tak-
ing into account the variance. In particular, distance from a mean along a direction
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Assume we have N classes, and the k’th class contains Nk examples, of which the
i’th is written as xk,i.
For each class k, estimate the mean and standard deviation for that class-
conditional density.

µk =
1

Nk

Nk∑
i=1

xk,i

Σk =
1

Nk − 1

Nk∑
i=1

(xk,i − µk)(xk,i − µk)
T

To classify an example x

Choose the class k with the smallest value of δ(x;µk,Σk)
2 − Pr {k}

where

δ(x;µk,Σk) =
1

2

(
(x −µk)

TΣ−1k (x− µk)
)(1/2)

Algorithm 25.2: A plug-in classifier can be used to classify objects into classes if
the class-conditional densities are known to be normal

where there is little variance has a large weight and distance from the mean along
a direction where there is a large variance has little weight. This classifier can be
simplified by assuming that each class has the same covariance (with the advantage
that we have fewer parameters to estimate). In this case, because the term xTΣ−1x
is common to all expressions, the classifier actually involves comparing expressions
that are linear in x (exercises). If there are only two classes the process boils down
to determining whether a linear expression in x is greater than or less than zero
(exercises).

25.1.4 Example: A Non-Parametric Classifier using Nearest Neigh-
bours

It is reasonable to assume that example points “near” an unclassified point should
indicate the class of that point. Nearest neighbours methods build classifiers
using this heuristic. We could classify a point by using the class of the nearest
example whose class is known, or use several example points, and make them vote.
It is reasonable to require that some minimum number of points vote for the class
we choose.
A (k, l) nearest neighbour classifier finds the k example points closest to the

point being considered, and classifies this point with the class that has the highest
number of votes, as long as this class has more than l votes (otherwise the point is
classified as unknown). A (k, 0)-nearest neighbour classifier is usually known as a
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k-nearest neighbour classifier, and a (1, 0)-nearest neighbour classifier is usually
known as a nearest neighbour classifier.
Nearest neighbour classifiers are known to be good, in the sense that the risk of

using a nearest neighbour classifier with a sufficiently large number of examples lies
within quite good bounds of the Bayes risk. As k grows, the difference between the
Bayes risk and the risk of using a k-nearest neighbour classifier goes down as 1/

√
k;

in practice, one seldom uses more than three nearest neighbours. Furthermore, if
the Bayes risk is zero, the expected risk of using a k-nearest neighbour classifier is
also zero (see [Devroye et al., 1996] for more detail on all these points).
Nearest neighbour classifiers come with some computational subtleties, however.

The first is the question of finding the k nearest points, which is no mean task in a
high-dimensional space (surprisingly, checking the distance to each separate example
one by one is, at present, a competitive algorithm). This task can be simplified by
noticing that some of the example points may be superfluous. If, when we remove
a point from the example set, the set still classifies every point in the space in the
same way (the decision boundaries have not moved), then that point is redundant
and can be removed. However, it is hard to know which points to remove. The
decision regions for (k, l)-nearest neighbour classifiers are convex polytopes; this
makes familiar algorithms available in 2D — where Voronoi diagrams implement
the nearest neighbour classifier — but leads to complications in high dimensions.

Given an feature vector x

1. determine the k training examples that are nearest, x1, . . . ,xk;

2. determine the class c that has the largest number of representatives n in this
set;

3. if n > l, classify x as c, otherwise refuse to classify it.

Algorithm 25.3: A (k, l) nearest neighbour classifier uses the type of the nearest
training examples to classify a feature vector

A second difficulty in building such classifiers is the choice of distance. For
features that are obviously of the same type, such as lengths, the usual metric may
be good enough. But what if one feature is a length, one is a colour, and one is an
angle? One possibility is to use a covariance estimate to compute a Mahalanobis-like
distance.

25.1.5 Estimating and Improving Performance

Typically, classifiers are chosen to work well on the training set, and this can mean
that the performance of the classifier on the training set is a poor guide to its overall
performance. One example of this problem is the (silly) classifier that takes any
data point and, if it is the same as a point in the training set, emits the class of
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that point and otherwise chooses randomly between the classes. This classifier has
been learnt from data, and has a zero error rate on the training data set; it is likely
to be unhelpful on any other data set, though.
The difficulty occurs because classifiers are subject to overfitting effects. The

phenomenon, which is known by a variety of names (selection bias is quite widely
used), has to do with the fact that the classifier is chosen to perform well on the
training data set. The training data is a (possibly representative) subset of the
available possibilities. The term overfitting is descriptive of the source of the prob-
lem, which is that the classifier’s performance on the training data set may have to
do with quirks of that data set that don’t occur in other sets of examples. If the
classifier does this, it is quite possible that it will perform very well on the training
data and very badly on any other data set (this phenomenon is often referred to as
generalising badly).
Generally, we expect classifiers to perform somewhat better on the training set

than on the test set (for example, see figure 25.18, which shows training set and test
set errors for a classifier that is known to work very well). Overfitting can result in
a substantial difference between performance on the training set and performance
on the test set. This leaves us with the problem of predicting performance. There
are two possible approaches: we can hold back some training data to check the per-
formance of the classifier (an approach we describe below), or we can use theoretical
methods to bound the future error rate of the classifier (see, for example, [Vapnik,
1996; Vapnik, 1998]).

Estimating Total Risk with Cross-Validation

We can make direct estimates of the expected risk of using a classifier, if we split
the data set into two subsets, train the classifier on one subset and test it on the
other. This is a waste of data, particularly if we have very few data items for a
particular class, and may lead to an inferior classifier. However, if the size of the test
subset is small, the difficulty may not be significant. In particular, we could then
estimate total risk by averaging over all possible splits. This technique, known as
cross-validation, allows an estimate of the likely future performance of a classifier,
at the expense of substantial computation.
The most usual form of this algorithm involves omitting single items from the

data set, and is known as leave-one-out cross-validation. Errors are usually
estimated by simply averaging over the class, but more sophisticated estimates are
available (see, for example, [Ripley, 1996]). We will not justify this tool mathemati-
cally; however, it is worth noticing that leave-one-out cross-validation in some sense
looks at the sensitivity of the classifier to a small change in the training set. If a
classifier performs well under this test, then large subsets of the data set look similar
to one another, which suggests that a representation of the relevant probabilities
derived from the data set might be quite good.
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Choose some class of subsets of the training set,

for example, singletons.

For each element of that class, construct a classifier by

omitting that element in training, and compute the

classification errors (or risk) on the omitted subset.

Average these errors over the class of subsets to estimate

the risk of using the classifier trained on the entire training

data set.

Algorithm 25.4: Cross-Validation

Using Bootstrapping to Improve Performance

Generally, more training data leads to a better classifier. However, training classi-
fiers with very large data sets can be difficult, and there are diminishing returns.
Typically, only a relatively small number of example items are really important in
determining the behaviour of a classifier (we see this phenomenon in greater detail
in section 25.5). The really important examples tend to be rare cases that are quite
hard to discriminate — this is because these cases affect the position of the decision
boundary most significantly. We need a large data set to ensure that these cases
are present, but it appears inefficient to go to great effort to train on a large data
set, most of whose elements aren’t particularly important.
There is a useful trick that avoids much redundant work. We train on a subset of

the examples, run the resulting classifier on the rest of the examples, and then insert
the false positives and false negatives into the training set to retrain the classifier.
This is because the false positives and false negatives are the cases that give the
most information about errors in the configuration of the decision boundaries. This
strategy is known as bootstrapping (the name is potentially confusing, because
there is an unrelated statistical procedure known as bootstrapping; nonetheless,
we’re stuck with it at this point).

25.2 Building Classifiers from Class Histograms

One simple way to build a probability model for a classifier is to use a histogram.
If a histogram is divided by the total number of pixels, we get a representation of
the class-conditional probability density function. It is a fact that, as the data set
gets larger and the histogram bins get smaller, the histogram divided by the total
number of data items will almost certainly converge to the probability density func-
tion (e.g. [Devroye et al., 1996; Vapnik, 1996; Vapnik, 1998]). In low dimensional
problems, this approach can work quite well (section 25.2.1). It isn’t practical for
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high dimensional data because the number of histogram bins required quickly be-
comes intractable, unless we use strong independence assumptions to control the
complexity (section 25.2.2).

25.2.1 Finding Skin Pixels using a Classifier

Skin-finding is useful for activities like building gesture based interfaces. Skin has
a quite characteristic range of colours, suggesting that we can build a skin finder
by classifying pixels on their colour. Jones and Rehg construct a histogram of
RGB values due to skin pixels, and a second histogram of RGB values due to
non-skin pixels [Jones and Rehg, 1999]. These histograms serve as models of the
class-conditional densities.
We write x for a vector containing the colour values at a pixel. We subdi-

vide this colour space into boxes, and count the percentage of skin pixels that
fall into each box — this histogram supplies p(x|skin pixel), which we can evalu-
ate by determining the box corresponding to x and then reporting the percentage
of skin pixels in this box. Similarly, a count of the percentage of non-skin pix-
els that fall into each box supplies p(x|not skin pixel). We need p(skin pixel) and
p(not skin pixel) — or rather, we need only one of the two, as they sum to one.
Assume for the moment that the prior is known. We can now build a classifier,
using Bayes’ rule to obtain the posterior (keep in mind that p(x) is easily computed
as p(x|skin pixel) + p(x|not skin pixel)).
One way to estimate the prior is to model p(skin pixel) as the fraction of skin

pixels in some (ideally large) training set. Notice that our classifier compares

p(x|skin)p(skin)

p(x)
L(skin→ not skin)

with
p(x|not skin)p(not skin)

p(x)
L(not skin→ skin)

Now by rearranging terms and noticing that p(skin|x) = 1 − p(not skin|x), our
classifier becomes

• if p(skin|x) > θ, classify as skin

• if p(skin|x) < θ, classify as not skin

• if p(skin|x) = θ, choose classes uniformly and at random

where θ is an expression that doesn’t depend on x, and encapsulates the relative loss,
etc. This yields a family of classifiers, one for each choice of θ. For an appropriate
choice of θ, the classifier can be very good (figure 25.3).
Each classifier in this family has a different false-positive and false-negative rate.

These rates are functions of θ, so we can plot a parametric curve that captures
the performance of the family of classifiers. This curve is known as a receiver
operating curve (or ROC for short). Figure 25.4 shows the ROC for a skin finder
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Figure 25.3. The figure shows a variety of images together with the output of the skin
detector of Jones and Rehg applied to the image. Pixels marked black are skin pixels, and
white are background. Notice that this process is relatively effective, and could certainly
be used to focus attention on, say, faces and hands. Figure from “Statistical color models
with application to skin detection,” M.J. Jones and J. Rehg, Proc. Computer Vision and
Pattern Recognition, 1999 c© 1999, IEEE

built using this approach. The ROC is invariant to choice of prior (exercises)— this
means that if we change the value of p(skin), we can choose some new value of
θ to get a classifier with the same performance. This yields another approach to
estimating a prior. We choose some value rather arbitrarily, plot the loss on the
training set as a function of θ, and then select the value of θ that minimizes this
loss.

25.2.2 Face Finding Assuming Independent Template Responses

Histogram models become impractical in high dimensions, because the number of
boxes required goes up as a power of the dimension. We can dodge this phenomenon.
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Figure 25.4. The receiver operating curve for the skin detector of Jones and Rehg.
This plots the detection rate against the false negative rate for a variety of values of the
parameter θ. A perfect classifier has an ROC that, on these axes, is a horizontal line at
100% detection. Notice that the ROC varies slightly with the number of boxes in the
histogram. Figure from “Statistical color models with application to skin detection,” M.J.
Jones and J. Rehg, Proc. Computer Vision and Pattern Recognition, 1999 c© 1999, IEEE

Recall from chapter 7 that independence assumptions reduce the number of param-
eters that must be learned in a probabilistic model; by assuming that terms are
independent, we can reduce the dimension sufficiently to use histograms. While
this appears to be an aggressive oversimplification — it is known by the pejorative
name of naive Bayes — it can result in useful systems. In one such system, due
to Schneiderman and Kanade, this model is used to find faces [Schneiderman and
Kanade, 1998]. Assume that the face occurs at a fixed, known scale (we could search
smoothed and resampled versions of the image to find larger faces) and will occupy
a region of known shape. In the case of frontal faces, this might be an oval or a
square; for a lateral face, this might be some more complicated polygon.
We now need to model the image pattern generated by the face. This is a

likelihood model — we want a model giving P (image pattern|face). As usual, it is
helpful to think in terms of generative models — the process by which a face gives
rise to an image patch. The set of possible image patches is somewhat difficult to
deal with, because it is big, but we can avoid this by dividing the image patch into
a set of subregions, and then labelling the subregions, using a small set of labels.
An appropriate labelling can be obtained using a clustering algorithm and a

large number of example images. For example, we might cluster the subregions in a
large number of example images using k-means; now each cluster center represents a
“typical” form of subregion. The subregions in our image patch can then be labelled
with the cluster center to which they are closest. This approach has the advantage
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Figure 25.5. Faces found using the method of section 25.2.2. Image windows at various
scales are classified as frontal face, lateral face or non-face, using a likelihood model learned
from data. Subregions in the image window are classified into a set of classes learned from
data; the face model assumes that labels from these classes are emitted independently
of one another, at different positions. This likelihood model yields a posterior value for
each class and for each window, and the posterior value is used to identify the window.
Figure from A Statistical Method for 3D Object Detection Applied to Faces and Cars, H.
Schneiderman and T. Kanade, Proc. Computer Vision and Pattern Recognition, 2000, c©
2000, IEEE

that minor variations in the image pattern — caused perhaps by noise, or by skin
irregularities, etc. — are suppressed.
At this point, a number of models are available. The simplest practical model is

to assume that the probability of encountering each pattern is independent of the



Section 25.3. Feature Selection 723

configuration of the other patterns (but not of position) given that a face is present.
This means that our model is:

P (image|face) = P (label 1 at (x1, y1), . . . , label k at (xk, yk)|face)

= P (label 1 at (x1, y1)|face) . . .P (label k at (xk, yk)|face)

In this case, each term of the form P (label k at (xk, yk)|face) can be learned fairly
easily by labelling a large number of example images, and then forming a histogram.
Because the histograms are now two dimensional, the number of boxes is no longer
problematic. A similar line of reasoning leads to a model of P (image|no face). A
classifier follows from the line of reasoning given above. This approach has been
used successfully by Schneiderman and Kanade to build detectors for faces and cars
(figure 25.5).

25.3 Feature Selection

Assume we have a set of pixels that we believe belong together, and that should
be classified. What features should we present to a classifier? One approach is to
present all the pixel values: this gives the classifier the maximum possible amount
of information about the set of pixels, but creates a variety of problems.
Firstly, high dimensional spaces are “big” in the sense that very large numbers of

examples can be required to represent the available possibilities fairly. For example,
a face at low resolution has a fairly simple structure: it consists (rather roughly) of
some dark bars (the eyebrows and eyes) and light bars (the specular reflections from
the nose and forehead) on a textureless background. However, if we are working
with high resolution faces, it might be very difficult to supply enough examples
to make determine that this structure is significant and that minor variations in
skin texture, etc. are irrelevant. Instead, we would like to choose a feature space
that would make these properties “obvious”, typically by imposing some form of
structure on the examples.
Secondly, we may know some properties of the patterns in advance; for exam-

ple, we have models of the behaviour of illumination. Forcing a classifier to use
examples to, in essence, come up with a model that we already know is a waste
of examples. We would like to use features that are consistent with our knowledge
of the patterns. This might involve preprocessing regions (for example, to remove
the effects of illumination changes), or choosing features that are invariant to some
kinds of transformation (for example, scaling an image region to a standard size).
You should notice a similarity between feature selection and model selection

(as described in sections 21 and 18.3). In model selection, we were attempting to
obtain a model that best explains a data set; here we are attempting to a set of
features that best classifies a data set. The two are basically the same activity in
slightly distinct forms (you can view a set of features as a model, and classification
as explanation); here we will describe methods that are used mainly for feature
selection. We concentrate on two standard methods for obtaining linear features,
features which are a linear function of the initial feature set.
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25.3.1 Principal Component Analysis

The core goal in feature selection is to obtain a smaller set of features that “ac-
curately represents” the original set. What this means rather depends on the ap-
plication; however, one important possibility is that the new set of features should
capture as much of the old set’s variance as possible. The easiest way to see this is
to consider an extreme example; if the value of one feature can be predicted pre-
cisely from the value of the others, then it is clearly redundant and can be dropped.
By this argument, if we are going to drop a feature, the best one to drop is the one
whose value is most accurately predicted by the others. We can do more than drop
features: we can make new features as functions of the old features.
In principal component analysis, the new features are linear functions of

the old features. In principal component analysis, we take a set of data points and
construct a lower dimensional linear subspace that “best explains” the variation of
these data points from their mean. This method (also known as the Karhunen-
Loéve transform) is a classical technique from statistical pattern recognition [Duda
and Hart, 1973; Oja, 1983; Fukunaga, 1990].
Assume we have a set of n feature vectors xi (i = 1, . . . , n) in IR

d. The mean
of this set of feature vectors is µ (you should think of the mean as the center of
gravity in this case), and their covariance is Σ (you can think of the variance as a
matrix of second moments). We use the mean as an origin, and study the offsets
from the mean, (xi − µ).
Our features will be linear combinations of the original features; this means it is

natural to consider the projection of these offsets onto various different directions.
A unit vector v represents a direction in the original feature space; we can interpret
this direction as a new feature v(x). The value of u on the i’th data point is given
by v(xi) = v

T (xi −µ). A good feature will capture as much of the variance of the
original data set as possible. Notice that v has zero mean; then the variance of v is

var(v) =
1

n− 1

n∑
i=1

v(xi)v(xi)
T

=
1

n

n−1∑
i=1

vT (xi −µ)(v
T (xi −µ))

T

= vT

{
n−1∑
i=1

(xi − µ)(xi −µ)
T

}
v

= vTΣv

Now we should like to maximise vTΣv subject to the constraint that vTv = 1.
This is an eigenvalue problem; the eigenvector of Σ corresponding to the largest
eigenvalue is the solution. Now if we were to project the data onto a space per-
pendicular to this eigenvector, we would obtain a collection of d − 1 dimensional
vectors. The highest variance feature for this collection would be the eigenvector of
Σ with second largest eigenvalue; and so on.
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Figure 25.6. A data set which is well represented by a principal component analysis.
The axes represent the directions obtained using PCA; the vertical axis is the first principal
component, and is the direction in which the variance is highest.

This means that the eigenvectors of Σ — which we write as v1, v2, . . . , vd, where
the order is given by the size of the eigenvalue and v1 has the largest eigenvalue —
give a set of features with the following properties:

• They are independent (because the eigenvectors are orthogonal).

• Projection onto the basis {v1, . . . , vk} gives the k-dimensional set of linear
features that preserves the most variance.

You should notice that, depending on the data source, principal components can
give a very good or a very bad representation of a data set (see figures 25.6 and 25.7,
and figure 25.10).
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Assume we have a set of n feature vectors xi (i = 1, . . . , n) in IR
d. Write

µ =
1

n

∑
i

xi

Σ =
1

n− 1

∑
i

(xi − µ)(xi −µ)
T

The unit eigenvectors of Σ — which we write as v1, v2, . . . , vd, where the order is
given by the size of the eigenvalue and v1 has the largest eigenvalue — give a set
of features with the following properties:

• They are independent.

• Projection onto the basis {v1, . . . , vk} gives the k-dimensional set of linear
features that preserves the most variance.

Algorithm 25.5: Principal components analysis identifies a collection of linear
features that are independent, and capture as much variance as possible from a
dataset.

25.3.2 Identifying Individuals with Principal Components Analysis

People are extremely good at remembering and recognizing a very large number of
faces, and mimicking this ability in an automated computer system has a wide range
of applications, including human computer interaction and security. Kanade [1973]

developed the first fully automated system for face recognition, and many other ap-
proaches have since then been proposed to address various instances of this problem
(e.g., fixed head orientation, fixed expression etc.., see [Chellappa et al., 1995] for a
recent survey). Finding faces typically involves either: (1) feature-based matching
techniques, where facial features such as the nose, lips, eyes etc.. are extracted and
matched using their geometric parameters (height, width..) and relationship (rela-
tive position..); or (2) template matching methods, where the brightness patterns
of two face images are directly compared (see [Brunelli and Poggio, 1993b] for a
discussion and comparison of the two approaches). However, assume a face has
been found: whose face is it? if we have a useable spatial coordinate system, PCA
based methods can address this problem simply and effectively

Eigenpictures

People can quickly recognize enormous numbers of faces, and Sirovich and Kirby
[1987] suggested that the human visual system might only use a small number of
parameters to store and index face pictures. Accordingly, they investigated the use
of principal component analysis as a compression technique for face images: indeed,
PCA allows each sample si ∈ IR

d (i = 1, . . . , n) to be represented by only p � d
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Figure 25.7. Not every data set that is well represented by PCA. The principal com-
ponents of this data set will be relatively unstable, because the variance in each direction
is the same for the source. This means that we may well report significantly different
principal components for different datasets from this source. This is a secondary issue —
the main difficulty is that projecting the data set onto some axis will suppress the main
feature, its circular structure.

numbers, the coordinates of its projection in the basis formed by the vectors uj
(j = 1, . . . , p). Of course, these vectors must also be stored, with total cost (n+d)p
as opposed to the original nd storage requirement. Sirovich and Kirby dubbed the
vectors ui “eigenpictures” since they have the same dimensionality as the original
images. Their experiments show that 40 eigenpictures are sufficient to reconstruct
the members of an image database containing 115 128× 128 faces with a 3% error
rate (Figure 25.8). Note that for these parameter values (p = 40, n = 115 and
d = 128 × 128), the size of the eigenpicture representation (including the image
projections) is less than half the size of the original database. Sirovich and Kirby
also show that face images of persons who are not part of this database yield error
rates inferior to 8%, even under adverse lighting conditions, which suggests an
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excellent extrapolating power.

(a)

(b)

            

Figure 25.8. Eigenpictures: (a) from left to right: the mean of 115 face images, a
sample face, and its caricature (i.e., the corresponding deviation from the mean); (b)
approximation of the sample face using 10, 20, 30 and 40 eigenpictures. Reprinted from
[Sirovitch and Kirby, 1987], Figures 3 and 5.

Eigenfaces

Although the idea of using eigenpictures for face recognition is implicit in their
paper, Sirovich and Kirby did not propose an explicit recognition algorithm. This
was done by Turk and Pentland [1991], who presented a full recognition system
based on a variant of the nearest-neighbor classification scheme summarized at the
beginning of this section. In the process, they renamed eigenpictures “eigenfaces”.
The recognition algorithm is divided into the following steps:

Off-line:

1. Collect a set of pictures of m persons, reflecting variations in expression, pose,
and lighting.

2. Compute the eigenfaces ui (i = 1, . . . , p).



Section 25.3. Feature Selection 729

3. For each person in the database, calculate the corresponding representative
vector wj (j = 1, . . . , m) in the subspace Vp spanned by the eigenfaces.

On-line:

4. Compute the projection w of any new image t onto Vp.

5. If the distance d = |t − w| is greater than some preset threshold ε1, classify
the image as “non-face.”

6. Otherwise, if the minimum distance dk = |w − wk| between the projection
of the new image and the known face representatives is smaller than some
present threshold ε2, classify the image as “person number k.”

7. In the remaining case (d < ε1 and dk ≥ ε2), classify the image as “unknown
person”, and (optional) add the new image to the database and recompute
the eigenfaces.

At this point, we should clarify how the representative vectors wj are computed
(step 3). Turk and Pentland [1991] propose averaging the eigenface pattern vectors,
i.e., the projections of the images associated with class number j onto Sp. This is
an alternative to the nearest-neighbor classification approach presented earlier.
In their experiments, Turk and Pentland use an image database of 2,500 128×128

images of 16 different subjects, corresponding to all combinations of three face
orientations, three head scales, and three lighting conditions (Figure 25.9).
Table 25.1 gives quantitative recognition results. In the corresponding experi-

ments, training sets are chosen among various groups of 16 images in the original
database, making sure each person appears in each training set. All images in the
database are then classified. Statistics are collected by measuring the mean varia-
tion between training and test conditions. Illumination, scale, and orientation are
varied independently.

Experimental Correct/unknown recognition percentage
condition Lighting Orientation Scale

Forced classification 96/0 85/0 64/0
Forced 100% accuracy 100/19 100/39 100/60

Forced 20% unknown rate 100/20 94/20 74/20

Table 25.1. Recognition results. The experimental conditions are set by changing the
value of ε1 (e.g., ε1 = +∞ to force classification). Lower (resp. higher) values of ε1 will
yield more (resp. less ) accurate recognition results, but higher (resp. lower) unknown
classification results.

25.3.3 Canonical Variates

Principal component analysis yields a set of linear features of a particular dimension
that best represents the variance in a high-dimensional dataset. There is no guar-
antee that this set of features is good for classification. For example, figure 25.10
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Figure 25.9. A subset of the image database used in the experiments of [Turk and
Pentland, 1991]. Top: the 16 subjects. Bottom: variation in lighting and orientation for
one of the subjects (scale variations are also included in the actual data set but they are
not shown here). Reprinted from [Turk and Pentland, 1991], Figures 1 and 8.
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shows a dataset where the first principal component would yield a very bad classi-
fier and the second principal component would yield quite a good one, despite not
capturing the variance of the data set.
Linear features that emphasize the distinction between classes are known as

canonical variates. To construct canonical variates, assume that we have a set of
data items xi, for i ∈ {1, . . . , n}. We assume that there are p features (i.e. that the
xi are p-dimensional vectors). We have g different classes, and the j’th class has
mean µj . Write µ for the mean of the class means, i.e.

µ =
1

g

g∑
j=1

µj

Write

B =
1

g − 1

g∑
j=1

(µj −µ)(µj −µ)
T

Note that B gives the variance of the class means. In the simplest case, we assume
that each class has the same covariance Σ, and that this has full rank. We would
like to obtain a set of axes where the clusters of data points belonging to a particular
class will group together tightly, while the distinct classes will be widely separated.
This involves finding a set of features that maximises the ratio of the separation
(variance) between the class means to the variance within each class. The separation
between the class means is typically referred to as the between-class variance,
and the variance within a class is typically referred to as thewithin-class variance.
Now we are interested in linear functions of the features, so we concentrate on

v(x) = vTx

We should like to maximize the ratio of the between-class variances to the within-
class variances for v1.
Using the same argument as for principal components, we can achieve this by

choosing v to maximise
vT1 Bv1
vT1 Σv1

This problem is the same as maximising vT1 Bv1 subject to the constraint that
vT1 Σv1 = 1. In turn, a solution has the property that

Bv1 + λΣv1 = 0

for some constant λ. This is known as a generalised eigenvalue problem —
if Σ has full rank, we can solve it by finding the eigenvector of Σ−1B with largest
eigenvalue (otherwise, we use specialised routines within the relevant numerical
software environment).
Now for each vl, for 2 ≤ l ≤ p, we should like to find features that extremise the

criterion, and are independent of the the previous vl. These are provided by the
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Figure 25.10. Principal component analysis doesn’t take into account the fact that
there may be more than one class of item in a dataset. This can lead to significant
problems. For a classifier, we would like to obtain a set of features that firstly reduces
the number of features and secondly makes the difference between classes most obvious.
For the data set on the top, one class is indicated by circles and the other by stars. PCA
would suggest projection onto a vertical axis, which captures the variance in the dataset,
but cannot be used to discriminate it, as we can see from the axes obtained by PCA, which
are overlaid on the data set. The bottom row shows the projections onto those axes.
On the bottom left, we show the projection onto the first principal component — which
has higher variance, but separates the classes poorly — and on the bottom right, we
show the projection onto the second principal component — which has significantly lower
variance (look at the axes) and gives better separation.

other eigenvectors of Σ−1B. The eigenvalues give the variance along the features
(which are independent). By choosing the m < p eigenvectors with the largest
eigenvalues, we obtain a set of features that reduces the dimension of the feature
space will best preserving the separation between classes. This doesn’t by any means
guarantee the best error rate for a classifier on a reduced number of features, but
it offers a good place to start, by reducing the number of features while respecting
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Figure 25.11. Canonical variates use the class of each data item as well as the features
in estimating a good set of linear features. In particular, the approach constructs axes that
separate different classes as well as possible. The data set used in figure 25.10 is shown
on the left, with the axis given by the first canonical variate overlaid. On the bottom
right, we show the projection onto that axis, where the classes are rather well separated.

the category structure (details and examples in [McLachlan and Krishnan, 1996],
or in [Ripley, 1996]).
If the classes don’t have the same covariance, it is still possible to construct

canonical variates. In this case, we estimate a Σ as the covariance of all of the
offsets of each data item from its own class mean, and proceed as before. Again,
this is an approach without a guarantee of optimality, but one that can work quite
well in practice.

25.4 Neural Networks

It is commonly the case that neither simple parametric density models nor histogram
models can be used. In this case, we must either use more sophisticated density
models (an idea we explore in this section) or look for decision boundaries directly
(section 25.5).

25.4.1 Key Ideas

A neural network is a parametric approximation technique that has proven useful
for building density models. Neural networks typically approximate a vector func-
tion f of some input x with a series of layers. Each layer forms a vector of outputs
each of which is obtained by applying the same non-linear function — which we
shall write as φ — to different affine functions of the inputs. We adopt the con-
venient trick of adding an extra component to the inputs and fixing the value of
this component at one, so that we obtain a linear function of this augmented input
vector. This means that a layer with augmented input vector u and output vector
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Figure 25.12. Canonical variates are effective for a variety of simple template
matching problems. The figure on top shows views of 10 objects at a variety of
poses, on a black background (these images are smoothed and resampled versions of
images in the well-known COIL database, due to Nene and Nayar and available at
http://www.cs.columbia.edu/*******). Identifying an object from one of these images
is a relatively simple matter, because objects appear on a constant background — they
do not need to be segmented. We then used 60 of the images of each object to determine
a set of canonical variates. The figure below shows the first two canonical variates for
71 images — the 60 training images and 11 others — of each object (different symbols
correspond to different objects). Note that the clusters are tight and well separated; on
these two canonical variates alone, we could probably get quite good classification.

v can be written as

v = [φ(w1 · u), φ(w2 · u), . . . φ(wn · u)]
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Assume that we have a set of data items of g different classes. There are nk items
in each class, and a data item from the k’th class is xk,i, for i ∈ {1, . . . , nk}. The
j’th class has mean µj. We assume that there are p features (i.e. that the xi are
p-dimensional vectors).
Write µ for the mean of the class means, i.e.

µ =
1

g

g∑
j=1

µj

Write

B =
1

g − 1

g∑
j=1

(µj − µ)(µj −µ)
T

Assume that each class has the same covariance Σ, which is either known or esti-
mated as

Σ =
1

N − 1

g∑
c=1

{
nc∑
i=1

(xc,i −µc)(xc,i − µc)
T

}

The unit eigenvectors of Σ−1B — which we write as v1, v2, . . . , vd, where the order
is given by the size of the eigenvalue and v1 has the largest eigenvalue — give a
set of features with the following property:

• Projection onto the basis {v1, . . . , vk} gives the k-dimensional set of linear
features that best separates the class means.

Algorithm 25.6: Canonical variates identifies a collection of linear features that
separating the classes as well as possible.

where the wi are parameters that can be adjusted to approve the approximation.
Typically, a neural net uses a sequence of layers to approximate a function.

Each layer will use augmented input vectors. For example, if we are approximating
a vector function g of a vector x with a two layer net, we obtain

g(x) ≈ f(x) = [φ(w21 · y), φ(w22 · y), . . . φ(w2n · y)]

where
y(z) = [φ(w11 · z), φ(w12 · z), . . . φ(w1m · z), 1]

and
z(x) = [x1, x2, . . . , xp, 1]

Some of the elements of w1k or w2k could be clamped at zero; in this case, we
are insisting that some elements of y do not affect f(x). If this is the case, the
layer is referred to as being partially connected, otherwise it is known as a fully
connected layer. Of course, layer two could be either fully or partially connected
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as well. The parameter n is fixed by the dimension of f and p is fixed by the
dimension of x, but there is no reason that m should be the same as either n or
p. Typically, m is larger than either. A similar construction yields three layer
networks (or networks with more layers, which are uncommon). Neural networks
are often drawn with circles indicating variables and arrows indicating possibly non-
zero connections; this gives a representation that exposes the basic structure of the
approximation (figure 25.13).

x x x

y y y 1

1

f f f

1 2 3

1 2 3

1 2 3

Figure 25.13. Neural networks are often illustrated by diagrams of the form shown
above. Each circle represents a variable, and the circles are typically labelled with the
variable. The “layers” are obvious in such a drawing. This network is the two layer network
given in the text; the arrows indicate that the coefficient coupling the two variables in the
affine function could be non-zero. This network is fully connected, because all arrows are
present. It is possible to have arrows skip layers, etc.

Choosing a Non-Linearity

There are a variety of possibilities for φ. For example, we could use a threshold
function, which has value one when the argument is positive and zero otherwise.
It is quite easy to visualize the response of a layer of that uses a threshold function;
each component of the layer changes from zero to one along a hyperplane. This
means that the output vector takes different values in each cell of an arrangement
of hyperplanes in the input space. Networks that use layers of this form are hard
to train, because the threshold function is not differentiable.
It is more common to use a φ that changes smoothly (but rather quickly) from

zero to one, often called a sigmoid function or squashing function. The logistic
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function is one popular example. This is a function of the form

φ(x; ν) =
ex/ν

1 + ex/ν

where ν controls how sharply the function changes at x = 0. It isn’t crucial that
the horizontal assymptotes are zero and one. Another popular squashing function
is

φ(x; ν, A) = A tanh (νx)

which has horizontal assymptotes at A and −A. Figure 25.14 illustrates these non-
linearities.
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Figure 25.14. On the left, a series of squashing functions obtained using φ(x;ν) =
ex/ν

1+ex/ν
, for different values of ν indicated on the figure. On the right, a series of squashing

functions obtained using φ(x;ν,A) = A tanh (x/ν) for different values of ν indicated on the
figure. Generally, for x close to the center of the range, the squashing function is linear;
for x small or large, it is strongly non-linear.

Producing a Classifier using a Neural Net

To produce a neural net that approximates some function g(x), we collect a series
of examples xe. We construct a network that has one output for each dimension of
g. Write this network as n(x;p), where p is a parameter vector that contains all
the wij. We supply a desired output vector o

e for this input; typically, oe = g(xe).
We now obtain p̂ that minimizes

Error(p) =

(
1

2

)∑
e

|n(xe;p) − oe |2

using appropriate optimization software (the half will simplify a little notation later
on, but is of no real consequence).
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The most significant case occurs when g(x) is intended to approximate the
posterior on classes, given the data. We do not know this posterior, and so cannot
supply its value to the training procedure. Instead, we require that our network has
one output for each class. Given an example xe, we construct a desired output oe

as a vector which contains a one in the component corresponding to that example’s
class and a zero in each other component. We now train the net as above, and
regard the output of the neural network as a model of the posterior probability.
An input x is then classified by forming n(x; p̂), and then choosing the class that
corresponds to the largest component of this vector.

25.4.2 Minimizing the Error

Recall that we are training a net by minimizing the sum over the examples of the
difference between the desired output and the actual output, i.e., by minimizing

Error(p) =

(
1

2

)∑
e

|n(xe;p) − oe |2

as a function of the parameters p. There are a variety of strategies for obtaining p̂,
the set of parameters that minimize this error. One is gradient descent; from some
initial point pi, we compute a new point pi+1 by

pi+1 = pi − ε(∇Error)

where ε is some small constant.

Stochastic Gradient Descent

Write the error for example e as Error(p;xe), so the total error is Error(p) =∑
e Error(p;x

e). Now if we use gradient descent, we are updating parameters
using the algorithm

pi+1 = pi − ε∇Error

(where the gradient is with respect to p and is evaluated at pi). This works, because
if ε is sufficiently small, we have that

Error(pi+1) = Error(pi − ε∇Error)

≈ Error(pi) − ε(∇Error · ∇Error)

≤ Error(pi)

with equality only at an extremum. This creates a problem: evaluating the error
and its gradient is going to involve a sum over all examples, which may be a very
large number. We should like to avoid this sum; it turns out that it is possible to
do so by selecting an example at random, computing the gradient for that example
alone, and updating the parameters using that gradient. In this process, known as
stochastic gradient descent, we update the parameters using the algorithm

pi+1 = pi − ε∇Error(p;x
e)



Section 25.4. Neural Networks 739

(where the gradient is with respect to p, is evaluated at pi, and we choose the
example uniformly at random, making a different choice at each step). In this case,
the error doesn’t necessarily go down for each particular choice, but the expected
value of the error does go down, for a sufficiently small value of ε. In particular, we
have

E(Error(pi+1)) = E(Error(pi − ε∇Error(p;x
e))

≈ E(Error(pi)− ε(∇Error · ∇Error(p;x
e))

= Error(pi)− ε
1

n

∑
e

(∇Error · ∇Error(p;xe))

= Error(pi)− ε(∇Error · (
1

n

∑
e

∇Error(p;xe)))

= Error(pi)−
ε

n
(∇Error · ∇Error)

< Error(pi) if |∇E |> 0

By taking sufficient steps down a gradient computed using only one example (se-
lected uniformly and at random each time we take a step), we can in fact minimize
the function. This is because the expected value goes down for each step, unless
we’re at the minimum. The gradient can be computed in a number of ways; one
efficient trick is backpropagation, described in section I.

Choose po (randomly)
Use backpropagation (algorithm 9) to compute
∇Error(xe;po)
pn = po − ε∇Error(x

e;po)
Until |Error(pn)− Error(po) | is small

or |po − pn | is small

po = pn
Choose an example (xe, oe) uniformly and
at random from the training set

Use backpropagation (algorithm 9) to compute
∇Error(xe;po)

pn = po − ε∇Error(x
e;po)

end

Algorithm 25.7: Stochastic gradient descent minimizes the error of a neural
net approximation, using backpropagation to compute the derivatives.
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25.4.3 When to Stop Training

Typically, gradient descent is not continued until an exact minimum is found. Sur-
prisingly, this is a source of robustness. The easiest way to understand this is to
consider the shape of the error function around the minimum. If the error function
changes sharply at the minimum, then the performance of the network is quite sen-
sitive to the choice of parameters. This suggests that the network will generalize
badly. You can see this by assuming that the training examples are one half of a
larger set; if we had trained the net on the other half, we’d have obtained slightly
different set of parameters. This means that the net with our current parameters
will perform badly on this other half, because the error changes sharply with a small
change in the parameters.
Now if the error function doesn’t change sharply at the minimum, there is no

particular point in expending effort to be at the minimum value, as long as we are
reasonably close — we know that this minimum error value won’t be attained on
a training set. It is common practice to continue with stochastic gradient descent
until (a) each example will have been visited on average rather more than once and
(b) the decrease in the value of the function goes below some threshold.
A more difficult question is how many layers to use, and how many units to

use in each layer. This question — which is one of model selection — tends to be
resolved by experiment. We refer interested readers to [Ripley, 1996; Haykin, 1999].

25.4.4 Finding Faces using Neural Networks

Face finding is an application that illustrates the usefulness of classifiers. In frontal
views at a fairly coarse scale, all faces look basically the same; there are bright
regions on the forehead, the cheeks and the nose, and dark regions around the eyes,
the eyebrows, the base of the nose and the mouth. This suggests approaching face
finding as a search over all image windows of a fixed size for windows that look
like a face. Larger or smaller faces can be found by searching coarser or finer scale
images.
Because a face illuminated from the left looks very different to a face illuminated

from the right, the image windows must be corrected for illumination. Generally,
illumination effects look enough like a linear ramp (one side is bright, the other
side is dark, and there is a smooth transition between them) that we can simply
fit a linear ramp to the intensity values and subtract that from the image window.
Another way to do this would be to log-transform the image, and then subtract a
linear ramp fitted to the logs. This has the advantage that (using a rather rough
model) illumination effects are additive in the log transform. There doesn’t appear
to be any evidence in the literature that the log transform makes much difference in
practice. Another approach is to histogram equalize the window to ensure that its
histogram is the same as that of a set of reference images (histogram equalisation
is described in section 11.3.2).
Once the windows have been corrected for illumination, we need to determine

whether there is a face present. The orientation isn’t known, and so we must



Section 25.4. Neural Networks 741

Figure 25.15. The architecture of Rowley, Baluja and Kanade’s system for finding faces.
Image windows of a fixed size are corrected to a standard illumination using histogram
equalisation; they are then passed to a neural net that estimates the orientation of the
window. The windows are reoriented, and passed to a second net that determines whether
a face is present. Figure from “Rotation invariant neural-network based face detection,”
H.A. Rowley, S. Baluja and T. Kanade, Proc. Computer Vision and Pattern Recognition,
1998, c© 1998, IEEE

either determine it, or produce a classifier that is insensitive to orientation. Rowley,
Baluja and Kanade have produced a face finder that finds faces very successfully
by firstly estimating the orientation of the window, using one neural net, and then
reorienting the window so that it is frontal, and passing the frontal window onto
another neural net (see figure 25.15; the paper is [Rowley et al., 1998d], which is
itself a development of [Rowley et al., 1996c; Rowley et al., 1998b]). The orientation
finder has 36 output units, each coding for a 10o range of orientations; the window
is reoriented to the orientation given by the largest output. Examples of the output
of this system are given in figure 25.16.

25.4.5 Convolutional Neural Nets

Neural networks are not confined to the architecture sketched above; there are a
wide variety of alternatives (a good start is to look at [Bishop, 1995; Haykin, 1999]).
One architecture that has proven useful in vision applications is the convolutional
neural network. The motivating idea here is that it appears to be useful to repre-
sent image regions with filter outputs. Furthermore, we can obtain a compositional
representation we apply filters to a representation itself obtained using filter out-
puts. For example, assume that we are looking for handwritten characters; the
response of oriented bar filters is likely to be useful here. If we obtain a map of the
oriented bars in the image, we can apply another filter to this map, and the output
of this filter indicates spatial relations between the bars.
These observations suggest using a system of filters to build up a set of relations

between primitives, and then using a conventional neural network to classify on
the resulting representation. There is no particular reason to specify the filters in
advance; instead, we could learn them too.
Lecun et al. have built a number of classifiers for handwritten digits using a
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Figure 25.16. Typical responses for the Rowley, Baluja and Kanade system for face
finding; a mask icon is superimposed on each window that is determined to contain a face.
The orientation of the face is indicated by the configuration of the eye-holes in the mask.
Figure from “Rotation invariant neural-network based face detection,” H.A. Rowley, S.
Baluja and T. Kanade, Proc. Computer Vision and Pattern Recognition, 1998, c© 1998,
IEEE

convolutional neural network [Lecun et al., 1998]. The basic architecture is given
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in figure 25.17. The classifier is applied to a 32x32 image window. The first stage
— C1 in the figure — consists of six feature maps. The feature maps are obtained
by convolving the image with a 5x5 filter kernel, adding a constant, and applying
a sigmoid function. Each map uses a different kernel and constant, and these
parameters are learned.

Figure 25.17. The architecture of LeNet 5, a convolutional neural net used for recognis-
ing handwritten characters. The layers marked C are convolutional layers; those marked
S are subsampling layers. The general form of the classifier uses an increasing number of
features at increasingly coarse scales to represent the image window; finally, the window is
passed to a fully connected neural net, which produces a rectified output that is classified
by looking at its distance from a set of canonical templates for characters. figure from
“Gradient-Based Learning Applied to Document Recognition”, Y. Lecun et al Proc. IEEE,
1998 c© 1998, IEEE

Because the exact position of a feature should not be important, the resolution
of the feature maps is reduced, leading to a new set of six feature maps — S2 in
the figure. These maps are, essentially, subsampled versions of the previous layer;
this subsampling is achieved by averaging 2x2 neighbourhoods, multiplying by a
parameter, adding a parameter, and passing the result through a sigmoid function.
The multiplicative and additive parameters are learned. A series of pairs of layers
of this form follows, with the number of feature maps increasing as the resolution
decreases. Finally, there is a layer with 84 outputs; each of these outputs is supplied
by a unit that takes every element of the previous layer as an input.
This network is used to recognise hand printed characters. The outputs are seen

as a 7x12 (=84!) image of a character that has been rectified from its hand printed
version, and can now be compared with a canonical pattern for that character. The
network can rectify distorted characters very successfully. The input character is
given the class of the character whose canonical pattern is closest to the rectified
version. The resulting network has a test error rate of 0.95% (figure 25.18).

25.5 The Support Vector Machine

From the perspective of the vision community, classifiers are not an end in them-
selves, but a means; so when a technique that is simple, reliable and effective be-
comes available, it tends to be adopted quite widely. The support vector machine
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Figure 25.18. On the left, a small subset of the MNIST database of handwritten
characters, used to train and test LeNet 5. Note the fairly wide variation in the appearance
of each character. On the right, the error rate of LeNet 5 on a training set and on a test
set, plotted as a function of the number of gradient descent passes through the entire
training set of 60,000 examples (i.e. if the horizontal axis reads six, the training has taken
360, 000 gradient descent steps). Note that at some point the training error goes down
but the test error doesn’t; this phenomenon occurs because the system’s performance is
optimised on the training data. A substantial difference would indicate overfitting. figure
from “Gradient-Based Learning Applied to Document Recognition”, Y. Lecun et al Proc.
IEEE, 1998 c© 1998, IEEE

is such a technique. This should be the first classifier you think of when you wish
to build a classifier from examples (unless the examples come from a known distri-
bution, which hardly ever happens). We give a basic introduction to the ideas, and
show some examples where the technique has proven useful.
Assume we have a set of N points xi that belong to two classes, which we shall

indicate by 1 and −1. These points come with their class labels, which we shall
write as yi; thus, our data set can be written as

{(x1, y1), . . . , (xN , yN )}

We should like to determine a rule that predicts the sign of y for any point x; this
rule is our classifier.
At this point, we distinguish between two cases: either the data is linearly

separable, or it isn’t. The linearly separable case is much easier, and we deal with
it first.
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25.5.1 Support Vector Machines for Linearly Separable Datasets

In a linearly separable data set, there is some choice of w and b (which represent a
hyperplane) such that

yi (w · xi + b) > 0

for every example point (notice the devious use of the sign of yi). There is one of
these expressions for each data point, and the set of expressions represents a set of
constraints on the choice of w and b. These constraints express the fact that all
examples with a negative yi should be on one side of the hyperplane and all with a
positive yi should be on the other side.
In fact, because the set of examples is finite, there is a family of separating

hyperplanes. Each of these hyperplanes must separate the convex hull of one set of
examples from the convex hull of the other set of examples. The most conservative
choice of hyperplane is the one that is furthest from both hulls. This is obtained by
joining the closest points on the two hulls, and constructing a hyperplane perpen-
dicular to this line, and through its midpoint. This hyperplane is as far as possible
from each set, in the sense that it maximises the minimum distance from example
points to the hyperplane (figure 25.19)
Now we can choose the scale of w and b, because scaling the two together by

a positive number doesn’t affect the validity of the constraints yi(w · xi + b) > 0.
This means that we can choose w and b such that for every data point we have

yi (w · xi + b) ≥ 1

and such that equality is achieved on at least one point on each side of the hyper-
plane. Now assume that xk achieves equality and yk = 1, and xl achieves equality
and yl = −1. This means that xk is on one side of the hyperplane and xl is on the
other; furthermore, the distance from xl to the hyperplane is minimal (among the
points on the same side as xl), as is the distance from xk to the hyperplane. Notice
that there might be several points with these properties.
This means that w · (x1 − x2) = 2, so that

dist(xk, hyperplane) + dist(xl, hyperplane) = (
w

|w |
· xk +

b

|w |
) − (

w

|w |
· x1 +

b

|w |
)

=
w

|w |
· (x1 − x2) =

2

|w |

This means that maximising the distance is the same as minimising (1/2)w ·w. We
now have the constrained minimisation problem:

minimize (1/2)w ·w

subject to yi (w · xi + b) ≥ 1

where there is one constraint for each data point.
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x

x l

k

Figure 25.19. The hyperplane constructed by a support vector classifier for a plane data
set. The filled circles are data points corresponding to one class, and the empty circles
are data points corresponding to the other. We have drawn in the convex hull of each
data set. The most conservative choice of hyperplane is one that maximises the minimum
distance from each hull to the hyperplane. A hyperplane with this property is obtained by
constructing the shortest line segment between the hulls, and then obtaining a hyperplane
perpendicular to this line segment and through its midpoint. Only a subset of the data
determines the hyperplane. Of particular interest are points on each convex hull which
are associated with a minimum distance between the hulls — we will use these points to
find the hyperplane in the text.

Solving for the Support Vector Machine

We can solve this problem, by introducing Lagrange multipliers αi to obtain the
Lagrangian

(1/2)w ·w −
N∑
1

αi (yi (w · x1 + b) − 1)

This Lagrangian needs to be minimised with respect to w and b and maximised
with respect to αi — these are the Karush-Kuhn-Tucker conditions [?]. A little
manipulation leads to the requirements that

N∑
1

αiyi = 0

and

w =

N∑
1

αiyixi
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This second expression is why the device is known as a support vector machine.
Generally, it will be the case that the hyperplane is determined by a relatively
small number of example points, and the position of other examples is irrelevant
(see figure 25.19 — everything inside the convex hull of each set of examples is
irrelevant to choosing the hyperplane, and most of the hull vertices are, too). This
means that we expect that most αi are zero, and the data points corresponding to
non-zero αi — which are the ones that determine the hyperplane — are known as
the support vectors.
Now by substituting these expressions into the original problem and manipulat-

ing, we obtain the dual problem given by

maximize

N∑
i

αi −
1

2

N∑
i,j=1

αi(yiyjxi · xj)αj

subject to αi ≥ 0

and

N∑
i=1

αiyi = 0

You should notice that the criterion is a quadratic form in the Lagrange multipliers.
This problem is a standard numerical problem, known as quadratic program-
ming. One can use standard packages quite successfully for this problem, but it
does have special features — while there may be a very large number of variables,
most will be zero at a solution point — which can be exploited [et al., 2000].

25.5.2 Finding Pedestrians using Support Vector Machines

At a fairly coarse scale, pedestrians have a characteristic, “lollipop-like” appearance
— a wide torso on narrower legs. This suggests that they can be found using a
support vector machine. The general strategy is the same as for the face-finding
example in section 25.4.4: each image window of a fixed size is presented to a
classifier, which determines whether the window contains a pedestrian or not. The
number of pixels in the window may be large, and we know that many pixels may
be irrelevant. In the case of faces, we could deal with this by cropping the image to
an oval shape which would contain the face. This is harder to do with pedestrians,
because their outline is of a rather variable shape.
We need to identify features that can help determine whether a window contains

a pedestrian or not. It is natural to try to obtain a set of features from a set of
examples. A variety of feature selection algorithms might be appropriate here (all
of them are variants of search). Papageorgiou, Oren and Poggio chose to look at
local features — wavelet coefficients, which are the response of specially selected
filters with local support — and to use an averaging approach [Oren et al., 1997b].
In particular, they argue that the background in a picture of a pedestrian looks
like noise, images that don’t contain pedestrians look like noise, and the average
noise response of their filters is known. This means that attractive features are
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Notation:
We have a training set of N examples

{(x1, y1), . . . , (xN , yN )}

where yi is either 1 or −1.

Solving for the SVM:
Set up and solve the dual optimization problem:

maximize

N∑
i

αi −
1

2

N∑
i,j=1

αi(yiyjxi · xj)αj

subject to αi ≥ 0

and

N∑
i=1

αiyi = 0

We can then determine w from

w =

N∑
1

αiyixi

Now for any example point xi where αi is non-zero, we have that

yi(w · xi + b) = 1

which yields the value of b.

Classifying a point:
Any new data point is classified by

f(x) = sign (w · x+ b)

= sign

((
N∑
1

αiyix · xi

)
+ b

)

= sign

(
N∑
1

(αiyix · xi + b)

)

Algorithm 25.8: Finding an SVM for a Linearly Separable Problem

ones whose average over many images of pedestrians is different from their noise
response. If we average the response of a particular filter in a particular position
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Figure 25.20. On the left, averages over the training set of different wavelet coefficients
at different positions in the image. Coefficients that are above the (spatial) average value
are shown dark, and those that are below are shown light. We expect that noise has the
average value, meaning that coefficients that are very light or very dark contain information
that could identify pedestrians. On the right, a grid showing the support domain for the
features computed. Notice that this follows the boundary of the pedestrian fairly closely.
Figure from, “A general framework for object detection,” by C. Papageorgiou, M. Oren
and T. Poggio, Proc. Int. Conf. Computer Vision, 1998, c© 1998, IEEE

over a large number of images, and the average is similar to a noise response, then
that filter in that position is not particularly informative.
Now that features have been chosen, training follows the lines of section 25.5.

Papageorgiou, Oren and Poggio use bootstrapping (section 4), which appears to
improve performance significantly.

25.6 Conclusions

This topic is one on which no orthodoxy is yet established; instead, one tries to use
methods that seem likely to work on the problem in hand. For the sake of brevity,
we have omitted a vast number of useful techniques; Vapnik’s books [Vapnik, 1996;
Vapnik, 1998], Bishop’s book [Bishop, 1995], Ripley’s book [Ripley, 1996], Haykin’s
book [Haykin, 1999] and McClachlan’s book [McLachlan and Krishnan, 1996] are
good places to start. A comprehensive discussion of support vector machines and
variants appears in [et al., 2000].
Choosing a decision boundary is strictly easier than fitting a posterior model.

However, with a decision boundary there is no reliable indication of the extent
to which an example belongs to one or another class, as there is with a posterior
model. Furthermore, fitting a decision boundary requires that we know the classes
to which the example objects should be allocated. It is by no means obvious that
one can construct an unambiguous class hierarchy for the objects we encounter in
recognition problems. Both approaches can require very large numbers of examples
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Figure 25.21. Examples of pedestrians detected using the method of Papageorgiou,
Oren and Poggio. While not all pedestrians are found, there is a fairly high detection rate.
The ROC is in figure 25.22. Figure from, “A general framework for object detection,” by
C. Papageorgiou, M. Oren and T. Poggio, Proc. Int. Conf. Computer Vision, 1998, c©
1998, IEEE

Figure 25.22. The receiver operating curve for the pedestrian detection system of
Papageorgiou, Oren and Poggio. Figure from, “A general framework for object detection,”
by C. Papageorgiou, M. Oren and T. Poggio, Proc. Int. Conf. Computer Vision, 1998,
c© 1998, IEEE
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to build useful classifiers. Typically, the stronger the model that is applied, the
fewer examples required to build a classifier.
It is difficult to build classifiers that are really successful when objects have

a large number of degrees of freedom without a detailed model of this variation,
and classifiers tend to be difficult to use if the number of features can vary from
example to example; in both cases, some form of structural model appears to be
necessary. However, estimating, representing and manipulating probability densities
in the very high dimensional spaces that occur in vision problems is practically
impossible, unless very strong assumptions are applied. Furthermore, it is easy to
build probability models for which inference is again practically impossible; it isn’t
yet known how to build models that are easy to handle of the scale required for
vision problems.
This subject is currently at the cutting edge of research in vision and learning.

It’s hard to know how to choose a method for a given problem, and opportunism
seems to be the best approach at present. The examples in this chapter and in the
next chapter illustrate a range of approaches that have been taken — some are very
successful — but don’t yet represent a clear theory.
An alternative approach to training one grand classifier is to train multiple

classifiers and combine their outputs. This strategy is usually known as boosting.
Boosting is most useful for classifiers with quite simple decision boundaries; these
are usually easy to train, but have quite poor performance. Typically, we train a
classifier, and then determine the examples in the training set that it gets wrong.
These examples are then emphasized — either by weighting errors on them more
heavily, or inserting copies into the training set — and a new classifier is trained.
We now find out what the new classifier gets wrong, and emphasize these examples
and train again; this proces continues through many iterations. Now the outputs
of all the classifiers are combined using a set of weights.

25.6.1 Skin Detection

There are a number of skin detection papers; we selected one that fit with our
didactic needs. Uses include finding naked people [Fleck et al., 1996; Forsyth and
Fleck, 1999]; identifying people in videophone images [Chai and Ngan, 1999]; and
finding and tracking faces and hands [Park et al., 2000; Yoo and Oh, 1999]. There
are a variety of techniques; for a start, look at [Tsumura et al., 1999; Bergasa et al.,
2000]. There is a comparison of approaches in [Brand andMason, 2000]. One issue is
variation in illumination colour [Soriano et al., 2000; Sigal et al., 2000]; furthermore,
one can estimate the illuminant colour from variations in skin colour [Storring et
al., 2000]. The performance of face finders seems to be improved by using skin
detectors, tuned one way or another; it seems natural to learn the skin detector at
the same time as one learns the face finder, though we are not aware of work that
does this.
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25.6.2 Face Finding

There is substantial interest in building face finders using template matching tech-
niques. The general strategy is to present image regions, possibly corrected for
illumination variations, to classifiers of one form or another. We have taken liber-
ties with history in our presentation; Schneiderman and Kanade’s work appeared
after Rowley, Baluja and Kanade’s work which appeared at the same time as im-
portant work by Sung and Poggio [Sung and Poggio, 1994; Sung and Poggio, 1998]

(which we do not discuss for didactic reasons). Osuna et al. produced a face finder
that successfully used a support vector machine [Osuna et al., 1997].
Face recognition (whose face is this) is also important, and it isn’t clear that

recognition and finding should be divorced. Important papers include [Brunelli
and Poggio, 1993a; Brunelli and Poggio, 1992]. Significant technologies include
recognition from very small numbers of examples (one would be great) [Beymer
and Poggio, 1995]; recognition from different views [Beymer, 1994]; and variations
induced by changes in illumination [Adini et al., 1997; Adini et al., 1994; Moses et
al., 1993; Georghiades et al., 1998; Georghiades et al., 2000; Jacobs et al., 1998].

25.6.3 Pedestrian Finding

The observation that pedestrians can be found using a template matcher is useful.
As we have seen, the template looks rather like a lollipop. While pedestrians may
disappear if they raise their arms (because they no longer look like lollipops), they
will typically spend a fair amount of time with their arms at their sides, meaning
that a reasonable count of the number of pedestrians may be available. Furthermore,
pedestrian movements are characteristic [Papageorgiou et al., 1998; Papageorgiou
and Poggio, 1999b; Papageorgiou and Poggio, 1999a; Papageorgiou and Poggio,
2000].

Assignments

Exercises

1. Assume that we are dealing with measurements x in some feature space S.
There is an open set D where any element is classified as class one, and any
element in the interior of S −D is classified as class two.

• Show that

R(s) = Pr {1→ 2|using s}L(1→ 2) + Pr {2→ 1|using s}L(2→ 1)

=

∫
D

p(2|x)dxL(1→ 2) +

∫
S−D

p(1|x)dxL(2→ 1)

• Why are we ignoring the boundary of D (which is the same as the bound-
ary of S −D) in computing the total risk?
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2. In section 2, we said that, if each class-conditional density had the same covari-
ance, the classifier of algorithm 2 boiled down to comparing two expressions
that are linear in x.

• Show that this is true.

• Show that, if there are only two classes, we need only test the sign of a
linear expression in x.

3. In section 25.3.1, we set up a feature u, where the value of u on the i’th data
point is given by ui = v · (xi − µ). Show that u has zero mean.

4. In section 25.3.1, we set up a series of features u, where the value of u on the
i’th data point is given by ui = v · (xi − µ). We then said that the v would
be eigenvectors of Σ, the covariance matrix of the data items. Show that the
different features are independent, using the fact that the eigenvectors of a
symmetric matrix are orthogonal.

5. In section ??, we said that the ROC was invariant to choice of prior. Prove
this.

Programming Assignments

1.
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I Appendix: Backpropagation

The difficulty in training neural networks using stochastic gradient descent is that
∇Error could be quite hard to compute. There is an effective strategy for comput-
ing∇Error called backpropagation. This approach exploits the layered structure
of the neural network as a function of a function of a . . . to obtain the derivative.
Now recall the two layer neural net which we wrote as

f(x) = [φ(w21 · y), φ(w22 · y), . . . φ(w2n · y)]

where

y(z) = [φ(w11 · z), φ(w12 · z), . . . φ(w1m · z), 1]

and

z(x) = [x1, x2, . . . , xp, 1]

We would like to compute
∂Error

∂wkl,m

where wkl,m is the m’th component of wkl. Let us deal with the coefficients of the
output layer first, so that we are interested in w2l,m, and we get

∂Error

∂w2l,m
=
∑
k

∂Error

∂fk

∂fk
∂w2l,m

=
∂Error

∂fl

∂fl

∂w2l,m

=
∑
e

{
(fl(x

e)− oel )
∂fl
∂w2l,m

}

=
∑
e

{(fl(x
e) − oel )φ

′
2l(ym(x

e))}

=
∑
e

{δe2l(ym(x
e))}

Here we use the notation

φ′2l =
∂φ

∂u

where the derivative is evaluated at u = w21 · y, and we write

δe2l = (fl(x
e) − oel )φ

′
2l

Notice that evaluating this derivative involves terms in the input of the layer — the
terms ym(x

e) — and in its output — the terms δe2l.
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Now consider the coefficients of the second layer. We are interested in w1l,m,
and we get

∂Error

∂w1l,m
=
∑
k

{
∂Error

∂fk

∂fk

∂w1l,m

}

=
∑
i,j

{
∂Error

∂fi

∂fi

∂yj

∂yj

∂w1l,m

}

=

{∑
k

∂Error

∂fk

∂fk

∂yl

}
∂yl

∂w1l,m

=
∑
e

{∑
k

{
(fk(x

e) − oek)
∂fk
∂yl

}
∂yl
∂w1l,m

}

=
∑
e

{∑
k

{(fk(x
e)− oek)φ

′
2kw2k,l}

∂yl

∂w1l,m

}

=
∑
e

{∑
k

{(fk(x
e)− oek)φ

′
2kw2k,l}φ

′
1lzm

}

=
∑
e

{∑
k

}δe2kw2k,l}φ
′
1lzm

}

In this expression,

φ′2k =
∂φ

∂u

evaluated at u = w2k · y, and

φ′1l =
∂φ

∂u

evaluated at u = w1l · z. Now if we write

δe1l =
∑
k

{δe2kw2k,l}φ
′
1l

we get
∂E

∂w1l,m
=
∑
e

δe1lzm(x
e)

Again, this sum involves a term obtained computing the previous derivative, terms
in the derivatives within the layer, and terms in the input. You should convince
yourself that, if we had a third layer, the derivative of the error with respect to
parameters within this third layer would have a similar form — a function of terms
in the derivative of the second layer, terms in the derivatives within the third layer,
and terms in the input (all this comes from aggressive application of the chain rule).
This suggests a two pass algorithm:
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1. Evaluate the net’s output on each example. This is usually referred to as a
forward pass.

2. Evaluate the derivatives using the intermediate terms. This is usually referred
to as a backward pass.

This process yields the derivatives of the total error with respect to the parameters.
We can obtain another simplification: we adopted stochastic gradient descent to
avoid having to sum the value of the error and of its gradient over all examples.
Because computing a gradient is linear, to compute the gradient of the error on
one example alone, we simply drop the sum at the front of our expressions for the
gradient. The whole is given in algorithm I.
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Notation:
Write the two-layer neural net as

f(x;p) = [φ(w21 · y), φ(w22 · y), . . . φ(w2n · y)]

y(z) = [φ(w11 · z), φ(w12 · z), . . . φ(w1m · z), 1]

z(x) = [x1, x2, . . . , xp, 1]

(p is a vector containing all parameters). Write the error on a single exam-
ple as

Errore = Error(p;xe)

=

(
1

2

)
|f(xe;p)− oe |2

We would like to compute
∂Errore

∂wkl,m

where wkl,m is the m’th component of wkl.

Forward pass: Compute f(xe;p), saving all intermediate variables

Backward pass: Compute

δe2l = (fl(x
e)− oel )φ

′
2l

φ′2l =
∂φ

∂u
evaluated at u = w21 · y

∂Errore

∂w2l,m
=
∑
e

{δe2l(ym(x
e))}

Now compute

δe1l =
∑
k

{δe2kw2k,l}φ
′
1l

φ′1l =
∂φ

∂u
evaluated at u = w11 · z

∂Ee

∂w1l,m
= δe1lzm(x

e)

Algorithm 25.9: Backpropagation to compute the derivative of the fitting error of
a two-layer neural net on a single example with respect to its parameters.
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II Appendix: Support Vector Machines for Datasets that are not
Linearly Separable

In many cases, a separating hyperplane will not exist. To allow for this case, we
introduce a set of slack variables, ξi ≥ 0, which represent the amount by which
the constraint is violated. We can now write our new constraints as

yi (w · x1 + b) ≥ 1− ξi

and we modify the objective function to take account of the extent of the constraint
violations, to get the problem

minimize
1

2
w ·w+ C

N∑
i=1

ξi

subject to yi (w · x1 + b) ≥ 1− ξi

and ξi ≥ 0

Here C gives the significance of the constraint violations with respect to the distance
between the points and the hyperplane. The dual problem becomes

maximize

N∑
i

αi −
1

2

N∑
i,j=1

αi(yiyjxi · xj)αj

subject to C ≥ αi ≥ 0

and

N∑
i=1

αiyi = 0

Again, we have

w =

N∑
1

αiyixi

but recovering b from the solution to the dual problem is slightly more interesting.
For each example where C > αi > 0 (note that these are strict inequalities, unlike
the constraints) the slack variable ξi will be zero. This means that

N∑
j=1

yjαjxi · xj + b = yi

for these values of i. This expression yields b. Again, the optimization problem is
a quadratic programming problem, though there is no guarantee that many points
will have αi = 0.
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III Appendix: Using Support Vector Machines with Non-Linear
Kernels

For many data sets, it is unlikely that a hyperplane will yield a good classifier.
Instead, we want a decision boundary with a more complex geometry. One way
to achieve this is to map the feature vector into some new space, and look for a
hyperplane in that new space. For example, if we had a plane data set that we were
convinced could be separated by plane conics, we might apply the map

(x, y)→ (x2, xy, y2, x, y)

to the dataset. A classifier boundary that is a hyperplane in this new feature space
is a conic in the original feature space. In this form, this idea is not particularly
useful, because we might need to map the data into a very high dimensional space
(for example, assume that we know the classifier boundary has degree two, and the
data is 10 dimensional — we would need to map the data into a 65 dimensional
space).
Write the map as x′ = φ(x). Write out the optimisation problem for the new

points x′i; you will notice that the only form in which x
′
i appears is in the terms

x′i · x
′
j

which we could write as φ(xi) · φ(xj). Apart from always being positive, this term
doesn’t give us much information about φ. In particular, the map doesn’t appear
explicitly in the optimisation problem. If we did solve the optimisation problem,
the final classifier would be

f(x) = sign

(
N∑
1

(αiyix
′ · x′i + b)

)

= sign

(
N∑
1

(αiyiφ(x) · φ(xi) + b)

)

Assume that we have a function k(x, y) which is positive for all pairs of x, y.
It can be shown that, under various technical conditions of no interest to us, there
is some φ such that k(x, y) = φ(x) · φ(y). All this allows us to adopt a clever trick
— instead of constructing φ explicitly, we obtain some appropriate k(x, y), and use
it in place of φ. In particular, the dual optimisation problem becomes

maximize
N∑
i

αi −
1

2

N∑
i,j=1

αi(yiyjk(xi,xj))αj

subject to αi ≥ 0

and

N∑
i=1

αiyi = 0



760 Finding Templates using Classifiers Chapter 25

and the classifier becomes

f(x) = sign

(
N∑
1

(αiyik(x,xi) + b)

)

Of course, these equations assume that the dataset are separable in the new feature
space represented by k. This may not be the case, in which case the problem
becomes

maximize

N∑
i

αi −
1

2

N∑
i,j=1

αi(yiyjk(xi,xj))αj

subject to C ≥ αi ≥ 0

and

N∑
i=1

αiyi = 0

and the classifier becomes

f(x) = sign

(
N∑
1

(αiyik(x,xi) + b)

)

There are a variety of possible choices for k(x, y). The main issue is that it must
be positive for all values of x and y. Some typical choices are shown in table 25.2.
There doesn’t appear to be any principled method for choosing between kernels;
one tries different forms, and uses the one that gives the best error rate, measured
using cross-validation.

Kernel form Qualitative properties of φ repre-
sented by this kernel

(x · y)d φ is all monomials of degree d

(x · y + c)d φ is all monomials of degree d or
below

tanh(ax · y + b)

exp(− (x−y)
T (x−y)
2σ2

)

Table 25.2. Some support vector kernels



Chapter 26

RECOGNITION BY
RELATIONS BETWEEN

TEMPLATES

An object may have internal degrees of freedom, which mean that its appearance
is highly variable — for example, people can move arms and legs; fish deform to
swim; snakes wriggle; etc. This phenomenon can make template matching extremely
difficult, because one may require either a classifier with a very flexible boundary
(and a lot of examples) or many different templates.
Many of these objects have small components which will have a fairly orderly

appearance. We could try to match these components as templates, and then
determine what objects are present by looking for suggestive relationships between
the templates that have been found. For example, instead of finding a face by
looking for a single complete face template, we could find one by looking for eyes,
nose and a mouth that all lie in an appropriate configuration.
This approach has several possible advantages. Firstly, it may be easier to learn

an eye template than it is to learn a face template, because the structure could be
simpler. Secondly, it may be possible to obtain and use relatively simple probability
models. This is because there may be some independence properties that can be
exploited. Thirdly, we may be able to match a very large number of objects with
a relatively small number of templates. Animal faces are a good example of this
phenomenon — pretty much all animals with recognisable faces have eyes, nose
and a a mouth, but with slightly different spatial layouts. Finally, it means that
the simple individual templates can be used to construct complex objects. For
example, people can move their arms and legs around, and it appears to be much
more difficult to learn a single, explicit template for finding whole people than to
obtain individual templates for bits of people and a probability model that describes
their degrees of freedom.
This topic is not yet well enough understood for there to be a standard approach.

However, the main issue — how does one encode a set of relationships between
templates in a form that is easily managed? — is quite clear. In this chapter, we

761
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explore a series of different approaches to this problem. Firstly, we could allow
each template to vote for the objects that it could represent, and then count the
votes in some way (section 26.1). We could place more weight on the specifics of
the spatial relations by building some explicit probability model. This could come
from the likelihood; in essence, we need a probability distribution function that has
a high value when the components are configured like the object, and a low value
otherwise. Finding objects then becomes a matter of searching for templates that
can be plugged into the probability model to get a high value (section 26.2). Pruning
the search requires care; we show one approach in section 26.3. The difficulty with
this approach is that, even when pruned, the search could be very expensive. A
particular class of probability model allows very efficient search. We introduce these
models in section 26.4, and describe two applications (section 26.5 and section 26.6).

26.1 Finding Objects by Voting on Relations between Templates

Very simple object models can result in quite effective recognition. The simplest
model is to think of an object as a collection of image patches — small image
neighbourhoods of characteristic appearance — of several different types, forming
an image pattern. To tell what pattern is present in an image, we find each patch
that is present, and allow it to vote for every pattern in which it appears. The
pattern in the image is the one with the most votes. While this strategy is simple,
it is quite effective. We will sketch methods for finding patches, and then describe
a series of increasingly sophisticated versions of the strategy.

26.1.1 Describing Image Patches

Small image patches can have a quite characteristic appearance, usually when they
have many non-zero derivatives (e.g. at corners). We describe a system due to
Schmid and Mohr that takes advantage of this property [Schmid and Mohr, 1996;
Schmid and Mohr, 1997c]. They find image corners — often called interest points
(see [Schmid et al., 2000]). They then estimate a set of derivatives of the image grey-
level at those corners, and evaluate a set of functions of the image derivatives that
are invariant to rotation, translation, some scaling, and illumination changes. These
features are called invariant local jets. Describing these features in detail would
take us out of our way. The value of this approach is that, because the combinations
are invariant, we expect that they will take the same value on different views of an
object.
We now assume that the image patches fall into a number of classes. We can

obtain representatives for each class by having multiple pictures of each object —
typically, corresponding patches will be of the same class, but probably have some-
what different invariant local jets, as a result of image noise. We can determine an
appropriate set of classes either by classifying the patches by hand, or by clustering
example patches (a somewhat better method!). We need to be able to tell when
two sets of invariant local jets represent the same class of image patch. Schmid and
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Mohr test the Mahalanobis distance between the feature vectors of a patch to be
tested and an example patch; if it is below some threshold, the patch being tested
is the same as the example.
Notice that this is a classifier — it is allocating patches to classes represented by

the examples, or deciding not to classify them — and that the patches are templates.
We could build a template matcher with any of the techniques of chapter 25 without
using features that are invariant to rotation, etc. To do this, we would use a
training set that contained rotated and scaled versions of each example patch, under
varying illuminant conditions, so the classifier could learn that rotation, scaling and
illuminant changes don’t affect the identity of the patch. The advantage of using
invariant features is that the classifier doesn’t need to learn this invariance from the
training set.

26.1.2 Voting and a Simple Generative Model

For a given image, we find the interest points and classify the image patch at each
image point. Now, what pattern lies in the image? we can answer this question by
constructing a correspondence between image patches and patterns. Assume that
there are Ni patches in the image. Furthermore, we assume that there is either a
single pattern from our collection in the image, or there is no pattern there. An
individual patch could have come either from whatever pattern is present, or from
noise. However, patterns typically do not contain every class of patch. This means
that asserting that a particular pattern is present is the same as asserting that some
of the image patches came from noise (because only one pattern can be present,
and these images patches belong to classes that are not in the current pattern).
We now have a (very simple) generative model for an image. When a pattern

is present, it produces patches of some classes, but not others. By elaborating this
model, we obtain a series of algorithms for matching patterns to images.
The simplest version of this model is obtained by assuming that a pattern pro-

duces all patches of the classes that it can produce, and then require that as few
patches as possible come from noise. This assumption boils down to voting. We
take each image patch, and record a vote for every pattern that is capable of pro-
ducing that class of patch. The pattern with the most votes, wins, and we say
that this pattern is present. This strategy can be effective, but has some problems
(figure 26.1).

26.1.3 Probabilistic Models for Voting

We can interpret our simple voting process in terms of a probabilistic model. This
is worth doing, because it will cast some light on the strengths and weaknesses of
the approach. Our generative model can be made probabilistic by assuming that
the patches are produced independently and at random, assuming that the object
is present. Let us write

P {patch of type i appears in image|j’th pattern is present} = pij
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Figure 26.1. The graph shows the number of votes for each pattern recorded for a
particular image under the simple voting scheme. Notice that, while the correct match
(model # 0) receives the maximum number of votes, three other candidates receives more
than half as many votes. Figure from “Local grayvalue invariants for image retrieval,” by
C. Schmid and R. Mohr, IEEE Trans. Pattern Analysis and Machine Intelligence, 1997
c© 1997, IEEE

and
P {patch of type i|no pattern is present} = pix

In the very simplest model, we assume that, for each pattern j, we assume that
pij = µ if the pattern can produce this patch and 0 otherwise. Furthermore, we
assume that pix = λ < µ for all i. Finally, we assume that each observed patch in
the image can come from either a single pattern or from noise. There are a total
of ni patches in the image. Under these assumptions, we need only know which
patches came from a pattern and which from noise to compute a likelihood value.
In particular, The likelihood of the image, given a particular pattern, and assuming
that np patches came from that pattern and ni − np patches come from noise, is

P (interpretation|pattern) = λnpµ(ni−np)

and this value is larger for larger values of np. However, because not every pattern
can produce every image patch, the maximum available choice of np is dependent
on the pattern we choose. Our voting method is equivalent to choosing the pattern
with the maximum possible likelihood under this (very simple) generative model.
This suggests the source of some difficulties: if the pattern is unlikely, we should

take that (prior) information into account. Furthermore, noise may be able to
produce some patches more easily than others — ignoring this fact can confuse the
vote. Finally, some patches may be more likely given an object than others. For
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example, corners appear much more often on a checkerboard pattern than they do
on a zebra stripe pattern.

Elaborating the Generative Model

Dealing with these issues in the framework of our current model — that the patches
occur independently given that the pattern is present — is relatively simple. Assume
that there are N different types of patch. We now assume that each different type of
patch is generated with a different probability by different patterns, and by noise.
Now assume that there are nij instances of the j’th type of patch in the image.
Furthermore, nk of these are generated by the pattern, and the rest are generated
by noise.
The likelihood function for the l’th pattern is

P




n1 of type 1 from pattern,
. . . ,

nN patches of type N from pattern j’th pattern
and ni1 − n1 of type 1 from noise,

. . . ,
niN − nN from noise




Now because the patches arise independently given the pattern and the noise is
independent of the pattern, this likelihood is

P (patches from pattern|j’th pattern)P (patches from noise)

The first term is

P (type 1|j’th pattern)n1P (type 2|j’th pattern)n2 . . .P (type N |j’th pattern)nNP (noise)

which is evaluated as
pn11j p

n2
2j . . . p

nN
Nj

We now assume that patches that arise from noise do so independently of one
another. This means we can write the noise term as

P (type 1|noise)(ni1−n1) . . .P (type N |noise)(niN−nN)

which is evaluated as
p
(ni1−n1)
1x . . . p

(niN−nN)
Nx

This means that the likelihood can be written out as

pn11j p
n2
2j . . . p

nN
Njp

(ni1−n1)
1x . . . p

(niN−nN)
Nx

There are two cases for each type of patch k; if pkj > pkx, then this is maximised by
nk = nik, otherwise it is maximised by nk = 0. We write πj for the prior probability
that the image contains the j’th pattern and π0 for the prior probability it contains
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no object. This means that for each object type j, the maximal value of the posterior
will look like (∏

m

pnimmj

∏
l

pnillx

)
πj

where m runs through features for which pmj > pmx and l runs through features for
which plj < plx. We could form this value for each object, and choose the one with
the highest posterior value. Notice that this is a relational model, though we’re not
actually computing geometric features linking the templates. This is because the
patches are linked by the conditional probability that they occur, given a pattern,
which is different from pattern to pattern. You should compare this model with the
face detector of section 25.2.2; the probabilistic models are identical in spirit.

26.1.4 Voting on Relations

We can use geometric relations to improve on the simple voting strategy fairly
easily. A patch should match to an object only if it there are nearby patches
that also match to the object, and are in an appropriate configuration. The term
“appropriate configuration” can be a source of difficulties, but for the moment
assume that we are matching objects up to plane rotation, translation and scale
(this is a reasonable assumption for such things as frontal faces).
Now assume that we have a patch that matches to some object. We now take

the p nearest patches, and check firstly that more than 50% of them match to the
same objects, and secondly that the angles between the triples of matching patches
are the same as the corresponding angles on the object — these are referred to as
semilocal constraints (see figure 26.2). If these two tests are passed, we register
a vote for that object from the patch. You should compare this strategy — which is
due to Schmid and Mohr [Schmid and Mohr, 1997c] — quite closely with geometric
hashing, section 24.4.2. It is rather harder to construct a probabilistic interpretation
for this approach — the emission probabilities of the patches now depend on where
they are in the pattern, as well as identity of the pattern that generated them.

26.1.5 Voting and 3D Objects

Although we described Schmid and Mohr’s approach in terms of 2D patterns, it can
be extended fairly easily to 3D object recognition. We do this by regarding each of
a series of views of the object as a different 2D pattern. Given enough views, this
will work, because the small changes in the 2D pattern caused by a slight change
in viewing angle will be compensated for by the available error range in the process
that matches invariant local jets and angles.
This strategy for turning 3D recognition into 2D matching applies quite gen-

erally, but comes with difficulties. The main problem is the very large number of
models that result, which can make the voting procedure difficult. It isn’t known
what the minimum number of views required for matching in a scheme like this is.
Figure 26.4 illustrates a matching result obtained using this approach.
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Figure 26.2. Instead of voting for patches that match, we can vote for collections of
patches. In this approach, we register a vote only if a patch matches to a particular object,
and a percentage of its neighbours match too, and the angles between triples of match-
ing patches have appropriate values, as the figure illustrates. This strategy significantly
reduces the number of random matches, as figure 26.3 indicates. Figure from “Local gray-
value invariants for image retrieval,” by C. Schmid and R. Mohr, IEEE Trans. Pattern
Analysis and Machine Intelligence, 1997 c© 1997, IEEE
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Figure 26.3. In practice, the use of semilocal constraints greatly increases the discrim-
inating power of the original voting scheme. The figure on the left shows the number of
votes recorded for each model under the original voting scheme, for a particular image.
Although the correct match (model # 0) receives the maximum number of votes, three
other candidates receives more than half as many votes. When semilocal constraints are
added (right), the correct match stands out much more clearly. Figure from “Local gray-
value invariants for image retrieval,” by C. Schmid and R. Mohr, IEEE Trans. Pattern
Analysis and Machine Intelligence, 1997 c© 1997, IEEE

26.2 Relational Reasoning using Probabilistic Models and Search

The previous section explored methods that assumed that templates were condi-
tionally independent given the pattern. This assumption is a nonsense for most
objects (though it can work extremely well in practice) because there are usually



768 Recognition by Relations between Templates Chapter 26

(a)

(b)

Figure 26.4. Recognition results: (a) image matching in aerial photo interpretation:
the image on the right is correctly retrieved using any of the images on the left; (b) three-
dimensional object recognition: a toy dinosaur is correctly recognized in both images,
despite a large amount of background clutter. Figure from “Local grayvalue invariants for
image retrieval,” by C. Schmid and R. Mohr, IEEE Trans. Pattern Analysis and Machine
Intelligence, 1997 c© 1997, IEEE

quite strong relations between features. For example, there are very seldom more
than two eyes, one nose and one mouth in a face; the distance between the eyes is
roughly the same as that from the bridge of the nose to the mouth; the line joining
the eyes is roughly perpendicular to the line from bridge of nose to mouth; etc. We
incorporated some these constraints into a voting strategy in section 26.1.4, but
didn’t really indicate any principled framework within which they can be exploited.
This remains a difficult problem. We need to build models that represent what

is significant and allow for efficient inference. We can’t present current orthodoxy
on this subject, because it doesn’t exist; instead, we will describe the main issues
and approaches.
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26.2.1 Correspondence and Search

In this section, we will explore the core issues in using a probabilistic model for
matching. The general approach is as follows. We obtain an interpretation for
the image, and compute the value of the posterior probability of the interpretation
given the image. We accept interpretations with a sufficiently large value of the
posterior probability.
This account hides a myriad of practical problems. The most basic is that we do

not know which image information comes from objects and which comes from noise.
Generally, we will evade this difficulty and turn our problem into a correspondence
problem by matching templates to the image, and then reasoning about the relations
between templates. For example, if we wish to find faces, we will apply a series of
different detectors — say eye, nose and mouth detectors — to the image, and then
look for configurations that are suggestive.

Correspondence

This brings us to the second important problem, which is correspondence. We
can’t evaluate a posterior (or joint) probability density if we don’t know the values
of each variable. This means that we must, in essence, engage in a process that
hypothesizes that one response is the left eye, another the right eye, a third the nose
and a fourth the mouth, and then evaluates the posterior. It is clearly important
to manage this search very carefully indeed, so that we do not have to look at all
possible correspondences.
The techniques of chapter 24 transfer relatively easily; we need to apply a cloak

of probability, but the basic line of reasoning will remain. The most basic fact of
object recognition — for rigid objects, a small number of correspondences can be
used to generate a large number of correspondences — translates easily into the
language of probability easily, where it reads: for rigid objects, correspondences are
not independent.
In general, our probability model will evaluate the joint probability density for

some set of variables. We call a set of values for these variables an assembly (other
terms are a group, or an hypothesis). An assembly consists of a set of detector
outputs — each may respond with position, or position and orientation, or even
more — and a label for each output. These labels give the correspondences, and
the labelling is important: if, say, the eye-detector does not differentiate between a
left eye and a right eye, we will have to label the eye responses left and right, but
there is no point in labelling a mouth detector response as an eye.
It is not possible to form and test all assemblies, because there are usually far

too many. For example, assume we have eye detectors — which don’t differenti-
ate between left and right eyes — nose detectors and mouth detectors, and a face
consists of two eyes, a nose and a mouth. If there are Ne responses from eye detec-
tors, Nn responses from nose detectors and Nm responses from mouth detectors, we
would have O(N2eNnNm) assemblies to look at. If you read chapter 24 carefully, you
should be convinced this is a wild overestimate — the whole point of the chapter is
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that quite small numbers of correspondences predict other correspondences.

Incremental Assembly and Search

This suggests thinking of the matching process in the following way. We will as-
semble collections of detector responses, labelling them as necessary to establish
their role in the final assembly. The assembly process will be incremental — we will
expand small assemblies to make big ones. We will take each working assembly, and
then determine whether: it can be pruned; it can be accepted as is; or it should be
expanded. Any particular assembly consists of a set of pairs, each of which is a de-
tector response and a label. Some available labels may not have a detector response
associated with them. Generally, a correspondence search will have a working col-
lection of hypotheses, which may be quite large. The search involves: taking some
correspondence hypothesis, attaching some new pairs, and then either accepting the
result as an object, removing it from consideration entirely, or returning it to the
pool of working hypotheses.
There are three important components in a correspondence search:

• When to accept an hypothesis: if a correspondence hypothesis is suffi-
ciently good, it may be possible to stop expanding it.

• What to do next: in a correspondence search, we have to determine which
correspondence hypothesis to work on next. Generally, we would wish to work
on an hypothesis that is likely to succeed. Usually, it is easier to determine
what not to do next.

• When to prune an hypothesis: if there is no set of detector responses
that can be associated with any subset of the empty labels such that the
resulting hypothesis would pass the classifier criterion, then there is no point
in expanding that search.

Setting up the Search Problem

We will continue to work with the face model, to illustrate the ideas. Assume that
the left eye detector responds at x1, the right eye detector responds at x2, the
mouth detector responds at x3 and the nose detector responds at x4; we assume
that we believe the face is at F , and that all other detector responses are due to
noise. Furthermore, we assume that we are determining whether there is either a
single face or none in the image (or window!). This involves comparing the value of

P (one face at F |Xle = x1,Xre = x2,Xm = x3,Xn = x4, all other responses)

with

P (no face|Xle = x1,Xre = x2,Xm = x3,Xn = x4, all other responses)
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Stopping a Search: Detection

Assume that noise responses are independent of the presence of a face (which is
fairly plausible). We can then write

P (one face at F |Xle = x1,Xre = x2,Xm = x3,Xn = x4, all other responses) =

P (one face at F |x1,x2,x3,x4)P (all other responses) ∝

P (x1,x2,x3,x4|one face at F )P (all other responses)P (one face at F )

(where we have suppressed some notation!). We can classify particular groups of
detector responses as coming from a face or from noise by comparing the posterior
that this configuration comes from a face with the posterior that it comes from
noise. In particular, we will compare

P (x1,x2,x3,x4|one face at F )

with

(P (noise responses)P (no face)/P (one face at F )) (term in relative loss)

(recall that there are only two options— face or no face — and check chapter 7 again
if the remark seems puzzling). Thus, the likelihood is the main term of interest. This
tells us whether a complete assembly represents a face; but an incomplete assembly
could represent a face, too. We can score configurations that lack features, too. This
involves determining the posterior that a face is present given only some features,
and comparing that with the posterior that the features arose from noise.
When a group of features satisfies the classification criterion (that the posterior

that a face is present exceeds the posterior that it is not), we can certainly stop
searching. It may not be necessary to observe all possible features to determine
that a face is present. If a configuration is strongly suggestive of a face and unlikely
to have arisen from noise, then we may wish to assert that a face is present and
stop searching at that point.
We illustrate with an example; assume we wish to determine whether a right

eye, a mouth and a nose represent a face. To evaluate the joint, we will need to
evaluate a series of noise terms and the term

P (Xle = missing,Xre = x2,Xm = x3,Xn = x4|one face at F )

using our model. This requires a model to explain how a feature went missing;
the simplest is to assume that the detector did not respond (a variety of others
are possible), and that this failure to respond is independent of the other feature
detector responses. This yields

P (missing,x2,x3,x4|face) =∫
P (le does not respond|X1)P (X1,x2,x3,x4|face)dX1
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(again, suppressing some notation). Now if the probability of detector failure is
independent of feature position (which is the usual case in vision applications), we
have

P (missing,x2,x3,x4|face) =

P (le does not respond)P (X1,x2,x3,x4|face)dX1

This does not mean that we can prune a search if a configuration doesn’t represent
a face when it has a missing feature. This is because there might be some position
for the missing feature that did represent a face; as section 26.3 will show, to prune
we need a bound. If we do decide that an object is present without matching all
components, this is because either (a) missing components didn’t get detected, but
the configuration of the components found is so distinctive it doesn’t matter or
(b) we haven’t yet found the other components, but the configuration of the other
detectors is so distinctive it doesn’t matter. Notice that in case (b), we may still
want to look for possible responses for the other detectors; exercise ?? discusses
how deciding that an object is present changes this search process.

26.2.2 Example: Finding Faces

Perona and colleagues have built a series of face finders that use various forms of
probability model [Burl and Perona, 1996; Weber et al., 2000; Leung et al., 1995a].
Each follows broadly the line of incremental search amongst assemblies, identifying
assemblies that should be expanded. Features are obtained from the outputs of
various filters, as in figure 26.5. We sketch the system of [Leung et al., 1995a].
An assembly is represented by a vector of distances between features. This vector

is assumed to have a Gaussian probability distribution, conditioned on the presence
of a face. Missing elements can be dealt with by marginalising out the relevant
elements of this distribution. An attractive feature of this model is that, once one
has a sufficiently large assembly, the position of new features can be predicted by (a)
identifying distances that would lead to sufficiently large values of the conditional
probability and (b) predicting a range of feature positions from these distances
(figure 26.5).

26.3 Using Classifiers to Prune Search

Assume that we have an assembly that consists of a right eye, a mouth and a nose.
If we can determine from the probability model that there is no possible position
for the left eye that would result in an assembly that is acceptable as a face, then
there is no point in trying to grow our assembly. Recall that, if we had a position
for the left eye, we would test to see whether the likelihood was greater than some
function of the number of noise responses, the priors, and the relative losses. In
particular, there is some fixed value that the likelihood must exceed before we can
assert that a face is present. If we can assert that there is no value of x1 that would
result in a likelihood that is over threshold, the search can be pruned.
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Figure 26.5. Perona et al.’s face detector looks for local patterns, which are classified
on their appearance using filter responses. Appropriate arrangements of these patterns
are faces. Relations between face points are represented by the inter-element distances,
and the class-conditional density for these distances is gaussian. In turn, this means that,
once some feature responses have been found, the position of others can be predicted. The
figure on the left illustrates predictions for different feature points. The features are points
around the eyes, nose and mouth, and the variation in inter-point distances comes from
individual variations in facial structure. The figure on the right illustrates the behaviour
of the overall face detector; the column on the left shows the best face in the image, and
the column in the right shows the second best, which typically has a posterior value that
is smaller by an order of magnitude. Figure from, “Finding faces in cluttered scenes using
random labelled graph matching,” by Leung, T. ;Burl, M and Perona, P., Proc. Int. Conf.
on Computer Vision, 1995 c© 1995, IEEE

Notice that this line of reasoning extends. If we have a left eye response and
a right eye response, and there is no value of the nose and mouth responses that
would result in a posterior that is over threshold, we can prune this search — and
so not attempt to add either a nose or a mouth to this assembly. It is often quite
tricky to supply the necessary bounds, however. One way to do this is to use a
classifier.
You can think of a classifier as representing a (very crude) probability model for

the posterior. This model has a zero value when the posterior is below threshold,
and a non-zero value when it is above. The great advantage of this model is that it
is quite easy to prune — we can reject any assembly if there was no element that
could be added to yield something that would lie in the non-zero region.

26.3.1 Identifying Acceptable Assemblies Using Projected Clas-
sifiers

There is no point in growing a working assembly unless there is some conceivable
way in which it could become an acceptable final assembly. Assume that we have
a classifier that can determine whether a final assembly is acceptable or not. This
classifier can be trained on a large sequence of examples.
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We can use this final classifier to predict tests that determine whether small
groups should be expanded or not — essentially, we discard groups for which there
is no prospect that any conceivable new set of elements would make the group
acceptable. In turn, this boils down to projecting the decision boundaries of the
classifier onto a set of different factors. For example, assume that we have a two
eye detector responses — should they form a pair or not? We can look at only
features that come from those eyes, because we don’t know what other elements lie
in the assembly, and therefore can’t use them to compute features. In particular,
the issue here is: is there some set of elements (i.e. a nose and a mouth) such that,
if they were attached to this group, the resulting group would pass the classifier?
This question is answered by a classifier whose decision boundary is obtained by
projecting the decision boundary of the face assembly onto the space spanned by
the features computed from our two eyes (as in figure 26.6).
By projecting the classifier onto components that can handle small groups, we

can prune the collection of groups that must be searched to find a large collection of
segments that passes the main classifier. Using this strategy in practice requires a
certain amount of care. It is important to have classifiers which project well — the
decision boundaries must project to decision boundaries that can be represented
reasonably easily. This can be dealt with — the details are rather beyond the scope
of this account — and the resulting classifiers can be used to find people and horses
relatively efficiently in quite simple cases (figure 26.6 and figure 26.8) [Forsyth and
Fleck, 1997b; Forsyth and Fleck, 1997c; Ioffe and Forsyth, 1998].

26.3.2 Example: Finding People and Horses Using Spatial Rela-
tions

Assume we wish to find people in images; a natural approach is to find possible
body segments, and reason about their configuration. This can be done in some
specialised cases. One that may become important is if the people concerned are
not wearing clothing (which would allow people to search for or to avoid images
that are associated with strong opinions). In this case, body segments can be
found by looking for skin (as in section ??), and then constructing extended image
regions with roughly parallel sides (as in section 17.3) that contain skin colour. The
resulting extended image regions tend to represent many of the body segments in
the image.
Now we can search for people by searching for assemblies of these image seg-

ments. For example, assume that we will see only frontal views; then we can look
for assemblies of nine image segments, containing a left upper arm, a left lower arm,
etc. and a torso. It isn’t practical to take all sets of nine segments from the image,
so we use the methodology above. This yields a system that can find people in
simple images fairly reliably [Ioffe and Forsyth, 1998]

This methodology extends to finding horses as well. We identify all image pixels
that could be hide (this means they lie in the right range of colours, and have little
texture locally). We then form extended regions of hide (as for people), and regard
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acceptable
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from first
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Feature computed from second item

Figure 26.6. A classifier that accepts large groups can be used to predict tests that
identify potentially useful small groups. Assume we want to group two items together:
this grouping is acceptable only if a point, consisting of one feature computed from each
item lies, in the shaded set. There are some items that could not appear in these groups,
because the feature computed from the items lies out of the acceptable range, so that
there does not exist a second item that could make the pair acceptable. It is possible to
obtain classifiers that identify the acceptable range by projecting the main classifier onto
its factors, as the picture indicates.

these as potential body segments. We use a crude model of a horse as a four segment
group (a body, a neck and two legs); the order in which the tests are performed
is illustrated in figure 26.7. The crude model is used because (a) it is robust to
changes in aspect and (b) it doesn’t require accurate localisation of all segments.
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Figure 26.7. The model used for a horse involves two legs, a body and a neck. Segments
are first tested to see whether they are acceptable members of one of these classes. We
then test pairs of body and leg segments, and pairs of body and leg segments. We then
take body-leg pairs and body-neck pairs which share the same body and test to see if they
form a valid body-leg-neck triple. Pairs of triples that share the same body and the same
neck are tested to form quadruples. Figure from “Body Plans,” by D.A. Forsyth and M.M.
Fleck, Proc. Computer Vision and Pattern Recognition, 1997, c© 1997, IEEE
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This method of finding objects has been useful in some applications, as fig-
ure 26.6 and figure 26.8 suggest, but there are significant open questions. Firstly, it
isn’t obvious what sequence of intermediate groups and tests is best. It is possible
to think about this problem by asking which projections of the decision boundary
lead to small projected volumes (and so, hopefully, to relatively few passing groups).
This looks like a difficult problem, because it deals with combinatorial properties.
Secondly, it isn’t obvious how we deal with multiple objects efficiently. If a single
template occurs only on one object, then, when we observe the template, we imme-
diately have an object hypothesis. Things are much more difficult when templates
could have come from many objects. For example, consider recognizing people and
horses: a single segment could come from either, as could many pairs — how do
we arrange the sequence of tests to minimize the work required to decide what we
are dealing with? Finally, the use of a classifier generates some annoying problems
with false negatives.

26.4 Technique: Hidden Markov Models

Up to this point, adopting a probability model hasn’t changed much of significance
in our discussion of recognition. While we perform “verification” by evaluating a
joint probability model, we are still engaged in a correspondence search, very like
those of chapter 24. Our method of pruning is analogous to the interepretation
tree of that chapter. However, more is possible: some probability models have
a structure that make it possible to get an exactly optimal correspondence very
efficiently indeed.
A program that reads American Sign Language from a video sequence of someone

signing must infer a state, internal to the user, for each sign. The program will infer
state from measurements of hand position that are unlikely to be accurate, but will
depend — hopefully quite strongly — on the state. The signs change state in a
random (but quite orderly) fashion. In particular, some sequences of states occur
very seldom (e.g. a sequence of letter signs for the sequence “wkwk” is extremely
unlikely). This means that both the measurements and the relative probabilities of
different sequences of signs can be used to determine what actually happened.
The elements of this kind of problem are:

• there is a sequence of random variables (in our example, the signs), each of
which is conditionally independent of all others given its predecessor;

• each random variable generates a measurement (the measurements of hand
position) whose probability distribution depends on the state.

Similar elements are to be found in such examples as interpreting the movement of
dancers, or of martial artists. There is an extremely useful formal model, known as
a hidden Markov model, corresponding to these elements.
The sequence of random variables does not have to be temporal. Instead, we

could order the variables by spatial relations, too. Consider an arm: the configura-
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tion of the lower arm is (roughly!) independent of the configuration of the rest of
the body given the configuration of the upper arm; the configuration of the upper
arm is (roughly!) independent of the rest of the body given the configuration of
the torso; etc. This gives us a sequence of random variables with the conditional
independence properties described above. Now we don’t really know the configura-
tion of the lower arm — we have only some image measurements that have some
probabilistic relationship with the configuration of the lower arm (as above).

26.4.1 Formal Matters

A sequence of random variables Xn is said to be a Markov chain if

P (Xn = a|Xn−1 = b,Xn−2 = c, . . . ,X0 = x) = P (Xn = a|Xn−1 = b)

and a homogenous Markov chain if this probability does not depend on n.
Markov chains can be thought of as sequences with very little memory; the new state
depends on the previous state, but not on the whole history. It turns out that this
property is surprisingly useful in modelling, because many physical variables appear
to have it, and because it enables a variety of simple inference algorithms. There
are very slightly different notations for Markov chains on discrete and continuous
state spaces; we shall discuss only the discrete case.
Assume that we have a discrete state space. It doesn’t really matter what

dimension the space is, although finite spaces are somewhat easier to imagine. Write
the elements of the space as si and assume that there are k elements. Assume that
we have a sequence of random variables taking values in that state space that forms
a homogenous Markov chain. Now we write

P (Xn = sj |Xn−1 = si) = pij

and because the chain is independent of n, so is pij . We can write a matrix P
with i, j’th element pij which describes the behaviour of the chain; this matrix is
called the state transition matrix. Assume that X0 has probability distribution
P (X0 = si) = πi, and we will write π as a vector with i’th element πi. This means
that

P (X1 = sj) =

k∑
i=1

P (X1 = sj|X0 = si)P (X0 = si)

=

k∑
i=1

P (X1 = sj|X0 = si)πi

=

k∑
i=1

pijπi

and so the probability distribution for the state of X1 is given by PTπ. By a similar
argument, the probability distribution for the state of Xn is given by (PT )nπ. For
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all Markov chains, there is at least one distribution πs such that πs = PTπs; this
is known as the stationary distribution of the chain. Markov chains allow quite
simple and informative pictures. We can draw a weighted, directed graph with a
node for each state and the weight on each edge indicating the probability of a state
transition (figure 26.9).
If we observe the random variable Xn, then inference is easy — we know what

state the chain is in. This is a poor observation model, however. A much better
model is to say that, for each element of the sequence, we observe another random
variable, whose probability distribution depends on the state of the chain. That is,
we observe some Yn, where the probability distribution is some P (Yn|Xn = si) =
qi(Yn). We can arrange these elements into a matrixQ. Specifying a hidden Markov
model requires providing the state transition process, the relationship between state
and the probability distribution on Yn and the initial distribution on states, i.e. the
model is given by (P,Q,π). We will assume that the state space has k elements.

26.4.2 Computing with Hidden Markov Models

We will assume that we are dealing with a hidden Markov model on a discrete state
space — this simplifies computation considerably, usually at no particular cost.
There are two important problems:

• Inference: We need to determine what underlying set of states gave rise to
our observations. This will make it possible to, for example, infer what the
dancer is doing or the signer is saying.

• Fitting: We need to choose a hidden Markov model that represents a se-
quence of past observations well.

Each has an efficient, standard solution.

The Trellis Model

Assume that we have a series of N measurements Y i that we believe to be the
output of a hidden Markov model. We can set up these measurements in a struc-
ture called a trellis. This is a weighted, directed graph consisting of N copies of
the state space, which we arrange in columns. There is a column corresponding
to each measurement. We weight the node representing state Xi in the column
corresponding to Y j with log qi(Y j).
We join up the elements from column to column as follows. Consider the column

corresponding the Y j; we join the element in this column representing state Xk to

the element in the column corresponding to Y j+1 representing state �Xl if pkl is non-
zero. This arc represents the fact that there is a possible transition between these
states. This arc is weighted with log pkl. Figure 26.10 shows a trellis constructed
from an HMM.
The trellis has the following interesting property: each (directed) path through

the trellis represents a legal sequence of states. Now since each node of the trellis is
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weighted with the log of the emission probability, and each arc is weighted with the
log of the transition probability, the likelihood of sequence of states can be obtained
by identifying the path corresponding to this sequence, and summing the weights
(of arcs and nodes) along the path. This yields an extremely effective algorithm for
finding the maximum likelihood path, known as dynamic programming or the
Viterbi algorithm.
We start at the final column of the tellis. We know the log-likelihood of a one

state path, ending at each node, as this is just the weight of that node. Now consider
a two state path, which will start at the second last column of the trellis. We can
easily obtain the best path leaving each node in this column. Consider a node: we
know the weight of each arc leaving the node and the weight of the node at the far
end of the arc, so we can choose the path segment with the largest value of the sum
— this arc is the best we can do leaving that node. Now for each node, we add the
weight at the node to the value of the best path segment leaving that node (i.e. the
arc weight plus the weight of the node at the far end). This sum is the best value
obtainable on reaching that node — which we’ll call the node value.
Now, since we know the best value obtainable on reaching each node in the

second-last column, we can figure out the best value obtainable on reaching each
node in the third-last column. At each node in the third last column, we have a
choice of arcs, each reaching a node whose value we know. We choose the arc with
the largest value of (arc weight plus node value), add this value to the weight at
the starting node in the third last column, and this yields the value of the starting
node. We can repeat this process, until we have a value for each of the nodes in the
first column; the largest value is the maximum likelihood.
We can also get the path with the maximum likelihood value. When we compute

the value of a node, we erase all but the best arc leaving that node. Once we reach
the first column, we simply follow the path from the node with the best value.
Figure 26.11 illustrates this extremely simple and very powerful algorithm.
In the following sections, we describe dynamic programming rather more for-

mally.

Inference and Dynamic Programming

For inference, we have a series of observations {Y0, Y1, . . . , Yn} and we would like
to obtain the sequence of n+ 1 states S = {S0, S1, . . . , Sn} that maximises

P (S|{Y0, Y1, . . . , Yn}, (P,Q,π))

which is the same as maximising the joint distribution

P (S, {Y0, Y1, . . . , Yn}|(P,Q,π))

There is a standard algorithm for this purpose, the Viterbi algorithm. We
seek an n + 1 element path through the states (from S0 to Sn). There are k

n+1

such paths, because we could choose from each state for every element of the path
(assuming that there are no zeros in P — in most cases, there are certainly O(kn+1)
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paths). We can’t look at every path, but in fact we don’t have to. The approach is
as follows: assume that, for each possible state sl, we know the value of the joint for
the best n step path that ends in Sn−1 = sl; then the path that maximises the joint
for an n + 1 step path must consist of one of these paths, combined with another
step. All we have to do is find the missing step.
We can approach finding the path with the maximum value of the joint as an

induction problem. Assume that, for each value j of Sn−1, we know the value of
the joint for the best path that ends in Sn−1 = j, which we write as

δn−1(j) = max
S0,S1,...,Sn−2

P ({S0, S1, . . . , Sn−1 = j}, {Y0, Y1, . . . , Yn−1}|(P,Q,π))

Now we have that

δn(j) =
(
max
i
δn−1(i)Pij

)
qj(Yn)

We need not only the maximum value, but also the path that gave rise to this value.
We define another variable

ψn(j) = argmax (δn−1(i)Pij)

(i.e. the best path that ends in Sn = j). This gives us an inductive algorithm for
getting the best path.
The reasoning is as follows: I know the best path to each state for the n− 1’th

measurement; for each state for the n’th measurement, I can look backward and
choose the best state for the n− 1’th measurement; but I know the best path from
there, so I have the best path to each state for the n’th measurements. We have
put everything together in algorithm 1.

Fitting an HMM with EM

We have a dataset Y for which we believe a hidden Markov model is an appropriate
model; but which hidden Markov model should we use? We wish to choose a
model that best represents a set of data. To do this, we will use a version of the
Expectation-Maximisation algorithm of chapter 18, due to Baum and Welch [?]. In
this algorithm, we assume that we have an HMM, (P,Q,π)); we now want to use
this model and our dataset to estimate a new set of values for these parameters. We
now estimate (P,Q,π)) using a procedure that is given below. There will be two
possibilities (a fact which we won’t prove). Either P (Y |(P,Q,π)) > P (Y |(P,Q,π),
or (P,Q,π) = (P,Q,π).
The updated values of the model parameters will have the form:

πi = expected frequency of being in state si at time 1

pij =
expected number of transitions from si to sj
expected number of transitions from state si

qj(k) =
expected number of times in sj and observing Y = yk

expected number of times in state sj
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We need to be able to evaluate these expressions. In particular, we need to be
able to determine

P (Xt = si, Xt+1 = sj |Y , (P,Q,π))

which we shall write as ξt(i, j). If we know ξt(i, j), we have

expected number of transitions from si to sj =

T∑
t=1

ξt(i, j)

expected number of times in si = expected number of transitions from si

=

T∑
t=1

N∑
j=1

ξt(i, j)

expected frequency of being in si at time 1 =

N∑
j=1

ξ1(i, j)

expected number of times in si and observing Y = yk =

T∑
t=1

N∑
j=1

ξt(i, j)δ(Yt, yk)

where δ(u, v) is one if its arguments are equal and zero otherwise.
To evaluate ξt(i, j), we need two intermediate variables: a forward variable

and a backward variable. The forward variable is αn(j) = P (Y0, Y1, . . . , Yn, Xn =
sj |(P,Q,π)). The backward variable is βt(j) = P ({Yt+1, Yt+2, . . . , Yn}|Xt = sj, (P,Q,π)).
If we assume that we know the values of these variables, we have that

ξt(i, j) = P (Xt = si, Xt+1 = sj |Y , (P,Q,π))

=
P (Y , Xt = si, Xt+1 = sj |(P,Q,π))

P (Y |(P,Q,π))

=



P (Y0, Y1, . . . , Yt, Xt = si|(P,Q,π))×
P (Yt+1|Xt+1 = sj , (P,Q,π))×
P (Xt+1 = sj |Xt = si, (P,Q,π))×
P (Yt+2, . . . , YN |Xt+1 = sj , (P,Q,π))




P (Y |(P,Q,π))

=
αt(i)pijqj(Yt+1)βt+1(j)

P (Y |(P,Q,π))

=
αt(i)pijqj(Yt+1)βt+1(j)∑N

i=1

∑N
j=1 αt(i)pijqj(Yt+1)βt+1(j)

Both the forward and backward variables can be evaluated by induction. We
get αn(j), by observing that:

α0(j) = P (Y0, X0 = sj |(P,Q,π))
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= πjqj(Y0)

αt+1(j) = P (Y0, Y1, . . . , Yt+1, Xt+1 = sj |(P,Q,π))

= P (Y0, Y1, . . . , Yt, Xt+1 = sj |(P,Q,π))P (Yt+1|Xt+1 = sj)

=

k∑
l=1

[P (Y0, Y1, . . . , Yt, Xt = sl , Xt+1 = sj |(P,Q,π))P (Yt+1|Xt+1 = sj)]

=

[
k∑
l=1

P (Y0, Y1, . . . , Yt, Xt = sl|(P,Q,π))P (Xt+1 = sj |Xt = sl)

]
P (Yt+1|Xt+1 = sj)

=

[
k∑
l=1

αt(l)plj

]
qj(Yt+1) 1 ≤ t ≤ n− 1

This backward variable can also be obtained by induction as:

βN (j) = P (no further output|Xn = sj , (P,Q,π))

= 1

βt(j) = P ({Yt+1, Yt+2, . . . , Yn}|Xt = sj , (P,Q,π))

=

k∑
l=1

[P ({Yt+1, Yt+2, . . . , Yn}, Xt = sl|Xt+1 = sj , (P,Q,π))]

=

[
k∑
l=1

P (Xt = sl, Yt+1|Xt+1 = sj)

]
P ({Yt+2, . . . , Yn}|Xt+1 = sj , (P,Q,π))

=

[
k∑
l=1

pjlql(Yt+1)

]
βt+1(j) 1 ≤ t ≤ k − 1

As a result, we have a simple fitting algorithm, collected in algorithm 2

26.4.3 Varieties of HMM’s

We have not spoken about the topology of the graph underlying our model. This
could be a complete graph (one where every node is connected to every other
in both directions), but does not have to be. One disadvantage of using complete
graphs is that there are a large number of parameters to estimate. In applications,
a number of variants have proven useful.
A left-right model or Bakis model has the property that, from state i, the

model can move only to states j > i. This means that for j < i, pij = 0. Fur-
thermore, π1 = 1 and for all i �= 1, pi = 0. This means that the state transition
matrix P will be upper triangular. Furthermore, an N state left-right model will
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stay in the N ’th state once it has been reached. You should notice that this model
captures a notion of the order in which events can occur, which could be convenient
if we were using HMM’s to encode various kinds of motion information (or speech
information, where the model originates).
However, a general left-right model suggests that large numbers of events may be

skipped (the state may advance freely). This isn’t really consistent with a reasonable
model of motion, because while we may miss a measurement or two or a state or
two, it is unlikely that we will miss a large collection of states. It is common to use
the additional constraint that for j > i + δ, pij = 0. Here δ tends to be a small
number (two is often used).
Surprisingly, constraining the topology of the model does not create any prob-

lems with the algorithms of the previous sections. You should verify that the es-
timation algorithm preserves zeros, meaning that if we start it with model of a
particular topology — which will have zeros in particular spots of the state tran-
sition matrix — it will produce a new estimate of the state transition matrix that
also has zeros in those spots.

26.5 Application: Hidden Markov Models and Sign Language Un-
derstanding

Sign language is language which is rendered using a system of gestures, rather than
by manipulating the vocal tract. For most people, learning to understand sign
language takes an effort; it would be attractive to have a device that could be
pointed at someone who was signing, and would generate speech. This is a problem
that has some strong analogies with speech recognition, an area that is now quite
highly developed.
Hidden Markov models have been highly successful in speech understanding ap-

plications. The hidden states describe the vocal system; the observations are various
acoustic measurements. Typically, there is a hidden Markov model associated with
each word. These models are attached together using a language model, which
specifies the probability of a word occurring given some other word has already oc-
curred. The resulting object is another — possibly very big — HMM. The sentence
represented by a set of acoustic measurements is then obtained by an inference
algorithm applied to the language model. This technique has worked well for the
speech community, and it is natural to try to suborn the model to deal with sign
language.
Human gestures are rather like human sounds — there is typically a sequence

of events, and we have measurements that result from these events, but do not
determine them. While there is no guarantee that the rather stiff conditional in-
dependence assumptions underlying hidden Markov models are actually true for
human gestures, the model is certainly worth trying, because there is no such guar-
antee for speech models, and HMM’s work in that application.
We will describe systems that use HMM’s to interpret sign language, but you
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should realize that this approach will also work for formal systems of gestures. For
example, if I wish to build a system that opens a window when I move my hand
one way, and closes it if I move my hand another way, I could regard that set of
gestures as a rather restricted sign language.
There are a number of systems that use HMM’s to interpret sign language.

Generally, word models are left-right models, but constrained not to skip too many
states (i.e. pij = 0 for j > i+∆ and ∆ fairly small). Typically, there are a small
number of states; each state has a self-loop, meaning that the model can stay in
that state for a number of ticks; and there are transitions that skip some states,
meaning that it is possible to move through the hidden states rather fast. Only
two issues must now be resolved to build a system: firstly, the word models need to
be connected together with some form of language model, and secondly, one must
decide what to measure.

26.5.1 Language Models: Sentences from Words

We wish to recognise expressions in sign language, rather than isolated words, so
we need to specify how words will appear. Language models are a specification of
how word HMM’s should be strung together to give an HMM that represents full
sentences. The simplest language model has words that occur independent of the
previous word. The language model can be expressed by a graph, as in figure 26.13.
In this model, the state moves to a start state, then emits a word, then either stops
or loops back from where another word can be emitted. It is now necessary to
find an extremal path through this larger graph; the Viterbi algorithm still applies,
there is just no observation corresponding to the shaded states.
More sophisticated language models are desirable — a language model for En-

glish that had words drawn independently at random would generate quite long
strings of “and”’s and “the”’s — but do generate computational problems. The
natural first step is to have a bigram language model, where the probability that
a word is produced depends on the word that was produced previously. This gen-
erates a language model of the form of figure 26.14. More sophisticated language
models involve trigrams — that is, the probability that a word is emitted depends
on the last two words — or more detailed context from the preceeding sentence. The
difficulty with this approach is that, for a reasonably sized vocabulary, the number
of states the Viterbi algorithm has to search can be prodigious. There are a variety
of techniques for pruning this search, which are beyond our scope — Jelinek’s book
gives one approach in chapter 5 [?], or see [?].

Features and Typical Levels of Performance

There are a few current programs for sign language recognition. Starner has written
several programs, using a variety of features. The simplest approach requires a user
to wear a yellow glove on the right hand and a red glove on the left hand [Starner and
Pentland, 1996]. An alternative approach to wearing gloves — which is something
of a nuisance — is to segment hands using skin colour (always assuming there is
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nothing else skin-coloured in the vicinity) [Starner et al., 1998]. Pixels of interesting
colours (yellow and red, or skin) are identified in the image. Once an appropriate
pixel has been found, its eight neighbours are checked to determine if their colour
is acceptable, too; this process continues to obtain a blob of pixels.
Blobs admit a variety of features. The center of gravity of the blob gives two

features, and the change in center of gravity from the previous frame yields another
two. The area of the blob is another feature. The orientation and size of the blob
can be measured by forming a matrix of second moments,( ∫

x2dxdy 1
2

∫
xydxdy

1
2

∫
xydxdy

∫
y2dxdy

)

The ratio of eigenvalues of this matrix gives an indication of the eccentricity of the
blob; the largest eigenvalue is an estimate of the size along the principal direction;
and the orientation of the eigenvector corresponding to this eigenvalue gives the
orientation of the blob.
Starner’s system works on a vocabulary of 40 words, representing a total of

four parts of speech. The topology of the HMM’s for the words is given and the
parameters are estimated using the EM algorithm of chapter 18. For both isolated
word recognition tasks and for recognition using a language model that has five word
sentences (words always appearing in the order pronoun verb noun adjective
pronoun), the system displays a word accuracy of the order of 90%. Values are
slightly larger or smaller, depending on the features and the task, etc.
Vogler and Metaxas have built a system that uses estimates of arm position,

recovered either from a physical sensor mounted on the body or from a system of
three cameras that measures arm position fairly accurately [Vogler and Metaxas,
1998; Vogler and Metaxas, 1999]. For a vocabulary of 53 words, and an independent
word language model, they report a word recognition accuracy of the order of 90%.

The Future

All the results in the literature are for very small vocabularies and very simple
language models. Nonetheless, HMM’s seem a promising method for recognising
sign language. It isn’t clear that very simple features are sufficient to recognise
complex signs (though it is known that very coarse scale movies of sign language
are still quite intelligible [?]). One possible direction for progress is to use features
that give a better estimate of what the fingers are doing.
Good language models — and appropriate inference algorithms— are at the core

of the success of modern speech recognition systems. These models are typically
obtained by measuring the frequency with which a word occurs in some context —
for example, trigram frequencies. Building these models requires tremendous quan-
tities of data, because we need an accurate estimate of the relative frequencies of
quite infrequent events. For example, as Jelinek points out ([?], p. 75) it typically
takes a body of 640, 000 words to assemble a set of 15, 000 different words. This
means that some words are used very often, and that measuring word frequencies
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on a small body of data is extremely dangerous. Both the speech recognition com-
munity and the natural language community have a lot of experience with these
difficulties, and a variety of sophisticated tricks for dealing with them (e.g. [?; ?;
?]). Future research in sign language recognition will involve learning these tricks
and transferring them to the vision domain.

26.6 Application: Finding People with Hidden Markov Models

It is fairly easy to see how a hidden Markov model is a reasonable choice for recog-
nising sign language — signs occur in a constrained random order, and generate
noisy measurements. There are other applications that are not as obvious. The
important property of a hidden Markov model is not the temporal sequence; it is
conditional independence — that Xi+1 is independent of the past, given Xi.
This sort of independence occurs in a variety of cases. By far the most important

is finding people. We assume that people appear in images as dolls, consisting of
nine body segments (upper and lower left and right arms and legs respectively, and a
torso) each of which is rectangular. In particular, we assume that the left lower arm
is independent of all other segments given the left upper arm; that the left upper
arm is independent of all segments given the torso; and extend these assumptions in
the obvious way to include the right arm and the legs, too. This gives us a hidden
Markov model. We can write the model out to emphasize this point. We write Xlua
for the configuration of the left upper arm, etc., and have

P (Xt, Xlua, Xlla , Xrua, Xrla, Xlul, Xlll , Xrul, Xrll) = P (Xt)P (Xlua|Xt)×

P (Xlla|Xlua)×

P (Xrua|Xt)×

P (Xrla|Xrua)×

P (Xlul|Xt)×

P (Xlll |Xlul)×

P (Xrul|Xt) ×

P (Xrll |Xrul)

which we can draw as a tree indicating the dependencies (figure 26.16).
Now assume that we observe some image measurements relating to segment

configuration. For the moment, we assume that each body segment can occupy one
of a finite collection of discrete states — we write the event that a particular limb is
in a particular state as, say, Xlua = xlua. This event will result in a measurement,
whose conditional probability can be written as P (M = m|Xlua = xlua) etc. In
particular, we will have a system of segments in the image, some of which correspond
to limb segments and some of which result from noise. We assume that there are
Ns segments in the image. Furthermore, we assume that the probability that a
segment arises from noise is independent of anything we can measure from the
segment. Now for each correspondence of image segments to limb segments we can
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evaluate a likelihood function. We need to be able to write out the correspondence;
let us write {i1, . . . , i9} as the event that image segment i1 is the torso, i2 is the left
upper arm, through to i9 is the right lower leg, and that all others are noise. We
write mik for the image measurements associated with the ik’th image segment.
Assume, for the moment, that we expect all body segments to be present at

every stage. We now wish to determine which choice of image segments represents
the body segments of a person who is present, and what the configuration of that
person is. We have a log-likelihood that looks like:

logP ({i1, . . . , i9}|Xt = xt, . . . , Xrll = xrll) = logP (mi1 |xt) +

logP (mi2 |xlua) + . . .

logP (mi9 |xrll) +

(Ns − 9)P (image segment from noise)

Now if we write P (Xlua = xlua|Xt = xt) as P (xlua|xt), the the log of the joint
probability is

logP ({i1, . . . , i9}, Xt = xt, . . . , Xrll = xrll) = logP ({i1, . . . , i9}|Xt = xt, . . . , Xrll = xrll) +

logP (xt,xlua,xlla ,xrua,xrla,xlul,xlll ,xrul,xrll)

= logP ({i1, . . . , i9}|Xt = xt, . . . , Xrll = xrll) +

logP (xt)P (xlua|xt) +

logP (xlla|xlua) +

logP (xrua|xt) +

logP (xrla|xrua) +

logP (xlul|xt) +

logP (xlll |xlul) +

logP (xrul|xt) +

logP (xrll|xrul)

= logP (mi1 |xt) +

logP (mi2 |xlua) + . . .

logP (mi9 |xrll) +

(Ns − 9)P (image segment from noise) +

logP (xt)P (xlua|xt) +

logP (xlla|xlua) +

logP (xrua|xt) +

logP (xrla|xrua) +

logP (xlul|xt) +

logP (xlll |xlul) +

logP (xrul|xt) +
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logP (xrll|xrul)

Now all this fits into the lattice structure — which is the core of dynamic program-
ming — rather easily. For each body segment, we establish a column of nodes, one
for each pair of the form (image segment, body segment state). Attached to each
of these nodes is a term of the form logP (mi1 |xt), whose value we know because
we know both the image segment and the body segment state represented by the
node. There is a directed arc from each element of the column representing a body
segment in the tree to each element in the columns representing its children. These
arcs are labelled with the logs of the appropriate “transition” probabilities, for ex-
ample P (xlua|xt) (see figure 26.17). We wish to find the directed path with the
largest sum of node and arc values along the path.
The model’s structure means that some nodes along the path will have more

than one child; this doesn’t matter. The element of dynamic programming is that
it is possible to process the lattice so that, at each node, we know the value of the
best choice available at that node. This element is present here, too. We transfer
values back up directed arcs as before, and when a node has more than one children,
we sum the best choices available over the children. Figure ?? illustrates the process
for a simplified lattice.
Models of this form can be used to find people in images in a fairly straight-

forward manner. Firstly, we need some model linking image observations to the
configuration of the limb segments — i.e. a likelihood model. Felzenszwalb and
Huttenlocher assume that segments have known colour patterns — typically, a
mixture of skin colour and blue — and then compare the actual image colour with
these patterns [Felzenszwalb and Huttenlocher, 2000]. This leads to a fairly satis-
factory matcher (figure 26.18), with the proviso that the person’s clothing be known
in advance.

26.7 Conclusions

This topic is one on which substantial research is being conducted as we write; by
the time anyone reads it, the chapter certainly won’t represent the cutting edge of
research. We have tried to identify the intellectual strands we think will prove most
significant, which explains the emphasis on inference as search. The primary — and
stunning — attraction of an HMM is that inference is very simple (or, equivalently,
the correspondence search is very easily structured).

26.7.1 Hidden Markov Models

Dynamic programming has been used to find people in various ways. In [Ioffe
and Forsyth, 1999], it is used to recommend hypotheses to a process that ac-
cepts or rejects them based on whether segments are shared or not — the con-
ditional independence assumption prevents one compelling the model to ensure
that body segments do not overlap. Felzenszwalb and Huttenlocher found peo-
ple explicitly with dynamic programming and regional features [Felzenszwalb and
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Huttenlocher, 2000]. Song et al. formulate finding people using motion infor-
mation as a correspondence search through a probabilistic model and use dy-
namic programming to solve the search [Song et al., 1999; Song et al., 2000b;
Song et al., 2000a].
HMM’s have some very serious difficulties as devices for visual inference. The

first is that their discriminative performance on vision problems hasn’t been all that
good, to date. The second is that the property that inference is easy comes from the
very strong structural constraints on the model — these conditional independence
constraints can make it difficult to impose quite natural constraints. For example,
the model used for finding people does not admit the constraint that different parts
of the image should correspond to different body segments (because that would
involve adding an edge to the tree of figure 26.18, which would result in a model
that was not a tree). The difficulty with models that have more complex conditional
independence relations is that inference can be difficult. An important research topic
in object recognition involves finding models that (a) are quite a good representation
of the world, in the sense that they can be used to achieve efficient discrimination;
(b) admit quite simple inference algorithms; and (c) can be composed easily to yield
new models.
This question of composition is important, and hasn’t had much attention yet.

Basically, if one wishes to recognise large numbers of different types of object, it is
probably difficult to do so by thinking of this collection as flat — in the sense that
one (simultaneously or in sequence) attempts to match to each model independently.
However, if each object gave rise to a different set of features, we would be forced to
do this (by finding the features corresponding to the first object, the second, etc.).
A more attractive model involves having features that, in general form, apply to
many different types of object, with the distinctions between these types emerging
from (a) the relations between the features and (b) the detailed appearance of the
features. How this process works remains extremely vague.
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Figure 26.8. Horses can be found by building a classifier of the type described in
the text. This example illustrates the effectiveness of the approach. The system finds
image regions that have the colour and texture of hide, and look like cylinders (as in
section 17.3). A horse is defined as a collection of four cylinders — a body, a neck and two
legs — and a classifier that accepts this assembly is learned from examples. This classifier
is projected onto factors, as described in the text, and these projected versions are used
to build assemblies in an order that was arbitrarily selected. The result is a system that,
while not spectacularly accurate, is useful. The figure shows all images that the classifier
thinks contains horses, obtained using a control set of 1086 non-horse images and a test set
of 100 horse images. The test images recovered contain horses in a wide range of aspects;
one control image contains an animal that might reasonably pass for a horse. This figure
appears also as figure (it’s reproduced here for convenience). Figure from “Body Plans,”
by D.A. Forsyth and M.M. Fleck, Proc. Computer Vision and Pattern Recognition, 1997,
c© 1997, IEEE
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1 2

p1-p

q

1-q

Figure 26.9. A simple, two-state Markov chain. In this chain, the probability of going
from state one to state two is p; from state one to state one is 1−p; etc. We could describe
this chain with the state transition matrix Its stationary distribution is (q/(p+q), p/(p+q)).
This makes sense; for example, if p is very small and q is close to one, the chain will spend
nearlly all its time in state one. Notice that, if p and q are both very small, the chain will
stay in one state for a long time, and then flip to the other state, where it will stay for a
long time.
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Figure 26.10. At the top, a simple state transition model. We have labelled
each arc with the log of the probability that that transition occurs from the relevant
start node. Below, the trellis corresponding to that model. Notice that each path
through the trellis corresponds to a legal sequence of states, for a sequence of four
measurements. We weight the arcs with the log of the transition probabilities, and
the nodes with the log of the emission probabilities; arc weights are not shown here,
to reduce the complexity of the drawing.
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Computing the value
of the second last column

Roll this back
to the third
last column

At the final column,
we have the maximum
likelihood

Figure 26.11. It is a simple matter to find the best path through the trellis of
figure 26.10 (or any other trellis, for that matter!). We assume that each 1 node
has log-probability -1, each 2 node has log-probability -3 and each 3 node has log
probability -9. We also assume that the probabilities of leaving a node are uniform
(check our numbers!). Now the value of each node in the second-last column is the
value of the node plus the best value to be obtained by leaving that node. This is
easily computed. The algorithm involves computing the value of each node in the
second-last column; then of each node in the third last column; etc. as described in
the text. Once we get to the start of the trellis, the largest weight is the maximum
of the log-likelihood; since we erased all but the best path segments, we have the best
path, too (indicated by a dashed line).
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1. Initialization:

δ1(j) = πjbj(Y1)1.0cm1 ≤ j ≤ N

ψ1(j) = 0

2. Recursion:

δn(j) =
(
max
i
δn−1(i)Pij

)
qj(Yn)

ψn(j) = arg max (δn−1(i)Pij)

3. Termination:

p∗ = max
i
(δN (i))

q∗N = argmax
i
(δN (i))

4. Path backtracking:
q∗t = ψt+1(q

∗
t+1)

Algorithm 26.1: The Viterbi algorithm yields the path through an HMM that
maximises the joint, and the value of the joint at this path. Here δ and ψ are
convenient bookkeeping variables (as in the text);p∗ is the maximum value of the
joint; and q∗t is the t’th state in the optimal path.
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Until (P,Q,π)i+1 is the same as (P,Q,π)i
compute the forward variables α and β
using the procedures of algorithms 4 and 5

compute ξt(i, j) =
αt(i)pijqj(Yt+1)βt+1(j)∑N

i=1

∑N

j=1
αt(i)pijqj(Yt+1)βt+1(j)

compute the updated parameters using the procedures of algorithm 3

These values are the elements of (P,Q,π)i+1
end

Algorithm 26.2: Fitting Hidden Markov Models to a data sequence Y is
achieved by a version of EM. We assume a model (P,Q,π)i, and then compute
the coefficients of a new model; this iteration is guaranteed to converge to a local
maximum of P (Y |(P,Q,π)).

πi = expected frequency of being in state si at time 1

=

N∑
j=1

ξ1(i, j)

pij =
expected number of transitions from si to sj
expected number of transitions from state si

=

∑T
t=1 ξt(i, j)∑T

t=1

∑N
j=1 ξt(i, j)

qi(k) =
expected number of times in si and observing Y = yk

expected number of times in state si

=

∑T
t=1

∑N
j=1 ξt(i, j)δ(Yt, yk)∑T

t=1

∑N
j=1 ξt(i, j)

here δ(u, v) is one if its arguments are equal and zero otherwise.

Algorithm 26.3: Computing the new values of parameters for the hidden
Markov model fitting process
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α0(j) = πjqj(Y0)

αt+1(j) =

[
k∑
l=1

αt(l)plj

]
qj(Yt+1) 1 ≤ t ≤ n− 1

Algorithm 26.4: Computing the forward variable for the hidden Markov
model fitting process.

βN (j) = 1

βt(j) =

[
k∑
l=1

pjlql(Yt+1)

]
βt+1(j) 1 ≤ t ≤ k − 1

Algorithm 26.5: Computing the backward variable for the hidden Markov
model fitting process
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a
b

c

Figure 26.12. A variety of HMM topologies have proven useful in practice. At the
top, we show an ergodic or fully connected model. In the middle, we show a four state
left-right model. This model has been constrained so that pij = 0 for j > i+2 as well. At
the bottom, we show a six state parallel path left-right model. This model has, in essence,
two parallel left-right models with the option of switching between them. figure from A
Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition, L.
Rabiner, p.266, in the fervent hope of receiving permission

word 1 model

word N model

word 3 model

word 2 model

:

Start

Finish

Figure 26.13. If we take an HMM for each word in the vocabulary, and string these
models together with independent emission probabilities, we obtain a language model.
This is of the very simplest kind, with independent words, and no constraint on the length
of a sentence; while it has very little syntax, it is still an HMM and allows extremely simple
inference.
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word 1 model

word 3 model

Start Finishword 2 model

Figure 26.14. In a bigram language model, the probability that a word will be emitted
depends on the word that was emitted previously. Such models can be laid out as HMM’s,
again by stringing the word models together. Notice that the topology is now considerably
more complicated; for simplicity, we have allowed only three words.

Figure 26.15. Starner and colleagues have built a sign-language recognition system that
uses HMM’s to yield word models. This figure shows the view of a signer presented to the
system; it is obtained from a camera on the desktop. Figure from “Real time American
sign language recognition using desk and wearable computer based video,” T. Starner, et
al. Proc. Int. Symp. on Computer Vision, 1995, c© 1995, IEEE
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Torso

LUA

LLA

RUA

RLA

LUL

LLL

RUL

RLL

Figure 26.16. One can think of a human as forming a hidden Markov model. The tree
in the figure illustrates the structure of one possible model: the torso generates various
structures — arms and legs — whose properties are conditionally independent given the
torso. The lower leg is conditionally independent of the rest of the model given the upper
leg, etc. We can encode these independence properties by drawing a node for each variable,
and a directed arc from a variable to another if the second depends directly on the first. If
this drawing (which is a directed graph) is a tree, then we have a hidden Markov model.
Notice that the semantics of this drawing are somewhat different from those of the drawing
of figure 26.9; that drawing showed the possible state transitions and their probabilities,
whereas this shows the variable dependencies.
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T

A L

L column

A column

T column

Figure 26.17. The figure shows a trellis derived from a simple tree, based around a
simplified human model. You can read leg for L, etc. The elements of a column correspond
to different possible correspondences between image segments, body segments and body
segment configuration variables. For example, a node might represent the fact that image
segment two corresponds to a torso segment at a particular position. The fact that nodes
in the column marked “T” have two children each — instead of the single child in our
previous example — creates no problem. For each node in this column, we can determine
the best available option, and its value. This is obtained by computing the best available
“A” option (and value) and the best available “L” option (and its value). In turn, this
gives us the value of the “T” node. This observation means that we can use dynamic
programming for any tree model.
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Figure 26.18. On the top left, a tree structured model of a person. Each segment
is coloured with the image colour expected within this segment. The model attempts
to find a configuration of these 11 body segments (9 limb segments, face and hair) that
(a) matches these colours and (b) is configured like a person. This can be done with
dynamic programming, as described in the text. The other three frames show matches
obtained using the method. Figure from “Efficient Matching of Pictorial Structures,”
P. Felzenszwalb and D.P. Huttenlocher, Proc. Computer Vision and Pattern Recognition
2000, c© 2000, IEEE



Chapter 27

SMOOTH SURFACES AND
THEIR OUTLINES

We investigated in Chapter 5 the quantitative relationship between the parameters
of simple geometric figures such as points, lines and planes and the parameters
of their image projections. In this chapter, we investigate instead the qualitative
relationship between three-dimensional shapes and their pictures. For example, the
edges and vertices of a polyhedral solid project onto line segments and points of the
image plane. A subset of these segments forms a polygon that bounds the image
of the solid, corresponding to surface edges adjacent to faces whose normals point
into opposite directions relative to the observer (Figure 27.1(a)).

(a) (b)

Arrow: Fork:

L: T:

Figure 27.1. The images of polyhedral solids: (a) polygonal edges of the image of a
polyhedron; (b) the image of a trihedral object and the corresponding junctions. Note
that the solid shown in (a) is not trihedral, and the image junction corresponding to its
top vertex is neither an arrow nor a fork, an L- or a T-junction.

To assert stronger image properties requires additional hypotheses: for example,
assuming a general viewpoint and a trihedral world, where all polyhedral vertices
are formed by the intersection of exactly three planar faces, it is possible to show

802
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that the image edges joining at a vertex may only be arranged in four qualita-
tively distinct configurations, the so-called arrow, fork, L- and T-junctions (Figure
27.1(b)).
Using these junctions to construct three-dimensional interpretations of line-

drawings is a time-honored artificial intelligence exercise that had its hayday in
the early seventies but has fallen out of favor because of the great difficulty in con-
structing a program that reliably extracts flawless line-drawings from images. This
merely suggests that a purely bottom-up approach to image understanding may
fail, but should not detract from the fundamental importance of understanding
how lines, points and other simple geometric objects project into images.
What about more complex figures? It is easy to show that any (planar or

twisted) curve that can be defined by polynomial equations (e.g., a conic section,
which is defined by a quadratic equation) also projects onto a curve defined by
polynomial equations. The case of curved surfaces is more interesting: consider for
example a solid bounded by a smooth surface with a smooth reflectance function,
observed by a perspective camera under a smooth illumination pattern. Ignoring
shadows (e.g., considering a single point light source and a camera co-located far
from the scene), the image is also smooth, except perhaps along occlusion bound-
aries, where the object surface turns away from the camera, and two points that
project on opposite sides of these boundaries belong to spatially separate parts of
the surface. Intuitively, it is clear that occlusion boundaries form a set of image
curves, called the outline, silhouette, or contour of the object (Figure 27.2).

Image
Contour

Viewing 
ConeContour

Occluding

Figure 27.2. The occluding boundaries of a smooth surface.

As in the case of spheres discussed in Chapter 1, these curves are formed by
intersecting the retina with viewing cones (or cylinders in the case of orthographic
projection) whose apex coincides with the pinhole and whose surface grazes the
object along a second set of curves, called the occluding contour, or rim. It can be
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shown that the occluding contour is in general a smooth curve, formed by fold points,
where the viewing ray is tangent to the surface, and a discrete set of cusp points
where the ray is tangent to the occluding contour as well. The image contour is
piecewise smooth, and its only singularities are a discrete set of cusps, formed by the
projection of cusp points, and T-junctions, formed by the transversal superposition
of pairs of fold points (Figure 27.3)). The intuitive meaning of these exotic terms
should be pretty clear: a fold is a point where the surface folds away from its viewer,
and a contour cusps at a point where it suddenly decides to turn back, following a
different path along the same tangent (this is for transparent objects only: contours
of opaque objects terminate at cusps, see Figure 27.3). Likewise, two smooth pieces
of contour cross at a T-junction (unless the object is opaque and one of the branches
terminates at the junction).

Figure 27.3. Contour components: folds, cusps, and T-junctions. Reprinted from
[Petitjean et al., 1992], Figure 3.

Interestingly, attached shadows are delineated by the occluding contours asso-
ciated with the light sources, and cast shadows are bounded by the corresponding
object outlines (Figure 27.4). Thus we also know what they look like. (Caveat: the
objects onto which shadows are cast may themselves have curved surfaces, which
complicates things a great deal. However, the boundaries of attached shadows are
really just occluding contours. Of course, light sources are rarely punctual, and this
adds further difficulties..)
It should not come as a surprise that the notion of occluding boundaries car-

ries over to the polyhedral world: the image contour of a polyhedron is exactly
the polygon bounding its image, and its occluding contour is formed by the edges
separating faces that point in opposite directions relative to the observer (these are
drawn as thicker line segments in Figure 27.1(a)). The image contour of a solid
shape constrains it to lie within the associated viewing cone but does not reveal the
depth of its occluding contour. In the case of solids bounded by smooth surfaces,
the contour provides additional information: in particular, the plane defined by the
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(a) (b)

            

Figure 27.4. (a) Shadow boundaries and occluding contours. Reprinted from [Koen-
derink, 1990], Figure 157. (b) The actress Barbara Steele and the cast and attached
shadows of her face. Reprinted from [MMF, 1967], p. 33.

eye and the tangent to the image contour is itself tangent to the surface. Thus the
contour orientation determines the surface orientation along the occluding contour.
More generally, the rest of this chapter focuses on the geometric relationship

between curved surfaces and their projections and on the type of information about
surface geometry that can be infered from contour geometry (we will come back
later to the case of polyhedral solids): for example, we will show that the contour
curvature also reveals information about the surface curvature. In the mean time, let
us start by introducing elementary notions of differential geometry that will provide
a natural mathematical setting for our study. Differential geometry will prove useful
again later in this book, when we study the changes in object appearance that stem
from viewpoint changes.

27.1 Elements of Differential Geometry

In this section we will present the rudiments of differential geometry necessary to
understand the local relationship between light rays and solid objects. The topic of
our discussion is of course technical, but we will attempt to stay at a fairly informal
level, emphasizing descriptive over analytical geometry. We will also illustrate some
of the concepts introduced with a simple study of surface specularities and what they
reveal about surface shape. We will limit our study of surfaces to those bounding
compact solids in Euclidean space.

27.1.1 Curves

We start with the study of curves that lie in a plane. We will examine a curve γ in
the immediate vicinity of some point P , and will assume that γ does not intersect
itself, or, for that matter, terminate in P . If we draw a straight line L through P ,
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(a) γ

Q

P

LT

(b)

P

T
γ

t

n

N

Figure 27.5. Tangents and normals: (a) definition of the tangent as the limit of secants;
(b) the coordinate system defined by the (oriented) tangent and normal.

it will (in general) intersect γ in some other point Q, defining a secant of this curve
(Figure 27.5(a)). As Q moves closer to P , the secant L will rotate about P and
approach a limit position T , called the tangent line to γ in P .
By construction, the tangent T has more intimate contact with γ than any

other line passing through P . Let us now draw a second line N through P and
perpendicular to L, and call it the normal to γ in P . Given an (arbitrary) choice
for a unit tangent vector t along L, we can construct a right-handed coordinate
frame whose origin is P and whose axes are t and a unit normal vector n along N .
This coordinate system is particularly well adapted to the study of the curve

in the neighborhood of P : its axes divide the plane into four quadrants that can
be numbered in counterclockwise order as shown in Figure 27.6, the first quadrant
being chosen so it contains a particle traveling along the curve toward (and close
to) the origin. In which quadrant will this particle end up just after passing P ?
As shown by Figure 27.6(a)-(d), there are four possible answers to this question,
and they characterize the shape of the curve near P : we say that P is regular when
the moving point ends up in the second quadrant, and singular otherwise. When
the particle traverses the tangent and ends up in the third quadrant, P is called an
inflection of the curve, and we say that P is a cusp of the first or second kind in the
two remaining cases respectively. This classification is in fact independent of the
orientation chosen for γ, and it turns out that almost all points of a general curve
are regular, while singularities only occur at isolated points.
As noted before, the tangent to a curve γ in P is the closest linear approxi-

mation of γ passing through this point. In turn, constructing the closest circular
approximation will now allow us to define the curvature in P , another fundamental
characteristic of the curve shape: consider a point P ′ as it approaches P along the
curve, and let M denote the intersection of the normal lines N and N ′ in P and P ′

(Figure 27.7). As P ′ moves closer to P , M approaches a limit position C along the
normal N , called the center of curvature of γ in P .
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P P P P

(d)

43
(c)

11112 2 2

(b)

3 4 3 4 43

2

(a)

Figure 27.6. A classification of curve points: (a) a regular point; (b) an inflection; (c)
a cusp of the first kind; (d) a cusp of the second kind. Note that the curve stays on the
same side of the tangent at regular points.

T

P

γ

s

N

T’

N’

P’

M

Figure 27.7. Definition of the center of curvature as the limit of the intersection of
normal lines through neighbors of P .

At the same time, if δθ denotes the (small) angle between the normals N and
N ′, and δs denotes the length of the (short) curve arc joining P and P ′, the ratio
δθ/δs also approaches a definite limit κ, called the curvature of the curve in P , as
δs nears zero. It turns out that κ is just the inverse of the distance r between C and
P (this follows easily from the fact that sinu ≈ u for small angles, see exercises).
The circle centered in C with radius r is called the circle of curvature in P , and r
is the radius of curvature.
It can also be shown that a circle drawn through P and two close-by points P ′

and P ′′ approaches the circle of curvature as P ′ and P ′′ move closer to P . This
circle is indeed the closest circular approximation to γ passing through P . The
curvature is zero at inflections, and the circle of curvature degenerates to a straight
line (the tangent) there: inflections are the “flattest” points along a curve.
We will now introduce a device that will prove to be extremely important in the

study of both curves and surfaces, the Gauss map. Let us pick an orientation for
the curve γ and associate with every point P on γ the point Q on the unit circle S1

where the tip of the associated normal vector meets the circle (Figure 27.8). The
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corresponding mapping from γ to S1 is the Gauss map associated with γ.1

Q’
Q"

Q

Gauss Map

1
P

S

γ

P"

P’

Figure 27.8. The Gaussian image of a plane curve. Observe how the direction of
traversal of the Gaussian image reverses at the inflection P ′ of the curve. Also note that
there are close-by points with parallel tangents/normals on either side of P ′. The Gaussian
image folds at the corresponding point Q′.

Let us have another look at the limiting process used to define the curvature.
As P ′ approaches P on the curve, so does the Gaussian image Q′ of P ′ approach
the image Q of P . The (small) angle between N and N ′ is equal to the length of
the arc joining Q and Q′ on the unit circle. The curvature is therefore the limit of
the ratio between the lengths of corresponding arcs of the Gaussian image and of
the curve as both approach zero.
The Gauss map also provides an interpretation of the classification of curve

points introduced earlier: consider a particle traveling along a curve and the cor-
responding motion of its Gaussian image. The direction of traversal of γ stays the
same at regular points and inflections, but reverses for both types of cusps (Figure
27.6). On the other hand, the direction of traversal of the Gaussian image stays
the same at regular points and cusps of the first kind, but it reverses at inflections
and cusps of the second kind (Figure 27.8). This indicates a double covering of the
unit circle near these singularities: we say that the Gaussian image folds at these
points.
A conventional sign can be chosen for the curvature at every point of a plane

curve γ by picking some orientation for this curve, and deciding, say, that the
curvature will be positive when the center of curvature lies on the same side of γ
as the tip of the oriented normal vector, and negative when these two points lie on
opposite sides of γ. Thus the curvature changes sign at inflections, and reversing
the orientation of a curve also reverses the sign of its curvature.
Twisted space curves are more complicated animals that their planar counter-

parts. Although the tangent can be defined as before as a limit of secants, there is

1The Gauss map could have been defined just as well by associating with each curve point the
tip of its unit tangent on S1. The two representations are equivalent in the case of planar curves.
The situation will be different when we generalize the Gauss map to twisted curves and surfaces.
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now an infinity of lines perpendicular to the tangent at a point P , forming a normal
plane to the curve at this point (Figure 27.9).

n
O

t

b

C

N

P

R

Figure 27.9. The local geometry of a space curve: N , O and R are respectively the
normal, osculating, and rectifying plane; t, n and b are respectively the tangent, (principal)
normal and binormal lines, and C is the center of curvature.

In general, a twisted curve does not lie in a plane in the vicinity of one of its
points, but there exists a unique plane that lies closest to it. This is the osculating
plane, defined as the limit of the plane containing the tangent line in P and some
close-by curve point Q as the latter approaches P . We finish the construction of a
local coordinate frame in P by drawing a rectifying plane through P , perpendicular
to both the normal and osculating planes. The axes of this coordinate system, called
moving trihedron, or Frénet frame, are the tangent, the principal normal formed by
the intersection of the normal and osculating planes, and the binormal defined by
the intersection of the normal and rectifying planes (Figure 27.9).
As in the planar case, the curvature of a twisted curve can be defined in a number

of ways: as the inverse of the radius of the limit circle defined by three curve points
as they approach each other (this circle of curvature lies in the osculating plane),
as the limit ratio of the angle between the tangents at two close-by points and the
distance separating these points as it approaches zero, etc. Likewise, the concept
of Gaussian image can be extended to space curves, but this time the tips of the
tangents, principal normals and binormals draw curves on a unit sphere. Note that
it is not possible to give a meaningful sign to the curvature of a twisted curve:
in general, such a curve does not have inflections, and its curvature is positive
everywhere.
The curvature can be thought of as a measure of the rate of change of the

tangent direction along a curve. It is also possible to define the rate of change of
the osculating plane direction along a twisted curve: consider two close-by points P
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and P ′ on the curve; we can measure the angle between their osculating planes, or
equivalently between the associated binormals, and divide this angle by the distance
between the two points. The limit of this ratio as P ′ approaches P is called the
torsion of the curve in P . Not surprisingly, its inverse is the limit of the ratio
between the lengths of corresponding arcs on the curve and the spherical image of
the binormals.

b’
b’

N’

P

P’

b

n’

t’

b

t

n
N

Figure 27.10. Geometric definition of the torsion as the limit, as both quantities ap-
proach zero, of the ratio obtained by dividing the angle between the binormals by the
distance between the associated surface points.

A space curve can be oriented by considering it as the trajectory of a moving
particle and picking a direction of travel for this particle. Furthermore, we can pick
an arbitrary reference point P0 on the curve and define the arc length s associated
with any other point P as the length of the curve arc separating P0 and P . Although
the arc length depends on the choice of P0, its differential does not (moving P0 along
the curve amounts to adding a constant to the arc length), and it is often convenient
to parameterize a curve by its arc length, where some unspecified choice of origin
P0 is assumed. In particular, the tangent vector at the point P is the unit velocity
t = dP/ds. Reversing s also reverses t. It can be shown that the acceleration
d2P/ds2, the curvature κ, and the (principal) normal n are related by

d2P

ds2
=
dt

ds
= κn.

Note that κ and n are both independent of the curve orientation (the negative
signs introduced by reversing the direction of traversal of the curve cancel during
differentiation), and the curvature is the magnitude of the acceleration. The binor-
mal vector can be defined as b = t × n, and, like t, it depends on the orientation
chosen for the curve. In general, it is easy to show that

d

ds


 tn
b


 =


 0 κ 0
−κ 0 τ
0 −τ 0




 tn
b


 ,
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where τ denotes the torsion in P . Unlike the curvature, the torsion may be positive,
negative or zero for a general space curve. Its sign depends on the direction of
traversal chosen for the curve, and it has a geometric meaning: in general, a curve
crosses its osculating plane at every point with non-zero torsion, and it emerges on
the positive side of that plane (i.e., the same side as the binormal tangent) when
the torsion is positive, and on the negative side otherwise. The torsion is of course
identically zero for planar curves.

27.1.2 Surfaces

Most of the discussion of the local characteristics of plane and space curves can be
generalized in a simple manner to surfaces. Consider a point P on the surface S
and all the curves passing through P and lying on S. It can be shown that the
tangents to these curves lie in the same plane Π, appropriately called the tangent
plane in P (Figure 27.11(a)). The line N passing through P and perpendicular to
Π is called the normal line to P in S, and the surface can be oriented (locally) by
picking a sense for a unit normal vector along N (unlike curves, surfaces admit a
single normal but an infinity of tangents at every point). The surface bounding a
solid admits a canonical orientation defined by letting the normal vectors locally
point toward the outside of the solid.2

(a)
S

γ

N

P
Π T

(b)

Π

S

γ

P

N

t

t

Figure 27.11. Tangent plane and normal sections: (a) the tangent plane Π and the
associated normal line N at a point P of a surface; γ is a surface curve passing through
P , and its tangent line T lies in Π; (b) the intersection of the surface S with the plane
spanned by the normal vector N and the tangent vector t forms a normal section γt of S.

Intersecting a surface with the planes that contain the normal in P yields a
one-parameter family of planar curves, called normal sections (Figure 27.11(b)).

2Of course the reverse orientation, where, as Koenderink [1990, p. 137] puts it, “the normal
vector points into the ‘material’ of the blob like the arrows in General Custer’s hat”, is just as
valid. The main point is that either choice yields a coherent global orientation of the surface.
Certain pathological surfaces (e.g., Möbius strips) do not admit a global orientation, but they do
not bound solids.
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These curves are in general regular in P , or they may exhibit an inflection there.
The curvature of a normal section is called the normal curvature of the surface in
the associated tangent direction. By convention, we will choose a positive sign for
the normal curvature when the normal section lies (locally) on the same side of the
tangent plane as the inward-pointing surface normal, and a negative sign when it
lies on the other side. The normal curvature is of course zero when P is an inflection
of the corresponding normal section.
With this convention, we can record the normal curvature as the sectioning

plane rotates about the surface normal. It will (in general) assume its maximum
value κ1 in a definite direction of the tangent plane, and reach its minimum value
κ2 in a second definite direction. These two directions are called the principal
directions in P and it can be shown that, unless the normal curvature is constant
over all possible orientations, they are orthogonal to each other (see exercises). The
principal curvatures κ1 and κ2 and the associated directions define the best local
quadratic approximation of the surface: in particular, we can set up a coordinate
system in P with x and y axes along the principal directions and z axis along the
outward-pointing normal; the surface can be described (up to second order) in this
frame by the paraboloid z = −1/2(κ1x2 + κ2y2)).
The neighborhood of a surface point can locally take three different shapes,

depending on the sign of the principal curvatures (Figure 27.12). A point P where
both curvatures have the same sign is said to be elliptic, and the surface in its vicinity
is cup-shaped (Figure 27.12(a)): it does not cross its tangent plane and looks like
the surface of an egg (positive curvatures) or the inside surface of its broken shell
(negative curvatures). We say that P is convex in the former case and concave in the
latter one. When the principal curvatures have opposite signs, we have a hyperbolic
point. The surface is locally saddle-shaped and crosses its tangent plane along two
curves (Figure 27.12(b)). The corresponding normal sections have an inflection in P
and their tangents are called the asymptotic directions of the surface in P . They are
bisected by the principal directions. The elliptic and hyperbolic points form patches
on a surface. These areas are in general separated by curves formed by parabolic
points where one of the principal curvatures vanishes. The corresponding principal
direction is also an asymptotic direction, and the intersection of the surface and its
tangent plane has (in general) a cusp in that direction (Figure 27.12(c))
Naturally, we can define the Gaussian image of a surface by mapping every

point onto the place where the associated unit normal pierces the unit sphere. In
the case of plane curves, the Gauss map is one-to-one in the neighborhood of regular
points, but the direction of traversal of the Gaussian image reverses in the vicinity
of certain singularities. Likewise, it can be shown that the Gauss map is one-to-one
in the neighborhood of elliptic or hyperbolic points. The orientation of a small
closed curve centered at an elliptic point is preserved by the Gauss map, but the
orientation of a curve centered at a hyperbolic point is reversed (Figure 27.13).
The situation is a bit more complex at a parabolic point: in this case, any

small neighborhood will contain points with parallel normals, indicating a double
covering of the sphere near the parabolic point (Figure 27.13): we say that the



Section 27.1. Elements of Differential Geometry 813

(a) (b) (c)

Figure 27.12. Local shape of a surface: (a) an elliptic point, (b) a hyperbolic point, and
(c) a parabolic point (there are actually two distinct kinds of parabolic points [Koenderink,
1990]; we will come back to those in Chapter 28).

Map
Gauss

Figure 27.13. Left: a surface in the shape of a kidney bean. It is formed of a convex
area, a hyperbolic region, and the parabolic curve separating them. Right: the correspond-
ing Gaussian image. Darkly shaded areas indicate hyperbolic areas, lightly shaded ones
indicate elliptic ones. Note that the bean is not convex but does not have any concavity.

Gaussian image folds along the parabolic curve. Note the similarity with inflections
of planar curves.
Let us now consider a surface curve γ passing through P , parameterized by its

arc length s in the neighborhood of P . Since the restriction of the surface normal to
γ has constant (unit) length, its derivative with respect to s lies in the tangent plane
in P . It is easy to show that the value of this derivative only depends on the unit
tangent t to γ and not on γ itself. Thus we can define a mapping dN that associates
with each unit vector t in the tangent plane in P the corresponding derivative of

the surface normal (Figure 27.14). Using the convention dN(λt)
def
= λdN(t) when

λ �= 1, we can extend dN to a linear mapping defined over the whole tangent plane
and called the differential of the Gauss map in P .
The second fundamental form in P is the bilinear form that associates with any
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Figure 27.14. The directional derivative of the surface normal: if P and P ′ are nearby
points on the curve γ, and N and N ′ denote the associated surface normals, with δN =
N ′ −N , the derivative is defined as the limit of δN/δs as the length δs of the curve arc
separating P and P ′ tends toward zero.

two vectors u and v lying in the tangent plane the quantity3

II(u, v)
def
= u · dN(v).

Since II is easily shown to be symmetric, i.e., II(u, v) = II(v,u), the mapping
that associates with any tangent vector u the quantity II(u,u) is a quadratic form.
In turn, this quadratic form is intimately related to the curvature of the surface
curves passing through P . Indeed, note that the tangent t to a surface curve is
everywhere orthogonal to the surface normal N . Differentiating the dot product of
these two vectors with respect to the curve arc length yields

κn ·N + t · dN(t) = 0,

where n denotes the principal normal to the curve, and κ denotes its curvature.
This can be rewritten as

II(t, t) = −κ cos φ. (27.1.1)

where φ is the angle between the surface and curve normals. For normal sections,
we have n = ∓N , and it follows that the normal curvature in some direction t is

κt = II(t, t),

where, as before, we use the convention that the normal curvature is positive when
the principal normal to the curve and the surface normal point in opposite direc-
tions.

3The second fundamental form is sometimes defined as II(u,v) = −u ·dN(v) (see, for example
[do Carmo, 1976; Struik, 1988]). Our definition allows us to assign positive normal curvatures to
the surfaces bounding convex solids with outward-pointing normals.
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In addition, (27.1.1) shows that the curvature κ of a surface curve whose prin-
cipal normal makes an angle φ with the surface normal is related to the normal
curvature κt in the direction of its tangent t by κ cosφ = −κt. This is known as
Meusnier’s theorem (Figure 27.15).

P

Π

S

N

φ

n γ

Figure 27.15. Meusnier’s theorem.

It turns out that the principal directions are the eigenvectors of the linear map
dN , and the principal curvatures are the associated eigenvalues. The determinant
K of this map is called the Gaussian curvature, and it is equal to the product of
the principal curvatures. Thus, the sign of the Gaussian curvature determines the
local shape of the surface: a point is elliptic when K > 0, hyperbolic when K < 0,
and parabolic when K = 0. If δA is the area of a small patch centered in P on a
surface S, and δA′ is the area of the corresponding patch of the Gaussian image
of S, it can also be shown that the Gaussian curvature is the limit of the (signed)
ratio δA′/δA as both areas approach zero (by convention, the ratio is chosen to
be positive when the boundaries of both small patches have the same orientation,
and negative otherwise, see Figure 27.13). Note again the strong similarity with
the corresponding concepts (Gaussian image and plain curvature) in the context of
planar curves.

27.1.3 The Shape of Specularities

Specularities offer hints about the colour of the illuminant, which we shall exploit in
Chapter ??. They also offer cues to the local geometry of a surface. Understanding
these cues is a simple exercise in differential geometry that will serve to illustrate
the concepts introduced in this chapter. We consider a smooth specular surface and
assume that the radiance reflected in the direction V is a function of V ·P , where P
is the specular direction. We expect the specularity to be small and isolated, so we
can assume that the source direction S and the viewing direction V are constant
over its extent. Let us further assume that the specularity can be defined by a
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threshold on the specular energy, i.e., V ·P ≥ 1− ε for some constant ε, denote by
N the unit surface normal, and define the half-angle direction asH = (S+V )/2
(Figure 27.16(left)). Using the fact that the vectors S, V and P have unit length
and a whit of plane geometry, it can easily be shown that the boundary of the
specularity is defined by (see exercises):

1− ε = V · P = 2
(H ·N)2

(H ·H)
− 1. (27.1.2)

u u
1

2
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α/2 z

Figure 27.16. A specular surface viewed by a distant observer. We establish a coor-
dinate system at the brightest point of the specularity (where the half-angle direction is
equal to the normal) and orient the system using the normal and principal directions.

Because the specularity is small, the second-order structure of the surface will
allow us to characterize the shape of its boundary as follows: there is some point on
the surface inside the specularity (in fact, the brightest point) where H is parallel
to N . We set up a coordinate system at this point, oriented so that the z-axis
lies along N and the x- and y-axes lie along the principal directions u1 and u2
(Figure 27.16(right)). As noted earlier, the surface can be represented up to second
order as z = −1/2(κ1x2 + κ2y2) in this frame, where κ1 and κ2 are the principal
curvatures. Now, let us define a parametric surface as a differentiable mapping
x : U ⊂ IR2 → IR3 associating with any couple (u, v) ∈ U the coordinate vector
(x, y, z)T of a point in some fixed coordinate system. It is easily shown (see exercises)
that the normal to a parametric surface is along the vector ∂x/∂u × ∂x/∂v. Our
second-order surface model is a parametric surface parameterized by x and y, thus
its unit surface normal is defined in the corresponding frame by

N(x, y) =
1√

1 + κ21x
2 + κ22y

2


κ1xκ2y
1


 ,

andH = (0, 0, 1)T . SinceH is a constant, we can rewrite (27.1.2) as κ21x
2+κ22y

2 = ζ
where ζ is a constant depending on ε. In particular, the shape of the specularity
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on the surface contains information about the second fundamental form. The spec-
ularity will be an ellipse, with major and minor axes oriented along the principal
directions, and an eccentricity equal to the ratio of the principal curvatures. Un-
fortunately, the shape of the specularity on the surface is not, in general, directly
observable, so this property can only be exploited when a fair amount about the
viewing and illumination setup is known [Healey and Binford, 1986].
While we cannot get much out of the shape of the specularity in the image, it is

possible to tell a convex surface from a concave one by watching how a specularity
moves as the view changes (you can convince yourself of this with the aid of a
spoon). Let us consider a point source at infinity and assume that the specular lobe
is very narrow so the viewing direction and the specular direction coincide. Initially,
the specular direction is V and the specularity is at the surface point P ; after a
small eye motion, V changes to V ′ while the specularity moves to the close-by point
P ′ (Figure 27.17).

V N

V’

N’

observer
Motion of

observer
Motion of

V

Motion of

PP’

N

V’

N’
direction

specularity Motion of specularity

P
P’

Source

Figure 27.17. Specularities on convex and concave surfaces behave differently when the
view changes. With an appropriate choice of source direction and motion, this could be
used to obtain the signs of the principal curvatures.

The quantity of interest is δa = (V ′ − V ) · t, where t = 1
δs

−−→
PP ′ is tangent to

the surface, and δs is the (small) distance between P and P ′: if δa is positive, then
the specularity moves in the direction of the view (back of the spoon), and if it
is negative, the specularity moves against the direction of the view (bowl of the
spoon). By construction, we have V = 2(S ·N)N − S, and

V ′ = 2(S ·N ′)N ′ − S = 2(S · (N + δN))(N + δN)− S

= V + 2(S · δN)N + 2(S · δN)δN + 2(S ·N)δN ,

where δN
def
= N ′ −N = δs dN(t). Since t is tangent to the surface in P , ignoring

second-order terms yields

δa = 2δs (S ·N)II(t, t).
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Thus, for a concave surface, the specularity always moves against the view and for
a convex surface it always moves with the view. Things are more complex with
hyperbolic surfaces; the specularity may move with the view, against the view, or
perpendicular to the view (when t is an asymptotic direction).

27.2 Contour Geometry

Before studying the geometry of surface outlines, let us pose for a minute and
examine the relationship between the local shape of a twisted curve Γ and that of
its orthographic projection γ onto some plane Π (Figure 27.18). Let us denote by
α the angle between the tangent to Γ and the plane Π, and by β the angle between
Π and the osculating plane of Γ (or equivalently between the normal to Π and the
binormal to Γ). These two angles completely define the local orientation of the
curve relative to the image plane.

b

α
t

n

P

p

Γ

γ

Π

β

Figure 27.18. A space curve and its projection Note that the tangent to γ is the
projection of the tangent to Γ (think for example of the tangent as the velocity of a
particle traveling along the curve). The normal to γ is not, in general, the projection of
the normal to Γ.

If κ denotes the curvature at some point on Γ, and κa denotes its apparent
curvature, i.e., the curvature of γ at the corresponding image point, it is easy to
show analytically (see exercises) that

κa = κ
cos β

cos3 α
. (27.2.1)

In particular, when the viewing direction is in the osculating plane (cos β = 0),
the apparent curvature κa vanishes and the image of the curve normally acquires
an inflection. When, in addition, the viewing direction is tangent to the curve
(cosα = cosβ = 0), κa is not well defined anymore and the projection acquires a
cusp.
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These two properties of the projections of space curves are well known and
mentioned in all differential geometry textbooks. Is it possible to relate in a similar
fashion the local shape of the surface bounding a solid object to the shape of its
image contour? The answer is a resounding “Yes!”, as shown by Koenderink [1984]

in his delightful paper “What does the occluding contour tell us about solid shape?,”
and we present in this section a few elementary properties of image contours, before
stating and proving the main theorem of Koenderink’s paper, and concluding by
discussing some of its implications.

27.2.1 The Occluding Contour and the Image Contour

As noted earlier, the image of a solid bounded by a smooth surface is itself bounded
by an image curve, called the contour, silhouette or outline of this solid. This curve
is the intersection of the retina with a viewing cone whose apex coincides with
the pinhole and whose surface grazes the object along a second curve, called the
occluding contour, or rim (Figure 27.2).
We will assume orthographic projection in the rest of this section. In this case,

the pinhole moves to infinity and the viewing cone becomes a cylinder whose gen-
erators are parallel to the (fixed) viewing direction. The surface normal is constant
along each one of these generators, and it is parallel to the image plane (Figure
27.19). The tangent plane at a point on the occluding contour projects onto the
tangent to the image contour, and it follows that the normal to this contour is equal
to the surface normal at the corresponding point of the occluding contour.

Viewing Occluding
Contour

Image

Contour

Cylinder

Figure 27.19. Occluding boundaries under orthographic projection.

It is important to note that the viewing direction v is not, in general, perpen-
dicular to the occluding contour tangent t (as noted by Nalwa [1988] for example,
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the occluding contour of a tilted cylinder is parallel to its axis and not to the im-
age plane). Instead, it can be shown that these two directions are conjugated, an
extremely important property of the occluding contour.

27.2.2 The Cusps and Inflections of the Image Contour

Two directions u and v in the tangent plane are said to be conjugated when
II(u, v) = 0. For example, the principal directions are conjugated since they are
orthogonal eigenvectors of dN , and asymptotic directions are self-conjugated.
It is easy to show that the tangent t to the occluding contour is always conjugated

to the corresponding projection direction v: indeed, v is tangent to the surface at
every point of the occluding contour, and differentiating the identity N ·v = 0 with
respect to the arc length of this curve yields

0 = (
d

ds
N) · v = dN(t) · v = II(t, v).

Let us now consider a hyperbolic point P0 and project the surface onto a plane
perpendicular to one of its asymptotic directions. Since asymptotic directions are
self-conjugated, the occluding contour in P0 must run along this direction. As
shown by (27.2.1), the curvature of the contour must be infinite in that case, and
the contour acquires a cusp of the first kind.
We will state in a moment a theorem by Koenderink [1984] that provides a quan-

titative relationship between the curvature of the image contour and the Gaussian
curvature of the surface. In the mean time, we will prove (informally) a weaker, but
still remarkable result: under orthographic projection, the inflections of the contour
are images of parabolic points (Figure 27.20).
First note that, under orthographic projection, the surface normal at a point on

the occluding contour is the same as the normal at the corresponding point of the
image contour. Since the Gaussian image of a surface folds at a parabolic point,
it follows that the Gaussian image of the image contour must reverse direction at
such a point. As shown earlier, the Gaussian image of a planar curve reverses at its
inflections and cusps of the second kind. It is easily shown that the latter singularity
does not occur for a general viewpoint, which proves the result.
In summary, the occluding contour is formed by points where the viewing di-

rection v is tangent to the surface (the fold points mentioned in the introduction).
Occasionally, it becomes tangent to v or crosses a parabolic line, and cusps (of the
first kind) or inflections appear on the contour accordingly. Unlike the curves men-
tioned so far, the image contour may also cross itself (transversally) when two dis-
tinct branches of the occluding contour project onto the same image point, forming
a T-junction (Figure 27.2). For general viewpoints, these are the only possibilities:
there is no cusp of the second kind, nor any tangential self-intersection for example.
We will come back to the study of exceptional viewpoints and the corresponding
contour singularities in a latter chapter.
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Figure 27.20. The inflections of the contour are images of parabolic points: the left
side of this diagram shows the bean-shaped surface with an occluding contour overlaid,
and its right side shows the corresponding image contour. The Gaussian image folds at
the parabolic point, and so does its restriction to the great circle formed by the image of
the occluding and image contours.

27.2.3 Koenderink’s Theorem

Let us now state the theorem by Koenderink [1984] that has already been mentioned
several times. We assume as before orthographic projection, consider a point P on
the occluding contour of a surface S, and denote by p its image on the contour.

Theorem 6: The Gaussian curvature K of S in P and the contour curvature κc
in p are related by

K = κcκr ,

where κr denotes the curvature of the radial curve formed by the intersection of S
with the plane defined by the normal to S in P and the projection direction (Figure
27.21).

This remarkably simple relation has several important corollaries. Note first
that κr remains positive (or zero) along the occluding contour since the projection
ray locally lies inside the imaged object at any point where κr < 0. It follows that κc
will be positive when the Gaussian curvature is positive, and negative otherwise. In
particular, the theorem shows that convexities of the contour corresponds to elliptic
points of the surface, while contour concavities correspond to hyperbolic points and
contour inflections correspond to parabolic points.
Among elliptic surface points, it is clear that concave points never appear on

the occluding contour of an opaque solid since their tangent plane lies (locally)
completely inside this solid (Figure 27.21(b)). Thus convexities of the contour also
correspond to convexities of the surface. Likewise, we saw earlier that the contour
cusps when the viewing direction is an asymptotic direction at a hyperbolic point.
In the case of an opaque object, this means that concave arcs of the contour may
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Figure 27.21. The relationship between occluding contour and image contour: the
viewing direction v and the occluding contour tangent t are conjugated, and the radial
curvature is always nonnegative at a visible point of the contour for opaque solids.

terminate at such a cusp, where a branch of the contour becomes occluded. Thus we
see that Koenderink’s theorem strengthens and refines the earlier characterization
of the geometric properties of image contours.
Let us now prove the theorem. It is related to a general property of conjugated

directions: if κu and κv denote the normal curvatures in conjugated directions u
and v, and K denotes the Gaussian curvature, then

K sin2 θ = κuκv, (27.2.2)

where θ is the angle between u and v. This relation is easy to prove by using the
fact that the matrix associated with the second fundamental form is diagonal in
the basis of the tangent plane formed by conjugated directions (see exercises). It is
obviously satisfied for principal directions (θ = π/2) and asymptotic ones (θ = 0).
In the context of Koenderink’s theorem, we obtain

K sin2 θ = κrκt,

where κt denotes the normal curvature of the surface along the occluding contour
direction t (which is of course different from the actual curvature of the occluding
contour).
To complete the proof of the theorem, we use another general property of sur-

faces: the apparent curvature of any surface curve with tangent t is

κa =
κt

cos2 α
, (27.2.3)
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where α denotes as before the angle between t and the image plane. As shown in
the exercises, this property easily follows from (27.2.1) and Meusnier’s theorem.
In other words, the apparent cuvature of any surface curve is obtained by di-

viding the associated normal curvature by the square of the cosine of the angle
between its tangent and the image plane. Applying this result to the occluding
contour yields

κc =
κt

sin2 θ
(27.2.4)

since α = θ − π/2. Substituting (27.2.4) into (27.2.2) concludes the proof of the
theorem.

27.3 Notes

There is a rich literature on the three-dimensional interpretation of line-drawings,
including the seminal work by Huffman [1971], Clowes [1971] and Waltz [1975],
that uses the relatively small set of possible junction labels associated with typical
scenes to control the combinatorial explosion of the line-labeling process. More
quantitative approaches have also been proposed (see, for example [Draper, 1981;
Kanade, 1981]), and the technique based on linear programming proposed by Sug-
ihara [1984] is often considered as the ultimate achievement in this field. The rela-
tionship between contour and surface orientation is studied in [Barrow and Tenen-
baum, 1981]. See also the work of Malik [1987] for an extension of the junction
catalogue to piecewise-smooth surfaces.
There is of course a large number of excellent textbooks on differential geometry,

including the very accessible presentations found in the books of do Carmo [1976]

and Struik [1988]. Our presentation is closer in spirit (if not in elegance) to the de-
scriptive introduction to differential geometry found in Hilbert’s and Cohn-Vossen’s
wonderful book “Geometry and the Imagination” [Hilbert and Cohn-Vossen, 1952].
It was not always recognized that the image contour carries vital information

about surface shape: see [Marr, 1977; Horn, 1986] for arguments to the contrary.
The theorem proven in this chapter clarified the situation and appeared first in
[Koenderink, 1984]. Our proof is different from the original one, but it is close
in spirit to the proof given in [Koenderink, 1990], which is based on Blaschke’s
dual version of Euler’s theorem. Our choice here was motivated by our reluctance
to use any formulas that require setting a particular coordinate system. Alternate
proofs for various kinds of projection geometries can be found in [Brady et al., 1985;
Arbogast and Mohr, 1991; Cipolla and Blake, 1992; Vaillant and Faugeras, 1992;
Boyer, 1996].
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27.4 Assignments

Exercises

1. Prove that the curvature κ of a planar curve in a point P is the inverse of the
radius of curvature r at this point.

Hint: use the fact that sinu ≈ u for small angles.

2. Prove that, unless the normal curvature is constant over all possible directions,
the principal directions are orthogonal to each other.

3. Prove that the second fundamental form is bilinear and symmetric.

4. Consider a fixed coordinate system, and a parametric surface x : U ⊂ IR2 →
IR3. Show that the normal to a parametric surface is parallel to the vector
∂x/∂u × ∂x/∂v.

Hint: consider the two surface curves u = u0 and v = v0 passing through the
point x(u0, v0).

5. Consider a specular surface observed by a distant observer. Denote by V the
viewing direction, P the specular direction, and S the light source direction,
all unit vectors. Define the half-angle direction H = (S + V )/2. Show
that

V · P = 2
(H ·N)2

(H ·H)
− 1,

where N is the unit surface normal.

6. Let us denote by α the angle between the tangent to a curve Γ and the plane
Π, by β the angle between the normal to Π and the binormal to Γ, and by
κ the curvature at some point on Γ. Prove that if κa denotes the apparent
curvature of the image of Γ at the corresponding point, then

κa = κ
cos β

cos3 α
.

(Note: this result can be found in Koenderink [1990, p. 191].)

7. Let κu and κv denote the normal curvatures in conjugated directions u and
v at a point P , and let K denote the Gaussian curvature, prove that:

K sin2 θ = κuκv,

where θ is the angle between the u and v.

Proof: Note that the second fundamental form can be written in the basis (u,v)
as

II(xu+yv, xu+yv) = (x, y)

(
II(u,u) II(u,v)
II(u,v) II(v,v)

)(
x

y

)
= (x, y)

(
κu 0
0 κv

)(
x

y

)
.
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In other words, the second fundamental form has a diagonal matrix in the basis
(u,v). If e1 and e2 denote the principal directions, and xu+ yv = x

′e1 + y
′e2, we

have

(x′, y′) (e1, e2 )
T (u,v )−T

(
κu 0
0 κv

)
(u,v )−1 (e1,e2 )

(
x′

y′

)
.

Since the Gaussian curvature is the determinant of the differential of the Gauss map,
we have therefore

K =
κuκv

| (u,v ) |2
=
κuκv

sin2 θ
.

8. Show that the occluding is a smooth curve that does not intersect itself.

Hint: use the Gauss map.

9. Show that the apparent curvature of any surface curve with tangent t is

κa =
κt
cos2 α

,

where α is the angle between the image plane and t.

Hint: write the coordinates of the vectors t, n and b in a coordinate system
whose z axis is orthogonal to the image plane and use (27.2.1) and Meusnier’s
theorem.



Chapter 28

ASPECT GRAPHS

This chapter addresses again the problem of characterizing the set of all pictures of
an object. Unlike the quantitative techniques proposed in Chapter 25, however, the
approach presented below is purely qualitative, and it relies on the mathematical
tools of differential geometry and singularity theory to group images that share the
same topological structure into equivalence classes. A common theme in this part
of the book is that elucidating the relationship between three-dimensional shape,
viewpoint, illumination and image structure is a prerequisite to developing effective
recognition techniques. This is the motivation for this new twist in our study.
To illustrate the general idea, let us first pause in Flatland, a world where tiny

gnats roam a two-dimensional landscape, and consider a planar object bounded
by a smooth closed curve and observed by a perspective camera. The “occluding
contour” defined in Chapter 27 consists here of the points where rays of light issued
from the optical center graze the curve, and the image “contour points” are formed
by the intersection of these rays with the linear retina of the camera. Objects in
Flatland may be transparent or opaque; in the latter case, some of the contour rays
may of course intersect (transversally) their surface before they reach the camera,
in which case the corresponding contour points will not appear in the image. Either
way, small camera motions will alter the position of the contour points, but will not
change (in general) their number or their ordering along the retina (Figure 28.1(a)).
For certain viewpoints, however, a small movement of the camera will cause a
dramatic change in image structure. For example, close-by contour points merge
when the eye crosses a line that is bitangent to the outline of a transparent object,
then separate again as their order reverses (Figure 28.1(b)). For an opaque object,
one of the contour points becomes occluded as the eye traverses the bitangent, so
the view also changes radically there, but in a different way: the order reversal is
replaced by the disappearance (or appearance) of a contour point (Figure 28.1(c)).
Likewise, a pair of contour points appears or disappears when the eye crosses the
tangent line at a curve inflection of a transparent object (Figure 28.1(d)). For
opaque objects, only one of these points is visible, the second one being hidden by
the object itself (Figure 28.1(e)).
These changes in image structure are called visual events, and they are associated

with certain tangents to the boundary of the observed object (namely, bitangents

826
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(a)

(b)

bitangent

(c)

bitangent

(d)

inflectional
tangent

(e)

inflectional
tangent

Figure 28.1. Imaging in Flatland: three perspective cameras with close-by viewpoints
observe a two-dimensional solid; their one-dimensional retinas are shown in (a) as short
line segments and are omitted in the rest of the figure to limit clutter. In typical views
such as the one shown in (a), the order and number of contour points (or equivalently,
of the associated projection rays) are the same for all three cameras, indicating a smooth
mapping from viewpoint to image structure. But exceptional views induce catastrophic
image changes, namely: (b) a modification of the ordering of contour points along the
retina, or (c)-(e) a change in the number of these points. See text for details.
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and inflectional tangents). Are these events the only ones possible? Two bitangents
may of course intersect; an inflectional tangent and a bitangent may intersect too,
etc., yielding more complex changes in appearance. Tritangent lines and inflectional
bitangents are a priori possible too. It is clear, however, that a tritangent would
not survive any small deformation of the associated curve (Figure 28.2); in contrast,
a bitangent or the intersection of two inflectional tangents would merely change
position. In the rest of this chapter, we will restrict our attention to generic curves
and surfaces, whose features are not affected by small deformations. Genericity is a
mathematical concept related to the intuitive notion of “general position” and the
topological notions of openness, density, and transversality. Its formal definition is
rather technical and would be out of place here; let us just note that although the
genericity assumption rules out certain simple geometric figures (lines, planes, etc.),
the boundaries of all real objects are generic.

stable

boundary
deformed

tritangent
unstable

bitangent

Figure 28.2. Exceptional and generic curves: unlike bitangents, tritangents are not
stable under small curve deformations. It is easy to show that inflectional tangents and
transversal intersections of these with bitangents or with each other are stable as well.

What may be more remarkable, at least in the context of this chapter, is that
restricting one’s attention to generic curves and surfaces also limits the number and
type of possible visual events: indeed, structural changes in contour structure can be
shown to occur in the orderly fashion predicted by the branch of mathematics called
singularity theory or catastrophe theory. In Flatland, this translates to restricting
the visual events of generic curves to those associated with bitangents, inflectional
tangents and their intersections. As shown in the remaining sections of this chapter,
the three-dimensional case will of course be a bit more complicated..
Unlike its geometry, the topological structure of the contour (in this case the

number and order of contour points) depends only on the eye position and not
on the position or orientation of retina (Figure 28.1): visual events correspond
to certain types of contacts between curves and projection rays and have nothing
to do with the location of the points where these rays intersect the image plane
(or line in this case). Thus the set of viewpoints for a Flatland camera can be
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modeled by the plane of the corresponding positions of its optical center. This
plane is partitioned by the visual event rays and their intersections into a number
of cells where the contour structure (or aspect) remains the same (Figure 28.3(a)).
For distant observers (orthographic projection), the view space becomes a sphere
at infinity, or equivalently a unit circle of projection vectors, partitioned by the
directions of the bitangent and inflectional tangent lines into a finite set of aspects
(Figure 28.3(b)).

(a)

8

7

6

5

4

3

2

1

(b)

4

3

2

1

Figure 28.3. The (opaque) aspect graph in Flatland: (a) a two-dimensional object
bounded by a smooth closed curve and the cells of its perspective aspect graph; note the
two small regions numbered 7 and 8; (b) the corresponding orthographic aspect graph.
The arcs joining pairs of adjacent aspects are not shown. Easy exercises: list these arcs;
what is the transparent aspect graph of this object?

These simple examples generalize to a qualitative model of all possible views
of a three-dimensional solid, the aspect graph, first introduced by Koenderink and
Van Doorn [1979] under the name of visual potential: choosing a camera model
(orthographic or perspective projection) and a viewpoint determines the aspect of
an object, i.e., the graphical structure of the observed line-drawing. The range
of possible viewpoints can be partitioned into maximal regions that yield identical
aspects. The change in aspect at the boundary between regions is called as before
a visual event. The maximal regions labelled by representative aspects form the
nodes of the aspect graph, whose arcs correspond to the visual event boundaries
between adjacent regions.
Before telling the geometric story of aspect graphs in more detail, let us give

an example. Figure 28.4(a)-(b) shows two line-drawings of a squash-shaped solid
whose surface is defined as the zero set of a polynomial density function. The two
curves running almost parallel to each other in Figure 28.4(a) are the parabolic
curves of the squash, and they split the surface into two convex blobs separated by
a saddle-shaped region. The self-intersecting curve also shown in the figure is the
flecnodal curve that will be defined in the next section and will play a fundamental
role in the definition of visual events. Figure 28.4(b) shows the limiting bitangent
developable surface associated with the squash, whose rulings are the lines joining



830 Aspect Graphs Chapter 28

pairs of points on the squash surface that admit the same bitangent plane. The
parabolic curve, the flecnodal curve and the limiting bitangent developable (as well
as a couple more geometric objects that will be introduced in the next section) play
a role in the formation of visual events that is analogous to the role of inflections
and bitangents in the Flatland case.

(a) (b)

(c)

5

6

7
8

9

10

11

12

13

(d)

Figure 28.4. A squash-shaped object and its (opaque) aspect graph: (a) a line-drawing
of the squash, with its parabolic and flecnodal curves overlaid; (b) the limiting bitangent
developable of the squash; (c) the maximal regions of the viewing sphere corresponding to
structurally equivalent aspects; (d) the associated aspects.

Figure 28.4(c)-(d) shows the (opaque) aspect graph of the squash assuming
orthographic projection. Under this model of the imaging process, the range of
possible viewpoints can be modeled as a sphere at infinity or equivalently a unit
view sphere of projection directions. The aspect graph has been computed using
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the algorithm described in Section 28.2. The view sphere has been partitioned
into maximal regions such that all points within a region see the same aspect of
the object (Figure 28.4(c)). These regions are delineated by visual event curves.
Representative aspects associated with each region are shown in Figure 28.4(d).

28.1 Differential Geometry and Visual Events

Inflections, cusps and T-junctions are stable features of the image contour that
survive (in general) small eye movements: let us consider for example a contour
inflection; as shown in Chapter 27, it is the projection of a point where the occluding
contour and a parabolic curve of the associated surface intersect (normally at a non-
zero angle). Any small change in viewpoint will deform the occluding contour a bit,
but the two curves will still intersect transversally at a close-by point projecting
onto a contour inflection.
It is natural to ask what are the (pecular) motions of the eye that will make

the stable contour features appear or disappear. To answer this question, we will
take in this section another look at the Gauss map and introduce the asymptotic
spherical map, showing in the process that the boundaries of the images of a surface
through these mappings determine the appearance and disappearance of inflections
and cusps of its contour. This will provide us with a characterization of local
visual events, i.e., the changes in contour structure associated with the differential
geometry of the surface at these boundaries. Finally, we will consider multiple
contacts between visual rays and a surface. This will lead us to the concept of
bitangent ray manifold, and the characterization of its boundaries will allow us to
understand the genesis and anihilation of T-junctions and introduce the associated
multilocal visual events. Together, the local and multilocal events will capture the
totality of the structural contour changes that determine the aspect graph.
We will assume orthographic projection from now on.

28.1.1 The Geometry of the Gauss Map

The Gauss map provides a natural setting for the study of the image contour and
its inflections: indeed, we saw in Chapter 27 that the occluding contour maps onto
a great circle of the unit sphere, and that the intersections of this circle with the
spherical image of the parabolic set yield inflections of the contour. It is therefore
clear that the contour will gain (or loose) two inflections when a camera movement
causes the corresponding great circle to cross the image of the parabolic curve
(Figure 28.5).
A finer understanding of the creation of pairs of inflections may be gained by

taking a closer look at the geometry of the Gauss map. As shown in Chapter 27,
the image of a surface on the Gauss sphere folds along the image of its parabolic
set. Figure 28.6 shows an example, with a single covering of the sphere on one side
of the parabolic curve and a triple covering on the other side. The easiest way of
thinking about the creation of such a fold is to grab (in your mind) a bit of the
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Image of

Gauss

Parabolic

Sphere

Circle
Great
MovingCurve

Figure 28.5. As the viewpoint changes, the great circle of the Gauss sphere associated
with the occluding contour may become tangent to the spherical image of the parabolic
curve. Afterwards, the circle will intersect this curve in two close-by points corresponding
to two contour inflections.

rubber skin of a deflated balloon, pinch it, and fold it over. As illustrated by the
figure, this process will in general introduce not only a fold of the spherical image,
but two cusps as well (whose preimages are aptly named cusps of Gauss in classical
differential geometry, or pleats by Koenderink). Cusps and inflections of the image
of the parabolic curve always come in pairs (two pairs of inflections and one pair of
cusps here, but of course there may be no cusp or inflection at all, see exercises).
The inflections split the fold of the Gauss map into convex and concave parts, and
their preimages are called gutterpoints (Figure 28.6).
What happens to the occluding contour as the associated great circle crosses

the spherical image of the parabolic set will depend on where the crossing happens.
As shown by Figure 28.6, there are several cases: when the crossing occurs along a
convex fold of the Gauss map, an isolated point appears on the spherical image of
the occluding contour before exploding into a small closed loop on the unit sphere
(Figure 28.6(bottom right)). If, on the other hand, the crossing occurs along a
concave fold, two separate loops merge then separate with a different connectivity
(Figure 28.6(top right)). These changes are of course reflected on the image contour
as well, in a way that will be detailed in the next couple of sections.
The great circle associated with the occluding contour may also cross the parabolic

image at a cusp of the Gauss map. Unlike crossings that occur at regular fold points,
this one is in general transversal and does not impose a tangency condition on the
orientation of the great circle. There is no change in the topology of the intersection
(Figure 28.6(left)).
Finally, the great circle may cross the parabolic image at an inflection. The

change in topology in this case is complicated and its description would be out of
place here. The good news is that there is only a finite number of viewpoints for
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Fold
Convex

Gutterpoint

Gauss
Cusp of

Concave
Fold

Figure 28.6. Folds and cusps of the Gauss map. The gutterpoints are the preimages of
the inflections of the spherical image of the parabolic curve. To clarify the structure of the
fold, it is drawn in the left and right sides of the figure as a surface folding in space. The
changes in topology of the intersection between a great circle and the Gaussian image of
the surface as the circle crosses the fold are illustrated in the far right of the figure.

which this situation may occur (since there is only a finite number of gutterpoints on
a generic surface). In contrast, the other types of fold crossings occur for infinite one-
parameter families of viewpoints: this is due to the fact that the tangential crossings
associated with convex or concave portions of the fold may occur anywhere along
an extended curve arc drawn on the unit sphere, while the transversal crossings
associated with cusps occur at isolated points but for arbitrary orientations of the
great circle. We will identify the associated families of singular viewpoints in the
next section.

28.1.2 Asymptotic Curves

We saw in Chapter 27 that ordinary hyperbolic points admit two distinct asymptotic
tangents. More generally, the set of all asymptotic tangents on a hyperbolic patch
can neatly be divided into two families such that each family admits a smooth field
of integral curves, called asymptotic curves. Following Koenderink [1990] we will
give a color to each family of asymptotic tangents and talk about the associated red
and blue asymptotic curves.
The asymptotic curves only cover the hyperbolic part of a surface and must

therefore be singular in the neighborhood of its parabolic boundary: indeed, a red
asymptotic curve merges with a blue one at an ordinary parabolic point, forming a
cusp and intersecting the parabolic curve at a non-zero angle (Figure 28.7(a)).1

1The situation is different at cusps of Gauss, where the asymptotic curves meet the parabolic
curve tangentially. This unusual behavior also occurs for planar parabolic curves of non-generic
objects, e.g., the two circular parabolic curves at the top and bottom of a torus lying on its side,
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(a) Parabolic Curve

Red Curves Blue Curves

(b) Parabolic Curve

Red Curves Blue Curves

Figure 28.7. Contact of asymptotic and parabolic curves on (a) the surface and (b) the
Gauss sphere.

Let us now examine the behavior of the asymptotic curves under the Gauss
map. Remember from Chapter 27 that asymptotic directions are self-conjugated.
This (literally) means that the derivative of the surface normal along an asymptotic
curve is orthogonal to the tangent to this curve. In other words, the asymptotic
curve and its spherical image have perpendicular tangents. On the other hand,
all the directions of the tangent plane are conjugated to the asymptotic direction
at a parabolic point, which implies that the Gaussian image of any surface curve
passing through a parabolic point is perpendicular to the associated asymptotic
direction. In particular, the Gaussian image of a parabolic curve is the envelope of
the images of the asymptotic curves intersecting it (i.e., it is tangent everywhere to
these curves, see Figure 28.7(b)).
We can now characterize the viewpoints for which a pair of inflections appears (or

disappears): since the great circle associated with the occluding contour becomes
tangent to the image of the parabolic curve on the Gauss sphere as they cross,
the viewing direction normal to this great circle is along the associated asymptotic
direction of the parabolic curve. A pair of inflections may of course also appear
when the great circle crosses the image of a cusp of Gauss, or equivalently when the
viewing direction crosses the tangent plane at such a point. As noted earlier, the
topology of the intersection between the great circle and the image of the parabolic
curve does not change in this case. Neither does the topology of the image contour,
which simply gains (or looses) an undulation, i.e., a small concave dent in one of its
convex parts, or a convex bump in one of its concave ones. The next section will
show how the contour structure changes at the other types of singularities.

or more generally the parabolic lines of a solid of revolution that are associated with local extrema
of the cross-section height along its axis.
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28.1.3 The Asymptotic Spherical Map

The Gauss map associates with every surface point the place where the tip of the
corresponding normal pierces the unit sphere. We will now define the asymptotic
spherical map, that associates with every (hyperbolic) point the associated asymp-
totic directions.
Let us make a few remarks before proceeding: first, there is really one asymptotic

spherical image for each family of asymptotic curves, and the two images may or
may not overlap on the sphere. Second, the asymptotic tangents are normally not
oriented, so the asymptotic spherical image of each tangent in one family consists of
the two antipodal points where its direction pierces the unit sphere (or equivalently
where the tangent line itself intersects the sphere at infinity). Third, it is obvious
that elliptic points have no image at all, and that the unit sphere may not be fully
covered by the images of the hyperbolic points. On the other hand, it may indeed
be fully covered, and, at least locally, it may be covered several times by members
of a single family of asymptotic directions.
Since a cusp occurs when the line of sight is along an asymptotic direction,

a pair of cusps will appear (or disappear) when the viewing direction crosses one
of the folds of the asymptotic spherical image (note the close analogy with the
case of contour inflections and folds of the Gauss map). As was the case for the
surface itself, the asymptotic spherical images of asymptotic curves must behave in
a singular way near these boundaries. There are again two possibilities (the images
may join the boundary tangentially, or cusp there), that do occur at two types
of fold points: those associated with asymptotic directions along parabolic curves
(since there is no asymptotic direction at all on the elliptic side of these curves),
and those associated with an asymptotic direction at a flecnodal point. Flecnodal
points are inflections of the projections of the asymptotic curves into their tangent
plane (Figure 28.8(a)). They form curves intersecting transversally the associated
asymptotic curves, and, like those, they come in two colors, depending on which
asymptotic family has an inflection. Like the circular tangential image of a curve at
an inflection (Chapter 27), the asymptotic spherical image of an asymptotic curve
cusps at a flecnodal point (Figure 28.8(b)). It should also be noted that flecnodal
curves intersect parabolic ones tangentially at cusps of Gauss.
It is clear that the contour structure will change when the line of sight crosses

the parabolic or flecnodal boundaries of the asymptotic spherical image. Such a
change is called a visual event and the associated boundaries are called visual event
curves. Before examining in more detail the various visual events, let us note a
different, but equivalent way of thinking of the associated boundaries: if we draw
the singular asymptotic tangent line at each point along a parabolic or flecnodal
surface we obtain ruled surfaces swept by the tangents. A visual event will occur
whenever the line of sight crosses one of these ruled surfaces, whose intersections
with the sphere at infinity are exactly the visual event curves when this sphere is
identified with the unit sphere. Thinking of contour evolution in terms of these ruled
surfaces has the advantages of pointing toward a generalization of visual events to
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(a)

Red Asymptotic Curves

Red Flecnodal Curve (b)

Red Asymptotic Curves

Red Flecnodal Curve

Figure 28.8. Contact of asymptotic and flecnodal curves on (a) the surface and (b) the
asymptotic spherical image.

perspective projection (the view will change whenever the optical center crosses
them) and of allowing a clear visualization of the relationship between singular
viewpoints and surface shape.

28.1.4 Local Visual Events

We are now in a position to understand how the contour structure changes at visual
event boundaries. There are three local visual events, that are completely character-
ized by the local differential surface geometry: the lip, beak-to-beak and swallowtail.
Their colourful names are inherited from Thom’s catalogue of elementary catastro-
phes and are closely related to the shape of the contour near the associated events.
Let us first examine the lip event, that occurs when the line of sight crosses

the asymptotic spherical image of a “convex” parabolic point, or equivalently, the
ruled surface defined by the associated asymptotic tangents (Figure 28.9(top)). We
have shown earlier that the intersection between the great circle associated with
the occluding contour and the Gaussian image of the surface acquires a loop during
the event (Figure 28.6(bottom right)) with the creation of two inflections and two
cusps on the contour. More precisely, there is no image contour before the event,
with an isolated contour point appearing out of nowhere at the singularity, before
exploding into a closed contour loop consisting of a pair of branches meeting at two
cusps (Figure 28.9(bottom)). One of the branches always has two inflections and
is formed by the projection of both elliptic and hyperbolic points, while the other
one is formed by the projection of hyperbolic points only. For opaque objects, one
of the branches is always occluded by the object.
The beak-to-beak event occurs when the line of sight crosses the asymptotic spher-

ical image of a “concave” parabolic point, or once again, the ruled surface defined
by the associated asymptotic tangents (Figure 28.10(top)). As shown ealier, the
topology of the intersection between the great circle associated with the occluding
contour and the Gaussian image of the surface changes during this event, with two
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asymptotic tangents
ruled surface of

A
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Figure 28.9. A lip event. The name is a literal translation of the French “lèvre”
in Thom’s catalogue of elementary catastrophes. It is of course related to the shape of
the contour on the right of the figure. Here, as in latter figures, the dashed part of the
contour would be invisible due to occlusion for an opaque object. In this example, the two
inflections are on the visible part of the contour, the hidden part being all hyperbolic, but
the situation would be reversed by taking a viewpoint along the opposite direction.

loops merging then splitting again with a different connectivity (Figure 28.6(top
right)). In the image, two distinct portions of the contour, each having a cusp and
an inflection, meet at a point in the image. Before the event, each of the branches is
divided by the associated cusp into a purely hyperbolic portion and a mixed elliptic-
hyperbolic arc, one of which is always occluded. After the event, two contour cusps
and inflections disappear as the contour splits into two smooth arcs with a different
connectivity. For opaque objects, one of these is purely elliptic while the other is
purely hyperbolic, with one of the two always being occluded (Figure 28.10(bottom)
–the reverse transition is of course also possible, as for all other visual events).
Finally, the swallowtail event occurs when the eye crosses the surface ruled by

the asymptotic directions along a flecnodal curve of same color. We know that two
cusps appear (or disappear) in this event. As shown in Figure 28.11(a)-(b), the
intersection of the surface and its tangent plane at a flecnodal point consists of two
curves, one of which has an inflection at the point. The corresponding asymptotic
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Figure 28.10. A beak-to-beak event, from the French “bec-à-bec”. The name is related
to the shape of the contour on the left of the figure. See text for details.

tangent is of course associated with the family of asymptotic curves having an
inflection there too. Unlike ordinary asymptotic rays (Figure 28.11(c)), that are
blocked by the observed solid, this one intersects the solid at a single point: it “sees
through it” [Koenderink, 1990]. This produces a sharp V on the image contour at
the singularity. The contour is smooth before the transition but it acquires two
cusps and a T-junction after it (Figure 28.11(bottom)). All surface points involved
in the event are hyperbolic. For opaque objects, one branch of the contour ends at
the T-junction and the other one ends at a cusp.

28.1.5 The Bitangent Ray Manifold

Now, remember from Chapter 27 that cusps and inflections are not the only kinds of
stable contour features: T-junctions also occur over open sets of viewpoints. They
form when two distinct pieces of the occluding contour project onto the same image
location. The corresponding surface normals must of course be orthogonal to the
bitangent line of sight joining the two points, but they are not (in general) parallel.
That T-junctions are stable over small eye movements is intuitively clear: consider
a convex point P and its tangent plane (Figure 28.12(a)). This plane intersects
(in general) the surface along a closed (but possibly empty) curve, and there will
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Figure 28.11. A swallowtail event (from the French “queue d’aronde”). Top: surface
shape in the neighborhood of a flecnodal point (a), and comparaison of the intersection of
the associated solid and its tangent plane near such a point (b) and an ordinary hyperbolic
point (c). Bottom: the event itself.

be an even number of points (P ′ and P ′′ in the figure) such that the rays drawn
from P through these points are tangent to the curve. Each such tangency yields
a bitangent ray and an associated T-junction. A small motion of the eye induces
a small deformation of the intersection curve, but does not change (in general) the
number of tangent points. Thus T-junctions are indeed stable.
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Figure 28.12. Bitangent rays: (a) the tangent plane to the surface in P intersects
it along a closed curve with two bitangent rays PP ′ and PP ′′ grazing the surface along
this curve; (b) the limiting bitangent developable surface ruled by the lines where a plane
bitangent to a surface grazes it. Here the two curves where it touches the observed surface
merge tangentially at a unode, a type of cusp of Gauss.
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The set of all bitangent rays is called the bitangent ray manifold associated with
the observed object, and it forms a two-dimensional surface2 in the four-dimensional
space formed by all straight lines. Since bitangents map onto T-junctions in the
projection process, it is clear that these contour features will be created or destroyed
at boundaries of the manifold. Since a T-junction appears or disappears during
a swallowtail transition, it is also obvious that the surface ruled by the singular
asymptotic tangents along a flecnodal curve must be one of these boundaries. What
is not as clear is what the remaining boundaries are made of. This is the topic of
the next section.

28.1.6 Multilocal Visual Events

A pair of T-junctions will appear or disappear when the line of sight crosses the
boundary of the bitangent ray manifold. The corresponding change in contour
structure is called a multilocal visual event. This section will show that there are
three types of multilocal events, namely the tangent crossing, cusp crossing and
triple point, besides the singularity associated with the crossing of a flecnodal curve
that was mentioned in the previous section.
Let us first have a look at the tangent crossing event. An obvious boundary of

the bitangent ray manifold is formed by the limiting bitangents (Figure 28.12(b)),
that occur when the curve formed by the intersection between the tangent plane
at some point and the rest of the surface shrinks to a single point, and the plane
itself becomes bitangent to the surface. The limiting bitangents sweep a developable
surface, called the limiting bitangent developable. A tangent crossing occurs when
the line of sight crosses this surface (Figure 28.13(top)), with two separate pieces of
contour becoming tangent to each other at the event before crossing transversally
at two T-junctions (Figure 28.13(bottom)). For opaque objects, either a previously
hidden part of the contour becomes visible after the transition, or (as in the figure)
another contour arc disappears due to occlusion.
The bitangent ray manifold admits two other kinds of boundaries, also associated

with bitangents that touch the surface along a set of curves and sweep developable
surfaces: the asymptotic bitangents, that intersect the surface along an asymp-
totic direction at one of their endpoints (Figure 28.14(a)), and the tritangents, that
graze the surface in three distinct points (Figure 28.14(b)). The corresponding vi-
sual events occur when the line of sight crosses one of the associated developable
surfaces, and they also involve the appearance or disappearance of a pair of T-
junctions: a cusp crossing occurs when a smooth piece of the image contour crosses
another part of the contour at a cusp (or endpoint for an opaque object) of the latter
(Figure 28.14(c)). Two T-junctions are created (or destroyed) in the process, only
one of which is visible for opaque objects. A triple point is formed when three sep-

2Hence the name: a manifold is a topological concept generalizing surfaces to more abstract
settings; its formal definition will be omitted here. It is intuitively clear that the bitangent ray
manifold is two-dimensional since there is a finite number of bitangent rays for each point of the
(two-dimensional) surface being observed.
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Figure 28.13. A tangent crossing event. The occlusion relationship between spatially
distinct parts of the occluding contour changes when the viewpoint crosses the limiting
bitangent developable surface in B.

arate pieces of the contour momentarily join at non-zero angles (Figure 28.14(d)).
For transparent objects, three T-junctions merge at the singularity before sepa-
rating again. For opaque objects, a contour portion disappears (or appears) after
the transition, along with two T-junctions, while a third T-junction appears (or
disappears).

28.1.7 Remarks

Dear reader, it is now time for a bit of apology: we must confess to having taken
in this chapter a rather quick and dirty approach to the characterization of visual
events: of course, it is intuitively clear that the various visual event curves (or
equivalently the associated ruled surfaces) that we have discussed do indeed bound
sets of viewpoints where the contour structure suddenly changes. It may even be
argued based on geometric intuition that the structural changes of the contour
behave as described (this is fairly clear for, say, lip or tangent crossing events, not
so obvious for, say, swallowtails). But it is not clear at all that other types of events
may not occur, or that the dimensionality of these events is really the same as a
curve for arbitrary objects.
As before in this book, we cannot fully justify here that our catalogue of events

is correct and complete. The corresponding proofs and the concepts they depend on
belong to a field of mathematics that goes under various names, including differential
topology, singularity theory, and catastrophe theory; they would be out of place here
and rely deeply on the assumption of genericity mentioned several times already.
Let us just note a few facts of interest: first, there is a strong link between the
various visual events and the types of contact that may exist between a line and a
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(a) (b)

Figure 28.14. Multilocal events: (a) an asymptotic bitangent ray; (b) a tritangent ray;
(c) a cusp crossing; (d) a triple point. After [Petitjean et al., 1992] (Figure 6).

surface: a line may miss the object completely (this is called order-zero contact),
intersect its surface tranversally (order-one contact) or be tangent to it (order-two
contact or higher).3 All points on a generic curved surface have an infinity of
order-two tangents, spanning their tangent plane, but the two asymptotic tangents
of ordinary hyperbolic points have order-three contact. Tangents of order four or
higher only exist along parabolic and flecnodal curves. The order-four tangent at
a flecnodal point is its asymptotic tangent with the same color, and the order-four
tangent at a parabolic point is the unique asymptotic tangent there (surprise!).
Order-five contact may in fact occur at isolated points of parabolic and flecnodal

curves, including the cusps of Gauss and gutterpoints mentioned earlier, but also
the so-called biflecnodes and quadric points; there are no tangents of order six
on a generic surface. These special points and the associated tangents map onto
singularities and intersections of the visual event curves on the view sphere, and

3The notion of order-n contact has a precise mathematical definition that will not be given
here. Intuitively, it is related to the number of terms that vanish in the Taylor expansion of the
surface along the line of interest. It can also be thought of as the number of (infinitesimally close)
points where the line touches the surface.
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they can be regarded as punctual visual events. The change in contour structure
in their neighborhood is well understood, and they play a key role in the definition
of perspective aspect graphs. Likewise, it can be shown that the multilocal events
defined in the previous section correspond to the maximum order of contact that
a family of bitangents and a surface may maintain along a curve, although higher-
order contact may occur for isolated rulings of the associated developable surfaces.
Once again, a catalogue of all possibilities is available for generic surfaces.

28.2 Computing the Aspect Graph

Given some surface model of a solid (in the form of a polyedron, the zero set of
a volumetric density, or whatever your fancy may be), the next question one may
ask is how to actually construct the aspect graph of this solid. This is not a priori
obvious, due in part to the deliberately descriptive approach that we have taken so
far.
It is easy to rewrite the geometric definitions of parabolic points, limiting bi-

tangent rays, etc. in terms of the derivatives (of order up to three) of the surface
parameterization associated with the given model at one, two, or three surface points
[Petitjean et al., 1992]. In each case, the surface curves associated with the ruled
surfaces defined earlier can be characterized in IRn+1 by a system of n equations in
n+ 1 unknowns: 


P1(x0, x1, . . . , xn) = 0,
. . .
Pn(x0, x1, . . . , xn) = 0,

(28.2.1)

with 1 ≤ n ≤ 8, depending on the type of event and whether the surface is defined
parametrically or implicitly. For example, in the case of a surface defined implicitly
as the zero set of some density function F (x, y, z) = 0, we have n = 1 for a local
event and n = 8 for a triple point involving three separate surface points.
Given these equations, a general approach to constructing the aspect graph of a

given object involves the following steps: (1) tracing the visual event curves of the
transparent object; (2) constructing the regions of the view sphere delineated by
these curves; (3) eliminating the occluded events and merging the incident regions;
(4) constructing the corresponding aspects. The aspect graph of a transparent solid
can be constructed by using the same procedure but omitting step (3).
Here we will address the problem of constructing the aspect graph of a solid

bounded by an algebraic surface, i.e., the zero set of a volumetric polynomial density:

S = {(x, y, z) ∈ IR3|
∑

i+j+k≤d

aijkx
iyjzk = 0}.

Examples of algebraic surfaces include planes and quadric surfaces (i.e., ellip-
soids, hyperboloids and paraboloids) as well as the zero set of higher-degree polyno-
mial densities. Most importantly, the equations (28.2.1) defining the visual events in
this case are all polynomials in the unknowns of interest. This is the key to success-
fully implementing the various steps of the general algorithm outlined earlier, since
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both numerical and symbolic computational tools are available for characterizing
explicitly the solutions of multivariate polynomial equations.

28.2.1 Step 1: Tracing Visual Events

As shown in Sect. 28.1, a visual event is associated with two curves: the first one,
call it Γ, is either drawn on the object surface or (in the case of multilocal events) in
a higher-dimensional space. The second one, call it ∆, is drawn on the view sphere
as the set of corresponding viewpoints.
The curve Γ is defined by the n equations of (28.2.1) in IRn+1. This section

addresses the problem of tracing this curve, i.e. (in our context), identifying its
smooth arcs and its singularities, constructing a sample for each of these, and
establishing the connectivity of the various curve components. The output of the
process is a graphical description of the curve. A simple approach to tracing Γ is
the plane-sweep algorithm presented below and illustrated by Figure 28.15.

(1.1) Compute all extremal points (including singular points) of Γ in some direc-
tion, say x0. These points form the nodes of the graph G.
(1.2) Compute all intersections of Γ with the hyperplanes orthogonal to the x0 axis
at the extremal points.
(1.3) For each interval of the x0 axis delimited by these hyperplanes, intersect Γ
and the hyperplane passing through the mid-point of the interval to obtain one
sample for each real branch.
(1.4) March numerically from the sample points found in step (1.3) to the intersec-
tion points found in step (1.2) by predicting new points through Taylor expansion
and correcting them through Newton iterations.
(1.5) Merge the smooth arcs of Γ meeting at an intersection which is not an ex-
tremal point, and add an arc to G for each pair of extremal (or singular) points
joined by a curve branch.

Algorithm 28.1: A curve-tracing algorithm. This algorithm takes as input a curve
Γ defined by n equations in n+ 1 unknowns in IRn+1 and outputs a graph G whose
nodes are the extremal points (including singularities) of Γ in the x0 direction and
whose arcs are the smooth arcs joining them.

Step (1.1) requires the computation of the extrema of Γ in the x0 direction.
These points are characterized by a system of n + 1 polynomial equations in n+ 1
unknowns, obtained by adding the equation |J | = 0 to (28.2.1), where J denotes
the Jacobian matrix (∂Pi/∂xj), with i, j = 1, .., n. They can be found using ho-
motopy continuation, a global numerical method for computing all the roots of a
square system of polynomial equations. Steps (1.2) and (1.3) require computing the
intersections of a curve with a hyperplane. Again, these points are the solutions
of polynomial equations, and they are found using homotopy continuation. The
curve is actually traced (in the classical sense of the term) in step (1.4), using a
classical prediction/correction approach based on a Taylor expansion of the Pi’s.
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Figure 28.15. An example of curve tracing in IR2. Hyperplanes are straight lines in this
case. This curve has two extremal points E1,E2, and four regular branches with sample
points S1 to S4. E2 is singular. Reprinted from [Petitjean et al., 1992], Figure 7.

This involves inverting the matrix J which is guaranteed to be non-singular on
extrema-free intervals.
Once G has been constructed, a similar graphical description D for the curve ∆

is easily obtained by mapping the points of Γ onto the corresponding asymptotic or
bitangent directions.

28.2.2 Step 2: Constructing the Regions

Let us assume now that we have constructed the graphs Di associated with all visual
event curves ∆i (i = 1, . . . , p). To construct the aspect graph regions delineated
by the curves ∆i on the view sphere, we map these curves onto the plane, using
spherical coordinates for example, and refine the curve tracing algorithm into a
cell-decomposition procedure (see Algorithm 28.2 below and Figure 28.16), whose
output is a description of the regions, their boundary curves, and their adjacency
relationships. Note that this refinement is only possible for planar curves.
In practice, this algorithm takes as input the polygonal curves obtained by

mapping the discrete representation of the curves ∆i associated with the graphs
Di onto the plane, and the extremal points and intersections of the corresponding
planar curves are easily found from these polygons.

28.2.3 Remaining Steps of the Algorithm

Step 3 and 4 of the algorithms are concerned with the elimination of the occluded
visual events and the construction of a sample aspect for each region. Both steps
are conceptually simple.
Note that all visual events of the transparent object are found in step (1) of the

algorithm, and that their intersections are found in step (2). For an opaque object,
some of the events will be occluded and should be eliminated. Since the visibility
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(2.1) Compute all extremal points of the curves in the x0 direction.
(2.2) Compute all the intersection points between these curves.
(2.3) Compute all intersections of the curves with the “vertical” lines orthogonal
to the x0 axis at the extremal and intersection points.
(2.4) For each interval of the x0 axis delimited by these lines, do the following:
(2.4.1) Intersect the curves and the vertical line passing through the mid-point

of the interval to obtain a sample point on each real branch of each curve.
(2.4.2) Sort the sample points in increasing x1 order.
(2.4.3) March from the sample points to the intersection points found in step

(2.3).
(2.4.4) Two consecutive branches within an interval of x0 and the vertical seg-

ments joining their extremities bound a region.
(2.5) For each region, construct a sample point as the mid-point of consecutive
samples found in step (2.4.1).
(2.6) Merge all regions adjacent along vertical line segments to form maximal re-
gions.

Algorithm 28.2: A cell-decomposition algorithm. This algorithm takes as input
a set of planar curves and outputs a description of the regions bounded by these
curves and their adjacency relationships (two regions are said to be adjacent when
they share a common boundary, i.e., a vertical line segment or a curve branch).

Figure 28.16. An example of cell decomposition. Two curves are shown, with their
extremal points Ei and their intersection points Ij . The shaded rectangle delimited by I1
and I2 is divided into five regions with sample points S1 to S5. The region corresponding
to S3 is shown in a darker shade. Reprinted from [Petitjean et al., 1992], Figure 8.

of a visual event curve only changes at its singularities and intersections with other
visual events, occluded events can be eliminated through ray tracing at the sample
point of each branch found in step (2.3). Regions adjacent to occluded events are
readily merged.



Section 28.2. Computing the Aspect Graph 847

The final step of the algorithm involves determining the contour structure of a
single view for each region, first for the transparent object, then for the opaque one.
Given the sample viewpoint of a region, the curve tracing algorithm described in
Section 28.2.1 is applied to the image contour to construct an image structure graph
whose nodes are the contour extrema and singularities (cusps and T-junctions), and
whose arcs are the smooth branches joining them. As before, ray tracing is then
used to determine whether the sample point associated with each branch is occluded
or not.

28.2.4 An Example

Figure 28.17(a)-(d) shows an object in the shape of a kidney bean, its parabolic and
flecnodal curves, the developable surface formed by its tangent crossings, and the
corresponding visual event curves on the view sphere. This object has a hyperbolic
patch within a larger convex region. The bean is bounded by a quartic (i.e., degree-
four) algebraic surface whose equation is:

23x4 + x2y2 − 37x2y − 2xy2 − 15x2 − 2xy+ 16y2 + 16z2 − x+ 16y = 0.

As shown in Figure 28.17(d)-(f), the beak-to-beak and lip events form the hour-
glass pattern. Some of the regions are in fact extremely small, and the difference
between the corresponding aspects would certainly not be discernible with a real
camera having only finite resolution. Figure 28.18(a)-(b) shows the aspect graph
of the transparent bean and the corresponding 25 aspects, and Figure 28.18(c)-(d)
shows the aspect graph of the opaque bean and the corresponding 16 aspects.
The aspect graph shown in Figure 28.18 does not include the events correspond-

ing to the creation or destruction of inflections: for example, the smooth aspect
marked y in Figure 28.18(c)-(d) corresponds to the most common view of the bean.
Its contour is convex, unlike the smooth “bean-shaped” contour our intuition seems
to dictate. Fortunately, we already know that the visual boundaries corresponding
to the birth and death of inflections correspond to viewpoints crossing the tangent
plane at the cusps of Gauss of the surface. Therefore it is sufficient to add to the
event curves the associated great circles and recompute the tessellation of the view
sphere. Figure 28.19(a)-(b) shows the corresponding aspect graph of the trans-
parent bean, with its 38 regions, and Figure 28.19(c)-(d) shows the three different
aspects corresponding to the region marked y in Figure 28.18(c)-(d).
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Figure 28.17. The kidney bean and its aspect graph: (a) the bean; (b) its parabolic
and flecnodal curves; (c) the developable surface corresponding to its tangent crossings;
(d) the corresponding visual event curves on the view sphere; (e) the schematic structure
of the aspect graph, as predicted in [Callahan and Weiss, 1985; Koenderink, 1990; Rieger,
1990]; (f) close-ups of the square regions in (d). Reprinted from [Petitjean et al., 1992],
Figure 12.
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Figure 28.18. The aspect graph of the bean: (a) the transparent bean; (b) the cor-
responding aspects; (b) the opaque bean; (d) the corresponding aspects. Reprinted from
[Petitjean et al., 1992], Figure 13.
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(a) Inflection Generator (b)

(c)

Figure 28.19. The refined aspect graph of the transparent bean: (a) visual event curves;
(b) parameter space regions, there are actually 38 regions, but eight of the samples are
very close to each other, and only 34 samples can be visually distinguished in this figure;
(c) the three aspects corresponding to region y of Figure 28.18. Reprinted from [Petitjean
et al., 1992], Figure 7.

28.3 Aspect Graphs and Object Localization

Aspect graphs are intuitively appealing and mathematically elegant. In practice,
however, it is probably fair to say that exact aspect graphs, as described in the
previous sections, have not fullfilled their promise in actual visual tasks such as
object recognition, partly because the reliable extraction of contour features such
as terminations and T-junctions from real images is extremely difficuly, and partly
because even relative simple objects may have extremely complicated aspect graphs.
Approximate aspect graphs, on the other hand, have been successfully applied to a
number of practical problems, from part localization to object recognition. Specifi-
cally, we will consider in this section the bin-picking problem addressed by Ikeuchi
and Kanade [1988], where a number of instances of the same object (usually a
mechanical part in the automation context, but a plastic toy in the experiments
described in this section) are piled up in random orientations, waiting to be picked
up by a robot, and their three-dimensional position and orientation (or pose) must
be determined from sensory data. We will suppose that polyhedral models of these



Section 28.3. Aspect Graphs and Object Localization 851

parts are available, and that the data consist of needle maps constructed from over-
head images using the photometric stereo techniques introduced in Chapter 3.
Let us focus on the part located at the top of the bin, and assume that it is

observed from afar (orthographic projection) without partial occlusion due to other
objects in the pile. This is reasonable in bin-picking tasks where the size of the
parts is normally small compared to the height of the overhead camera observing
them. Under these assumptions, the visibility of any point on the surface of the top
part can be determined from the viewing direction (defined here by the orientation
of the vertical relative to the local coordinate frame attached to the object) alone.
The corresponding aspect is defined as the list of visible faces, ordered in descending
surface area. For a polyhedral part, it is easy to identify the aspect associated with a
given object orientation using simple hidden-surface elimination techniques such as
z-buffering. Objects such as the plastic toy used in our example, that are bounded
by piecewise-smooth surfaces and approximated by polyhedral meshes, do not pose
particular problems either: their (curved) faces will be deemed visible when any
one of the planar facets approximating them is itself visible. In this setting, an
approximate aspect graph is easily constructed using Algorithm 28.3.

1. Tessellate the unit sphere of viewing directions.
2. Compute the aspect associated with the center of each cell in the tessellation.
3. Group adjacent aspects into equivalence classes labelled by binary strings where
a one indicates that a face is visible, and a zero indicates it is not.

Algorithm 28.3: An approximate aspect-graph construction algorithm.

This algorithm assumes that visibility does not change within the range of view-
points associated with each cell of the discretized viewing sphere, and thus only
constructs an approximation of the true aspect graph (exact algorithms for polyhe-
dral objects are discussed in the notes and in the exercises). Figure 28.20 illustrates
the construction of the aspect graph of the plastic toy.
At this point, it is possible to introduce constraints associated with the data

acquisition process. In particular, a face can only be found by photometric stereo
methods when the angle between its normal and the line of sight is small enough: in
the example shown in Figure 28.20, none of the visible faces in aspect 7 is actually
detectable according to this criterion, yielding an all-zero label. Although the front
“face” of the toy (numbered (4) in Figure 28.20) should be detectable in aspect 6, it
actually corresponds to an unmodeled recess in its surface (see Figure 28.20(b)-(c)),
and no representative view is generated for this aspect either. A representative views
is computed for each one of the remaining aspects by finding the pose that maximizes
the area of the object’s picture over the corresponding range of viewpoints, and
aligning its axis of maximum inertia with the horizontal image direction.
To facilitate the localization process, it is convenient to organize the aspects

into a binary decision tree, called the interpretation tree (Figure 28.21). Each node
in this tree is associated with a range of viewpoints, the list of the corresponding
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(a) (b) (c) (d)
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Figure 28.20. Approximate aspect graphs: (a)-(b) two photographs of a plastic toy; (c)
its polyhedral model (note that each cylindrical surface is approximated by several planar
faces, but it is considered as a single object face during the aspect graph construction);
(d) a semi-regular tessellation of the unit sphere with 60 triangular faces (see exercises);
(e) the corresponding seven aspects, with faces detectable using photometric stereo drawn
using bold lines. Reprinted from [Ikeuchi and Kanade, 1988, Figure 1] and [Ikeuchi, 1987b,
Figure 2].

aspects, and an object face. The tree is constructed iteratively: at each stage, the
face F associated with a node N is used to split the corresponding viewpoints into
a subset V ′ where F is visible, and a subset V ′′ where it is not. The left child of
N is assigned the range of viewpoints V ′, the corresponding subset of aspects, and
the next largest face visible for some viewpoint in V ′. Its right child is constructed
in a similar manner from V ′′ and the corresponding subset of aspects. When two
faces have the same area, they are used together in the subdivision process, i.e.,
V ′ becomes the set of views where one of them may be visible, and V ′′ the set of
views where neither of them is visible (see node B0 in Figure 28.21(left)). The tree
construction starts with a root node associated with the largest face of the objecy,
the whole viewing sphere, and the list of all possible aspects. Figure 28.21(left)
shows the interpretation tree associated with the toy from Figure 28.20.
The raw interpretation tree can be refined by adding to it a set of classification

and pose-determination rules (Figure 28.21(right)). These rules are constructed by
hand from geometric and topological features associated with each face in the ge-
ometric model, including the direction of its axes of inertia and the corresponding
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Figure 28.21. Interpretation trees. Left: the raw interpretation tree constructed ac-
cording to face visibility (the “xx” labels correspond to potentially visible pairs of faces
with equal areas). Right: the refined interpretation tree obtained by adding classification
and pose-determination rules. Note that the left child of node B2 and the right child of
node B3 have been pruned since, as noted earlier, none of the visible faces is actually
detectable. The nodes B0 and B1, on the other hand, have been merged since the same
classification rule (inertia) can be used to distinguish the partial aspects associated with
their children. Reprinted from [Ikeuchi, 1987b], Figures 3 and 4.

moments; a classification of its overall shape as planar, cylindrical, elliptic or hyper-
bolic; its extended Gaussian image (or EGI), i.e., a histogram of the surface normals
within the face, computed over a discretized Gaussian sphere; contour information
extracted from one of the input images by an edge detector; and adjacency rela-
tionships between the face and its neighors. A typical rule may use a comparison
between, say, the moments of an observed face and the moments available from
the model, to decide which branch to follow during an interpretation task. Pose-
determination rules use the geometric information associated with matched object
faces to compute the object pose. For example, the viewing direction can be cal-
culated by aligning the predicted center of mass of a face’s EGI with the observed
one, and the object’s orientation in the plane perpendicular to the line of sight can
be recovered from the predicted and observed axes of inertia of that face.
Figure 28.22 shows the results of a localization experiment. There are three

sources of sensory data in this case: the main one is a needle map, extracted from
several images taken from the same viewpoint under different illumination patterns.
A rough depth map is also extracted by matching the needle maps associated with
two cameras (dual photometric stereo), and a contour map is finally found by running
an edge detector in one of the input images. The three maps are registered in the
same coordinate system, and the top region (Figure 28.22(left)) is identified from
the depth map and passed to the interpretation tree. The localization proceeds as
a tree traversal, the test associated with each node being used to select the correct
branches and successively identify the observed aspect (Figure 28.22(middle)), the
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corresponding viewing direction, and finally the rotation about the line of sight that
aligns the predicted and observed aspects (Figure 28.22(right)).

Figure 28.22. Left: a sample bin image; the top instance of the toy is indicated by the
arrow. Middle: the path (in bold lines) followed by applying the interpretation tree to the
corresponding image region. Right: the toy has been found by the localization program,
and it is shown in its estimated pose. Reprinted from [Ikeuchi, 1987b], Figure 7.

28.4 Notes

The material in this chapter is (no wonder..) largely based on the work of Koen-
derink and Van Doorn, including the seminal papers that introduced the idea of an
aspect graph (albeit under a different name) [Koenderink and Van Doorn, 1976b;
Koenderink and Van Doorn, 1979], the article that presents in a very accessible man-
ner the geometric foundations of this shape representation [Koenderink, 1986] (see
also the articles of Platonova [1981] and Kergosien [1981]), and of course the some-
what more demanding (but how so rewarding for the patient student) book [Koen-
derink, 1990]. See also the article by Callahan and Weiss [1985] for an excellent
informal introduction to aspect graphs. Genericity, singularity and catastrophe
theories are discussed in many books, including [Whitney, 1955; Arnol’d, 1984;
Demazure, 1989]. See also [Koenderink, 1990] for a discussion of why chairs wob-
ble and [Thom, 1972] for an in-depth discussion of this argument. The algorithm
presented in Section 28.2 is due to Petitjean, Ponce and Kriegman [1992], and
the material in that section is largely based on the corresponding article, which
relies itself heavily on the global numerical method of homotopy continuation [Mor-
gan, 1987] for finding all roots (including complex ones as well as those at in-
finity) of a square system of multivariate polynomial equations. Symbolic meth-
ods such as multivariate resultants [Macaulay, 1916; Collins, 1971; Canny, 1988;
Manocha, 1992] and cylindrical algebraic decomposition [Collins, 1975; Arnon et
al., 1984] exist as well, and they have been used by Rieger [1987; 1990; 1992] in a
different algorithm for constructing the aspect graph of an algebraic surface.
We have evaded several issues in this chapter. What happens when the sur-

face that bounds a solid is not generic? Consider for example a manufactured
part bounded by planar or quadric surfaces (or by the degree-four algebraic sur-
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faces considered in Section 28.2. But consider too the case of CAD models made
of hundreds or thousands of extremely complicated (and yet not generic) bicubic
patches. Many algorithms for constructing the aspect graph of a polyhedron under
orthographic or perspective projection have been proposed (see, for example, [Cas-
tore, 1984; Stewman and Bowyer, 1987; Watts, 1987; Stewman and Bowyer, 1988;
Gigus and Malik, 1990; Plantinga and Dyer, 1990; Wang and Freeman, 1990;
Gigus et al., 1991; Seales and Dyer, 1991]), and some of them have been imple-
mented. Algorithms for constructing the exact aspect graph of simple curved objects
such as solids bounded by quadric surfaces [Chen and Freeman, 1991] and solids
of revolution [Eggert, 1991; Eggert and Bowyer, 1989; Eggert and Bowyer, 1991;
Kriegman and Ponce, 1990] have also been proposed and implemented. The algo-
rithms for solids bounded by algebraic surfaces that we presented in this chapter
and the approaches based on cylindrical algebraic decomposition [Rieger, 1987;
Rieger, 1990; Rieger, 1992] are probably the most general to date, but they are far
from being able to tackle CAD models comprised of bicubic patches.
Aspect graphs are unfortunately very large: a polyhedron with n faces has an

orthographic aspect graph with O(n6) cells [Gigus et al., 1991]. The size increases
to O(n6d12) for a piecewise-smooth surface made of n polynomial patches of degree
d [Petitjean, 1995]. The situation is of course even worse in the perspective case.
Should we blame the huge size of aspect graphs on the representation itself? Or is
it an artefact of the (combinatorial and/or algebraic) complexity of the underlying
surface model, e.g., the number of polyhedral faces or the degree of the patches
used to approximate relatively simple free-form surfaces? Noble, Wilson and Ponce
[1997] address the problem of constructing the aspect graph of a solid defined by
the zero set of a volumetric density function, e.g., the boundary of an organ in a
CT image, and present preliminary results. Another part of the size problem lies
in modeling appropriately the optical blur introduced by real lenses together with
the finite spatial resolution of cameras. Preliminary efforts at tackling this question
can be found in [Eggert et al., 1993; Shimshoni and Ponce, 1997; Pae and Ponce,
1999], partly based on recent results about the effect of one-parameter families of
deformations on generic surfaces [Bruce et al., 1996a; Bruce et al., 1996b].
Approximate aspect graphs of polyhedra have been successfully used in object

localization tasks. We have presented in Section 28.3 the approach proposed by
Ikeuchi and Kanade [1987b; 1988]. Variants include [Chakravarty, 1982; Hebert
and Kanade, 1985]. The extended Gaussian image was introduced by Horn [1984],
and a method for dual photometric stereo is described in [Ikeuchi, 1987a].
Descriptions of the ray-tracing and z-buffer algorithms for hidden-surface elimi-

nation mentioned in this chapter can be found in classical computer graphics texts
(e.g., [Foley et al., 1990]).
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28.5 Assignments

Exercises

1. Draw the transparent aspect graph of the Flatland object below and the
corresponding aspects.

2. Draw the opaque aspect graph of the Flatland object below and the corre-
sponding aspects.

3. Sketch the Gauss map of the object below.

4. Is it possible for an object with a single parabolic curve (such as a banana)
to have no cusp of Gauss at all? Why (or why not)?

5. Use an equation-counting argument to justify the fact that contact of order
six or greater between lines and surfaces does not occur for generic surfaces.
(Hint: count the parameters that define contact.)

6. We saw that the asymptotic curve and its spherical image have perpendicular
tangents. Lines of curvature are the integral curves of the field of principal
directions. Show that these curves and their Gaussian image have parallel
tangents.

7. Use the fact that the Gaussian image of a parabolic curve is the envelope of
the asymptotic curves intersecting it to give an alternate proof that a pair of
cusps is created (or destroyed) in a lip or beak-to-beak event.

8. Aspect graphs of polyhedra, including EEE and EV events.

9. Use an equation counting argument to justify the fact that contact of order
6 or greater between lines and surfaces does not occur for generic surfaces.
(Hint: count the parameters that define contact.)

Programming Assignments

1. Write a program to explore multilocal visual events: consider two spheres with
different radii and assume orthographic projection. The program should allow
you to change viewpoint interactively as well as explore the tangent crossings
associated with the limiting bitangent developable.

2. Write a similar program to explore cusp points and their projections. You
will have to trace a plane curve.



Chapter 29

TOWARD CATEGORY-LEVEL
OBJECT RECOGNITION

Object recognition is in a sense the Holy Grail of computer vision. Several of the
problems addressed in the previous chapters are related to it, and we have indeed
presented effective methods for identifying a polyhedral object from point and line
features found in an image, computing the pose of a free-form three-dimensional
object from its segmented outline, recognizing complex shapes in cluttered range
images, etc. We have also discussed methods for finding human faces in images and
identifying the persons these faces belong to. This is an instance of what will be
called category-level recognition in this chapter: in the hypothetical example shown
in Figure 29.1, the photograph is not compared to all the faces in some database:
instead, an instance of the “face” category is identified first, before it is recognized
as the face of the actress Barbara Steele .
It is natural to believe that category-level recognition is the key to recognizing

large numbers of objects. The advantage of this view is that large search problems
are avoided by assuming that objects are organized in a hierarchy. The categorical
process is the key. Objects that look roughly similar would be organized into a
single node. The basic recognition processes would start by identifying the node
associated with an object, and then more specialized node-specific processes would
look at the object in more detail. Today, however, we do not know how to write a
program that can recognize familiar objects at the category level, “dinosaur” before
(rather than) “Barney”, “quadruped” before “horse”, and “horse” before “Black
Beauty” (Figure 29.2).
This chapter examines some of issues involved in developing such a program.

We first discuss current approaches to object recognition, lament about their limita-
tions, identify key problems, and discuss object representation schemes and models
of the recognition process that may overcome (or at least provide a better under-
standing of) some of these limitations. Two well-known category-level recognition
systems, FORMS [Zhu and Yuille, 1996] and ACRONYM [Brooks, 1981a] are dis-
cussed in some detail along the way to illustrate the difficulty of the problem.

857
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Figure 29.1. Face recognition is a (relatively) well-understood category-level recognition
problem: technology for delineating the faces present in a photograph and identifying the
corresponding persons is now available. The photograph of Barbara Steele is reprinted
from [MMF, 1967, p. 33]. The labels in this picture and in the following two figures
were not infered by a computer program: they were assigned by hand, as our intent is to
illustrate the object recognition problem with these figures, not to demonstrate (partial)
solutions to it.

29.1 The State of the Art and its Limitations

Nobody really knows how people recognize objects, or how a computer program
should go about solving the same problem. In fact, there is so little information
about how to proceed that most of this chapter is perforce in the domain of opinion
(we feel it to be informed opinion; your mileage may vary).
The ideal object recognition system would

• recognize many different objects;

[This is much more difficult than it sounds: to recognize very large numbers
of objects, we need to know how to organize them into a data structure that
is easily searched given image data. In particular, we need to know what
measurements can be used to distinguish between objects as opposed to dis-
tinguishing between instances (one cat may be tabby, the other grey; they are
both cats).]

• recognize objects seen against many different backgrounds;

[Again, this appears to be very difficult. Ideally, an appropriate object repre-
sentation would help by organizing the image into segments that might have
come from an object category (without reference to a particular instance) and
those that could not.]

• recognize objects at an appropriate level of abstraction.

[Humans do not need to have seen a particular chair before they know it is
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Figure 29.2. A more difficult instance of category-level object recognition: we would
like to write programs that can find the monster in this picture as an instance of the
“bug” category, and identify the warrior as an instance of the “human” category before
recognizing that his name is actually Felix. In fact, recognizing either of the characters in
this picture at any other than the category level might be extremely difficult. The painting
shown in this figure is a detail from the cover of the book “Armor” by John Steakley [1984].
The warrior’s name is indeed Felix in the book.

a chair. Ideally, our programs would be able to recognize both leopards and
cheetahs as spotted cats, before drawing a distinction. Just precisely what is
an appropriate level of abstraction is mysterious; at least part of the issue is
tied up in the question of recognizing many different objects.]

Current recognition strategies typically perform rather poorly when measured
against these requirements, as we shall see. This is not because they are bad: the
problem is just very difficult.

29.1.1 Current Approaches to Object Recognition

Pose-consistency approaches use geometric mechanisms to identify a sufficient
number of matches between image and model features. They include alignment
techniques and affine and projective invariants, as discussed in Chapter ??. In the
former case, matching proceeds as a tree search, whose potentially exponential cost
is kept under control by exploiting the fact that very few matches are sufficient to
completely determine the object pose and predict the image position of any further
correspondences. In the latter case, small groups of points are used to directly
compute a feature vector independent of the viewpoint, that, in turn, can be used
to index a hash table storing all models. An advantage of this approach is that
indexing can be done in sub-linear time.
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Template matchers record a description of all images of each object, and, as
discussed in Chapter 25, they have been successfully used in tasks such as face
identification and three-dimensional object recognition. Their main virtue is that,
unlike purely geometric approaches, they exploit the great discriminatory power
of image brightness/color information. However, they normally require a separate
segmentation step that separates the objects of interest from the image background,
and they are potentially sensitive to changes in illumination.

Relational matchers describe objects in terms of relations between templates.
Typically, one looks for rather stylized image patches and then reasons about rela-
tions between them (as in Chapter 26). There are two difficulties here: first, as that
chapter indicated, some relational models are easy to match but some can be very
difficult to match; second, current methods handle local patches (like eye corners)
and simple objects (like faces) well, but it remains hard to see how one would build
matchers that find, say, animals based on relations between image patches.

Aspect graphs explicitly record the qualitative changes in oject appearance due
to viewpoint variation. Recognition techniques based on aspect graphs (discussed
in Chapter 28) lie somewhere between appearance-based and structural methods,
since they actually describe the appearance of an object by the evolution of its
structure as a function of viewpoint. Since similar objects will (hopefully) have a
similar appearance, they may have similar aspect graphs, and the understanding of
image structure may serve as a guide for image segmentation. In practice, however,
exact aspect graphs have not fullfilled their promise, partly because the reliable
extraction of contour features such as terminations and T-junctions from real im-
ages is extremely hard, and partly because even relative simple objects may have
extremely complicated aspect graphs.

29.1.2 Limitations

The methods we have described are substantially limited. The limitations them-
selves fit into three (rough) classes.

Segmentation. Relational matchers can easily be overwhelmbed by very large
numbers of candidates; similarly, template matchers perform poorly if unknown
regions of the patterns to be matched contain irrelevant information. It is probably
important that the basic currency of recognition be “easily segmented”, in the
sense that it is easy to tell which image pieces belong together without knowing
what object we are looking at.

Categories and abstraction. It is not known how to find objects at the right
abstraction level. While we might not expect to be able to recognize animals at
the level of “mammals”, we should to be able to find “spotted mammals” before
we worry about whether we are dealing with a “leopard” or a “cheetah”. It is
important to understand that very little is known about what is an appropriate
level of abstraction: how do you describe (visually) a farm? The methods we
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have described so far are incapable of categorization. Notice that, rather than
being a deep cognitive mystery, categorization may be a phenomenon that has
quite practical origins –it may be much easier to recognize large numbers of objects
by drawing rough distinctions first, and fine ones later. How one should categorize
is still mysterious.

Generality. Successful recognition strategies should apply to many types or ob-
ject categories without significant tuning. Ideally, because appropriate approaches
would be organized according to basic rules of object structure, it should be easy
to learn satisfactory models of new objects from a very small number of exam-
ples. The methods we have described can usually generalize, but not in particularly
satisfactory ways.

29.1.3 From Templates to Primitives

The relational template matchers mentioned earlier provide an attractive approach
to object recognition since they have the potential for generalizing to very large
model databases when provided with appropriate additional constraints. Assume
for example that a small number of templates represent, in different combinations,
a large number of models. We could think about recognition as follows:

• Find the templates.

• Restrict the search to objects that contain templates that have been found.

• Look for suggestive relations.

• Use these relations to reduce the number of candidate objects further.

• Continue winnowing through relations and objects.

This view will work for some objects: for example, people and many animals
have eyes that sort of look alike (Figure 29.3) and cars, trucks, bicycles and trains
have wheels that look similar too. But it will fail, in general , because the templates
we can deal with are terribly limited in scope (how would one model camels and
caterpillars with them?). One response to this difficulty is to expand the notion
of a template very aggressively. This leads us to think about shape primitives
(or –and more generally– primitives). The motivating vision is that we would
like to describe objects in terms of components that behave like templates. These
components are primitives.
So what would be an ideal object representation? First, the description of the

members of a category should be stable despite the variations within the cate-
gory, and yield reliable predictions of their image appearance. Such a description
might involve relations between primitives –most quadruped mammals have the
same number of legs in the same place on the body, for example. Second, relatively
small numbers of primitives should represent relatively large numbers of objects (if
there was one primitive per object, then not much would be gained). For example,



862 Toward Category-Level Object Recognition Chapter 29

Figure 29.3. Relational template matching and category-level recognition: it may be
hoped that simple templates are common to a great many objects, e.g., local image signa-
tures may be sufficient to detect both the eyes of a person (left) and those of a bug-eyed
monster (right), and templates for mouths (left) and claws (right) are useful in some recog-
nition tasks. A more general approach, however, might be to identify both the monster
and the warrior in the right picture by relying on their (exo)skeletal limb structure, a form
of primitive-based representation.

we might want most mammalian legs to “look the same” in terms of primitives.
Finally, the relationship between the primitives composing an object and what ap-
pears in an image should be relatively straightforward. Taken together, these are
very strong requirements; no currently known representation meets them.

29.1.4 Models of Object Recognition

Object recognition is an inference process that relies on object and appearance
models to interpret image data. In the approach advocated in this chapter, object
models consist of assemblies of stylized primitives. In this context, an appearance
model should not be thought of as an accurate numerical record of image geome-
try/brightness/color at the pixel level, but rather as a (possibly qualitative) descrip-
tion of the local or perhaps global image structure. Appearance prediction involves
of course an appropriate image formation model, and it should be powerful enough
to support image segmentation despite intra- and inter-category changes as well
as variations in camera position, illumination, background clutter etc. Conversely,
the appearance model should support image interpretation, including matching im-
age and object descriptions, and discriminating competing models. An appropriate
model for the recognition process complements the choice of representation schemes
for objects and images: recognition can be seen as an inference process selecting
interpretations of an image given a catalogue of object descriptions and models of
image formation and appearance; modeling this process amounts to defining the
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terms “best” and “interpretation” more precisely.
In this inferential setting, it is natural to try and represent the processes involved

at a series of levels, as in Table 29.1 below.

Object recognition ≡ models of



•
•
•
•

objects,
the image formation process,
image appearance, and
the recognition process.

Table 29.1. The four main representation levels involved in object recognition. Some of
these may be implicit: for example a model of image formation may dictate an appearance
model via geometric or physical considerations. Conversely, an appearance model and the
corresponding recognition process model may be operationally chosen without explicit
reference to a formal image formation model. The image formation process is quite well
understood now; what aspects of image appearance should be modelled is still somewhat
uncertain. Several different models of objects and of the recognition process have been
tried (as above) and found wanting.

Other issues are of course also important: the chosen object and appearance
models should be expressive enough to encompass a relatively wide class of objects
and scenes of interest; if possible, sub-linear indexing schemes should be supported;
etc. These desiderata are not met by current primitive-based approaches. However,
we have seen that it is, in principle, possible to describe objects by part-whole
networks of stylized primitives, such as cylinders for example, in the case of the
horse finder program briefly discussed in Chapter 17. The next section explores
variants of this approach and indentifies, in each case, the underlying models.

29.2 Primitives and Object Recognition

This section examines a variety of possible shape primitives. These are stylized
patterns in shape, used to drive the recognition process. Primitives provide a vo-
cabulary for talking about object categories; they are also helpful for segmentation
and grouping. Two well-known object recognition systems, FORMS [Zhu and Yuille,
1996] and ACRONYM [Brooks, 1981a] are discussed in some detail to provide con-
crete examples of what can be achieved today in this context, and to illustrate some
of the inherent difficulties in constructing a category-level recognition system.

29.2.1 Volumetric Primitives and Part-Whole Decompositions

In this approach, objects are described by (and/or parsed into) assemblies of signif-
icant parts and their spatial relationships. These parts are instances of a small set
of stylized solid shapes, or volumetric primitives. By focussing on solid primitives
instead of boundary models, irrelevant surface detail (e.g., the bumps and ridges
formed on the top of my hand by the underlying veins and tendons) can hopefully
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be abstracted away. Although attractive, this approach presents a number of dif-
ficulties: it is not clear what shapes should be chosen as primitives, and even less
clear how to decompose a given shape into parts.
The generalized cylinders (or GCs) proposed by Binford in a famous (but, para-

doxically, unpublished) 1971 paper are the most popular form of volumetric prim-
itives to date. They were originally defined in terms of “generalized translational
invariance”. Roughly speaking, this means that a GC is the solid swept by a one-
dimensional set of cross-sections that smoothly deform into one another. Such a
definition is very general and quite appealing, but it is also very difficult to op-
erationalize: in other words, although a great many objects (the fingers of my
left hand for example) can certainly be described by sweeping smoothly-deforming
cross-sections along some space curve, it is not clear at all how to construct the
description of a given shape in a principled way.
As will be shown in the next two sections, generalized cylinders are particularly

well adapted to the description of objects with elongated bits, such as vertebrate
animals with their distinctive limbs and the relatively simple kinematic structure
dictated by their skeleton, and certain tools like screwdrivers, hammers, etc. Before
discussing them in more detail, let us pretend for a little while that we live in
Flatland, and discuss first their two-dimensional cousins, usually called ribbons.
This will serve to illustrate some of the main issues involved in the use of volumetric
primitives in object recognition.

29.2.2 The Two-Dimensional Case: Ribbons

A ribbon is the region of the plane swept by a geometric figure, its generator, as it
follows some trajectory and shrinks or expands along the way. When the generator
is a line segment, we have a Brooks ribbon (Figure 29.4(left)), and when it is a disc,
we have a Blum ribbon (Figure 29.4(right)), after the names of their inventors.

Figure 29.4. A Brooks ribbon (left) and a Blum ribbon (right). In each case, the central
curve is the spine of the ribbon, defined as the trajectory of the center of its generator.

Ribbons defined in this manner form a generative model of shape, i.e., speci-
fying a generator, its trajectory, and the corresponding scaling function uniquely
specifies the shape of a ribbon. In interpretation tasks, we are normally interested
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in the inverse problem: given a plane region, is it possible to recover a (possibly
rough) description of this region in terms of ribbons? From that perspective, Blum
ribbons are particularly interesting because the solution of this inverse problem is
mathematically well defined: the Blum transform associates with a two-dimensional
shape the one-parameter family of discs inscribed in this shape and tangent to its
boundary in at least two points (Figure 29.5(left)). In turn, these discs provide a
Blum ribbon description of the shape (regarding a Blum ribbon as the envelope of
a set of discs immediately shows that these discs are indeed bitangent to the ribbon
boundary). Equivalently (if one is not too worried about mathematical details),
the Blum transform of a planar region can also be defined as the set of maximal
discs inscribed in this region (i.e., discs not contained in any other inscribed discs).
Further, the Blum transform can easily be implemented by a simple algorithm that
iteratively erodes the boundary of a digital image region and constructs its skeleton
(or medial axis), i.e., the curve formed by the centers of the bitangent discs. The
bifurcations of the skeleton, i.e., the multiple points where several smooth branches
meet, define a shape decomposition into parts that may, or may not, be intuitively
appealing: see Figures 29.5(b) and 29.6(b).

(a) (b)

Figure 29.5. The Blum transform: (a) the skeleton of a planar region is the locus of the
discs inscribed in this region and bitangent to its boundary; (b) the skeletons of a perfect
rectangle and its “noisy” version. Note that for most points inside a planar region, the
minimum distance to the region boundary is reached at a unique point. At a skeleton point,
on the other hand, the minimum is reached at two points simultaneously: the two places
where the corresponding disc touches the boundary. Thus the skeleton can be thought of
as the locus of points where a wavefront issued from the boundary collides with itself. In
discrete images, this yields a skeletonization algorithm that iteratively “erodes” a shape
by removing its boundary points layer by layer until only skeleton points are left. See the
exercises for details.

Can a similar “Brooks transform” be defined rigorously? This is not quite
as clear, although an attempt is described in the exercises, and we will focus on
the Blum transform in the rest of this section; Brooks ribbons and their three-
dimensional relatives, generalized cylinders, will be discussed again in the next
section. The appeal of Blum ribbons in object recognition is unfortunately balanced
by the fact that the Blum transform is susceptible to boundary “noise”: for example,
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an arbitrarily small notch on the boundary of a rectangle dramatically alters the
skeleton structure (Figure 29.5(right)). Likewise, the bifurcations of the skeleton
are also rather unstable under perturbations of the boundary.

29.2.3 A Two-Dimensional Recognition System: FORMS

The FORMS two-dimensional system developed by Zhu and Yuille [1996] addresses
some of these difficulties (Table 29.2). In this case, the object and appearance mod-
els are the same and consist of graphs whose edges are primitive parts extracted
from the skeleton of object silhouettes, and nodes are the junctions and terminations
of these parts; there is no explicit image formation model. The recognition process
is modeled as graph matching between the part decomposition of stored category
models and observed object instances. Before embarking on a description of this
process, let us explain how the construction of the skeleton and the extraction of its
parts can be made relatively robust to boundary noise, since reliable part decom-
position is an extremely difficult and important problem for volumetric approaches
to object recognition.

Objects: Skeleton graph
Image formation: None

Image appearance: Skeleton graph
Recognition process: Adaptive graph matching

Table 29.2. FORMS model of object recognition. A skeleton graph is a graph whose
nodes are skeleton junctions and terminations, and edges are primitive descriptions of
the object regions associated with the smooth skeleton branches between them. The
graph-matching procedure is said to be adaptive because skeleton graphs are allowed to
dynamically change during matching. More details on all of this in a minute.

In FORMS, the skeleton of a (segmented) image region is identified by an iter-
ative growing process: a seed point and the corresponding maximal disc are first
found by moving and deforming the disc under the action of image “forces” until
equilibrium is reached. The forces are designed to move the center of the disc as
far away from the boundaries as possible while maximizing the disc’s radius and
minimizing the area of the background region it covers. Once the seed point has
been found, a recursive algorithm traces out the incident branches of the skeleton,
applying at each step a bifurcation analysis based on the detection of salient peaks
in a polar plot of the skeleton-to-boundary distance function. Saliency is determined
by both the width and depth of the peaks, with a preference for deep or wide-area
peaks. Points with multiple salient peaks are identified as bifurcations and a new
skeleton branch is started for each one of these peaks.
Algorithm 29.1 summarizes the steps of this skeleton detection approach. The

explicit form of the forces driving the evolution of the seed pointx and the associated
radius r are given in step (b) of the algorithm. The force acting on x can be thought
of as a weighted sum of the internal normals n at the points on the boundary
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Procedure Track(R,x, r, θ1, θ2):
% compute spine tangent and new disc center and radius

1. t← arg min
t∈[θ1,θ2]

∫ δ
0

[Ldist(x+ st, θ1, θ2) −Rdist(x+ st, θ1, θ2)]
2ds;

2. x← x+ δt;
3. repeat r← r + λ[µ

√
r − Area(Disc(x, r)− R)] until convergence;

% identify bifurcations and continue tracking
4. for P in Salient-Peaks(x, θ1, θ2) do Track(R,x, r, P.θ1, P.θ2).

Procedure Skeleton(R):
% find initial point x on the skeleton
(a) x← CenterofMass(R); r← Radius(R);
(b) repeat 


x← x+ λ

∫
y∈∂R∩D [r− |x− y|]nds,

r← r + λ[µ
√
r − Area(Disc(x, r)−R)]

until convergence;
% start tracking
(c) for P in Salient-Peaks(x, 0, 2π) do Track(R,x, r, P.θ1, P.θ2).

Algorithm 29.1: The FORMS skeleton algorithm. The Skeleton procedure finds
an initial point on the skeleton of the region R then calls the recursive procedure
Track that will explore its branches. The function Salient-Peaks returns the list of
salient peaks of the distance to boundary function located within a given angular
range. When this list is empty, the tracking terminate. When there is more than
one peak, a junction is formed and tracking proceeds independently in each branch
with the associated angular range. The functions Ldist and Rdist return the distance
to the closest left- and right-boundary points in the range [θ1, θ2]. Pseudocode for
these three functions as well as the simple auxiliary procedures Disc, Radius, Area,
and CenterofMass is omitted for conciseness.

∂R that lie within the disc, the weights growing as the disc grows outside of ∂R.
The parameter λ controls the rate of the corresponding gradient descent, and the
constant µ balances the tendency of the radius to grow under a force of magnitude√
r with its tendency to shrink to avoid covering too much background area. During
step 1 of tracking, the tangent to the skeleton spine is estimated by minimizing the
discrepency between the distances to the left and right boundaries (defined relative
to a range [θ1, θ2] of possible orientations) along the tangent. A step of size δ is
then taken along the estimated tangent in step 2, the radius is adjusted in step
3 using the same iterative process as before, and the recursion proceeds in step 4
along with the bifurcation analysis. Some results are shown in Figure 29.6(a).
Once the skeleton has been found, its multiple points can be used to delineate
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(a)

(b)

Figure 29.6. FORMS in action: (a) skeletons; (b) part decompositions. Reprinted from
[Zhu and Yuille, 1996], Figures 23, 24 and 28.

object parts. More precisely, a part is associated with each branch of the skeleton,
the discs associated with its endpoints being included in the part description. As
shown by Figure 29.6(bottom), this approach gives intuitively satisfying results
for side views of vertebrate animals like mammals and fish. Once the parts have
been found, they are turned into two classes of primitives (Figure 29.7): worms
associated with segments of the spine that lie between two junctions, or terminate
but are long enough relative to the radius of the discs attached to their endpoints,
and circular sectors associated with the remaining (terminal) segments (see the
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fish decomposition in Figure 29.6(b)). Each primitive is represented by a five-
dimensional feature vector recordings its length (for worms) or angular extent (for
circular sectors) plus four deformation parameters representing the ribbon width
or radius function and calculated using principal component analysis on the model
database.

Figure 29.7. FORMS primitives: a worm (top left) and a circular sector (top right)
can be deformed by changing the radius of the discs that generate the worm (bottow
left) or the length of the rays generating the circular sector (bottom right). A fixed
number of generators is used for each primitive, and a low-dimensional representation of
the deformation parameters is obtained via principal component analysis. In FORMS, the
spine of a worm is actually allowed to deviate from a straight line, but no record of this
deformation is maintained. This makes the representation more stable under bending and
other global shape deformations. After [Zhu and Yuille, 1996, Figure 5].

We have insisted on the image description and part decomposition modules of the
FORMS system because those are two essential components of any primitive-based
object recognition system, and because FORMS does quite well in its target domain.
Note that these modules, although cleverly designed and effective in practice, are
profoundly heuristic in nature: unlike the (somewhat unreliable, but mathemati-
cally well defined) Blum transform, their behavior is not dictated by geometric or
physical principles, but instead by operational heuristics, or, in plainer words, by
the algorithms implementing them.
It is now time to return to the model of the recognition process used by FORMS.

This is essentially a graph matching scheme, using a measure of similarity between
parts, hash tables and a voting scheme for efficient retrieval of promising model
parts and object categories. The similarity of a model part m and an observed
primitive o is simply defined as s(m, o) = exp(−|m− o|2), where m and o are the
five-dimensional feature vectors associated with the two primitives (this similarity
measure can be given a probabilistic –although perhaps irrelevant– interpretation).
As noted earlier, each instance of an object is represented by a graph whose nodes
are skeleton junctions and terminations, and edges are the primitive parts betwen
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them. Each object category may be described by several of these skeleton graphs,
corresponding to its observed instances. The skeleton graphs associated with the
most promising models are selected by similarity-based hashing and voting, and
then matched to the observed data, using a graph-matching procedure that prunes
away matches whose cost exceeds some threshold. This procedure is made robust
via adaptive matching, i.e., by allowing the skeleton graphs of the models to change
during matching under the action of skeleton operators that adjust for the errors
that may occur during the bottom-up skeleton extraction step (e.g., missing branch
due to occlusion, extra branch due to clutter, splitting of a junction into two due
to boundary noise, or conversely merging of two junctions into a single one). Each
application of one of these operators incurs a cost, of course. The overall recognition
algorithm is summarized below.

Off-line. Construct the model database:
1. Construct the butcher’s shop that stores all parts of all objects in the database,
recording their feature vectors as well as the identity of the object category they
belong to.
2. Store the skeleton graphs associated with all instances of all objects.

On-line. Match the observed object O to the database:
(a) Hash the butcher’s shop to retrieve the k best matches mi (i = 1, . . . , k) for
each data part o, and increment the credit due to the corresponding models Mi.
(b) Retrieve the n best models according to the similarity function

S(M,O)
def
=

∏
(m,o)∈M

s(m, o)
∏
m∈H

exp(−ν
Area(m)

Area(M)
)
∏
o∈E

exp(−τ
Area(o)

Area(O)
).

(c) For each of these models, find the best adaptive match between the correspond-
ing skeleton graph and the input shape, and rank the models.

Algorithm 29.2: The FORMS recognition algorithm. Here, M designates the
pairs of matched parts, H designates the unmatched (or hidden) parts of the model,
E designates the unmatched (or extraneous) parts of the model, and ν and τ are
used to weight the cost of hidden and extraneous parts.

Figure 29.8 shows a recognition example. In general, the approach works quite
well on the database of 35 instances and 17 categories used in the FORMS ex-
periments. Of course, these examples are taken from presegmented side views of
mammals, and the three-dimensional case is much more complicated. It is addressed
in the next section.

29.2.4 The Three-Dimensional Case: Generalized Cylinders

It is tempting to generalize the definition of ribbons to three dimensions. Sweeping
a shrinking or expanding ball along a curve yields a solid shape whose boundary
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Figure 29.8. FORMS in action: recognition examples. Reprinted from [Zhu and Yuille,
1996], Figures 30 and 31.

is the envelope of the balls and is known in geometry as a canal surface (Figure
29.9(left)). Unfortunately, most solids are not bounded by canal surfaces. Con-
versely, although the Blum transform of a three-dimensional shape is easily defined
in terms of inscribed balls bitangent to its boundary (or equivalently in terms of
maximal inscribed balls), the corresponding “skeleton” forms a surface instead of
a curve (except for canal surfaces of course). As an example, the skeleton of a
parallelepiped is shown in Figure 29.9(right).

Figure 29.9. Generalizing Blum ribbons to three dimensions: (left) a canal surface –
note that the generating balls touch it along circles; (right) a parallepiped and its skeleton.
Note that erosion algorithms can also be used to compute the skeleton in this case.

Brooks ribbons, on the other hand, become generalized cylinders in three di-
mensions (Figure 29.10(a)). Many different variants are possible, depending on the
shape chosen for the generators (discs, say, or arbitrary plane regions), and on the
class of deformations allowed (a simple scaling as in the two-dimensional case, or
some other type of smooth deformation). In either case, it is not obvious how to
compute the equivalent of a Blum transform, nor is it clear how to decompose the
output of such a transform into significant parts.
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(a) (b)

Figure 29.10. Generalized cylinders: (a) the original definition: planar cross-sections
deforming into one another; (b) the ACRONYM model of an L-1011 model. This instance
of a generic wide-body aircraft model is assembled out of cylindrical and conical primitives
with circular and polygonal cross-sections. Reprinted from [Brooks, 1981b], Figure 9.1.

29.2.5 A Three-Dimensional Recognition System: ACRONYM

As in the two-dimensional case, we shall now illustrate some of the issues involved
in the construction of a recognition system based on generalized cylinders with an
example, the ACRONYM system developed by Brooks and Binford [1979; 1981a]

(Table 29.3). In ACRONYM, object models consist of hierarchical assemblies of
GCs (limited to cylinders and cones with circular or polygonal cross-sections) and
their spatial relationships (Figure 29.10(b)). Categories are defined by sets of in-
equalities on algebraic (or trigonometric, but the latter reduces to the former) ex-
pressions in the model parameters. Cameras are explicitly modeled just like any
other object. According to the ACRONYM image formation model, GCs project
onto simple Brooks ribbons, namely trapezoids and ellipses. This is a valid model
for the primitives considered when the distance between the camera and the scene
is large compared to the size of the observed objects. The image appearance model
consists of the ribbon parameters and their spatial relationships.

Objects: Hierarchical assemblies of generalized cylinders

Image formation: Algebraic model of perspective imaging
Image appearance: Assemblies of ribbons and ellipses

Recognition process: Symbolic geometric reasoning



Prediction
Description
Interpretation

Table 29.3. ACRONYM model of object recognition.

The recognition process is modeled in ACRONYM by a succession of prediction,
description and interpretation steps, orchestrated by a geometric reasoning system
that supports prediction and interpretation by making deductions about spatial
relationships between objects and their parts in space and in the image. To be more
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specific, let us give a concrete example of the type of geometric reasoning involved
in the prediction and interpretation of image appearance: we consider a simplistic
airplane model that consists of a central cylinder (fuselage) with height H and
diameter D, and two symmetrical cylinders (wings) with height H ′ and diameter
D′ at angle θ from the fuselage. This plane is observed by a weak perspective
camera, with a viewing direction v defined by its spherical coordinates (α, β) in
a coordinate system whose x axis is aligned with the spine of the fuselage, and
whose y axis is in the plane that contains the axes of the fuselage and the two wings
(Figure 29.11(left)).

α

β

v
φ D

d
h

H

v

θ

θ

H
H’

H’

y

z

x

Figure 29.11. The parameters defining the projection of a simple airplane model: (left)
the model, with the fuselage and wings depicted by their spines to avoid clutter; (right)
orthographic projection of a cylinder.

As shown in Figure 29.11(right), a cylinder with height H and diameter D seen
from a direction v at an angle φ from its axis projects orthographically onto a
Brooks ribbon with length h = H sinφ and diameter d = D (we will ignore the
elliptical ends of ribbons here). These values become h = µH sinφ and d = µD
under weak perspective projection with magnification µ. Thus the three cylinders
representing the fuselage and the two wings project onto ribbons with spine lengths
h, h′l and h

′
r and diameters d, d

′
l and d

′
r, and


h = µH

√
1− sin2 β cos2 α,

h′l = µH
′
√
1− sin2 β cos2(θ + α),

h′r = µH
′
√
1− sin2 β cos2(θ − α),



d = µD,
d′l = µD

′,
d′r = µD

′.
(29.2.1)

In turn, we obtain immediately the following viewpoint-invariant image con-
straints:

d′l = d
′
r and

d′l

d
=
d′r

d
=
D′

D
. (29.2.2)
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Let us define the angles θl and θr between the axis of the ribbon associated
with the fuselage and the spines of the left and right wings. It is easy to show (see
exercises) that 


tan θl =

cos β sin θ

cos θ − sin2 β cos(θ + α) cosα
,

tan θr =
cosβ sin θ

cos θ − sin2 β cos(θ − α) cosα
.

(29.2.3)

Note by the way that these equations imply that a planar bilaterally symmetric
figure does not project onto another bilaterally symmetric figure (i.e., in general,
tan θl �= tan θr).
Let us further assume that β is a small angle (think of a reconnaissance aircraft

flying over an airfield with its camera looking down almost vertically). Neglecting
the second- and higher-order terms in β yields immediately

θl = θr = θ. (29.2.4)

Likewise, we have, to second-order,

h′l = h
′
r and

h′l

h
=
h′r

h
=
H ′

H
. (29.2.5)

We have simply rediscovered the fact that angles and ratios of lengths are
quasi invariants (i.e., are constant to first-order) under weak perspective projec-
tion (Chapter 25). Let us now consider a more sophisticated model of the image
formation process where β ∈ [0, δ] and µ ∈ [ν, τ ] (the latter interval might have
been calculated from the operational altitude of our reconnaissance aircraft and the
camera parameters). In this context, it is easy to show that1


νH cos δ ≤ h ≤ τH,
νH ′ cos δ ≤ h′l ≤ τH

′,
νH ′ cos δ ≤ h′r ≤ τH

′,



νD ≤ d ≤ τD,
νD′ ≤ d′l ≤ τD

′,
νD′ ≤ d′r ≤ τD

′,
(29.2.6)

and 

cos δ tan θ ≤ tan θl ≤

sin θ

cos θ− sin2 δ
,

cos δ tan θ ≤ tan θr ≤
sin θ

cos θ − sin2 δ
.

(29.2.7)

Equations (29.2.2) and (29.2.4) to (29.2.7) can be used to predict the parameters
of observed ribbons given some knowledge of the viewing conditions. For example,
taking θ = 45◦, δ = 20◦, ν = 1 and τ = 2.5, (29.2.6) can be used to predict that
the fuselage of a plane 40m long and 6m wide would project onto a ribbon with a

1This is a simple exercise that involves considering the minimum and maximum values of the
trigonometric functions involved. To derive (29.2.7) we assume for simplicity that θ is acute (this
is of course typical for airplanes), and that δ is small enough that cos θ − sin2 δ > 0.
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length between 37 and 100 pixels, and a width between 6 and 15 pixels. Similar
predictions can of course be made for the wings. In addition, (29.2.7) can be used
to predict that the angles between the fuselage and the wings lie between 33◦ and
40◦. This kind of results is obviously extremely helpful for focussing the detection
of ribbons during the image description stage of the recognition process and for
pruning inconsistent matches during the latter interpretation step. In ACRONYM,
invariants, quasi invariants and bounds on sizes and angles are all used during pre-
diction. They are derived from object and camera models using a set of heuristic
rules and a powerful geometric reasoning system capable of manipulating and sim-
plifying complex trigonometric and algebraic expressions, as well as deriving lower
and upper bounds on these expressions. For example, quasi invariants are found by
neglecting the cosines of small angles and simplifying the corresponding expressions.
Equations (29.2.1) to (29.2.3) can also be used to derive back constraints during

image interpretation, i.e., given the parameters of the detected ribbons, they con-
strain the values of the viewing parameters α, β and µ (and possibly the parameters
that determine an object model instance within its category). In this context, it is
important to take errors in the image description process into account: in practice,
a ribbon finder will only be able to determine spine length, width and orientation up
to some error threshold. In other words, instead of determining the exact value of
the length h and diameter d of the fuselage, it will determine that these parameters
lie in the ranges [h − ε, h + ε] and [d − ε, d + ε]. Let us consider for example the
constraints imposed on µ and β by our image formation model and hypothesized
matches between three observed ribbons and the fuselage and wings of our model
airplane. According to (29.2.1), for these matches to be consistent we must have

µ ∈ [
d− ε

D
,
d+ ε

D
] ∩ [
d′l − ε

D′
,
d′l + ε

D′
] ∩ [
d′r − ε

D′
,
d′r + ε

D′
], (29.2.8)

and matches for which the intersection of these three intervals is empty can be
rejected.
Using orientation back constraints is more difficult but a priori feasible: for

example, ignoring measurement errors for a second, it is possible to combine (29.2.1)
and (29.2.3) to show (after some simple algebraic manipuation, see exercises) that

β = arccos

(
hh′l sin θl

µ2HH ′ sin θ

)
= arccos

(
hh′r sin θr

µ2HH ′ sin θ

)
. (29.2.9)

The ACRONYM system is capable of deriving this kind of back constraints and
of infering from them and the constraints on µ derived earlier a range of values for
β that takes into account error bounds on the measurement of the angles θl and
θr . For more realistic geometric models, that may involve complex part affixments
and large sets of class-specific constraints, determining bounds on the viewing and
model parameters from Equations (29.2.1) to (29.2.7) and measured ribbon pa-
rameters becomes an extremely difficult task in algebraic constraint manipulation.
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ACRONYM is capable of such a feat in limited domains (such as aerial photograph
interpretation where β = 0) where the trigonometric constraints involved can be
simplified in a relatively straightforward manner.
We have insisted on the role of geometric reasoning in ACRONYM because

it oversees the whole recognition process, which can be modeled as a succession
of prediction, description and interpretation steps (Algorithm 29.3). Prediction is
implemented by a set of rules (e.g., a cylinder projects onto a ribbon with constant
width) informed by the geometric reasoning system (e.g., the width and length
of this ribbon are governed by Equations (29.2.1) to (29.2.7)). Its output is a
prediction graph whose nodes are the predicted ribbons and whose arcs specify
spatial relationships between these ribbons, labelled by constraints supplied by the
geometric reasoning system (e.g., size and orientation constraints such as (29.2.6)
and (29.2.7)). The image description stage uses the output of an edge detector to
construct an observation graph similar to the prediction graph. The image ribbons
are found by fitting straight lines to the edge fragments associated with the largest
peaks of the orientation histogram of the linked contour, and verifying that the
corresponding line segments face each other over a sufficiently long portion of their
length.

1. Prediction: construct a prediction graph whose nodes are predicted image
ribbons with associated parameter ranges and whose arcs link adjacent ribbons.
2. Description: construct a similar observation graph whose nodes are image
ribbons with parameters in ranges compatible with the prediction graph.
3. Interpretation:
3.1 construct an interpretation graph whose nodes are potential matches be-

tween predicted and observed ribbons, using back constraints associated with the
prediction graph to ensure parameter compatibility;
3.2. use constraint propagation to identify connected components of the inter-

pretation graph that are consistent with the associated back constraints;
3.2. use combinatorial search to identify maximal sets of consistent connected

components.

Algorithm 29.3: The ACRONYM recognition algorithm.

Interpretation proceeds as an iterative graph matching procedure between the
prediction and observation graphs as shown in Algorithm 29.3: individual ribbon
correspondences are first hypothesized and pruned using the associated back con-
straints. Pairs of ribbons are then matched, using again the back constraints asso-
ciated with the corresponding prediction graph arcs to test consistency. Matching
then expands to triples, etc., global consistency being maintained at each step via
constraint propagation. At the end of this process, consistent connected components
of the interpretation graph have been identified, and they correspond to candidate
object models (e.g., individual planes in an airfield). A final global consistency
check is done by searching for maximal sets of connected components whose back
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constraints can all be satisfied (e.g., all the planes in the same airfield should yield
consistent viewing parameters).
Figure 29.12 demonstrates the interpretation of an overhead picture of an airfield

by ACRONYM. The input to the system consists of the image (Figure 29.12(a)), of
a generic model of a wide-bodied passenger aircraft, and of the class specifications
to L-1011s instances (Figure 29.10(b)), plus a model of the imaging situation in
the form of a calibrated aerial camera whose height is constrained to be between
1000 and 12000 meters. Figure 29.12(b) shows the result of edge detection on the
input image, and Figure 29.12(c) shows the ribbons found by ACRONYM under
the supervision of its prediction module. The recognized airplanes are shown in
Figure 29.12(d). Clearly, several planes have been missed, but this is most likely
the result of poor segmentation.

(a) (b)

(c) (d)

Figure 29.12. ACRONYM in action: (a) an overhead image of an airfield; (b) the
edges found in the image; (c) the corresponding ribbons; and (d) the recognized airplanes.
Reprinted from [Brooks, 1981b], Figures 9.4 and 9.5.
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29.2.6 Going Further

The two recognition systems discussed in this section have obvious limitations:
for example, FORMS can only handle presegmented side views of animals, and
ACRONYM is limited to overhead views of airfields. It is clear that some of these
limitations can be overcome using recent advances in learning/inference technology
as discussed in Chapter 26 in the context of relational template matching. This has
not been done in a satisfactory way yet, simply because the problem is very hard.
It should also be recognized that some (many, most?) simple objects do not

admit a simple description in terms of generalized cylinders, and for that matter
their projections usually do not admit a simple interpretation in terms of ribbons:
consider for example a shoe, a car, a face, my sun glasses, or a chicken. Other forms
of primitives should be explored, perhaps, as suggested in [Haddon and Forsyth,
1998b], using stylized models of the shading patterns associated with the folds and
grooves of surfaces, that are recurrent in pictures of familiar objects, or some other
scheme yet to invent.
Beyond this, there are familiar object categories that have little to do with

appearance, or even form, but rather with function (a chair, a desk) or even higher-
level semantics (a beach, a farm). Object recognition in this context is a wide-open
problem.

29.3 Notes

The first computer programs capable of some form of three-dimensional object
recognition date back to the mid-sixties [Roberts, 1965b], and models of the recog-
nition process in both people and computers are discussed in [Marr, 1982; Bie-
derman, 1987; Rosch, 1988; Bülthoff et al., 1995; Tarr et al., 1995; Ullman, 1996;
Forsyth et al., 1997] for example. The object models used by the human mind in
recognition tasks remain elusive, however, and the debate between proponents of
view-based theories (e.g., [Bülthoff et al., 1995; Tarr et al., 1995]) and primitive-
based representations (e.g., [Marr, 1982; Biederman, 1987]) continues.
The skeleton (or medial axis) was introduced by Blum [1967]. Skeletons in digital

images are studied in mathematical morphology [Serra, 1982b]. Comparisons of
various types of ribbons, including Blum and Brooks ribbons, but also smooth local
symmetries [Brady and Asada, 1984] and skewed symmetries [Kanade, 1981] can
be found in [Rosenfeld, 1986; Ponce, 1990]. The FORMS system was developed by
Zhu and Yuille [1996]. See also [Siddiqi et al., 1999] for related work.
Generalized cylinders were introduced by Tom Binford [1971]. They are also

known as generalized cones [Marr and Nishihara, 1978; Brooks, 1981a]. Most of the
early attempts at extracting GC descriptions from images focused on range data
(e.g., [Agin, 1972]). Among those, the work of Nevatia and Binford [1977] is par-
ticularly noteworthy since it does implement a version of generalized translational
invariance: their algorithm tries all possible cross-section orientations of objects
such as dolls, horses, and snakes, then selects subsets of the cross-section candi-
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dates with smoothly varying parameters. The ACRONYM system was developed
by Brooks and Binford [1979; 1981a; 1981b]. SHGCs were introduced by Shafer
and Kanade [1983; 1985a] as part of a general taxonomy of generalized cylinders.
As noted earlier, imiting the class of GCs under consideration makes it possible to
predict viewpoint-independent properties of their projections: for example, Nalwa
[1987] proved that the silhouette of a solid of revolution observed under ortho-
graphic projection is bi-laterally symmetric, and Ponce et al. [1989] showed that,
under both orthographic and perspective projection, the tangents to the silhouette
of an SHGC at points corresponding to the same cross-section intersect on the image
of the SHGC’s axis. Such analytical predictions provide a rigorous basis for finding
individual GC instances in images or recognizing GC instances based on projective
invariants, and, indeed, very impressive results have been achieved (see [Zerroug
and Medioni, 1995] for example). Preliminary efforts toward the definition of a
three-dimensional generalized cylinder transform analogous to the Blum transform
in the plane are described in [Ponce et al., 1999] (see also the exercises below).
The shading primitives briefly discussed at the end of Section 29.2.6 were pro-

posed in [Haddon and Forsyth, 1998b]. Other primitives that have been used with
some success in recognition tasks include superquadrics (e.g., [Pentland, 1986]). Ini-
tial attempts at exploring the role of function in object recognition are described in
[Stark and Bowyer, 1996].

29.4 Assignments

Exercises

1. Defining a Brooks transform: consider a 2D shape bounded by a curve Γ
defined by x : I → IR2 and parameterized by arc length. The line seg-
ment joining any two points x(s1) and x(s2) on Γ defines a cross-section
of the shape, with length l(s1 , s2) = |x(s1) − x(s2)|. We can thus reduce
the problem of studying the set of cross-sections of the shape to the study
of the topography of the surface S associated with the height function h :
I2 → IR+ defined by h(s1, s2) =

1
2 l(s1, s2)

2. In this context, the ribbon asso-
ciated with Γ can be defined [Ponce et al., 1999] as the set of cross-sections
whose end-points correspond to valleys of S, i.e., according to [Haralick, 1983;
Haralick et al., 1983], the set of pairs (s1, s2) where the gradient ∇h of h is
an eigenvector of the Hessian ∇2h, and where the eigenvalue associated with
the other eigenvector of the Hessian is positive.

If ti and ni denote respectively the unit tangent and normals in xi (i = 1, 2),
and θi and κi denote respectively the angle between the vectors u and ti
and the curvature in xi, show that the ribbon associated with Γ is the set of
cross-sections of this shape whose endpoints satisfy

(cos2θ1 − cos
2 θ2)cos(θ1 − θ2) + l cos θ1 cos θ2(κ1 sin θ1 + κ2 sin θ2) = 0.

2. Generalized cylinders: the definition of a valley given in the previous exercise
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is valid for height surfaces defined over n-dimensional domains, and valleys
form curves in any dimension. Briefly explain how to extend the definition
of ribbons given in that exercise to a new definition for generalized cylinders.
Are difficulties not encountered in the two-dimensional case to be expected?

3. Skewed symmetries: a skewed symmetry is a Brooks ribbon with a straight
axis and generators at a fixed angle θ from the axis. Skewed symmetries play
an important role in line-drawing analysis because it can be shown that a
bilaterally symmetric planar figure projects onto a skewed symmetry under
orthographic projection [Kanade, 1981]. Show that two contour points P1 and
P2 forming a skewed symmetry verify the equation

κ2

κ1
= −

[
sinα2

sinα1

]3
,

where κi denotes the curvature of the skewed symmetry’s boundary in Pi
(i = 1, 2), and αi denotes the angle between the line joining the two points
and the normal to this boundary [Ponce, 1990].

Hint: construct a parametric representation of the skewed symmetry.

4. Derive Equation (29.2.3). You can assume that a basis for the image plane is
formed by the vectors (− sinα, cosα, 0) and (− cos β cosα,− cosβ sinα, cosβ).

5. Derive Equation (29.2.9).

Programming Assignments

1. Write an erosion-based skeletonization program. The program should itera-
tively process a binary image until it does not change anymore. Each iteration
is itself divided into eight steps. In the first one, pixels from the input image
whose 3 × 3 neighborhood matches the left pattern below (where “*” means
that the corresponding pixel value does not matter) are assigned a value of
zero in an auxiliary image; all other pixels in that picture are assigned their
original value from the input image.

00 0

* 1 *

1 1 1

0 0

0 1 1

1 1

*

*

The auxiliary picture is then copied into the input image, and the process is
repeated with the right pattern. The remaining steps of each iteration are
similar and use the six patterns obtained by consecutive 90-degree rotations
of the original ones. The output of the program is the 4-connected skeleton
of the original region [Serra, 1982b].

2. Implement the FORMS approach to skeleton detection.
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3. Implement the Brooks transform.

4. Write a program for finding skewed symmetries. You can implement either
(a) a naive O(n2) algorithm comparing all pairs of contour points, or (b) the
O(kn) projection algorithm proposed by Nevatia and Binford [1977]. The lat-
ter method can be summarized as follows: discretize the possible orientations
of local ribbon axes; for each of these k directions, project all contour points
into buckets and verify the local skewed symmetry condition for points within
the same bucket only; finally, group the resulting ribbon pairs into ribbons.
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agglomerative clustering, 445
algebraic distance, 477

algebraic, 475
aliasing, 222, 223

alignment, 671
ambient illumination term, 57

analysing orientation, 291
analysis, 290

annealed particle filter, 567
anti-chance, 198

appearance, 616
area V1, 274
assembly, 763

assimilation, 99
Bakis model, 780

Bayes classifier, 706
Bayes factor, 518
Bayes information criterion, 519

Bayes risk, 706
Bayes’ rule, 190

Bayes’ theorem, 190
background subtraction, 439
backprojection, 670

backpropagation, 733, 748
backward pass, 750

backward variable, 779
band-pass filter, 297
bed-of-nails function, 222

between-class variance, 725
bidirectional reflectance distribution func-

tion, 34
binomial distribution, 186

bipolar cells, 272
black body, 81

blob, 232
blurring, 203

882
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body reflection, 105
boosting, 745
bootstrapping, 712
brightness, 94, 108
CIE LAB, 98
CIE u’v’ space, 98
CIE XYZ colour space, 91
CMY space, 92
canonical frame, 687
canonical variates, 725
cast shadow boundaries, 55
central limit theorem, 187
chromatic adaptation, 99
class-conditional densities, 706
classifier, 703
clustering, 433
clusters, 443
clutter, 567, 678
coarse scale, 226
coarse-to-fine matching, 229
colour bleeding, 72, 119
colour constancy, 106
colour correlograms, 620
colour histogram, 618
colour matching functions, 89
colour temperature, 82
comb function, 222
compact support, 212
complete data space, 501
complete graph, 780
complete-link clustering, 445
complex cells, 274
computed tomography imaging, 694
conditional histogram, 310
conditional independence, 174
cone, 87, 479
connected components, 451
connected graph, 451
connected, 451
contrast reversing pattern, 276
contrast sensitivity, 273
contrast threshold, 273
contrast, 99, 244, 272
convolution theorem, 216

convolutional neural network, 735
convolution, 203, 213
covariance, 184
covariant constructions, 687
cross-validation, 520, 711
cubic spline, 478
cumulative distribution function, 180
cumulative histogram, 305
cyan, 92
data association, 567
data mining, 611
decision boundary, 705
degree matrix, 458
dendrogram, 446
dense depth map, 59
depth map, 59
deviance, 517
dielectric, 104
diffusion equation, 234
dihedral vertex, 672
dilation, 285
directed graph, 450
direction selectivity, 275
divisive clustering, 444
dual problem, 741
dynamic programming, 775
earth-movers distance, 620
ecologically valid, 437
edge points, 237
edge preserving smoothing, 234
edges, 237
ego-motion, 545
erosion, 285
events, 170
exitance, 46
expectation-maximization, 503
expectation, 183
expected value, 183
extended Kalman filter, 550
Fourier Transform, 215
feature tracking, 230
figure, 434
finite difference, 206
finite-dimensional linear model, 113



884 Subject Index

fitting, 430, 466
foreshortening, 28
forward pass, 750
forward variable, 779
frame group, 671
frame pair, 697
fully connected layer, 729
Gabor filters, 298
Gaussian distribution, 187
Gaussian pyramid, 226
Geometric hashing, 683
gamma correction, 100
gating, 569
generalised eigenvalue problem, 725
generalising badly, 711
generative model, 499
generator, 479
geometrical modes, 74
gestaltqualität, 435
gestalt, 435
graph, 449
grating, 270
ground, 434
group average clustering, 446
grouping, 430
group, 763
Hessian, 518
Hough transform, 467
HSV space, 96
half-angle direction, 808, 816
heavier tails, 513
height map, 59
hidden Markov model, 771
histogram equalization, 305
homogenous Markov chain, 772
homogenous marked Poisson point pro-

cess, 319
homogenous Poisson point process, 279
homogenous, 304
hue, 94
hybrid median filter, 284
hypercomplex cells, 274
hypothesis, 763
hypothesize and test, 669

hysteresis, 254
Incremental line fitting, 473
Information retrieval, 613
illusory contour, 437
implicit curves, 475
impulse response, 210, 213
incomplete data space, 501
independence, 173
indexing, 685
inference, 188
influence function, 488
integer programming, 459
integrability, 63
interest points, 756
interpretation tree, 671
interreflection kernel, 68
invariant bearing groups, 685
invariant local jets, 756
inverse viewing transformation, 317
irradiance, 34
isotropic, 316
Just noticeable differences, 97
joint probability density function, 185
joint probability distribution function,

185
joint probability, 172
k-means, 448
kernel, 203, 214
key frame, 441
L cones, 88
Lanczos’ algorithm, 464
Laplacian of Gaussian, 249
Laplacian pyramid, 293
Laplacian, 249
language model, 783
lateral geniculate nucleus, 270
layered motion model, 509
layers, 509, 727
learning, 177
leave-one-out cross-validation, 520, 711
left-right model, 780
lightness constancy, 108
lightness, 94, 108
likelihood, 188
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line space, 467
linear combinations of models, 677
linear features, 717
linear filtering, 203
linearly separable, 708
linear, 202, 209
local shading model, 53
local symmetry, 481
logistic function, 731
long-tailed noise, 284
loss, 704
low-pass filter, 297
M cones, 88
M-estimator, 487
Mahalanobis distance, 708
Markov chain, 772
Monge patch, 59
Munsell chips, 118
magenta, 92
magnetic resonance imaging, 694
magnitude spectrum, 218
magnocellular layers, 274
marginalisation, 186
marked point process, 279
maximum likelihood estimation, 188
maximum a posteriori, 191
measurement matrix, 527
median filter, 281
median, 281
mercury arc lamps, 83
minimum description length, 519
mixing weights, 499
mixture model, 499
mixture, 499
model selection, 193
modelbase, 669
moving average, 441
multi-stage median filter, 283
multiresolution models, 278
multivariate normal distribution, 187
Nyquist’s theorem, 223
naive Bayes, 715
nearest neighbour classifier, 710
neural network, 727

node value, 775
noise, 238
non-maximum suppression, 252
non-square pixels, 219
normal distribution, 187
normalised affinity matrix, 460
normalised correlation, 267
normalized cut, 458
nuclear medical imaging, 694
observable, 527
ocular dominance columns, 274
off-center, on-surround, 272
on-center, off-surround, 272
optic chiasma, 270
optic nerve, 270
orientation selective, 274, 297
oriented pyramid, 300
outliers, 284, 485
overfitting, 711
overfit, 517
Photometric stereo, 59
Poisson distribution, 186
parametric curve, 478
parent structure, 307
parietal cortex, 270
partially connected, 729
particle filtering, 553
particles, 559
parvocellular layers, 274
patches, 756
pattern, 756
penumbra, 56
perceptual organisation, 430
phase spectrum, 218
phases, 291
photoreceptors, 271
plane affine transformations, 681
plane projective transformation, 681
point processes, 279
point source at infinity, 50
point spread function, 214
pose consistency methods, 671
pose, 669
posterior, 190
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precision, 613
primaries, 84
primary visual cortex, 274
primitives, 853
principal component analysis, 718
principle of univariance, 87
prior, 190
probabilistic data association, 570
probability density function, 181
probability model, 171
probability of the event A, 171
pyramid, 226
quadratic programming, 741
quadrature pairs, 298
Rayleigh scattering, 82
Retinal ganglion cells, 269
Retinex, 118
RGB colour space, 91
RGB cube, 91
ROC, 713
radiometry, 28
radiosity, 36
random variable, 181
recall, 613
receiver operating curve, 713
receptive field, 272
reflectance map, 73
reflectance, 80
reflexes, 72
regional properties, 71
representing orientation, 291
response, 272
retinal ganglion cells, 272
retina, 269
retinotopic mapping, 274
right circular cone, 480
ringing, 204
risk function, 704
robust estimates, 281
rod, 87
roof edge, 262
S cones, 88
Salt and pepper noise, 279
SOR, 481

Spectral radiance, 79
sample impoverishment, 560
sampling distribution, 553
sampling, 219
saturation, 94
scale space, 232
scale, 299
segmentation, 430
selection bias, 517, 711
self shadow boundaries, 55
self-loop, 450
semilocal constraints, 760
separable kernels, 246
shading primitive, 75
shape primitives, 853
shift invariant linear system, 209
shift invariant, 209
shift-invariant, 202
short-tailed noise, 284
shot boundary detection, 439, 441
shots, 434, 441
sigmoid function, 730
signal, 238
simple cells, 274
single-link clustering, 445
skin finding, 439
slack variables, 752
slant, 316
smoothing, 203
sodium arc lamps, 83
solid angle, 29
source vector, 50, 51
spatial frequency components, 215
spatial grating, 270
spatio-temporal filter, 276
spatio-temporal grating, 270
spectral BRDF, 79
spectral exitance, 79
spectral irradiance, 79
spectral quantities, 79
specular albedo, 39
specular direction, 38
squashing function, 730
standard deviation, 184
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state transition matrix, 772
stationary distribution, 773
steradians, 29
stochastic gradient descent, 732
striate cortex, 274
structuring element, 286
subjective probability, 177
superior colliculus, 270
support maps, 511
support vector machine, 737
support vectors, 741
surface colour, 108
surface of revolution, 481
surface reflection, 105
symmetric Gaussian kernel, 205
symmetric, 213, 214
symmetry line, 481
synthesis, 295
system identification, 546
system, 209
Tracking, 523
tails, 513
taking an expectation, 183
template matching, 703
temporal cortex, 270
tensor product, 246
test light, 84
test set, 517
textons, 289
texture map, 302
the conditional probability of C, given

A, 172
the E-step, 503
the gambler’s fallacy, 198
the M-step, 504
the Viterbi algorithm, 775
threshold function, 730
tilt direction, 316
tilt, 316
tokens, 431
total least squares, 472
total risk, 704
training set, 517
trellis, 774

trichromacy, 85
trihedral vertex, 672
ultra-sound imaging, 694
umbra, 56
undirected graph, 450
uniform colour space, 98
uniform distribution, 186
Viterbi algorithm, 775
value, 94
variance, 183
verification score, 670
verification, 670
vertex, 479
viewing cone, 479
viewing transformation, 317
visual cortex, 270
visual pathway, 269
wavelet coefficients, 741
weighted graph, 450
within-class variance, 725
yellow, 92
zero crossings, 249
“plug-in” classifier, 707
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nition and localization using object models: The case of polyhedra in the plane.
IEEE Trans. Patt. Anal. Mach. Intell., 6(3), 1984.

[Gear, 1994] C.W. Gear. Feature grouping in moving objects. In IEEE Workshop
on Motion of Nonrigid and Articulate Objects, Austin, TX, November 1994.

[Gelman et al., 1995] A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin. Bayesian
Data Analysis. Chapman and Hall, 1995.

[Geman and Geman, 1984] S. Geman and D. Geman. Stochastic relaxation, Gibbs
distributions, and the bayesian restoration of images. IEEE Trans. Pattern Analysis
and Machine Intelligence, 6(6):721–741, November 1984.

[Genc and Ponce, 1998] Y. Genc and J. Ponce. Parameterized image varieties: A
novel approach to the analysis and synthesis of image sequences. In Proc. Int.
Conf. Comp. Vision, pages 11–16, Bombay, India, January 1998.

[Gennery, 1980] D.B. Gennery. Modelling the environment of an exploring vehicle by
means of stereo vision. PhD thesis, Stanford University, Stanford, CA, 1980.

[Georghiades et al., 1998] A.S. Georghiades, D.J. Kriegman, and P.N. Belhumeur.
Illumination cones for recognition under variable lighting: Faces. In IEEE Confer-
ence on Computer Vision and Pattern Recognition [?], pages 52–59.

[Georghiades et al., 2000] A.S. Georghiades, P.N. Belhumeur, and D.J. Kriegman.
From few to many: Generative models for recognition under variable pose and illu-
mination. In International Conference on Automatic Face and Gesture Recognition
[1900], pages 277–84.

[Gerig et al., 1994] G. Gerig, T. Pun, and O. Ratib. Image analysis and computer
vision in medicine. Computerized Medical Imaging and Graphics, 18(2):85–96, 1994.

[Gersho and Gray, 1992] A. Gersho and R.M. Gray. Vector quantization and signal
compression. Kluwer Academic Publishers, 1992.

[Gershon et al., 1986] R. Gershon, A.D. Jepson, and J.K. Tsotsos. Ambient illu-
mination and the determination of material changes. J. Opt. Soc. America, A-
3(10):1700–1707, 1986.

[Gershon, 1987] R. Gershon. The use of color in computational vision. 1987.

[Gigus and Malik, 1990] Z. Gigus and J. Malik. Computing the aspect graph for line
drawings of polyhedral objects. IEEE Trans. Patt. Anal. Mach. Intell., 12(2):113–
122, February 1990.



Bibliography 909

[Gigus et al., 1991] Z. Gigus, J. Canny, and R. Seidel. Efficiently computing and
representing aspect graphs of polyhedral objects. IEEE Trans. Patt. Anal. Mach.
Intell., 13(6), June 1991.

[Gordon, 1997] I.E. Gordon. Theories of Visual Perception. John Wiley & Son, 1997.

[Gortler et al., 1996] S.J. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen. The
lumigraph. In SIGGRAPH, pages 43–54, New Orleans, LA, August 1996.

[Greenspan et al., 1994] H. Greenspan, S. Belongie, P. Perona, R. Goodman, S. Rak-
shit, and C. Anderson. Overcomplete steerable pyramid filters and rotation invari-
ance. In IEEE Conference on Computer Vision and Pattern Recognition [?], pages
222–228.

[Grimson and Huttenlocher, 1988] W.E.L. Grimson and D.P. Huttenlocher. On the
sensitivity of the Hough transform for object recognition. In Proceedings, Second
International Conference on Computer Vision [?], pages 700–706.

[Grimson and Huttenlocher, 1990a] W.E.L. Grimson and D.P. Huttenlocher. On the
sensitivity of geometric hashing. In Proceedings, Third International Conference on
Computer Vision [?], pages 334–338.

[Grimson and Huttenlocher, 1990b] W.E.L. Grimson and D.P. Huttenlocher. On the
sensitivity of the Hough transform for object recognition. IEEE Trans. Pattern
Analysis and Machine Intelligence, 12(3):255–274, March 1990.

[Grimson and Huttenlocher, 1991] W.E.L. Grimson and D.P. Huttenlocher. On the
verification of hypothesized matches in model-based recognition. IEEE Trans. Pat-
tern Analysis and Machine Intelligence, 13(12):1201–1213, December 1991.

[Grimson and Lozano-Perez, 1984] W.E.L. Grimson and T. Lozano-Perez. Model-
based recognition and localization from sparse range or tactile data. International
Journal of Robotics Research, 3(3):3–35, 1984.
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