Announcements

- Questions on the project?
- Updates to project 1 page and lecture slides from 1/18
- Midterm (take home) out next Friday
- covers material up through next Friday's lecture
- have one week to do it
- Late policy is now online
 - · 3 free late days over the quarter
 - can use on any of the projects (not midterm)
- Help session on Photoshop at the end of lecture

Nested dilations and erosions

What does this operation do?

 $G = H \oplus (H \ominus F)$

this is called an **opening** operation
http://www.dai.ed.ac.uk/HIPR2/open.htm

You can clean up binary pictures by applying combinations of dilations and erosions Dilations, erosions, opening, and closing operations are known as **morphological operations**

• see http://www.dai.ed.ac.uk/HIPR2/morops.htm

The Hough transform

Option 1:

- Search for the object at every possible position in the imageWhat is the cost of this operation?

Option 2:

· Use a voting scheme: Hough transform

Extens	ion 1: Use the image gradient	
1.	same	
2.	for each edge point I[x,y] in the image	
	compute unique (d, θ) based on image gradient at (x,y)	
	H[d, θ] += 1	
3.	same	
4.	same	
What's	the running time measured in votes?	
•	O(edge pixels)	
Extens	ion 2	
•	give more votes for stronger edges	
Extens	ion 3	
•	change the sampling of (d, θ) to give more/less resolution	
Extens	ion 4	
•	The same procedure can be used with circles, squares, or other shape	any
	Hough	n circle de

Summary

Things to take away from this lecture Graph representation of an image Intelligent scissors method

- Normalized cuts method
 Image histogram
- K-means clustering
- Morphological operations

 dilation, erosion, closing, opening

 Hough transform