Announcements

- Questions on the project?
- Updates to project 1 page and lecture slides from $1 / 18$
- Midterm (take home) out next Friday
- covers material up through next Friday's lecture
- have one week to do it
- Late policy is now online
- 3 free late days over the quarter
- can use on any of the projects (not midterm)
- Help session on Photoshop at the end of lecture

From images to objects

What Defines an Object?

- Subjective problem, but has been well-studied
- Gestalt Laws seek to formalize this
- proximity, similarity, continuation, closure, common fate
- see notes by Steve Joordens, U. Toronto

Image Segmentation
We will consider a few of these Last Friday:

- Intelligent Scissors (contour-based)
- E. N. Mortensen and W. A. Barrett, Intelligent Scissors for Image Composition, in ACM Computer Graphics (SIGGRAPH `95), pp. 191-198, 1995
- Normalized Cuts (region-based)
- Discussed in Shapiro (handout), Forsyth, chapter 16.5 (supplementary)

Today:

- K-means clustering (color-based)
- Discussed in Shapiro (handout)
- Hough transform (model-based)
- Discussed in Watt (handout)

Image histograms

How many "orange" pixels are in this image?

- This type of question answered by looking at the histogram
- A histogram counts the number of occurrences of each color
- Given an image

$$
F[x, y] \rightarrow R G B
$$

- The histogram is defined to be

$$
H_{F}[c]=|\{(x, y) \mid F[x, y]=c\}|
$$

- What is the dimension of the histogram of an RGB image?

What do histograms look like?
Photoshop demo

How Many Modes Are There?

- Easy to see, hard to compute

Histogram-based segmentation

Goal

- Break the image into K regions (segments)
- Solve this by reducing the number of colors to K and mapping each pixel to the closest color
- photoshop demo

Here's what it looks like if we use two colors

Break it down into subproblems

Suppose I tell you the cluster centers c_{i}

- Q: how to determine which points to associate with each c_{i} ?
- A: for each point p, choose closest c_{i}

Suppose I tell you the points in each cluster

- Q: how to determine the cluster centers?
- A: choose c_{i} to be the mean of all points in the cluster

K-means clustering
K-means clustering algorithm

1. Randomly initialize the cluster centers, $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{k}}$
2. Given cluster centers, determine points in each cluster - For each point p , find the closest c_{i}. Put p into cluster i
3. Given points in each cluster, solve for c_{i}

- Set c_{i} to be the mean of points in cluster i

4. If c_{i} have changed, repeat Step 2

Java demo: http://www.cs.mcgill.ca/~bonnef//project.htm|

Properties

- Will always converge to some solution
- Can be a "local minimum"
- does not always find the minimum our objective function:

$$
\sum_{\text {clusters } i} \sum_{\text {points } \mathrm{p} \text { in cluster } i}\left\|p-c_{i}\right\|^{2}
$$

Cleaning up the result

Problem:

- Histogram-based segmentation can produce messy regions
- segments do not have to be connected
- may contain holes

How can these be fixed?

Dilation operator: $G=H \oplus F$

$F[x, y]$
Dilation: does H "overlap" F around $[\mathrm{x}, \mathrm{y}]$?

- $G[x, y]=1$ if $H[u, v]$ and $F[x+u-1, y+v-1]$ are both 1 somewhere 0 otherwise
- Written $G=H \oplus F$

Erosion operator: $G=H \ominus F$

$F[x, y]$
Erosion: is H "contained in" F around $[\mathrm{x}, \mathrm{y}]$

- $G[x, y]=1$ if $F[x+u-1, y+v-1]$ is 1 everywhere that $H[u, v]$ is 1 0 otherwise
- Written $G=H \ominus F$

Nested dilations and erosions
What does this operation do?

$$
G=H \ominus(H \oplus F)
$$

- this is called a closing operation

Dilation operator

Demo

- http://www.cs.bris.ac.uk/~majid/mengine/morph.html

Erosion operator

Demo

- http://www.cs.bris.ac.uk/~majid/mengine/morph.html

Nested dilations and erosions

What does this operation do?

$$
G=H \ominus(H \oplus F)
$$

- this is called a closing operation

Is this the same thing as the following?

$$
G=H \oplus(H \ominus F)
$$

Nested dilations and erosions

What does this operation do?

$$
G=H \oplus(H \ominus F)
$$

- this is called an opening operation
- http://www.dai.ed.ac.uk/HIPR2/open.htm

You can clean up binary pictures by applying combinations of dilations and erosions
Dilations, erosions, opening, and closing operations are known as morphological operations

- see http://www.dai.ed.ac.uk/HIPR2/morops.htm

The Hough transform

Option 1:

- Search for the object at every possible position in the image
- What is the cost of this operation?

Option 2:

- Use a voting scheme: Hough transform

Finding lines in an image

Connection between image (x, y) and Hough (m, b) spaces

- A line in the image corresponds to a point in Hough space
- To go from image space to Hough space:
- given a set of points (x, y), find all (m, b) such that $y=m x+b$
- What does a point $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ in the image space map to?

[^0]
Model-based segmentation

Suppose we know the shapes that we're looking for?

Finding lines in an image

Connection between image (x, y) and Hough (m, b) spaces

- A line in the image corresponds to a point in Hough space
- To go from image space to Hough space
- given a set of points (x, y), find all (m, b) such that $y=m x+b$
- What does a point in the image space map to?

Hough transform algorithm
Typically use a different parameterization

$$
d=x \cos \theta+y \sin \theta
$$

- d is the perpendicular distance from the line to the origin
- θ is the angle this perpendicular makes with the x axis
- Why?

Basic Hough transform algorithm

1. Initialize $H[d, \theta]=0$
2. for each edge point $\mathrm{I}[x, y]$ in the image for $\theta=0$ to 180 $d=x \cos \theta+y \sin \theta$ $H[d, \theta]+=1$
3. Find the value(s) of (d, θ) where $\mathrm{H}[\mathrm{d}, \theta]$ is maximum
4. The detected line in the image is given by $d=x \cos \theta+y \sin \theta$

What's the running time (measured in \# votes)?

- O(edge pixels * line directions)

Hough line demo

Extensions

Extension 1: Use the image gradient

1. same
2. for each edge point $I[x, y]$ in the image
compute unique (d, θ) based on image gradient at (x, y) $H[d, \theta]+=1$
3. same
4. same

What's the running time measured in votes?

- O(edge pixels)

Extension 2

- give more votes for stronger edges

Extension 3

- change the sampling of (d, θ) to give more/less resolution

Extension 4

- The same procedure can be used with circles, squares, or any other shape

Summary

Things to take away from this lecture

- Graph representation of an image
- Intelligent scissors method
- Normalized cuts method
- Image histogram
- K-means clustering
- Morphological operations
- dilation, erosion, closing, opening
- Hough transform

[^0]: - A: the solutions of $b=-x_{0} m+y_{0}$
 - this is a line in Hough space

