Filtering

Things to take away from this lecture

- · An image as a function
- · Digital vs. continuous images
- Image transformation: range vs. domain
- · Types of noise
- LSI filters
 - cross-correlation and convolution
 - properties of LSI filters
 - mean, Gaussian, bilinear filters
- Median filtering
- Image scaling
- Image resampling
- Aliasing
- Gaussian pyramids

Edge detection

- · What is an edge and where does it come from
- Edge detection by differentiation
- Image gradients
 - continuous and discrete
 - filters (e.g., Sobel operator)
- · Effects of noise on gradients
- · Derivative theorem of convolution
- Derivative of Gaussian (DoG) operator
- · Laplacian operator
 - Laplacian of Gaussian (LoG)
- Canny edge detector (basic idea)
 - Effects of varying sigma parameter
- · Approximating an LoG by subtraction

Segmentation

Things to take away from this lecture

- Graph representation of an image
- Intelligent scissors method
- · Normalized cuts method
- Image histogram
- · K-means clustering
- Morphological operations
 - dilation, erosion, closing, opening
- Hough transform

Motion Things to take away from this lecture · Optical flow problem definition · Aperture problem and how it arises • Assumptions - Brightness constancy, small motion, smoothness Derivation of optical flow constraint equation • • Lukas-Kanade equation - Derivation - Conditions for solvability - meanings of eigenvalues and eigenvectors Iterative refinement ٠ - Newton's method - Coarse-to-fine flow estimation · Feature tracking - Harris feature detector - L-K vs. discrete search method - Tracking over many frames - Prediction using dynamics · Applications - MPEG video compression Image alignment

Projection

Things to take away from this lecture

- · Properties of a pinhole camera
 - effects of aperture size
- Properties of lens-based cameras
 - focal point, optical center, aperture
 - thin lens equation
 - depth of field
 - circle of confusion
- · Modeling projection
 - homogeneous coordinates
 - projection matrix and its elements
 - orthographic, weak perspective, affine models
- Camera parameters
 - intrinsics, extrinsics

Mosaics

- Image alignment
- Image reprojection
 - homographies
 - cylindrical projection
- Radial distortion
- · Creating cylindrical panoramas
- Image blending
- Image warping
 - forward warping
 - inverse warping
 - bilinear interpolation

Projective geometry

Things to take away from this lecture

- · Homogeneous coordinates and their geometric intuition
- · Homographies
- · Points and lines in projective space
 - projective operations: line intersection, line containing two points
 - ideal points and lines (at infinity)
- · Vanishing points and lines and how to compute them
- · Single view measurement
 - within a reference plane
 - height
- Cross ratio
- Camera calibration
 - using vanishing points
 - direct linear method

Stereo

- Cues for 3D inference, shape from X
- · Epipolar geometry
- Stereo image rectification
- · Stereo matching
 - window-based epipolar search
 - effect of window size
 - sources of error
- Active stereo (basic idea)
 - structured light
 - laser scanning

Multiview stereo

Things to take away from this lecture

- · Baseline tradeoff
- Multibaseline stereo approach
- Voxel coloring problem
- Volume intersection algorithm
- · Voxel coloring algorithm
- Space carving algorithm

Light and reflection

- Light field, plenoptic function
- Light as EMR spectrum
- Perception
 - color constancy, color contrast
 - adaptation
 - the retina: rods, cones (S, M, L), fovea
 - what is color
 - » response function, filters the spectrum
 - » metamers
- Finding camera response function (basic idea, not details)
- Materials and reflection
 - what happens when light hits a surface
 - BRDF
 - diffuse (Lambertian) reflection
 - specular reflection
 - Phong reflection model
 - measuring the BRDF

Recognition

- Classifiers
- Probabilistic classification
 - decision boundaries
 - learning PDF's from training images
 - Bayesian estimation
- Principle component analysis
- · Eigenfaces algorithm