Announcements

- Panorama signups available next week (via web page)

Projective geometry-what's it good for?
Uses of projective geometry

- Drawing
- Measurements
- Mathematics for projection
- Undistorting images
- Focus of expansion
- Camera pose estimation, match move
- Object recognition via invariants

Today: single-view projective geometry

- Projective representation
- Point-line duality
- Vanishing points/lines
- Homographies
- The Cross-Ratio

Later: multi-view geometry

Projective geometry

Readings

- Mundy, J.L. and Zisserman, A., Geometric Invariance in Computer Vision, Chapter 23 Appendix: Projective Geometry for Machine Vision, MIT Press, Cambridge, MA, 1992 avail (for this week, read 23.1 -23.5, 23.10)
available online: hitp://www.cs.cmu.edu/-ph/869/papers/zisser-mundy.pdf

Applications of projective geometry

Vermeer's Music Lesson

- Criminisi et al., "Single View Metrology", ICCV 1999

Other methods

- Horry et al., "Tour Into the Picture", SIGGRAPH 96
- Shum et al., CVPR 98

Image rectification

To unwarp (rectify) an image

- solve for homography \mathbf{H} given \mathbf{p} and \mathbf{p} '
- solve equations of the form: $w p^{\prime}=\mathrm{Hp}$
- linear in unknowns: w and coefficients of \mathbf{H}
- H is defined up to an arbitrary scale factor
- how many points are necessary to solve for \mathbf{H} ?

Solving for homographies

$$
\begin{aligned}
{\left[\begin{array}{c}
x_{i}^{\prime} \\
y_{i}^{\prime} \\
1
\end{array}\right] } & \cong\left[\begin{array}{lll}
h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{c}
x_{i} \\
y_{i} \\
1
\end{array}\right] \\
x_{i}^{\prime} & =\frac{h_{00} x_{i}+h_{01} y_{i}+h_{02}}{h_{20} x_{i}+h_{21} y_{i}+h_{22}} \\
y_{i}^{\prime} & =\frac{h_{10} x_{i}+h_{11} y_{i}+h_{12}}{h_{10}+h_{212}+h_{0}}
\end{aligned}
$$

$x_{i}^{\prime}\left(h_{20} x_{i}+h_{21} y_{i}+h_{22}\right)=h_{00} x_{i}+h_{01} y_{i}+h_{02}$ $y_{i}^{\prime}\left(h_{20} x_{i}+h_{21} y_{i}+h_{22}\right)=h_{10} x_{i}+h_{11} y_{i}+h_{12}$

The projective plane
Why do we need homogeneous coordinates?

- represent points at infinity, homographies, perspective projection, multi-view relationships
What is the geometric intuition?
- a point in the image is a ray in projective space

- Each point (x, y) on the plane is represented by a ray ($\mathrm{sx}, \mathrm{sy}, \mathrm{s}$) - all points on the ray are equivalent: $(x, y, 1) \cong(s x, s y, s)$

Solving for homographies

Linear least squares

- Since \mathbf{h} is only defined up to scale, solve for unit vector \hat{h}
- Minimize $\|\mathbf{A} \hat{h}\|^{2}$

$$
\|\mathbf{A} \hat{\mathbf{h}}\|^{2}=(\mathbf{A} \hat{\mathbf{h}})^{T} \mathbf{A} \hat{\mathbf{h}}=\hat{\mathbf{h}}^{T} \mathbf{A}^{T} \mathbf{A} \hat{\mathbf{h}}
$$

- Solution: $\mathbf{h}=$ eigenvector of $\mathbf{A}^{\top} \mathbf{A}$ with smallest eigenvalue
- Works with 4 or more points

Projective lines

What is a line in projective space?

- A line is a plane of rays through origin
- all rays (x, y, z) satisfying: $a x+b y+c z=0$

$$
\text { in vector notation: } \quad 0=\left[\begin{array}{lll}
a & b & c
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

| p

- A line is also represented as a homogeneous 3 -vector I

Point and line duality

- A line I is a homogeneous 3 -vector
- It is \perp to every point (ray) \mathbf{p} on the line: I $\mathbf{p}=0$

What is the line I spanned by rays \mathbf{p}_{1} and \mathbf{p}_{2} ?

- I is \perp to p_{1} and $p_{2} \Rightarrow I=p_{1} \times p_{2}$
- I is the plane normal

What is the intersection of two lines \mathbf{I}_{1} and $\mathbf{I}_{\mathbf{2}}$?

- p is \perp to I_{1} and $I_{2} \Rightarrow p=I_{1} \times I_{2}$

Points and lines are dual in projective space

- every property of points also applies to lines

Ideal points and lines

Ideal point ("point at infinity")

- $p \cong(x, y, 0)$ - parallel to image plane
- It has infinite image coordinates

Ideal line

- $I \cong(a, b, 0)$ - parallel to image plane
- Corresponds to a line in the image (finite coordinates)

Homographies of points and lines

Computed by 3×3 matrix multiplication

- To transform a point: $\mathbf{p}^{\prime}=\mathbf{H p}$
- To transform a line: $\mathbf{l p = 0} \rightarrow \mathbf{l}^{\prime} \mathbf{p} \mathbf{\prime}^{\prime}=0$
$-0=\mathrm{Ip}=\mathrm{IH}^{-1} \mathrm{Hp}=\mathrm{IH}^{-1} \mathrm{p}^{\mathbf{\prime}} \Rightarrow \mathrm{I}^{\prime}=\mathrm{IH}^{-1}$
- lines are transformed by postmultiplication of H^{-1}

3D projective geometry

These concepts generalize naturally to 3D

- Homogeneous coordinates
- Projective 3D points have four coords: $\mathbf{P}=(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{W})$
- Duality
- A plane \mathbf{N} is also represented by a 4 -vector
- Points and planes are dual in 3D: $\mathbf{N} \mathbf{P = 0}$
- Projective transformations
- Represented by 4×4 matrices $\mathbf{T}: \mathbf{P}^{\prime}=\mathbf{T P}, \quad \mathbf{N}^{\prime}=\mathbf{N}^{\mathbf{T}}{ }^{-1}$

Vanishing points

Vanishing point

- projection of a point at infinity

Vanishing points (2D)

Vanishing points

Vanishing lines

Multiple Vanishing Points

- Any set of parallel lines on the plane define a vanishing point
- The union of all of these vanishing points is the horizon line - also called vanishing line
- Note that different planes define different vanishing lines

Vanishing lines

Multiple Vanishing Points

- Any set of parallel lines on the plane define a vanishing point
- The union of all of these vanishing points is the horizon line - also called vanishing line
- Note that different planes define different vanishing lines

Computing vanishing points

$$
\mathbf{P}_{t}=\left[\begin{array}{c}
P_{x}+t D_{x} \\
P_{Y}+t D_{Y} \\
P_{z}+t D_{Z} \\
1
\end{array}\right] \cong\left[\begin{array}{c}
P_{X} / t+D_{x} \\
P_{Y} / t+D_{Y} \\
P_{Z} / t+D_{Z} \\
1 / t
\end{array}\right] \quad t \rightarrow \infty \quad \mathbf{P}_{\infty} \cong\left[\begin{array}{c}
D_{x} \\
D_{Y} \\
D_{Z} \\
0
\end{array}\right]
$$

Properties $\quad \mathbf{v}=\boldsymbol{\Pi} \mathbf{P}_{\infty}$

- \mathbf{P}_{m} is a point at infinity, \mathbf{v} is its projection
- They depend only on line direction
- Parallel lines $\mathbf{P}_{0}+t \mathbf{D}, \mathbf{P}_{1}+$ tD intersect at \mathbf{X}_{∞}

Fun with vanishing points

Computing vanishing lines

Properties

- I is intersection of horizontal plane through \mathbf{C} with image plane
- Compute I from two sets of parallel lines on ground plane

All points at same height as \mathbf{C} project to \mathbf{I}

- Provides way of comparing height of objects in the scene

Perspective cues

Perspective cues

Computing vanishing points (from lines)

Intersect $p_{1} q_{1}$ with $p_{2} q_{2}$

$$
v=\left(p_{1} \times q_{1}\right) \times\left(p_{2} \times q_{2}\right)
$$

Least squares version

- Better to use more than two lines and compute the "closest" point of intersection
- See notes by Bob Collins for one good way of doing this - http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt

Measuring height without a ruler

Compute Y from image measurements

- Need more than vanishing points to do this

The cross ratio
A Projective Invariant

- Something that does not change under projective transformations (including perspective projection)
The cross-ratio of 4 collinear points

$$
\frac{\left\|\mathbf{P}_{3}-\mathbf{P}_{1}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{2}\right\|}{\left\|\mathbf{P}_{3}-\mathbf{P}_{2}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{1}\right\|}
$$

$$
\frac{\left\|\mathbf{P}_{1}-\mathbf{P}_{3}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{2}\right\|}{\left\|\mathbf{P}_{1}-\mathbf{P}_{2}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{3}\right\|}
$$

an permute the point ordering $\quad\left\|\mathbf{P}_{1}-\mathbf{P}_{2}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{3}\right\|$
• $4!=24$ different orders (but only 6 distinct values)
This is the fundamental invariant of projective geometry

Criminisi et al., ICCV 99

Complete approach

- Load in an image
- Click on lines parallel to X axis
- repeat for Y, Z axes
- Compute vanishing points
- Specify 3D and 2D positions of 4 points on reference plane
- Compute homography H
- Specify a reference height
- Compute 3D positions of several points
- Create a 3D model from these points
- Extract texture maps
- Output a VRML model

Vanishing points and projection matrix

$\boldsymbol{\Pi}=$	$*$	$*$	$*$	$*$
$*$	$*$	$*$	$*$	
$*$	$*$	$*$	$*$	
$\boldsymbol{\pi}_{1}$	$\boldsymbol{\pi}_{2}$	$\boldsymbol{\pi}_{3}$	$\boldsymbol{\pi}_{4}$	$=\left[\begin{array}{llll}\boldsymbol{\pi}_{1} & \boldsymbol{\pi}_{2} & \boldsymbol{\pi}_{3} & \boldsymbol{\pi}_{4}\end{array}\right]$

- $\boldsymbol{\pi}_{1}=\boldsymbol{\Pi}\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]^{T}=\mathbf{v}_{\mathrm{x}}(\mathrm{X}$ vanishing point $)$
- similarly, $\pi_{2}=\mathbf{v}_{\mathrm{Y}}, \pi_{3}=\mathbf{v}_{\mathrm{Z}}$
- $\boldsymbol{\pi}_{4}=\boldsymbol{\Pi}\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]^{T}$ = projection of world origin

$$
\boldsymbol{\Pi}=\left[\begin{array}{llll}
\mathbf{v}_{X} & \mathbf{v}_{Y} & \mathbf{v}_{Z} & \mathbf{0}
\end{array}\right]
$$

Not So Fast! We only know v's up to a scale factor

$$
\boldsymbol{\Pi}=\left[\begin{array}{llll}
a \mathbf{v}_{X} & b \mathbf{v}_{Y} & c \mathbf{v}_{Z} & \mathbf{o}
\end{array}\right]
$$

- Can fully specify by providing 3 reference points

3D Modeling from a photograph

Camera calibration

Goal: estimate the camera parameters

- Version 1: solve for projection matrix

- Version 2: solve for camera parameters separately
- intrinsics (focal length, principle point, pixel size)
- extrinsics (rotation angles, translation)
- radial distortion

Chromaglyphs

Estimating the Projection Matrix

Place a known object in the scene

- identify correspondence between image and scene
- compute mapping from scene to image

$$
\left[\begin{array}{c}
u_{i} \\
v_{i} \\
1
\end{array}\right] \cong\left[\begin{array}{llll}
m_{00} & m_{01} & m_{02} & m_{03} \\
m_{10} & m_{11} & m_{12} & m_{13} \\
m_{20} & m_{21} & m_{22} & 1
\end{array}\right]\left[\begin{array}{c}
X_{i} \\
Y_{i} \\
Z_{i} \\
1
\end{array}\right]
$$

Direct Linear Calibration

$\left[\begin{array}{c}u_{i} \\ v_{i} \\ 1\end{array}\right] \cong\left[\begin{array}{llll}m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & m_{23}\end{array}\right]\left[\begin{array}{c}X_{i} \\ Y_{i} \\ Z_{i} \\ 1\end{array}\right]$
$u_{i}=\frac{m_{00} X_{i}+m_{01} Y_{i}+m_{02} Z_{i}+m_{03}}{m_{i}}$
$m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+m_{23}$
$v_{i}=\frac{m_{10} X_{i}+m_{11} Y_{i}+m_{12} Z_{i}+m_{13}}{m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+m_{23}}$
$u_{i}\left(m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+m_{23}\right)=m_{00} X_{i}+m_{01} Y_{i}+m_{02} Z_{i}+m_{03}$ $v_{i}\left(m_{20} X_{i}+m_{21} Y_{i}+m_{22} Z_{i}+m_{23}\right)=m_{10} X_{i}+m_{11} Y_{i}+m_{12} Z_{i}+m_{13}$

Direct linear calibration

Advantages:

- Very simple to formulate and solve
- Once you know the projection matrix, can compute intrinsics and extrinsics using matrix factorizations

Disadvantages?

- Doesn't model radial distortion
- Hard to impose constraints (e.g., known focal length)
- Doesn't minimize the right error function

For these reasons, nonlinear methods are preferred

- Define error function E between projected 3D points and image positions - E is nonlinear function of intrinsics, extrinsics, radial distortion
- Minimize E using nonlinear optimization techniques
- e.g., variants of Newton's method (e.g., Levenberg Marquart)

Summary

Things to take home from this lecture

- Homogeneous coordinates and their geometric intuition
- Homographies
- Points and lines in projective space
- projective operations: line intersection, line containing two points - ideal points and lines (at infinity)
- Vanishing points and lines and how to compute them
- Single view measurement
- within a reference plane
- height
- Cross ratio
- Camera calibration
- using vanishing points
- direct linear method
- Don't have to know positions/orientations
- Good code available online!
- Zhengyou Zhang's web site: http://research.microsoft.com/~zhang/Calib/
_ Intel's OpenCV library: http://www.intel.com/research/mrl/research/opencv/
- Matlab version by Jean-Yves Bouget:
http://www.vision.caliech.edu/bouguet//calib_doc/index.htmi

