Announcements

- Midterm due Friday, beginning of lecture
- Guest lecture on Friday: Antonio Criminisi, Microsoft Research

How to do it?
Basic Procedure

- Take a sequence of images from the same position - Rotate the camera about its optical center
- Compute transformation between second image and first - Lucas \& Kanade registration
- Shift the second image to overlap with the first
- Blend the two together to create a mosaic
- If there are more images, repeat

Aligning images

How to account for warping?

- Translations are not enough to align the images
- Photoshop demo

Image reprojection

The mosaic has a natural interpretation in 3D

- The images are reprojected onto a common plane
- The mosaic is formed on this plane

Homographies

Perspective projection of a plane

- Lots of names for this:
- homography, texture-map, colineation, planar projective map
- Modeled as a 2D warp using homogeneous coordinates

To apply a homography \mathbf{H}

- Compute $\mathbf{p}^{\prime}=\mathrm{Hp} \quad$ (regular matrix multiply)
- Convert \mathbf{p}^{\prime} from homogeneous to image coordinates - divide by w (third) coordinate

Cylindrical projection

- Convert to cylindrical coordinates

$$
(\sin \theta, h, \cos \theta)=(\hat{x}, \widehat{y}, \hat{z})
$$

- Convert to cylindrical image coordinates $(\tilde{x}, \tilde{y})=(f \theta, f h)+\left(\tilde{x}_{c}, \tilde{y}_{c}\right)$

Cylindrical reprojection

How to map from a cylinder to a planar image?

- Apply camera projection matrix
- for project 1, account for focal length and assume principle point is at center of image " $x_{c}^{\prime}=1 / 2$ image width, $y^{\prime}=1 / 2$ image height $\left[\begin{array}{c}w x^{\prime} \\ w y^{\prime} \\ w\end{array}\right]=\left[\begin{array}{cccc}-f & 0 & w / 2 & 0 \\ 0 & -f & h / 2 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{c}\hat{x} \\ \widehat{y} \\ \bar{z} \\ 1\end{array}\right]$
- Convert to image coordinates - divide by third coordinate (w)

Distortion

No distortion

Pin cushion

Barrel

Radial distortion of the image

- Caused by imperfect lenses

Deviations are most noticeable for rays that pass through the edge of the lens

Modeling distortion

$$
\begin{array}{cl}
\begin{array}{cl}
\text { Project }(\hat{x}, \hat{y}, \hat{z}) \\
\text { to "normalized" } \\
\text { image coordinates }
\end{array} & x_{n}^{\prime}=\hat{x} / \hat{z} \\
& y_{n}^{\prime}=\hat{y} / \hat{z} \\
& r^{2}=x_{n}^{\prime 2}+y_{n}^{\prime 2} \\
\text { Apply radial distortion } & x_{d}^{\prime}=x_{n}^{\prime}\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}\right) \\
& y_{d}^{\prime}=y_{n}^{\prime}\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}\right) \\
& \\
\begin{array}{c}
\text { Apply focal length } \\
\text { translate image center }
\end{array} & x^{\prime}=f x_{d}^{\prime}+x_{c} \\
y^{\prime}=f y_{d}^{\prime}+y_{c}
\end{array}
$$

To model lens distortion

- Use above projection operation instead of standard projection matrix multiplication

Cylindrical panoramas

Steps

- Reproject each image onto a cylinder

Blend

- Output the resulting mosaic

Cylindrical image stitching

What if you don't know the camera rotation?

- Solve for the camera rotations
- Note that a rotation of the camera is a translation of the cylinder!
- Use Lukas-Kanade to solve for translations of cylindrically-warped images

Project 2 (out on Friday)

1. Take pictures on a tripod (or handheld)
2. Warp to cylindrical coordinates
3. Automatically compute pair-wise alignments
4. Correct for drift
5. Blend the images together
6. Crop the result and import into a viewer

Forward warping

Send each pixel $f(x, y)$ to its corresponding location $\left(x^{\prime}, y^{\prime}\right)=h(x, y)$ in the second image

Q: what if pixel lands "between" two pixels?

Forward warping

Send each pixel $f(x, y)$ to its corresponding location $\left(x^{\prime}, y^{\prime}\right)=h(x, y)$ in the second image

Q: what if pixel lands "between" two pixels?
A: distribute color among neighboring pixels (x^{\prime}, y^{\prime}) - Known as "splatting"

Inverse warping

Get each pixel $g\left(x^{\prime}, y^{\prime}\right)$ from its corresponding location $(x, y)=h^{-1}\left(x^{\prime}, y^{\prime}\right)$ in the first image

Q: what if pixel comes from "between" two pixels?
A: resample color value

- We discussed resampling techniques before
- nearest neighbor, bilinear, Gaussian, bicubic

Inverse warping

Get each pixel $g\left(x^{\prime}, y^{\prime}\right)$ from its corresponding location $(x, y)=h^{-1}\left(x^{\prime}, y^{\prime}\right)$ in the first image
Q: what if pixel comes from "between" two pixels?

Bilinear interpolation

A common method for resampling images

$F(x, y)=(1-a)(1-b) \quad F(i, j)$ $+a(1-b) \quad F(i+1, j)$
$+a b \quad F(i+1, j+1)$
$+(1-a) b \quad F(i, j+1)$

Forward vs. inverse warping
Q: which is better?

A: usually inverse-eliminates holes

- however, it requires an invertible warp function-not always possible..

Other types of mosaics

Can mosaic onto any surface if you know the geometry

- See NASA's Visible Earth project for some stunning earth mosaics - http://earthobservatory.nasa.gov/Newsroom/BlueMarble/

Summary

Things to take home from this lecture

- Image alignment
- Image reprojection
- homographies
- cylindrical projection
- Radial distortion
- Creating cylindrical panoramas
- Image blending
- Image warping
- forward warping
- inverse warping
- bilinear interpolation

