Announcements

- Midterm due Friday, beginning of lecture
- Guest lecture on Friday: Antonio Criminisi, Microsoft Research

Modeling distortion	
Project $(\hat{x}, \hat{y}, \hat{z})$ to "normalized" image coordinates	$\begin{array}{rcl} x_n' &=& \hat{x}/\hat{z} \\ y_n' &=& \hat{y}/\hat{z} \end{array}$
Apply radial distortion	$ \begin{aligned} r^2 &= x'_n{}^2 + {y'_n}^2 \\ x'_d &= x'_n(1+\kappa_1 r^2 + \kappa_2 r^4) \\ y'_d &= y'_n(1+\kappa_1 r^2 + \kappa_2 r^4) \end{aligned} $
Apply focal length translate image center	$\begin{array}{rcl} x' &=& fx'_d + x_c \\ y' &=& fy'_d + y_c \end{array}$
 To model lens distortion Use above projection operation instead of standard projection matrix multiplication 	

Project 2 (out on Friday)

- 1. Take pictures on a tripod (or handheld)
- 2. Warp to cylindrical coordinates
- 3. Automatically compute pair-wise alignments
- 4. Correct for drift
- 5. Blend the images together
- 6. Crop the result and import into a viewer

Summary

Things to take home from this lecture Image alignment Image reprojection homographies cylindrical projection

- Radial distortion
- Creating cylindrical panoramas
- Image blending
- Image biending
 Image warping

 forward warping
 inverse warping
 bilinear interpolation