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Although a search engine manages a great deal of
data and responds to queries, it is not accurately
described as a “database” or DMBS. We believe that it
represents the first of many application-specific data
systems built by the systems community that must exploit
the principles of databases without necessarily using the
(current) database implementations. In this paper, we
present how a search engine should have been designed
in hindsight. Although much of the material has not
been presented before, the contribution is not in the spe-
cific design, but rather in the combination of principles
from the largely independent disciplines of “systems”
and “databases.” Thus we present the design using the
ideas and vocabulary of the database community as a
model of how to design data-intensive systems. We then
draw some conclusions about the application of data-
base principles to other “out of the box” data-intensive
systems.

1  Introduction
Search engines (SEs) are arguably the largest data

management systems in the world; although there are
larger databases in total storage there is nothing close in
query volume. A modern search engine handles over 3
billion documents, involving on the order of 10TB of
data, and handles upwards of 150 million queries per
day, with peaks of several thousand queries per second. 

This retrospective is based primarily on almost nine
years of work on the Inktomi search engine, from the
summer of 1994 through the spring of 2003. It also
reflects some the general issues and approaches of other
major search engines — in particular, those of Alta
Vista, Infoseek and Google — although their actual spe-
cifics might differ greatly from the examples here.

Although queries tend to be short, there are more
than ten million different words in nearly all languages.
This is a challenge for two reasons. First, implies track-
ing and ranking ten million distinct words in three bil-
lion documents including the position and relative
importance (e.g. title words) of every word. Second,
with so few words per query, most queries returns thou-
sands of hits and ranking these hits becomes the primary
challenge.

Finally, search engines must be highly available and
fresh, two complex and challenging data management
issues. Downtime contributes directly to lost revenue
and customer churn. Freshness is the challenge of keep-
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ing the index up to date with the data, nearly all of
which is remote and relatively awkward to access. Most
data is “crawled” using the HTTP protocol and some
automation, although there is also some data exchange
via XML.

Despite the size and complexity of these systems,
they make almost no use of DBMS systems. There are
many reasons for this, which we cover at the end, but
the core hypothesis here is that, looking back, search
engines should have used the principles of databases,
but not the artifacts, and that other novel data-intensive
systems should do the same (covered in Section 8).

These principles include:
Top-Down Design: The traditional systems

methodology is “bottom up” in order to deliver
capabilities to unknown applications. However,
DBMSs are designed “top down”, starting with the
desired semantics (e.g. ACID) and developing the
mechanisms to implement those semantics. SEs are
also “whole” designs in this way; the semantics are
different (covered below), but the mechanisms
should follow from the semantics. 

Data Independence: Data exists in sets without
pointers. This allows evolution of representation
and storage, and simplifies recovery and fault
tolerance.

Declarative Query Language: the use of language to
define queries that says “what” to return not “how”
to compute it. The absence of “how” is the freedom
that enables powerful query optimizations. We do
not however use SQL (a DBMS artifact), but we do
use the structure of a DBMS, with a query parser
and rewriter, a query optimizer, and a query
executor. We also define a logical query plan
separate from the physical query plan.

The fundamental problem with using a DBMS for a
search engine is that there is a semantic mismatch. The
practical problem was that they were remarkably slow:
experiments we performed in 1996 on Informix, which
had cluster support, were an order of magnitude slower
than the hand-built prototype, primarily due to the
amount of specialization that we could apply (see Sec-
tion 8). Most modern databases now directly support
text search, which is sufficient for most search applica-
tions, although probably not for Yahoo! or Google.1

The semantics for a DBMS start with the goals of
consistent, durable data, codified in the ideas of ACID
transactions [GR97]. However, ACID transactions are not
the right semantics for search engines.
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First, as with other online services, there is a prefer-
ence for high availability over consistency. The CAP The-
orem [FB99,GL02] shows that a shared-data system must
choose at most two of the following three properties: con-
sistency, availability, and tolerance to partitions. This
implies that for a wide-area system you have to choose
between consistency and availability (in the presence of
faults), and SEs choose availability, while DBMSs choose
consistency.2 In addition, the index is always stale to some
degree, since updates to sites do not immediately affect the
index. The explicit goal of freshness is to reduce the
degree of inconsistency.

Second, SEs can avoid a general-purpose update
mechanism, which makes isolation trivial. In particular,
queries never cause updates, they are all read only. This
implies query handling (almost) never deals with atomic-
ity, isolation, or durability. Instead, updates are limited to
atomic replacement of tables (covered in Section 5.2), and
only that code deals with atomicity and isolation. Durabil-
ity is even easier, since the SE is never the master copy:
any lost data can generally be rebuilt from local copies or
even recrawled (which is how it is refreshed anyway).

We start with an overview of the top-down design, fol-
lowed by coverage of the query plan and implementation
in Sections 3 and 4. Section 5 looks at updates, Section 6
at fault tolerance and availability, and Section 7 at a range
of other issues. Finally, we take a broader look at data-
intensive systems in Section 8.

2  Overview
In a traditional database, the focus is on a general-pur-

pose framework for a wide variety of queries with much of
the effort expended on data consistency in the presence of
concurrent updates. Here we focus on supporting many
concurrent read-only queries, with very little variation in
the range of queries, and we focus on availability more
than consistency.

These constraints lead to an architecture that uses an
essentially static database to serve all of the read-only que-
ries, and a large degree of offline work to build and rebuild
the static databases. The primary advantage of moving
nearly everything offline is that it greatly simplifies the
online server and thus improves availability, scalability
and cost. 

We believe that most highly available servers should
follow this “snapshot” architecture — the server uses a

1: As an aside, the databases were also very expensive. However, as
we were among the first to build large web-database systems, we were
charged per “seat”, which in the fine print came down to distinct UNIX
user IDs. But all of the end users were multiplexed onto one user ID, so
this was quite reasonable! Later the database companies changes the def-
inition of “user” and this trick was no longer valid.

2: Wide-area databases vary in their choice between availability and
consistency. Those that choose availability operate some locations with
stale data in the presence of partitions and generally have a small window
that is stale (inconsistent) during normal operation (typically 30 seconds)
[SAS+96]. Those that choose consistency must make one side of a parti-
tion unavailable until the partition is repaired.
simple snapshot of the data, while most work, such as
indexing, can be done offline without concern for avail-
ability. For example, any work done offline can be
started and stopped at will, has a simple “start over”
model for recovery, and in general is very low stress to
modify and operate since these efforts are not visible to
end users.

2.1  Crawl, Index, Serve
The first step is to “crawl” the documents, which

amounts to visiting pages in essentially the same way as
an end user. The crawler outputs collections of docu-
ments, typically a single file with a map at the beginning
and thousands of concatenated documents. The use of
large files improves system throughput, amortizes seek
and directory operations, and simplifies management.3
The crawler must keep track of which pages have been
crawled or are in progress, how often to recrawl, and
must have some understanding of mirrors, dynamic
pages, and MIME types.

The indexer parses and interprets collections of doc-
uments. Its output is a portion of the static database,
called a chunk, that reflects all of the scoring and nor-
malization for those documents. In general, the goal is
to move work from the (online) web servers to the
indexer, so that the servers have the absolute minimum
amount of work to do per query. For example, the
indexer does all of the work of scoring, generating typi-
cally a single normalized score for every word in every
document. The indexer does many other document anal-
yses as well: determining the primary language and geo-
graphical region, checking for spam, and tracking
incoming and outgoing links (used for scoring). One of
the more interesting and challenging tasks is to track all
of the anchor text for a document, which is the hyper-
link text in all other (!) documents that point to this doc-
ument.

Finally, the server simply executes queries against a
collection of chunks. It performs query parsing and
rewriting, query optimization, and query execution.
Since the only update operation is the atomic replace-
ment of a chunk (covered in Section 5), there are no
locks, no isolation issues, and no need for concurrency
control for queries. 

2.2  Queries
Conceptually, a query defines some words and prop-

erties that a matching document should or should not
contain. A document is normally a web page, but could
also be a news article or an e-mail message. Each docu-
ment is presumed unique, has a unique ID (DocID), a
URL and some summary information.

Documents contain words and have properties. We
distinguish words from properties in that words have a

3: In theory, a DBMS could be used for document storage, but it
would be a poor fit. Documents have a single writer, are only dealt
with in large groups, and have essentially no concurrent access. See
the Google File System [GGL03] for more on these issues.



score (for this document) and properties are boolean
(present or absent in the document). Table 1 lists some
examples. A query term is a word or a property.

Simple queries are just a list of terms that matching
documents must contain. Property matching is absolute:
a matching document must meet all properties. Word
matching is relative: documents receive relative scores
based on how well they match the words.

Complex queries include boolean expressions of
terms based on AND, OR and NOT. Boolean expres-
sions for properties are straightforward, but those for
words are not. In particular, the expression (NOT word)
should not affect the scoring; it is really a property. 

We cover scoring in more detail in the appendix, but
for now we will use simple definitions. A query is just a
set of terms:

(1)

The score of a document d for query Q is the sum of an
overall score for the document and a score for each term
in the query:

(2)

The quality term is independent of the query words and
reflects things like length (shorter is generally better),
popularity, incoming links, quality of the containing
site, and external reviews. The score for each word is a
determined at index time and depends on frequency and
location (such as in the title or headings, or bold).

There are some important non-obvious uses for
words. In general, any property of a document that is not
boolean is represented by a metaword. Metawords are
artificial words that we add to a document to encode an
affine property. For example, to encode how frequently
a document contains images (rather than just yes or no),
we add a metaword whose score reflects the frequency.
You can use this trick to encode many other properties,
such as overall document quality, number of incoming
or outgoing links, freshness, complexity, reading level,
etc. Implicitly, these metrics are all on the same scale,
but we can change the weighting at query time to con-
trol how to mix them.

Table 1: Example Properties

Property Meaning
lang:english doc is in english
cont:java contains java applet
cont:image contains an image
at:berkeley.edu domain suffix is berkeley.edu
is:news is a news article

Query Q w1 w2 …, , wk { , }≡

Score Q d,( )  Quality d( )≡

      Score wi  d,( )
i

∑+
3  Logical Query Plan
Given this simplified scoring, we turn to how to map

a query into a query plan. This section looks at the logi-
cal query plan and the next section looks at the physical
operators and plan implementation.

In the original development of this work, we were
not cognizant that we were defining a declarative query
language and that it should have a query plan, an opti-
mizer, and a rewriter, and that we should cleanly sepa-
rate the logical and physical query operators and plans.
We did know we needed a parser. The absence of this
view led to a very complicated parser that did ad-hoc
versions of query rewriting and planning, and some
optimization. The use of an abstract logical query plan is
one of the important principles to take from database
systems, and hence we retrospectively present the work
based on a clean logical query plan.

For simplicity, we will limit the schema to three
(large) tables: document info, word data and property
data. Figure 1 shows the schema. Tables that we ignore
include those for logging (one row per search), advertis-
ing, and users (for personalization); we talk about some
of these in Section 7.

To simplify dealing with words and properties, we
conceptually use an integer key for each word, the
WordID. The term table, T, maps from the string of the
term to the WordID for that word, and also keeps statis-
tics about the word (or property). The stats are used for
both scoring and to compute the selectivity for query
optimization.4 The simplest useful stat is the number of
rows in the table, which tells you how common the term
is in the corpus; high counts imply high selectivity and
lower scores (since the word is common). Note that the

4: Selectivity is the fraction of the input that ends up in the output,
and is thus a real number in the interval [0,1]. Ideally, a query plan
should apply joins with low selectivity first, since they reduce the data
for future joins. With multi-way equijoins (and semijoins), this is less
important since we aim to do them all at once. Of great confusion to
many is that high selectivity numbers imply the operation is not very
“selective” in the normal English usage of the word.

Document table, D, about 3B rows

Word table, about 1T rows:

Property table, about 100B rows:

Term table, T, about 10M rows:

Figure 1: Basic Schema

DocId URL Date Size Abstract

WordID DocId Score Position Info

WordID DocId

String WordID Stats



term table is only used during query planning and is never
referenced in the query itself.

Figure 2 shows the general plan for all queries. The
fact that all queries have essentially the same plan is a sig-
nificant simplification over general-purpose databases,
and a key design advantage. The equijoins ( ) join
rows from each side that match on DocId, resulting in an
output row that has the union of the columns. We refer to
the top equijoin as the “document join,” since it joins the
top results with their document data.

The Top(k, column) operator returns the top k items
from the input set ordered on column; it is not a common
database operator, although it appears in some extensions
to SQL and in the literature [CG99,CK98]. The input to Top
is the set of fully scored documents, which combines the
document quality score with the sum of the word scores
from the matching documents. Top can be implemented in
O(n) time using insertion sort into a k-element array.5

The next task is to produce the set of matching docu-
ments and their scores. Applying the top-down principle,
we design a small query language for this application,
rather than using SQL. Here is the BNF for one possible
query language:

expr: expr AND expr
| expr OR expr
| expr FILTER prop
| word

5: Insertion sort is normally O(n lg n), but since we only keep a con-
stant number of results, k, we have a constant amount of work for each of
the n insertions.

Result Set = [DocId, Score, URL, Date, Size, Abstract]

DocId

DTop(k, Score)

matching documents:

Figure 2: The General Query Plan
After finding the set of matching documents and
their scores, the Top operator passes up the top k
results (in order) to an equijoin that adds in the
document information.

[DocId, URL, Date,
Size, Abstract]

[DocId, Score]

DocId

[DocId, Score]

score = Quality(d)

[DocId, Score]

score Score wi  d,( )
i

∑=

score
Quality d( )

+ Score wi  d,( )
i

∑=

DocId
prop: prop AND prop
| prop OR prop
| NOT prop
| NOT expr
| property

There are seven corresponding logical operators as
shown in Table 2. In this particular grammar, expr
nodes have scores and prop nodes do not. The only way
to join an expr and a prop is through the FILTER oper-
ator, which filters the word list on the left with the prop-
erty list on the right. Note that the logical negation for
an expr, NOT e, is a prop and not an expr. This is
because there is no score for the documents not in the
set. This implies that it is not possible to ask for “-foo”
as a top-level query (i.e. the set of all documents that do
not contain “foo”). In practice, we actually do allow
properties and negated expressions as top-level queries,
which are useful for debugging. Note that the Top opera-
tor (with query optimization) saves us from having to
return (nearly) the whole database.

Normal queries are just a sequence of words with the
implicit operator AND between them. For example, the
query:

san francisco

maps to (san AND francisco). For properties:
bay area lang:english

maps to ((bay AND area) FILTER
lang:english), which is the set of english-language
documents that contain both words. A minus sign pre-
ceding a word normally means negation, so that:

bay area -hudson

maps to ((bay AND area) FILTER NOT hudson). 
More complex queries usually come from an

“Advanced Search” page with a form-based UI, or from
a test interface that is amenable to scripting. We will use
the parenthesized representation directly for these que-
ries.  

4  Query Implementation
Given the scoring functions and the logical opera-

tors, we next look at query optimization and the map-

Table 2: Logical Operators

Operator Meaning
e AND e Equijoin with scoring
e OR e Full outer join with scoring
e FILTER p Semijoin: filter e by p
p AND p Equijoin without scoring
p OR p Full outer join without scoring
NOT p s antijoin p (invert the set s)
NOT e s antijoin e (invert, omit score)



ping of logical operators onto the physical operators. We
start by defining the physical operators and then show
how to map the logical operators and some possible
optimizations. We finish with parallelization of the plan
for execution on a cluster.

4.1  Access Methods and Physical Operators
There is really only one kind of access method:

sequential scan of a sorted inverted index, which is just a
sorted list of all of the documents that contain a given
term. For properties, this is just the sorted list of docu-
ments; for expressions we add the score for each docu-
ment. A useful invariant is to make expressions a
subclass of properties, so that an expression list can be
used for any argument expecting a property list. For
example, this means we do not need a separate negation
operator for expressions and properties. We cover the
physical layout of the tables in Section 4.3, when we
discuss implementation on a cluster.

An unusual aspect of the physical plan is that we
cache all of the intermediate values (for use by other
queries), and do not pipeline the plan. Caching works
particularly well, since there are no updates in normal
operation (updates are covered in Section 5). Given that
we keep all intermediate results, there is no space sav-
ings for pipelining. Pipelining could still be used to
reduce query latency, but we care more about through-
put than latency, and throughput is higher without pipe-
lining, due to lower per-tuple overhead and better
(memory) cache behavior. Thus, we increase the latency
of a single query that is not cached, but reduce the aver-
age latency (with caching) and increase throughput. 6

Because the lists are sorted, binary operators become
merging operations: every join is a simple (presorted)
merge join. In fact, there is no reason to do binary oper-
ators: every join is a multiway merge join. The use of
multiway joins is a win because it reduces the depth of
the plan and thus the number of caching and scan steps
(remember that intermediate results are not pipelined).
In addition, it is useful to move negation into the multi-
way join as well, since the antijoin is a simple variation
of a merge join. A consequence of this is that for every
input to the multiway join, we add a boolean argument
to indicate the positive or negative version of the input.

This leads us to have only four physical operators:
OR(e1, e2, ... ek)→ expr

Compute the full outer multiway join, with scoring.
We have left out the boolean flags; we will use
“¬e” as the input when we mean the negation.

ORp(p1, p2, ... pk)→ prop
Multiway full outer join without scoring.

ANDp(p1, p2, ... pk)→ prop
Multiway inner join without scoring

6: In theory, we could choose to not cache some intermediate
results that we believe unlikely to be used again, and pipeline the
results, but this is not worth the extra complexity.
FILTER(e1, e2, ... ek)(p1 ... pn) → expr
Multiway inner join with scoring for the
expressions and no scoring for the properties. 

Most queries map onto a one-deep plan using FIL-
TER. It is essentially an AND of all of its inputs, with only
the expressions used to compute the score. It imple-
ments (e AND e) if there are no properties. Although it
could also subsume (p AND p), it is better to use ANDp,
since the latter returns a property list rather than an
expression list which avoids space for unused scores.
Figure 3 shows some example queries with their logical
and physical plans.

One nice property of using multiway joins is that it
mitigates the need for estimating selectivity. Selectivity
estimation is normally needed to compute the size of an
input to another operator; increasing the fan in of an
(inner) join limits the work to the actual size of the
smallest input and thus decreases the need for estimates.
For example, for FILTER and ANDp, the output is lim-
ited by the size of the smallest input (lowest selectivity).
Thus selectivity only matters when we cannot flatten a
subgraph to use a multiway join.

4.2  Query Optimizer
The optimizer has three primary tasks: map the logi-

cal query (including negations), exploit cached results,
and minimize the number of joins by using large multi-
way joins. As expected these optimizations often con-
flict, leading us to either heuristics or simple models (as
done in traditional optimizers). The basic heuristic is to
focus first on caching, second on flattening (using larger
multiway joins), and third on everything else.

The focus on caching all subexpressions leads to the
atypical decision of using a top-down optimizer [Gra95],
rather than the bottom-up style that is standard for tradi-
tional databases [Sel+79]. Although either could be made
to work, the top-down approach makes it easy to find
the highest cached subexpression: we simply check the
cache as we expand downward. The bottom-up

“bay area lang:english”

(bay AND area) FILTER lang:english

FILTER(bay, area)(lang:english)

“san francisco contains:image 
-contains:flash”

((san AND francisco) FILTER contains:image) 
FILTER (NOT contains:flash)

FILTER(san, francisco)(contains:image, 
¬contains:flash)

Figure 3: Two example queries and their logical and 
physical plans



approach implies building many partial solutions as part of
dynamic programming that are unnecessary if they are part
of a cached subexpression: that is, you build up best sub-
trees before you realize that they are cached. Both
approaches typically require building partial solutions and
exploring parts of the space that are not used for the final
plan.

The basic mapping of logical operators is straightfor-
ward, with the only subtlety being how to map negations:
a AND ¬b  FILTER(a)(¬b)

¬a AND ¬b  ANDp(¬a, ¬b)
a OR ¬b  OR(a, ¬b)

¬a OR ¬b  ORp(¬a, ¬b)
Note the use of ANDp and ORp when the output is a prop-
erty and not an expression. 

Given a correct tree of physical operators, the next step
is to optimize it, which consists mostly of flattening the
tree to use fewer but wider joins. The first step is to flatten
all chains of pure AND or pure OR, making liberal use of
the commutative and associative properties. For example:
(((a AND b) AND c) OR d) 

 OR(AND(a, b, c), d)

FILTER(a, FILTER(b)(c))(d)

 FILTER(a, b)(c, d)
We can do more complicated forms of flattening by

using DeMorgan’s Law, which allows us to convert
between and AND and OR operations. The basic conver-
sion is:
a AND b  ¬(¬a OR ¬b)

a OR b  ¬(¬a AND ¬b)

An example use for flattening:
a AND b AND NOT (c OR d)  
AND(a, b, AND(¬c, ¬d)) 

FILTER(a, b)(¬c, ¬d)

However, we have to be careful to keep score informa-
tion when applying DeMorgan’s Law. For example, is (a
OR ¬b) an expression or a property? If it is an expression,
not all of the elements of the set have scores and we must
make some up (typically zero). If it is a property, then we
forfeit the scoring information (from a) for later expres-
sions. Either policy can be made to work, although more
flattening is possible when treating this case as a property,
since otherwise (a OR ¬b) ≠ ¬ANDp(¬a,b).

The current heuristic is to flatten completely before
looking for cached subexpressions, which is part of the
general philosophy of using canonical representations for
trees to ensure that only one form of a subexpression could
appear in the cache. As a consequence, for a large multi-
way join, we must look for subsets of the terms in the
cache. We first look for the whole k-way join, then for
each k-1 subset, then each k-2 subset, until we get to indi-
vidual terms. Thus, if FILTER(a,b,e) and FIL-
TER(d,f) were in cache (but larger subsets were not),
we might map:
FILTER(a, b, c, d, e, f) 

FILTER(FILTER(a,b,e), c, FILTER(d,f))

One useful aspect of the cache is that we can keep
the size of the cached set as part of its metadata, which
allows us to exploit selectivity. In particular, given two
overlapping sets in cache that each represent k terms, we
choose the one with the smaller set size, since it is prob-
ably more selective. In the above example, if FIL-
TER(a,c,d) was also in cache, we would select
between it and FILTER(a,b,e) based either on selec-
tivity, or the degree of caching of the remaining terms,
or both. It is in the exploration of the remaining terms
that the top-down approach may explore parts of the
plan space that are not used.

As with traditional databases there are many other
possible optimizations with increasing complexity,
which we ignore here. To give the flavor of these, con-
sider in the example above if c was not in cache, but
FILTER(c)(e) was, then the latter could be used
instead, since e is part of the larger conjunctive join, and
ANDing it twice won’t affect the final set. However,
FILTER(c,e)() is not an acceptable replacement,
since the score for e would be counted twice.7

4.3  Implementation on a Cluster
Once we have the optimized tree, we must map the

query onto the cluster. The approach we take is to
exploit symmetry, which simplifies design and adminis-
tration of the cluster. In particular, the bulk of every
query goes to every node and executes the same code on
different data, as in the SPMD model from parallel com-
puting [DGNP88]. 

From the database perspective, this means a mixture
of replication for small tables and horizontal fragmenta-
tion (also known as “range partitioning”) for large
tables. In particular, the document, word and property
tables are all horizontally fragmented by DocID, so that
a self-contained set of documents (with a contiguous
ranges of DocIDs) resides on each node. This structure
simplifies updates to documents, and also makes it easy
to mix nodes of different power, since we can give more
powerful nodes more documents. The term table, which
maps term strings to WordIDs, is replicated on each
node, and we use global values for the WordIDs, so that
WordIDs can be used in physical queries instead of the
strings.

An important point is that the DocID is essentially
random relative to the URL (such as a 128-bit MD5 or
CRC), which means that documents are randomly
spread across the cluster, which is important for load
balancing and caching.

7: Under overload conditions, this might be an acceptable replace-
ment, since it will be a small reranking of the same set of documents,
and the scoring function is always magic to some degree anyway.



The word and property tables are (pre)sorted by
WordID for that node’s set of DocIDs, so that they are
ready for sorted merge joins. We maintain a hash index
on WordID for these tables to locate the beginning of the
inverted index for each term. It is somewhat easier to
think of the word and property tables as sets of “sub-
tables”, one for each WordID. This is because each sub-
table is independently compressed and cached, as
described below; the hash index on WordID is thus really
in index of the sub-tables, and keeps track of whether or
not they are in memory.

Initially, using a load balancer, a query is routed to
exactly one node, called the master for that query. Most
nodes will be the master for some queries and a follower
for the others. The master node computes and optimizes
the query plan, issues the query to all other nodes (the
followers), and collates the results. Each follower com-
putes its top k results, and the master then computes the
top k overall. Finally, the last equijoin with the docu-
ment table, D, is done via a distributed hash join with
one lookup for each of the k results (which may also be
cached locally). This is really a “fetch matches” join in
the style of Mackert and Lohman [ML86], which means
that you simply fetch the matching tuples on demand
rather than doing any kind of movement or repartition-
ing of the table. 

Using the master to compute the query plan has
some subtle issues. The primary advantage is that the
plan is computed only once, and all followers execute
only physical queries. However, the cache contents are
not guaranteed to be the same, since different nodes may
have different amounts of cache space. In practice, the
cache size is always proportional to the size of the frag-
ment, so the contents usually agree, but not always. For
example, a cache entry would be larger than usual if that
node has more occurrences of a particular word, which
may force something else out; however, since docu-
ments are spread randomly this effect tends to even out.
Nonetheless, a follower may have to recompute some-
thing that the master expected to be in cache.

4.4  Other Optimizations
In addition to traditional database optimizations,

search engines exploit some unusual tricks that merit
discussion. We cover three of them here.

One of the most important optimizations is compres-
sion of inverted indices. Although compression has been
covered in the literature [CGK01], it is not widely used in
any major DBMS. It makes more sense for a search
engine for a few reasons. First, there is no random
access for these sub-tables, they are always scanned in
their entirety as part of a sorted merge join. (The excep-
tion is the document table, which is random access and
is not compressed.) Second, there are no updates to the
tables, only whole replacement, so there is no issue of
how to update a compressed table. The simplest good
compression scheme is to use relative numbering for
DocIDs, since they are in sorted order and the density
may be high. This requires many fewer bits than the 32+
it would require to store the whole DocID. Similarly, it
is important to make good use of all of the scoring bits,
which can be done by a transformation of the scoring
function.

It turns out that the compression not only increases
the effective disk bandwidth, but also the cache size. By
keeping the in-memory representation compressed, we
increase the cache hit rate at the expense of having to
decompress the table on every use. This turns out to be
an excellent tradeoff, since modern processors can eas-
ily do the decompression on the fly without limiting the
off-chip memory bandwidth, and the cost of a cache
miss is millions of cycles (since it goes to disk).

A related optimization is preloading the cache on
startup. This turns out to be pretty simple to do and
greatly reduces the mean-time-to-repair for a node that
goes down (for whatever reason). In the case of a grace-
ful shutdown of the process, the node can write out its
cache contents, and even reuse the memory via the file
cache when the new process starts. For an unexpected
shut down, the process can use an older snapshot of the
cache, but will have to page it in, which is still faster
that recomputing it (which requires reading all of the
constituent tables). The primary limitation is that the
snapshot must match the current version of the database;
both are marked with version numbers for this reason.

Finally, the use of a master node enables a powerful
kind of optimization based on the classic A* search
algorithm (from AI) [RN02], which employs a conserva-
tive heuristic to prune the search space. In particular,
instead of simply sending out the query, the master exe-
cutes the query locally first (which adds some latency),
and computes its top k local results, which it will have
compute at some point anyway. The score of the kth local
result is a conservative lower bound on the scores of the
overall top k results. In particular, followers need not
pursue any subquery that cannot beat this lower bound.
For example, for a term in a multiway join, there is typi-
cally some score below which you need not perform the
join, since even with the best values for the other terms
the end score will not make the top k. Similarly, by
keeping track of the best score for the whole table, we
may be able to eliminate whole terms.

5  Updates
Although search engines are clearly read mostly, at

some point we actually need to update the data. One
huge benefit of the top-down strategy is that we can
exploit our complete control over the timing and scope
of updates.

We follow a few basic principles for updates. First,
nodes are independent, so we can update one node with-
out concern for the impact on other nodes. Replicas are
clearly an exception to this, since they must be updated
together, but their group is independent of other groups.
Second, we only update whole tables and not individual
rows. This means that we never insert, update or delete a
row, and that we need at most one lock for the whole



table. Third, updates should be atomic with respect to que-
ries; that is, updates always occur between queries.

To simplify updates, we define a chunk to be the unit
for atomic updates. Earlier we mentioned that the tables
are partitioned by DocID among the nodes, but it is more
accurate to say that the databases are partitioned into
chunks, and that a node contains a contiguous range of
chunks. Each chunk is a self-contained collection of docu-
ments with their word and property tables.

In practice, it is useful to split the cluster into multiple
databases, called partitions. This allows each partition to
have its own policies for replication and freshness. A
query still goes to all nodes (of all partitions), and the
DocIDs and WordIDs are still globally unique. For repli-
cated partitions, which normally have two replicas, each
node has the same chunks as it replica(s), and only one
member of the replica group receives any given query in
the normal case.

The next two sections looks at the creation and instal-
lation of chunks, and the following two look at more com-
plex types of updates.

5.1  Crawling and Indexing
The first step for an update is to get the new content,

which is usually done by crawling: visiting every docu-
ment to verify that we have the current version, and
retrieving a new version if we do not. Indexing is the pro-
cess of converting a collection of documents into a chunk,
and includes parsing and scoring, and the management of
metadata, such as tracking incoming and outgoing links. 

It is easiest to think of a chunk as a range of DocID
values, which means that a chunk does not have a specific
size per se, but rather an average size. This definition sim-
plifies the addition and removal of documents from a
chunk, since there is no effect on neighboring chunks. As a
database grows, the average chunk size will grow until it
reaches some threshold at which point it may be split into
two or more chunks.

The simplest kind of crawl simply refreshes all of the
documents in one chunk, and then reindexes them. Some
documents may have to be recrawled multiple times if
their site is down, or they can be left out for this version
and recrawled next time, although eventually they are per-
manently removed.

The refresh rate is a property of the partition, and thus
a property of all of its chunks. News partitions may be
updated every fifteen minutes, while slow-changing con-
tent, such as home pages, may be refreshed every two
weeks (or longer).

Document discovery, which is the process of finding
new documents for the database, is primarily a separate
process, although outgoing links are the main source of
new documents. A separate database tracks metadata
about all of the sites, including new links and global prop-
erties about spam sites, mirrors, paid content, etc. New
documents can be added to existing chunks when they are
next refreshed, or may be added to a new chunk in a sepa-
rate partition, called the “new” partition. 
Each chunk has a version number that is unique and
monotonically increasing, typically a sequence number.
The version number is used for cache invalidation, con-
tent debugging, and data rollback.

5.2  Atomic Updates
Once we have a new chunk, we need to install it

atomically. Conceptually, this is done by updating a ver-
sion vector [Cha+81], with one element for each chunk.

In the absence of caching this is trivial: it is suffi-
cient to close and reopen the corresponding files. It is
slightly better to open the new files first, which allows
the existing queries to finish on the old version, while
new queries go to the new version. When the last pre-
update query completes, the old version files can be
closed (and later deleted).

With caching, we must also invalidate the cache
entries for the old version. The simplest implementation
of caching uses a separate cache for each chunk, in
which case we can just invalidate the whole cache for
that chunk. This works pretty well; other chunks keep
their caches intact and the overall performance impact is
thus limited. Alternatively, caches can be unified for all
of the chunks on a node, which improves performance,
but chunk replacement invalidates the whole cache.

The replacement of a specific chunk does not require
the node to be stopped. Rather by using UNIX signals,
we can use a management process to install chunks
remotely. We also use signals to initiate a rollback to the
previous version of a chunk. With some automation, the
management process can update all of the chunks in a
smooth rolling upgrade, and likewise update all of the
nodes. Updating chunks incrementally limits the impact
of rebuilding the cache, since most of the cache remains
intact; this makes it feasible to keep up with the ongoing
load during an update.

5.3  Real-time Deletion and Updates
So far, we have said that we do not do updates to

individual records. This is not strictly true, but is the
right overall view, since the mechanism described here
is relatively heavyweight. There are some occasions
where it is useful to update a specific document immedi-
ately. For example, a document known to be illegal may
need to be removed immediately upon discovery. For
this purpose, we add a mechanism for real-time dele-
tion, which also enables real-time updates.

The general approach to deletion is to add a row that
means “item deleted” that we can then use as the right-
hand side of an antijoin to cull the document from a set.
For real-time deletion, we add a very small table (usu-
ally empty) to every chunk, which contains the list of
deleted documents. It is a property table, where the
property it represents is “has been deleted”, and we
apply it as a filter to every query. Since we add this filter
before optimization, it will be optimized as well. In the
normal case the top-most operator is already a FILTER,
and the optimizer can just add the inverse of this table as
an extra property. Thus to delete a document in real



time, we simply add a row to this special table, and then
atomically update the whole table (as with regular
updates).

Given this mechanism, we can also do real-time
updates. An update involves inserting the new version
into a different chunk (usually in the “new” partition),
and deleting the old version. Just doing the insert is not
sufficient, since the master will see both versions, and
may return both or the even just the old one (if it thinks
they are duplicates).

5.4  System-Wide Updates
Occasionally, we perform updates that affect all of

the nodes. The most common example is a change to the
scoring algorithm, which makes the old scores incompa-
rable with the new scores. Similarly, we may change the
schema or the global ID mechanism. In such cases, we
need to ensure that masters only use compatible follow-
ers. 

The approaches to this are covered better elsewhere
[Bre01], but the easiest solution is to update all of the
nodes at once. By staging the updated versions ahead of
time (i.e. loading them onto the disks in the background
before the update), and using some automation, it is pos-
sible to update all of the nodes at once with less than a
minute of downtime. The cold caches will perform
poorly until they warm up, but since this kind of update
is only done when the load is low, this is not a problem
in practice.

6  Fault Tolerance
The primary goal of fault tolerance for search

engines is high availability. We use a variety of tech-
niques and optimizations to achieve this, few of which
are novel, but together form a consistent strategy for
availability.

The first task is to decide exactly what needs to be
highly available, since there is always a significant cost
to provide it. First, the snapshot approach means that all
of the indexing and crawling process is independent to
the server and thus need not be highly available. The
only fault tolerance requirement for these elements is
idempotency, to ensure that we can simply restart failed
processes.

In addition, most documents are not worth replicat-
ing for high availability. In fact, most documents will
never appear in a search result at all, but alas we cannot
reliably predict which these are (or we would keep zero
copies). Thus some partitions are replicated and some
are not, and faults in non-replicated chunks or nodes
simply reduce the database size temporarily. However,
the use of pseudo-random DocIDs means that we lose a
random subset of the documents in a partition, rather
than, say, all the documents from one site. A typical pol-
icy might replicate popular sites and paid content.
6.1  Disk Faults
The most common fault is a disk failure, either of a

block or a whole disk. A block fault only affects one
chunk, but a disk failure might affect more than one. In
both cases, new copies of the chunks can be loaded onto
other blocks or disks in the background, and then atomi-
cally switched in. Note that chunks are never updated in
place even in normal operation, so the replacement
chunk is really just an atomic update to the same ver-
sion. Nodes are limited by disk seeks, not space, so there
is always plenty of free space for staging. In fact, given
that space is cheap and staging areas are useful, it is
worthwhile to cluster the active chunks onto contiguous
tracks, which reduces the seek time during normal oper-
ation; other parts of the disk are used for staging. 

Failed disks are left in active nodes until some con-
venient time, typically the scheduled maintenance win-
dow for that node. We replace whole nodes only, and
then sort out the failed disks offline. This simplifies the
repair process, as we always have spare nodes ready to
swap in, which are then loaded with the proper chunks
and put back online. Originally, we used RAID to hide
disk faults, as most DBMSs do, but found this to be
expensive and unnecessary, and those disks still needed
some process for replacement.

For replicated chunks, if this node is the secondary,
nothing special happens during recovery. If it is the pri-
mary, than the other replica becomes the primary and
handles the queries until the local copy is restored. For
caching purposes, it is best to have only one replica han-
dle queries in the normal case (the primary), with the
other replica idle. For load balancing, each member of a
replica group will be the primary for some chunks and
the secondary for others. The are lots of ways to deter-
mine which node should be the primary by default, but
any simple (uniform) function of the chunk ID suffices.

6.2  Follower Faults
For node failures, we separate the case of followers

from that of masters. A failed follower takes down all of
its chunks. A master will detect this failure, if it doesn’t
already know, via a timeout. It will then either continue
without the data in the unreplicated case, or contact the
secondary in the replicated case. An important optimiza-
tion is to spread the secondary copies across the parti-
tion, so that we spread out the redirected load that
occurs during a fault [Bre01]. This can be done by
“chained declustering” [HD90], but there are many suit-
able placements. For example, a typical partition might
have ten nodes, 2-way replication, and nine primary
chunks per node. Ideally, the nine secondaries that
match the nine primaries for a given node, should be on
nine different nodes, so that after a failure we have
evenly spread out the load for the secondaries. Thus a
replicated partition should have more nodes than the
degree of replication, and a enough chunks per node to
enable fine-grain load balancing after a failure.



Failed nodes are typically replaced later the same day,
but they can be replaced at any time. The risk is that the
secondary might fail before then.

6.3  Master Faults
Since masters are interchangeable, the basic strategy is

to reissue the query on a different master. Originally, the
master was also the web server, which meant that its fail-
ure was externally visible. A layer-7 switch [Fou01] can
hide failed nodes for new queries, but it typically cannot
reissue the outstanding queries at the time of the failure.
For that, we depended on the end-user to hit reload, which
they are remarkably happy to do.

The current approach separates the web server from
the master, and the web server detects the failure and reis-
sues failed queries to a new master (much like the relation-
ship between masters and followers). This “smart client”
approach [C+97] is strictly better for two reasons. First, the
retry is transparent to the end user, much like a transac-
tional queue [BHM90]. Second, it allows us to reissue the
query to a different data center, which facilitates global
load balancing and disaster recovery (covered below). The
web servers are often owned by partners and are thus
located in other data centers anyway. They use a client-
side library within the web server to execute search que-
ries, and the recovery and redirection code is part of this
library.

6.4  Graceful Degradation
An important challenge for Internet servers that is not

typically present for DBMSs is that of overload. There are
many documented cases of huge load spikes due to
human-scale events such as earthquakes or marketing suc-
cesses [Mov99,WS00]. These spikes are too large for over-
provisioning, which means we must assume that we will
be overloaded and must degrade the quality of service
gracefully. Overload detection is based on queue lengths:
when queues become too long, the system enters overload
mode until they drop below some low-water mark.

The details are beyond the scope of this paper, but
there are two basic strategies that we use for graceful deg-
radation (see [Bre01]). The first and simplest is to make the
database smaller dynamically, which we can do by leaving
out some chunks. This both reduces processing time per
query and increases the effective cache size for the
remaining data. Each chunk we take out increases our
effective capacity by some amount, and we can continue
this process until we are no longer saturated. 

Second, we can decline to execute some queries based
on their cost, which is a form of admission control. The
naive policy simply denies expensive queries, such as
those with many search terms. A more sophisticated ver-
sion denies queries probabilistically, so that repeated que-
ries will eventually get through, even if they are
expensive.

6.5  Disaster Recovery
Disaster recovery is the process of recovering a whole

data center, which might take considerable time, but
should be very rare. So far we have not had any disas-
ters, although we have moved data centers on multiple
occasions, while keeping the system up, and thus know
that our approach works.

The basic strategy is to combine master redirection
and graceful degradation. When a data center fails or
becomes unreachable, the client-side library in the web
server will detect that the master has failed and will
retry another master, probably in the same data center.
At some point it will give up on that data center and try
an alternate. The number of data centers varies, but the
range is 2-10. Important partitions must be replicated at
multiple data centers, in addition to local replication.

Although redirection is sufficient for a single query,
it would not work in aggregate without automatic grace-
ful degradation. If we simply redirect all queries from
one data center to another, the new target will likely be
overloaded. (At low load times, it would probably be
fine.) Thus, we depend on graceful degradation to
increase the capacity of the new data center to handle
the load of both centers. Unlike a traditional load spike,
which is relatively short lived, this state may persist for
a while. Although it is possible to add some real capac-
ity on short notice, full capacity may require major
repairs or even the provisioning and setup of new space.

7  Other Topics
In this section we briefly visit a range a search

engine challenges that differ from traditional database
systems.

7.1  Personalization
Although personalization has become an important

part of the web experience, e.g. “My Yahoo!”, there is
no equivalent in other media and thus search engines
were the first systems to run into the problems of large-
scale personalization. The first such site was the HotBot
search engine, which (originally) allowed users to cus-
tomize the search interface.

There are two general approaches: cookies and data-
bases. In the cookie approach, user data is stored in a
“cookie” and parsed as part of each visit, while the data-
base approach stores only the user ID in the cookie,
which it then uses to retrieve the appropriate row from a
table. Although the cookie approach appears simpler, it
suffers from two serious problems: the data is distrib-
uted and generally unreachable, which hinders analysis,
and it is difficult to evolve the schema. 

Essentially the cookie approach requires that all cur-
rent and previous schema overlap in time, since there is
no way to update the schema for a user until they next
visit. For example, if the schema has gone through six
versions, the current system must be able to handle
cookies that use all six schemas, since which version a
user follows depends only on the time of their last visit
(from a given browser), which can be any time in the
past. Given the large population of users, every schema
will have some number of representatives. This can be



addressed with version numbers (stored in the cookie),
but remains awkward.

Although we used a DBMS to manage user data, it is
actually a mediocre approach, primarily due to cost,
complexity and availability. Indeed, there has been sub-
stantial work on how to solve this problem more
directly, including some support in Enterprise Java
Beans (backed by a database), the use a highly available
cluster hash table [GBH+00,Gri00], and a new framework
specifically for session-state management [LKF04]. Like
the search engine itself, this component requires only a
single query plan, in this case just a highly available
hash table lookup (no joins, ranges, or projections).

7.2  Logging
Search engines, like other large-scale Internet sites,

create enormous logs, often over 100GB per day. These
logs are used primarily for billing advertisers, but also
for improving the quality of the search engine, and
debugging. (These are not the kind of logs used for
durability in a DBMS.) Log management systems have
become their own class of data-intensive systems, and
they also do not fit well on top of existing databases.
Although this material is covered much better by Adam
Sah [Sah02], who worked on the original Inktomi log
manager, it is worth some discussion here.

The two primary issues are 1) DBMSs traditionally
do not handle large-scale real-time loading of data, and
2) the query language really needs to support regular
expressions, relative timestamps, and partial string
matches, none of which fit well within SQL. In addition,
log records have a different and far simpler update
model: logs are append only and log records are (gener-
ally) immutable. The concurrency control and fault tol-
erance decisions are thus quite different from a DBMS.

However, database principles and the top-down
approach still apply, and in fact are the right approach.
The log system has its own query language and its own
optimizations, including compression, caching (of
reverse DNS lookups), and parallelization. 

7.3  Query Rewriting
As in DBMSs, query rewriting is a powerful and

useful tool [PHH92,SJGP90]. In our case, there are two pri-
mary values. First and most important, it provides the
easiest way to customize a query for a given user or
population. For example, for users known to speak a
certain language (based on their ISP for example), a
rewritten query might increase the ranking of docu-
ments in that language or even filter the results for only
that language. Similarly, personalization can be used to
customize queries for a given user based on collections
(e.g. more emphasis on news), topic, complexity, geo-
graphical location, etc.

Second, query rewriting is a clean way to encode the
context of the query. An important direction for search
engines is to provide different results based on the con-
text of the query. For example, a query issued from a
page about semiconductors that contains the word
“chip” probably refers to semiconductors rather than
corn chips or the TV show Chips. Rewriting the query to
include a few terms about the context (with low weight)
is one easy way to disambiguate an otherwise ambigu-
ous query.

7.4  Phrase Queries
So far, we have only covered the simplest kinds of

queries, those based on words and properties. However,
the relative positions of words within a document are of
great value for improved ranking. For example, search-
ing for “New York” really should give much higher
scores to documents in which the two words are adja-
cent and in the correct order. There are two general
approaches to this problem: tracking proximity and
tracking exact word positions.

Proximity techniques boost the scores of documents
that have the words “near” each other, but not necessar-
ily adjacent. This is a long-standing technique in infor-
mation retrieval [Sal89], and there are many approaches.
One typical one is to break a document into “pages” of
some size and use one bit per page to track which pages
contain a given word. “Nearness” is then defined by
how many pages contain both words (which is just a bit-
wise AND). This requires building the bitmaps for every
word/document pair, and then matching bitmaps once
you know that document contains multiple words from
the query.

The second approach is “phrase searching” in which
the engine actually tracks every position of every word
in every document. Remarkably, current search engines
actually do this! Phrase queries are significantly more
complex, as you need to do what amounts to a nested
merge join for every word in the query. For example,
given the sorted lists of positions for the words “New”
and “York”, you join them using an “off by one”
equijoin: output a tuple exactly if the position of “New”
is one less than the position of “York”. The multiway
join for phrases is analogous. Overall, the best ranking
occurs by mixing the results of regular scoring, proxim-
ity boosts, and phrases.

8  Discussion and Conclusions
Up to now, the focus has been covering the design of

a search engine from the perspective of a database sys-
tem. In this section, we argue that is the right approach
for other top-down data-intensive systems, and that such
systems should employ the principles of databases if not
the artifacts. We cover a few other example systems,
each of which is a poor fit for existing databases, and yet
a good fit for the principles. 

First, it is worth summarizing why Informix did 10x
worse than the hand-built search engine in 1996. Infor-
mix was among the best choices for a search engine at
the time, and we in fact used it for other parts of the sys-
tem, particularly personalization. It had cluster support
and seemed to do a reasonable job with caching; it was
also viewed as the best “toolbox” database, which is



what we needed. The basic issue was over generalization,
which presumably might limit modern DBMSs as well.
Here is a partial list of the optimizations that account for
the 10x difference: no locking, a single hand-optimized
query plan, multiway joins, extensive compression,
aggressive caching, careful data representation, hand-writ-
ten access methods, single address space, and no security
or access control (handled by the firewall). The represen-
tation of indexed text in mid-90’s databases was typically
3x larger than the raw text; Inktomi and Alta Vista drove
this number to well below one, which accounts a signifi-
cant fraction of the overall performance gain, since this
directly affects the number and size of I/O operations, and
the hit rate of the cache. Finally, even if modern databases
solved all of these problems, which they do not, the
designers of the next big data-intensive system will surely
find some mismatches, and will also have to apply the
principles rather than the artifacts.

For the first example of such a system, we return to the
logging system, discussed in Section 7.2. The best solution
[Sah02] is a top-down design with data independence and
a declarative language. Although based on Postgres, it is a
large deviation from a traditional DBMS, as it includes
Perl in the query language for string handling, strong sup-
port for loading data in real time, and changes for high
availability. Predecessors, in fact, were not based on Post-
gres at all and used the file system for storage.

Another search-related example is the Google File
System [GGL03], which is a distributed file system opti-
mized for large files, constrained sharing, and atomic
append operations. It is a top-down design driven by the
need to handle more than one billion documents and mil-
lions of files; in particular, in handles all of the files used
by the crawling and indexing systems. It has a relatively
clean semantics for its important operations (concurrent
append in particular), and support for high availability and
replication. Although “navigational” rather than query
based, it fits the top-down model proscribed here.

A more remote example is the Batch-Aware Distrib-
uted File System (BAD-FS) [BT+03]. This is a file system
for large wide-area I/O intensive workloads such as clus-
ter-based scientific applications. It is a top-down design
with a simple declarative query language, which allows
the scheduler to optimize communication, caching and
replication by controlling both the placement and schedul-
ing of jobs. Although not described this way, it has the
usual phases: a parser, query planner and optimizer, and an
execution engine. It also provides a variation of views. As
with SQL, the declarative nature is critical for enabling
optimizations. This project exhibits the proposed method-
ology in part because it has members from both the data-
base and systems communities.

Although harder to show, many other systems fit this
model of applying the principles without the artifacts.
These include workflow systems, which have a query lan-
guage and data independence, XML databases, and the
emerging field of bioinformatics. All of these systems
have top-down designs that do not map well on SQL and
existing database semantics. The most common approach
is to “make” them fit, however awkward that may be. A
clean top-down design, as in the case of logging above,
would lead to different implementation that is simpler,
cleaner, and presumably more reliable and a better fit.

In the end, the hope is that projects on the “systems”
side will benefit from top-down thinking, well-defined
semantics, and declarative languages that leave room for
optimization. Conversely, the hope on the “database”
side would be for more modular and layered designs
that are more flexible than current (monolithic) designs,
and thus more useful for new kinds of systems. It is not
clear that such layering is possible, but there is some
evidence in the form of Berkeley DB and some of the
novel uses of Postgres, such as the logging system.
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Appendix: Scoring
In this section we present a simple but representative

scoring algorithm. Most of the research for current
search engines is on improving the scoring algorithms
or adding new components to the scoring systems, such
as popularity metrics or incoming link counts. 

We define a query as a set of words and their corre-
sponding weights ( ):Wi



(3)

The score of a document for query Q is the weighted sum
of an overall score for the document and a score for each
word in the query:

(4)

The document quality term is independent of the query
words and reflects things like length (shorter is better),
popularity, incoming links, quality of the containing site,
and external reviews.

The use of weighted sums for scoring is very common
in information retrieval [Sal89] and this one is loosely based
on Cheshire II [LML+96]. It has several advantages over
more complex formulas: it is easy to compute, it can repre-
sent multiplication by using logarithms within components
(commonly done), and the weights can be found using sta-
tistical regression (typically from human judgements on
relevance). To simplify query execution, we define:8

(5)

We don’t actually require that  and it useful
to modify the weights individually at query time. Since we
only care about the relative scoring within one query, there
is no particular meaning to the sum of the weights. Nor do
the words need to be unique; in fact, entering the same
word twice usually gives it twice the weight.

The word score can be further broken down:

(6)

where f captures the relevance of the word in this docu-
ment, and g captures the properties of the word in the
overall corpus. For example, the specific version from
Cheshire II is essentially [LML+96]:

The top term is Quality(d) and the bottom term is the
weighted sum, with even weights, of equation (6), where

 is the log of the count of  in d, and
 is the log of the inverse document fre-

quency of , which is one divided by the fraction of doc-
uments in which this word appears.

The scoring for AND and OR is trivial: just sum up the
scores for the matching words. For example, (a AND b)

8: Words that are in “anchor text” that point to the document are con-
sidered part of the document.

Query Q w1 w2 …, wk,[ , ] Wi  { , }≡

Score Q d,( )    c1Quality d( )≡

      c2 WiScore wi  d,( )
i

∑+

Score wi d,( ) 0≡ if wi d∉

Wi∑ 1=

Score wi d,( ) c3 f⋅ wi d,( ) c4 g⋅ wi( ) c5+ +≡

Score Q d,( )  ≡ 0.0674– length d( )

  1
M
-----e

0.679 Freq wi d,( )log⋅
+0.223 IDF wi( )log⋅⎝ ⎠

⎛ ⎞

i 1=

M

∑+

f Freq wi d,( )log≡ wi

g IDF wi( )log≡

wi
has the same score as (a OR b), although the AND will
usually return fewer documents. 
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