Internet Security?

- The Internet was *not* designed for security.
- Sending data via the Internet is like sending post cards through the mailwhen you don’t trust the Post Office.

A Typical Internet Session

<table>
<thead>
<tr>
<th>You (client)</th>
<th>Merchant (server)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>I want to make a purchase.</td>
<td></td>
</tr>
<tr>
<td>What is your Credit Card Number?</td>
<td></td>
</tr>
<tr>
<td>My Credit Card is 6543 2345 6789 8765.</td>
<td></td>
</tr>
</tbody>
</table>

Basic Encryption

Can we at least protect the credit card number so that it won’t be revealed to anyone except the intended merchant?

Kerckhoffs’s Principle (1883)

The security of a cryptosystem should depend only on the key.

You should assume that attackers know everything about your system *except* the key.

PINs, Passwords, & Keys

Informally ...
- A PIN is a 4-6 digit speed bump.
- A password is a short, user-chosen, usually guessable selection from a small dictionary.
- A key is an unguessable, randomly chosen string – usually at least 128 bits.
Off-Line Attacks
- Don't even think about using user-chosen passwords as encryption keys.
- Don't even think about using keys derived deterministically from user-chosen passwords.
- Given the ciphertext, an attacker can do a (guided) exhaustive search through the space to find the password.

Symmetric Encryption
- If the client has a pre-existing relationship with the merchant, the two parties may have a shared secret key K – known only to these two.
- User encrypts private data with key K.
- Merchant decrypts data with key K.

Symmetric Ciphers
Private-key (symmetric) ciphers are usually divided into two classes.
- Stream ciphers
- Block ciphers

Symmetric Ciphers
Private-key (symmetric) ciphers are usually divided into two classes.
- Stream ciphers
- Block ciphers

Stream Ciphers
RC4, A5/1, SEAL, etc.
- Use the key as a seed to a pseudo-random number-generator.
- Take the stream of output bits from the PRNG and XOR it with the plaintext to form the ciphertext.

Stream Cipher Encryption
- Plaintext:
- PRNG(seed):
- Ciphertext:

Stream Cipher Decryption

Ciphertext: urrection
PRNG(seed): urrection
Plaintext: urrection

A PRNG: Alleged RC4

Initialization
S[0..255] = 0,1,…,255; j=0
K[0..255] = Key,Key,Key,…
for i = 0 to 255
 j = (j + S[i] + K[i]) mod 256
 swap S[i] and S[j]

A PRNG: Alleged RC4

Iteration
i = (i + 1) mod 256
j = (j + S[i]) mod 256
swap S[i] and S[j]
t = (S[i] + S[j]) mod 256
Output S[t]

Some Good Properties

• Stream ciphers are typically very fast.
• Stream ciphers can be very simple.
• The same function is used for encryption and decryption.

Stream Cipher Security

If two plaintexts are ever encrypted with the same stream cipher and key

\[C_1 = K \oplus P_1, \]
\[C_2 = K \oplus P_2, \]
an attacker can easily compute

\[C_1 \oplus C_2 = P_1 \oplus P_2, \]
from which \(P_1 \) and \(P_2 \) can usually be teased apart easily.

Stream Cipher Encryption

Plaintext: urrection
PRNG(seed): urrection
Ciphertext: urrection
Stream Cipher Integrity

- It is easy for an adversary (even one who can’t decrypt the ciphertext) to alter the plaintext in a known way.

Bob to Bob’s Bank:
Please transfer $1,000,002.00 to the account of my good friend Alice.

Symmetric Ciphers

Private-key (symmetric) ciphers are usually divided into two classes.

- Stream ciphers
- Block ciphers

Block Ciphers

AES, DES, 3DES, Twofish, etc.

Plaintext Data → Block Cipher → Ciphertext

Usually 8 or 16 bytes

How to Build a Block Cipher

Plaintext → Key → Block Cipher → Ciphertext

Usually 16 or more bytes
Feistel Ciphers

Typically, Feistel ciphers are iterated for about 10-16 rounds.

Different “sub-keys” are used for each round.

Even a weak round function can yield a strong Feistel cipher if iterated sufficiently.
Feistel Ciphers

- Typically, Feistel ciphers are iterated for about 10-16 rounds.
- Different “sub-keys” are used for each round.
- Even a weak round function can yield a strong Feistel cipher if iterated sufficiently.

Transfer of Confidential Data

You (client) Merchant (server)

- I want to make a purchase.
- Please encrypt your credit number with our shared secret key.
- What is your Credit Card Number?
- My Credit Card is 6543 2345 6789 8765.

Asymmetric Encryption

- What if the user and merchant have no prior relationship?
- Asymmetric encryption allows someone to encrypt a message for a recipient without knowledge of the recipient’s decryption key.
The Fundamental Equation

\[Z = Y^X \mod N \]

March 5, 2013

When \(Z \) is unknown, it can be efficiently computed.

March 5, 2013

The Fundamental Equation

\[Z = Y^X \mod N \]

March 5, 2013

When \(X \) is unknown, the problem is known as the discrete logarithm and is generally believed to be hard to solve.

March 5, 2013

The Fundamental Equation

\[Z = Y^X \mod N \]

March 5, 2013

The problem is not well-studied for the case when \(N \) is unknown.

March 5, 2013

How to compute \(Y^X \mod N \)

- Compute \(Y^X \) and then reduce \(\mod N \).
- If \(X \), \(Y \), and \(N \) each are 1,000-bit integers, \(Y^X \) consists of \(\sim 2^{1018} \) bits.
- Since there are roughly \(2^{258} \) particles in the universe, storage is a problem.
How to compute $Y^X \mod N$

- Repeatedly multiplying by Y by itself X times (with a modulo N reduction after each multiplication) solves the storage problem.

- However, we would need to perform 2^{908} 64-bit multiplications per second to complete the computation before the sun burns out.

How to compute $Y^X \mod N$

Multiplication by Repeated Doubling
To compute $X = Y$,
compute $Y, 2Y, 4Y, 8Y, 16Y, ...$
and sum up those values dictated by the binary representation of X.

Example: $26Y = 2Y + 8Y + 16Y$.

How to compute $Y^X \mod N$

Exponentiation by Repeated Squaring
To compute Y^2,
compute $Y, Y^2, Y^4, Y^8, Y^{16}, ...$
and multiply those values dictated by the binary representation of X.

Example: $Y^{26} = Y^2 = Y^8 = Y^{16}$.

How to compute $Y^X \mod N$

- We can now perform a 1,000-bit modular exponentiation using \sim1,000 1,000-bit modular multiplications.

- 1,000 squarings: $Y, Y^2, Y^4, ..., Y^{2^{1000}}$

- \sim500 “ordinary” multiplications

The Fundamental Equation

$Z = Y^X \mod N$

When Y is unknown, the problem is known as discrete root finding and is generally believed to be hard to solve ... without the factorization of N.

RSA Encryption/Decryption

- Select two large primes p and q.
- Publish the product $N = pq$.
- The exponent X is typically fixed at 65537.
- Encrypt message Y as $E(Y) = Y^X \mod N$.
- Decrypt ciphertext Z as $D(Z) = Z^{1/X} \mod N$.
- Note $D(E(Y)) = (Y^X)^{1/X} \mod N = Y$.

March 5, 2013
RSA Signatures and Verification

- Not only is \(D(B(Y)) = (x^2)^{1/2} \mod N = Y \), but also \(E(D(Y)) = (Y^{1/2})^2 \mod N = Y \).
- To form a signature of message \(Y \), create \(S = D(Y) = Y^{1/2} \mod N \).
- To verify the signature, check that \(E(S) = S^2 \mod N \) matches \(Y \).

Transfer of Confidential Data

You (client) Merchant (server)

- I want to make a purchase.
- Here is my RSA public key \(E \).
- My Credit Card is \(E(6543234567898765) \).

Intermediary Attack

You (client) Intermediary Merchant (server)

- I want to make a purchase.
- My public key is \(E \).
- My public key is \(E(CCA) \).
- \(E(CCA) \) wants to make a purchase.
- My public key is \(E \).
- My public key is \(E(CCA) \).

Digital Certificates

“Alice’s public modulus is \(N_A = 331490324840 \) ..” -- signed ... someone you trust.

Transfer of Confidential Data

You (client) Merchant (server)

- I want to make a purchase.
- Here is my RSA public key \(E \) and a cert.
- My Credit Card is \(E(6543234567898765) \).
Replay Attack

You (client) Merchant (server)
I want to make a purchase.
Here is my RSA public key E and a cert.
My Credit Card is $(6543\ 2345\ 6789\ 8765)$.

Eavesdropper Later ... Merchant (server)
I want to make a different purchase.
Here is my RSA public key E and a cert.
My Credit Card is $(6543\ 2345\ 6789\ 8765)$.

Transfer of Confidential Data

You (client) Merchant (server)
I want to make a purchase.
Here is my RSA public key E and a cert.
My Credit Card is $(6543\ 2345\ 6789\ 8765)$.

Later ...
I want to make a different purchase.
Here is my RSA public key E and a cert and a "nonce".
My Credit Card and your nonce are $E(6543\ 2345\ 6789\ 8765)$, nonce.

SSL/PCT/TLS History
- 1994: Secure Sockets Layer (SSL) V2.0
- 1995: Private Communication Technology (PCT) V1.0
- 1996: Secure Sockets Layer (SSL) V3.0
- 1997: Private Communication Technology (PCT) V4.0
- 1999: Transport Layer Security (TLS) V1.0

SSL/PCT/TLS Handshake

You (client) Merchant (server)
Let's talk securely.
Here are the protocols and ciphers I understand.
I choose this protocol and these ciphers.
Here is my public key, a cert, a nonce, etc.
Using your public key, I've encrypted a random symmetric key (and your nonce).

SSL/PCT/TLS Agility

A principal reason for the success of SSL/TLS is its agility.
- The handshake negotiates symmetric and asymmetric ciphers, the hash function, and even the protocol's own version.
- This has allowed the protocol to survive and expand while many underlying primitives have been discredited or lost favor.

SSL/PCT/TLS Secure Channel

Once the negotiation is complete, all subsequent secure messages are sent
- encrypted – using the negotiated session key, and
- integrity checked with a keyed hash.
Hybrid Cryptography

- Asymmetric cryptography has many useful features not available in traditional symmetric cryptography.
- Symmetric cryptography is much more efficient than asymmetric.
- The practical hybrid is formed by using asymmetric cryptography to establish a secure channel and symmetric cryptography within the secure channel.

Application: Verifiable Elections

- Current election technology requires trust in the officials who manage elections, the equipment and its manufacturers, and the processes used in the election.
- Cryptography allows us to eliminate this trust.

A Verifiable Election

<table>
<thead>
<tr>
<th>Voter Name</th>
<th>Vote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice Smith</td>
<td>Jefferson</td>
</tr>
<tr>
<td>Bob Williams</td>
<td>Adams</td>
</tr>
<tr>
<td>Carol James</td>
<td>Adams</td>
</tr>
<tr>
<td>David Fuentes</td>
<td>Jefferson</td>
</tr>
<tr>
<td>Ellen Chu</td>
<td>Jefferson</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jefferson</td>
<td>3</td>
</tr>
<tr>
<td>Adams</td>
<td>2</td>
</tr>
</tbody>
</table>

A Verifiable Election

<table>
<thead>
<tr>
<th>Voter Name</th>
<th>Vote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice Smith</td>
<td>Jefferson</td>
</tr>
<tr>
<td>Bob Williams</td>
<td>Adams</td>
</tr>
<tr>
<td>Carol James</td>
<td>Adams</td>
</tr>
<tr>
<td>David Fuentes</td>
<td>Jefferson</td>
</tr>
<tr>
<td>Ellen Chu</td>
<td>Jefferson</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jefferson</td>
<td>3</td>
</tr>
<tr>
<td>Adams</td>
<td>2</td>
</tr>
</tbody>
</table>

A Verifiable Election

<table>
<thead>
<tr>
<th>Voter Name</th>
<th>Vote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice Smith</td>
<td>Jefferson</td>
</tr>
<tr>
<td>Bob Williams</td>
<td>Adams</td>
</tr>
<tr>
<td>Carol James</td>
<td>Adams</td>
</tr>
<tr>
<td>David Fuentes</td>
<td>Jefferson</td>
</tr>
<tr>
<td>Ellen Chu</td>
<td>Jefferson</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jefferson</td>
<td>3</td>
</tr>
<tr>
<td>Adams</td>
<td>2</td>
</tr>
</tbody>
</table>

A Verifiable Election

<table>
<thead>
<tr>
<th>Voter Name</th>
<th>Vote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice Smith</td>
<td>Jefferson</td>
</tr>
<tr>
<td>Bob Williams</td>
<td>Adams</td>
</tr>
<tr>
<td>Carol James</td>
<td>Adams</td>
</tr>
<tr>
<td>David Fuentes</td>
<td>Jefferson</td>
</tr>
<tr>
<td>Ellen Chu</td>
<td>Jefferson</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jefferson</td>
<td>3</td>
</tr>
<tr>
<td>Adams</td>
<td>2</td>
</tr>
</tbody>
</table>
A Verifiable Election

<table>
<thead>
<tr>
<th></th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jefferson</td>
<td>3</td>
</tr>
<tr>
<td>Adams</td>
<td>2</td>
</tr>
</tbody>
</table>

The Voter’s Perspective

Systems that produce verifiable elections can be built to look exactly like current systems ...
- paper-based
- fully-electronic
- in-person
- remote

... with one addition ...

A Verifiable Receipt

The Voter’s Perspective

Voters can ...
- Use receipts to check their results are properly recorded on a public web site.
- Throw their receipts in the trash.
- Write and use their own election verifiers
- Download applications from sources of their choice to verify the mathematical proof of the tally.
- Believe verifications done by their political parties, LWV, ACLU, etc.
- Accept the results without question.

Some systems producing verifiable elections ...
Helios

STAR-Vote
- Voters use electronic ballot marking devices to indicate their preferences.
- When a voter’s selections are completed, the device provides the voter with a paper ballot summary and an encrypted receipt. It also records the encrypted ballot.
- The voter can review the paper ballot summary, and optionally deposit it in a ballot box.
- All encrypted ballots are posted, but the only votes counted are those for which a corresponding paper ballot has been deposited. The remaining ballots are decrypted.

Benefits of E2E-Verifiability
- Strong public assurance of election integrity
- Elimination of trust requirements
- Certification relief

Questions???