Link Analysis

CSE 454 Advanced Internet Systems
University of Washington

Ranking Search Results

- TF / IDF or BM25
- Tag Information
 - Title, headers
- Font Size / Capitalization
- Anchor Text on Other Pages
- Classifier Predictions
 - Spam, Adult, Review, Celebrity, ...
- Link Analysis
 - HITS – (Hubs and Authorities)
 - PageRank

Matrix Representation

Let \(M \) be an \(N \times N \) matrix

\[
M_{uv} = \frac{1}{N_v} \quad \text{if page } v \text{ has a link to page } u
\]

\[
M_{uv} = 0 \quad \text{if there is no link from } v \text{ to } u
\]

Let \(R_0 \) be the initial rank vector.

Let \(R_i \) be the \(N \times 1 \) rank vector for \(i \)th iteration.

Then \(R_i = M \times R_{i-1} \)

\[
\begin{bmatrix}
A & B & C & D \\
0 & 0 & 0 & \frac{1}{2} \\
0 & 0 & 0 & \frac{1}{2} \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\]

Page Sinks.

- Sink = node (or set of nodes) with no out-edges.
- Why is this a problem?

Solution to Sink Nodes

Let:

\((1-c) \) = chance of random transition from a sink.

\(N \) = the number of pages

\[
K = \begin{bmatrix}
... & ... & ... & 1 / N & ... \\
... & ... & ... & ... & ...
\end{bmatrix}
\]

\[
M^* = cM + (1-c)K
\]

\[
R_i = M^* \times R_{i-1}
\]
Computing PageRank - Example

\[
M = \begin{pmatrix}
A & B & C & D \\
0 & 0 & 0 & 0.5 \\
0 & 0 & 0 & 0.5 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}
\]

\[
M^* = \begin{pmatrix}
0.05 & 0.05 & 0.05 & 0.45 \\
0.05 & 0.05 & 0.05 & 0.45 \\
0.85 & 0.85 & 0.05 & 0.05 \\
0.05 & 0.05 & 0.85 & 0.05
\end{pmatrix}
\]

\[
M^* = cM + (1-c)K
\]

\[
K = \begin{pmatrix}
\ldots & \ldots & \ldots & \ldots \\
\ldots & \frac{1}{N} & \ldots & \ldots
\end{pmatrix}
\]

Adding PageRank to a SearchEngine

- Weighted sum of importance+similarity with query
- \(\text{Score}(q, d) = w\cdot \text{sim}(q, p) + (1-w)\cdot R(p) \) if \(\text{sim}(q, p) > 0 \)
- \(= 0 \), otherwise
- Where
 - \(0 < w < 1 \)
 - \(\text{sim}(q, p), R(p) \) must be normalized to \([0, 1]\).

Authority and Hub Pages

- A page is a good authority
 (with respect to a given query)
 if it is pointed to by many good hubs
 (with respect to the query).
- A page is a good hub page
 (with respect to a given query)
 if it points to many good authorities
 (for the query).
- Good authorities & hubs reinforce

Authority and Hub Pages (cont)

Authorities and hubs for a query tend to form a bipartite subgraph of the web graph.

(A page can be a good authority and a good hub)

Linear Algebraic Interpretation

- PageRank = principle eigenvector of \(M^* \)
 – in limit
- HITS = principle eigenvector of \(M^* \cdot (M^*)^T \)
 – Where \([J]^T\) denotes transpose

- Stability
 Small changes to graph \(\rightarrow \) small changes to weights.
 – Can prove PageRank is stable
 – And HITS isn’t
Stability Analysis (Empirical)

• Make 5 subsets by deleting 30% randomly

<table>
<thead>
<tr>
<th>Subset</th>
<th>Source</th>
<th>Outdegree</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Practicality

• Challenges
 – M no longer sparse (don’t represent explicitly!)
 – Data too big for memory (be sneaky about disk usage)

• Stanford Version of Google :
 – 24 million documents in crawl
 – 147GB documents
 – 259 million links
 – Computing pagerank “few hours” on single 1997 workstation

• But How?
 – Next discussion from Haveliwala paper...

Efficient Computation: Preprocess

• Remove ‘dangling’ nodes
 – Pages w/ no children

• Then repeat process
 – Since now more danglers

• Stanford WebBase
 – 25 M pages
 – 81 M URLs in the link graph
 – After two prune iterations: 19 M nodes

Representing ‘Links’ Table

• Stored on disk in binary format

<table>
<thead>
<tr>
<th>Source node (32 bit integer)</th>
<th>Outdegree (16 bit int)</th>
<th>Destination nodes (32 bit integers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>12, 26, 58, 94</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5, 56, 69</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1, 9, 10, 36, 78</td>
</tr>
</tbody>
</table>

• Size for Stanford WebBase: 1.01 GB
 – Assumed to exceed main memory
 – (But source & dest assumed to fit)

Algorithm 1

∀s Source[s] = 1/N
while residual > τ {
 ∀d Dest[d] = 0
 while not Links.eof() {
 Links.read(source, n, dest1, … destn)
 for j = 1… n
 }
 ∀d Dest[d] = (1-c) * Dest[d] + c/N
 residual = ||Source – Dest|| */recompute every few iterations */
 Source = Dest
}
Analysis

• If memory can hold both source & dest
 – IO cost per iteration is | Links |
 – Fine for a crawl of 24 M pages
 – But web > 8 B pages in 2005 [Google]
 – Increase from 320 M pages in 1997 [NEC study]

• If memory only big enough to hold just dest...
 – Sort Links on source field
 – Read Source sequentially during rank propagation step
 – IO cost per iteration is | Source | + | Dest | + | Links |

• But What if memory can’t even hold dest?
 – Random access pattern will make working set = | Dest |
 – Thrash!!!
 …???

Block-Based Algorithm

• Partition Dest into B blocks of D pages each
 – If memory = P physical pages
 – D < P-2 since need input buffers for Source & Links

• Partition (sorted) Links into B files
 – Links, only has some of the dest nodes for each source
 Specifically, Links, only has dest nodes such that
 • DD*i <= dest < DD*(i+1)
 • Where DD = number of 32 bit integers that fit in D pages

Analysis of Block Algorithm

• IO Cost per iteration =
 – B* | Source | + | Dest | + | Links | *(1+e)
 – e is factor by which Links increased in size
 • Typically 0.1-0.3
 • Depends on number of blocks

• Algorithm ~ nested-loops join

Partitioned Link File

<table>
<thead>
<tr>
<th>Source node (32 bit)</th>
<th>Outdeg (16 bit)</th>
<th>Num out (16 bit)</th>
<th>Destination nodes (32 bit integer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>2</td>
<td>12, 26</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1, 9, 10</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Buckets 0-31

0	4	1	58
1	3	5	56
2	5	3	36

Buckets 32-63

0	4	1	94
1	3	1	69
2	5	1	78

Buckets 64-95

Comparing the Algorithms

Comparison of Block-Based Algorithm

• Physical Memory vs. I/O Rate
 – 256 MB
 – 64 MB
 – 32 MB

Comparison of Block-Based Algorithm

• Physical Memory vs. I/O Rate
 – 256 MB
 – 64 MB
 – 32 MB
Summary of Key Points

- PageRank Iterative Algorithm
- Sink Pages
- Efficiency of computation – Memory!
 - Don’t represent M* explicitly.
 - Minimize IO Cost.
 - Break arrays into Blocks.
 - Single precision numbers ok.
- Number of iterations of PageRank.
- Weighting of PageRank vs. doc similarity.