Link Analysis

CSE 454 Advanced Internet Systems
University of Washington

Ranking Search Results

- TF / IDF or BM25
- Tag Information
 - Title, headers
- Font Size / Capitalization
- Anchor Text on Other Pages
- Classifier Predictions
 - Spam, Adult, Review, Celebrity, …
- Link Analysis
 - HITS – (Hubs and Authorities)
 - PageRank

Pagerank Intuition

Think of Web as a big graph.
Suppose surfer keeps randomly clicking on the links.
Importance of a page = probability of being on the page

Derive transition matrix from adjacency matrix
Suppose $\exists N$ forward links from page P
Then the probability that surfer clicks on any one is $1/N$

Problem: Page Sinks.

- Sink = node (or set of nodes) with no out-edges.
- Why is this a problem?

Solution to Sink Nodes

Let:
$(1-c) =$ chance of random transition from a sink.
$N =$ the number of pages

\[K = \begin{bmatrix}
\cdots & 1/N & \cdots \\
\cdots & \ddots & \cdots \\
\cdots & \cdots & \ddots \\
\end{bmatrix} \]

\[M' = cM + (1-c)K \]
\[R_i = M' \times R_{i-1} \]
Computing PageRank - Example

\[M = \begin{pmatrix}
0 & 0 & 0 & ½ \\
0 & 0 & 0 & ½ \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix} \]

\[M^* = \begin{pmatrix}
0.05 & 0.05 & 0.05 & 0.45 \\
0.05 & 0.05 & 0.05 & 0.45 \\
0.85 & 0.85 & 0.05 & 0.05 \\
0.05 & 0.05 & 0.85 & 0.05
\end{pmatrix} \]

Authority and Hub Pages (1)

• A page is a good authority
 (with respect to a given query)
 if it is pointed to by many good hubs
 (with respect to the query).

• A page is a good hub page
 (with respect to a given query)
 if it points to many good authorities
 (for the query).

• Good authorities & hubs reinforce

Authority and Hub Pages (2)

Authorities and hubs for a query tend to form a bipartite subgraph of the web graph.

Linear Algebraic Interpretation

• PageRank = principle eigenvector of \(M^* \)
 – in limit

• HITS = principle eigenvector of \(M^* \times (M^*)^T \)
 – Where \([\cdot]^T\) denotes transpose

• Stability
 Small changes to graph \(\rightarrow\) small changes to weights.
 – Can prove PageRank is stable
 – And HITS isn’t

Stability Analysis (Empirical)

• Make 5 subsets by deleting 30% randomly

\[
\begin{array}{llllll}
1 & 1 & 3 & 1 & 1 & 1 \\
2 & 2 & 5 & 3 & 3 & 2 \\
3 & 3 & 12 & 6 & 6 & 3 \\
4 & 4 & 52 & 20 & 23 & 4 \\
5 & 5 & 171 & 119 & 99 & 5 \\
6 & 6 & 135 & 56 & 40 & 8 \\
7 & 10 & 179 & 159 & 100 & 7 \\
8 & 8 & 316 & 141 & 170 & 6 \\
9 & 9 & 257 & 107 & 72 & 9 \\
10 & 13 & 170 & 80 & 69 & 18
\end{array}
\]

• PageRank much more stable

Ooops

• What About Sparsity?

\[M^* = cM + (1-c)K \]

\[K = \begin{pmatrix}
\cdots & \cdots & \cdots & \cdots \\
\cdots & \frac{1}{N} & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots
\end{pmatrix} \]
Practicality

- **Challenges**
 - M no longer sparse (don’t represent explicitly!)
 - Data too big for memory (be sneaky about disk usage)

- **Stanford Version of Google**:
 - 24 million documents in crawl
 - 147GB documents
 - 259 million links
 - Computing pagerank “few hours” on single 1997 workstation

- **But How?**
 - Next discussion from Haveliwala paper…

Efficient Computation: Preprocess

- **Remove ‘dangling’ nodes**
 - Pages w/ no children

- **Then repeat process**
 - Since now more danglers

- **Stanford WebBase**
 - 25 M pages
 - 81 M URLs in the link graph
 - After two prune iterations: 19 M nodes

Representing ‘Links’ Table

- **Stored on disk in binary format**

<table>
<thead>
<tr>
<th>Source node (32 bit integer)</th>
<th>Outdegree (16 bit int)</th>
<th>Destination nodes (32 bit integers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>12, 26, 58, 94</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5, 56, 69</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1, 9, 10, 36, 78</td>
</tr>
</tbody>
</table>

- **Size for Stanford WebBase: 1.01 GB**
 - Assumed to exceed main memory
 - (But source & dest assumed to fit)

Analysis

- **If memory can hold both source & dest**
 - IO cost per iteration is $|\text{Links}|$
 - Fine for a crawl of 24 M pages
 - But web > 8 B pages in 2005 [Google]
 - Increase from 320 M pages in 1997 [NEC study]

- **If memory only big enough to hold just dest...?**
 - Sort Links on source field
 - Read Source sequentially during rank propagation step
 - Write Dest to disk to serve as Source for next iteration
 - IO cost per iteration is $|\text{Source}| + |\text{Dest}| + |\text{Links}|$

- **But What if memory can’t even hold dest?**
 - Random access pattern will make working set = $|\text{Dest}|$
 - Thresh!!!

Algorithm 1

\[\forall s \text{ Source}[s] = 1/N \]

while residual $> \tau$

\[\forall d \text{ Dest}[d] = 0 \]

while not Links.eof()

\[\text{Links.read(source, n, dest\(_1\), \ldots dest\(_n\))} \]

for $j = 1 \ldots n$

\[\text{Dest}[dest_j] = \text{Dest}[dest_j] + \text{Source}[source]/n \]

\[\forall d \text{ Dest}[d] = (1-c) \times \text{Dest}[d] + c/N \]

/* dampening $c < 1/N$ */

residual = $|\text{Source} – \text{Dest}|$

/* recompute every few iterations */

Source = Dest

while residual $> \tau$

Block-Based Algorithm

- **Partition Dest into B blocks of D pages each**
 - If memory = P physical pages
 - P < 2 since need input buffers for Source & links

- **Partition (sorted) Links into B files**
 - Links, only has some of the dest nodes for each source
 - Specifically, Links, only has dest nodes such that
 - $\forall d \text{ Dest}[d] = \text{Dest}[d]_{\text{DD}(i+1)}$
 - Where DD = number of 32 bit integers that fit in D pages
Analysis of Block Algorithm

- **IO Cost per iteration** =
 \[B \cdot |Source| + |Dest| + |Links| \cdot (1 + e) \]
- \(e \) is a factor by which Links increased in size
 - Typically 0.1-0.3
 - Depends on number of blocks
- **Algorithm** ~ nested-loops join

Comparing the Algorithms

- **Algorithm ~ nested-joins**

Adding PageRank to a Search Engine

- Weighted sum of importance + similarity with query
- **Score(q, d)**
 \[w \cdot \text{sim}(q, p) + (1-w) \cdot R(p), \text{ if sim}(q, p) > 0 \]
 = 0, otherwise
- **Where**
 - \(0 < w < 1 \)
 - \(\text{sim}(q, p), R(p) \) must be normalized to \([0, 1]\).

Summary of Key Points

- **PageRank Iterative Algorithm**
- **Sink Pages**
- **Efficiency of computation ~ Memory!**
 - Don’t represent \(M^* \) explicitly.
 - Minimize IO Cost.
 - Break arrays into Blocks.
 - Single precision numbers okay.
- **Number of iterations of PageRank**
- **Weighting of PageRank vs. doc similarity**