Text Categorization

CSE 454

Administrivia

- Mailing List
- Groups for PS1
- Questions on PS1?
 - See discussion & pseudocode for naive Bayes in “Information Retrieval” by Manning, Raghavan, and Schutze
 - Good textbook and available online for free

For Next Class

- Reading for Thurs
 - Mercator: A Scalable, Extensible Web Crawler, by Allan Heydon & Mark Najork,
- Work on PS1
- Think about projects

Class Overview

Other Cool Stuff
- Query processing
- Content Analysis
- Indexing
- Crawling
- Document Layer
- Network Layer

Next Classes
Categorization

- **Given:**
 - A description of an instance, \(x \in X \), where \(X \) is the instance language or instance space.
 - A fixed set of categories: \(C = \{c_1, c_2, \ldots, c_n\} \)
- **Determine:**
 - The category of \(x \): \(c(x) \in C \), where \(c(x) \) is a categorization function whose domain is \(X \) and whose range is \(C \).

Sample Category Learning Problem

- **Instance language:** \(<\text{size, color, shape}>\)
 - size \(\in \{\text{small, medium, large}\} \)
 - color \(\in \{\text{red, blue, green}\} \)
 - shape \(\in \{\text{square, circle, triangle}\} \)
- **\(C = \{\text{positive, negative}\} \)**
- **\(D \):**
<table>
<thead>
<tr>
<th>Example</th>
<th>Size</th>
<th>Color</th>
<th>Shape</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>small</td>
<td>red</td>
<td>circle</td>
<td>positive</td>
</tr>
<tr>
<td>2</td>
<td>large</td>
<td>red</td>
<td>circle</td>
<td>positive</td>
</tr>
<tr>
<td>3</td>
<td>small</td>
<td>red</td>
<td>triangle</td>
<td>negative</td>
</tr>
<tr>
<td>4</td>
<td>large</td>
<td>blue</td>
<td>circle</td>
<td>negative</td>
</tr>
</tbody>
</table>

Another Example: County vs. Country?

- **Given:**
 - A description of an instance, \(x \in X \), where \(X \) is the instance language or instance space.
 - A fixed set of categories: \(C = \{c_1, c_2, \ldots, c_n\} \)
- **Determine:**
 - The category of \(x \): \(c(x) \in C \), where \(c(x) \) is a categorization function whose domain is \(X \) and whose range is \(C \).

Text Categorization

- Assigning documents to a fixed set of categories, e.g.
 - Web pages
 - Yahoo-like classification
 - What else?
 - Email messages
 - Spam filtering
 - Prioritizing
 - Folderizing
 - News articles
 - Personalized newspaper
 - Web Ranking
 - Is page related to selling something?

Procedural Classification

- **Approach:**
 - Write a procedure to determine a document’s class
 - E.g., Spam?
Learning for Text Categorization

- Hard to construct text categorization functions.
- Learning Algorithms:
 - Bayesian (naïve)
 - Neural network
 - Relevance Feedback (Rocchio)
 - Rule based (C4.5, Ripper, Slipper)
 - Nearest Neighbor (case based)
 - Support Vector Machines (SVM)

Applications of ML

- Credit card fraud
- Product placement / consumer behavior
- Recommender systems
- Speech recognition

Most mature & successful area of AI

Learning for Categorization

- A training example is an instance \(x \in X \), paired with its correct category \(c(x) \): \(<x, c(x)> \) for an unknown categorization function, \(c \).
- Given a set of training examples, \(D \).
- Find a hypothesized categorization function, \(h(x) \), such that: \(\forall < x, c(x) > \in D : h(x) = c(x) \)

ML = Function Approximation

May not be any perfect fit
Classification ~ discrete functions

\[h(x) = \text{contains('nigeria', x)} \land \text{contains('wire-transfer', x)} \]

Generalization

- Hypotheses must generalize to correctly classify instances not in the training data.
- Simply memorizing training examples is a consistent hypothesis that does not generalize.

Why is Learning Possible?

Experience alone never justifies any conclusion about any unseen instance.

Learning occurs when

PREJUDICE meets DATA!

Learning a “Frobnitz”
Bias

• The nice word for prejudice is “bias”.

• What kind of hypotheses will you consider?
 – What is allowable range of functions you use when approximating?
• What kind of hypotheses do you prefer?

Some Typical Biases

– Occam’s razor
 “It is needless to do more when less will suffice”
 – William of Occam,
 died 1349 of the Black plague
– MDL – Minimum description length
– Concepts can be approximated by
 – ... conjunctions of predicates
 – ... by linear functions
 – ... by short decision trees

A Learning Problem

Hypothesis Spaces

• Complete Ignorance. There are \(2^n \times 2^m\) possible boolean functions over four input features. We can’t figure out which one is correct until we’ve seen every possible input-output pair. After 7 examples, we still have 2⁷ possibilities.

Terminology

• Training examples. An example of the form \(x, [y, f(x)]\).
• Target function (target concept). The true function \(f\).
• Hypothesis. A proposed function \(h\) believed to be similar to \(f\).
• Concept. A boolean function. Examples for which \(f(x) = 1\) are called positive examples or positive instances of the concept. Examples for which \(f(x) = 0\) are called negative examples or negative instances.
• Classifier. A discrete-valued function. The possible values \(f(x) \in \{1, \ldots, K\}\) are called the classes or class labels.
• Hypothesis Space. The space of all hypotheses that can, in principle, be output by a learning algorithm.
• Version Space. The space of all hypotheses in the hypothesis space that have not yet been ruled out by a training example.

General Learning Issues

• Many hypotheses consistent with the training data.
• Bias
 – Any criteria other than consistency with the training data that is used to select a hypothesis.
• Classification accuracy
 – % of instances classified correctly
 – (Measured on independent test data.)
• Training time
 – Efficiency of training algorithm
• Testing time
 – Efficiency of subsequent classification
Two Strategies for ML

- Restriction bias: use prior knowledge to specify a restricted hypothesis space.
 - Naïve Bayes Classifier
- Preference bias: use a broad hypothesis space, but impose an ordering on the hypotheses.
 - Decision trees.

Bayesian Methods

- Learning and classification methods based on probability theory.
 - Uses prior probability of each category
 - Given no information about an item.
 - Produces a posterior probability distribution over possible categories
 - Given a description of an item.
- Bayes theorem plays a critical role in probabilistic learning and classification.

Axioms of Probability Theory

- All probabilities between 0 and 1
 \(0 \leq P(A) \leq 1 \)
- Probability of truth and falsity
 \(P(\text{true}) = 1 \quad P(\text{false}) = 0. \)
- The probability of disjunction is:
 \(P(A \lor B) = P(A) + P(B) - P(A \land B) \)

Probability: Simple & Logical

- The definitions imply that certain logically related events must have related probabilities
 E.g. \(P(A \lor B) = P(A) + P(B) - P(A \land B) \)

Independence

- \(A \) and \(B \) are independent iff:
 \[
 P(A \mid B) = P(A) \\
 P(B \mid A) = P(B)
 \]
 These constraints are logically equivalent
- Therefore, if \(A \) and \(B \) are independent:
 \[
 P(A \mid B) = \frac{P(A \land B)}{P(B)} = P(A) \\
 P(A \land B) = P(A)P(B)
 \]
Independence

\[P(A \land B) = P(A)P(B) \]

Independence is Rare

A\&B not independent, since \(P(A|B) \neq P(A) \)

\[\begin{array}{c}
\text{A} \\
\text{B}
\end{array} \]

Conditional Independence

Are A \& B independent? \(P(A|B) \leq P(A) \)

\[\begin{array}{c}
\text{A} \\
\text{A \land B} \\
\text{B}
\end{array} \]

A, B Conditionally Independent Given C

\[P(A|B,C) = P(A|C) \]

\(C = \text{spots} \)

\[\begin{array}{c}
\text{A} \\
\text{A \land C} \\
\text{B} \\
\text{B \land C}
\end{array} \]
A, B Conditionally Independent Given C

\[P(A|B, C) = P(A|C) \]

C = spots

\[P(A|C) = .25 \]
\[P(B|C) = 1.0 \]
\[P(A|B, C) = .25 \]
\[P(A|\neg C) = .5 \]
\[P(B|\neg C) = .5 \]
\[P(A|B, \neg C) = .5 \]

Conditional Independence = The Next Best Thing to Independence

\[P(A|B, C) = P(A|C) \]

Bayes Theorem

Simple proof from definition of conditional probability:

\[
P(H|E) = \frac{P(E|H)P(H)}{P(E)}
\]

(Def. cond. prob.)

\[
P(H \land E) = P(E|H)P(H)
\]

(Def. cond. prob.)

\[
P(H \land E) = P(E|H)P(H)
\]

(Mult both sides of 2 by P(H).)

QED:

\[
P(H|E) = \frac{P(E|H)P(H)}{P(E)}
\]

(Substitute 3 in 1.)

Bayesian Categorization

• Let set of categories be \(\{c_1, c_2, \ldots, c_n\} \)
• Let \(E \) be description of an instance.
• Determine category of \(E \) by determining for each \(c_i \)

\[
P(c_i|E) = \frac{P(c_i)P(E|c_i)}{P(E)}
\]

• \(P(E) \) can be ignored since is factor \(\forall \) categories

\[
P(c_i|E) \propto P(c_i)P(E|c_i)
\]

Naïve Bayesian Motivation

• Problem: Too many possible instances (exp in \(m \)) to estimate all \(P(E \mid c_i) \)
• Assume features of an instance are conditionally independent given the category \(c_i \)

\[
P(E \mid c_i) = P(e_1 \land e_2 \land \ldots \land e_m \mid c_i) = \prod_{j=1}^{m} P(e_j \mid c_i)
\]

Problem!

• Need to know:
 - Priors: \(P(c_i) \)
 - Conditionals: \(P(E \mid c_i) \)
• \(P(c_i) \) are easily estimated from data.
 - If \(n_i \) of the examples in \(D \) are in \(c_i \), then \(P(c_i) = n_i / |D| \)
• Assume instance is a conjunction of binary features:
 \(E = e_1 \land e_2 \land \cdots \land e_m \)
• Too many possible instances (exponential in \(m \)) to estimate all \(P(E \mid c_i) \)

Naïve Bayesian Motivation

• Problem: Too many possible instances (exp in \(m \))
 to estimate all \(P(E \mid c_i) \)
• Assume features of an instance are conditionally independent
 given the category \(c_i \)

\[
P(E \mid c_i) = P(e_1 \land e_2 \land \cdots \land e_m \mid c_i) = \prod_{j=1}^{m} P(e_j \mid c_i)
\]

• Now we only need to know \(P(e_j \mid c_i) \)
 for each feature and category.
Conditional Independence??

\[P(\text{nigeria} \mid \text{spam}) = P(\text{nigeria} \mid \text{spam}, \text{widow}) \]
\[P(\text{nigeria} \mid \text{spam}) = P(\text{nigeria} \mid \text{spam}, \text{viagra}) \]

Naïve Bayes Example

- \(C = \{\text{allergy, cold, well}\} \)
- \(e_1 = \text{sneeze}; e_2 = \text{cough}; e_3 = \text{fever} \)
- \(E = \{\text{sneeze, cough, ¬fever}\} \)

<table>
<thead>
<tr>
<th>Prob</th>
<th>Well</th>
<th>Cold</th>
<th>Allergy</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(\text{ci}))</td>
<td>0.9</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>(P(\text{sneeze} \mid \text{ci}))</td>
<td>0.1</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>(P(\text{cough} \mid \text{ci}))</td>
<td>0.1</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>(P(\text{fever} \mid \text{ci}))</td>
<td>0.01</td>
<td>0.7</td>
<td>0.4</td>
</tr>
</tbody>
</table>

\[P(\text{well} \mid \text{E}) = \frac{(0.9)(0.1)(0.1)(0.99)}{P(\text{E})} \]
\[P(\text{cold} \mid \text{E}) = \frac{(0.05)(0.9)(0.8)(0.3)}{P(\text{E})} \]
\[P(\text{allergy} \mid \text{E}) = \frac{(0.05)(0.9)(0.7)(0.6)}{P(\text{E})} \]

Most probable category: allergy

- \(P(\text{well} \mid \text{E}) = 0.23 \)
- \(P(\text{cold} \mid \text{E}) = 0.8 \)
- \(P(\text{allergy} \mid \text{E}) = 0.50 \)

Estimating Probabilities

- Normally, probabilities are estimated based on observed frequencies in the training data.
- If \(D \) contains \(n_i \) examples in category \(c_i \) and \(n_{ij} \) of these \(n_i \) examples contains feature \(e_j \), then:
 \[P(e_j \mid c_i) = \frac{n_{ij}}{n_i} \]
 However, estimating such probabilities from small training sets is error-prone.
 - If due only to chance, a rare feature, \(e_k \), is always false in the training data, \(\forall c_i: P(e_k \mid c_i) = 0 \).
 - If \(e_k \) then occurs in a test example, \(E \), the result is that \(\forall c_i: P(E \mid c_i) = 0 \) and \(\forall c_i: P(c_i \mid E) = 0 \).

Smoothing

- To account for estimation from small samples, probability estimates are adjusted or smoothed.
- **Laplace smoothing** using an \(m \)-estimate assumes that each feature is given a prior probability, \(p \), that is assumed to have been previously observed in a “virtual” sample of size \(m \).
 \[P(e_j \mid c_i) = \frac{n_{ij} + mp}{n_i + m} = (n_i + 1) / (n_i + 2) \]
 For binary features, \(p \) is simply assumed to be 0.5.

Naïve Bayes for Text

- Modeled as generating a bag of words for a document in a given category by repeatedly sampling with replacement from a vocabulary \(V = \{w_1, w_2, \ldots, w_m\} \) based on the probabilities \(P(w_j \mid c_i) \).
- Smooth probability estimates with Laplace \(m \)-estimates assuming a uniform distribution over all words (\(p = 1/|V| \)) and \(m = |V| \).
 - Equivalent to a virtual sample of seeing each word in each category exactly once.
Text Naïve Bayes Algorithm
(Train)

Let \(V \) be the vocabulary of all words in the documents in \(D \)
For each category \(c_i \in C \)
Let \(D_i \) be the subset of documents in \(D \) in category \(c_i \)
Let \(T_i \) be the concatenation of all the documents in \(D_i \)
Let \(n_i \) be the total number of word occurrences in \(T_i \)
Let \(n_{ij} \) be the number of occurrences of \(w_j \) in \(T_i \)
Let \(P(w_j | c_i) = \frac{(n_{ij} + 1)}{(n_i + |V|)} \)

Text Naïve Bayes Algorithm
(Test)

Given a test document \(X \)
Let \(n \) be the number of word occurrences in \(X \)
Return the category:
\[
\text{argmax}_{c_i \in C} \prod_{i=1}^{n} P(a_i | c_i)
\]
where \(a_i \) is the word occurring the \(i \)th position in \(X \)

Naïve Bayes Time Complexity

- **Training Time**: \(O(|D|L_d + |C||V|) \)
 - Assumes \(V \) and all \(D_i, n_i, \) and \(n_{ij} \) pre-computed in \(O(|D|L_d) \) time during one pass through all of the data.
 - Generally just \(O(|D|L_d) \) since usually \(|C||V| < |D|L_d \)
- **Test Time**: \(O(|C|L_t) \)
 - \(L_t \) is the average length of a test document.
- Very efficient overall, linearly proportional to the time needed to just read in all the data.

Easy to Implement

- But…
- If you do… it probably won’t work…

Probabilities: Important Detail!

- \(P(\text{spam} | E_1 \ldots E_n) = \prod_i P(\text{spam} | E_i) \)
 - Any more potential problems here?
- We are multiplying lots of small numbers
 - Danger of underflow!
 - \(0.5^{57} = 7 \times 10^{-18} \)
- Solution? Use logs and add!
 - \(p_1 \times p_2 = e^{\log(p_1) + \log(p_2)} \)
 - Always keep in log form

Underflow Prevention

- Multiplying lots of probabilities, which are between 0 and 1 by definition, can result in floating-point underflow.
- Since \(\log(xy) = \log(x) + \log(y) \), it is better to perform all computations by summing logs of probabilities rather than multiplying probabilities.
- Class with highest final un-normalized log probability score is still the most probable.
Naïve Bayes Posterior Probabilities

- Classification results of naïve Bayes
 - I.e. the class with maximum posterior probability…
 - Usually fairly accurate (?!?!?)
- However, due to the inadequacy of the conditional independence assumption…
 - Actual posterior-probability estimates not accurate.
 - Output probabilities generally very close to 0 or 1.

Multi-Class Categorization

- Pick the category with max probability
- Create many 1 vs other classifiers
- Use a hierarchical approach (wherever hierarchy available)