

- Todo
- A bit repetitive - cut some slides
- Some inconsistencie - eg are positions in the
index or not.
- Do we want nutch as case study instead of
google?

Retrieval			
Document-term matrix			
	$\begin{array}{lllllll}t_{1} & t_{2} & \cdots & t_{j} & \cdots & t_{m}\end{array}$	nf	
${ }_{\substack{d_{1} \\ d_{2}}}$			
d_{i}	$\mathrm{w}_{\mathrm{il}} \mathrm{w}_{\mathrm{i} 2} \ldots \ldots w_{\text {ij }} \ldots \ldots w_{\text {in }}$	1/did	
d_{n}	$w_{n 1} w_{n 2} \ldots w_{n j} \ldots w_{\text {min }}$		
W_{ij} is the weight of term t_{j} in document d_{i}			
Most $\mathrm{w}_{\mathrm{ij}}{ }^{\text {' }}$ w will be zero.			
Copprisito weda 202.207			7

Copyright © Weld 2002-2007

Naïve Retrieval

Consider query $\mathrm{Q}=\left(\mathrm{q}_{1}, \mathrm{q}_{2}, \ldots, \mathrm{q}_{\mathrm{j}}, \ldots, \mathrm{q}_{\mathrm{n}}\right)$, $\mathrm{nf}=1 /|\mathrm{q}|$.
How evaluate Q ?
(i.e., compute the similarity between q and every document)?

Method 1: Compare \mathbf{Q} with every doc.
Document data structure:

$$
\mathrm{d}_{\mathrm{i}}:\left(\left(\mathrm{t}_{1}, \mathrm{w}_{\mathrm{i} 1}\right),\left(\mathrm{t}_{2}, \mathrm{w}_{\mathrm{i} 2}\right), \ldots,\left(\mathrm{t}_{\mathrm{j}}, \mathrm{w}_{\mathrm{ij}}\right), \ldots,\left(\mathrm{t}_{\mathrm{m}}, \mathrm{w}_{\mathrm{im}}\right), 1 / / \mathrm{d}_{\mathrm{i}}\right)
$$

- Only terms with positive weights are kept.
- Terms are in alphabetic order.

Query data structure:

$$
\mathrm{Q}:\left(\left(\mathrm{t}_{1}, \mathrm{q}_{1}\right),\left(\mathrm{t}_{2}, \mathrm{q}_{2}\right), \ldots,\left(\mathrm{t}_{\mathrm{j}}, \mathrm{q}_{\mathrm{j}}\right), \ldots,\left(\mathrm{t}_{\mathrm{m}}, \mathrm{q}_{\mathrm{m}}\right), 1 /|\mathrm{q}|\right)
$$

Observation

- Method 1 is not efficient
- Needs to access most non-zero entries in doc-term matrix.
- Solution: Use Index (Inverted File)
- Data structure to permit fast searching.
- Like an Index in the back of a text book.
- Key words --- page numbers.
- E.g, "Etzioni, 40, 55, 60-63, 89, 220"
- Lexicon
- Occurrences
sort documents in descending similarities; display the top k to the user;

Search Processing (Overview)

1. Lexicon search

- E.g. looking in index to find entry

2. Retrieval of occurrences

- Seeing where term occurs

3. Manipulation of occurrences

- Going to the right page

Simple Index for One Document 上lE

$\underset{1}{\text { Pos }} \quad$ A file is a list of words by position
${ }_{10}$ First entry is the word in position 1 (first word)
${ }^{20}$ Entry 4562 is the word in position 4562 ($4562^{\text {nd }}$ word)
${ }^{30}$ Last entry is the last word
${ }^{36}$ An inverted file is a list of positions by word!

a (1, 4, 40) entry (11, 20, 31) file (2, 38) list (5, 41) position (9, 16, 26) positions (44) word (14, 19, 24, 29, 35, 45) words (7) $4562(21,27)$	aka "Index"
Copyright © Weld 2002-2007	

Requirements for Search

- Need index structure

- Must handle multiple documents
- Must support phrase queries
- Must encode TF/IDF values
- Must minimize disk seeks \& reads

Thinking about Efficiency

- Clock cycle: 2 GHz
- Typically completes 2 instructions / cycle
- ~ 10 cycles / instruction, but pipelining \& parallel execution
- Thus: 4 billion instructions / sec
- Disk access: $\mathbf{1 - 1 0 m s}$
- Depends on seek distance, published average is 5 ms
- Thus perform 200 seeks / sec
- (And we are ignoring rotation and transfer times)

Disk is 20 Million times slower !!!
Store index in Oracle database?
Store index using files and unix filesystem?

Inverted Files for Multiple Documents

One method. Alta Vista uses alternative

Index Size over Time

Number of indexed pages, self-reported
Google: 50% of the web?
Copyright © Weld 2002-2007

The Solution

- Inverted Files for Multiple Documents
- Broken into Two Files
- Lexicon
- Hashtable on disk (one read)
- Nowadays: stored in main memory
- Occurrence List
- Stored on Disk
- "Google Filesystem"

Copyright © Weld 2002-2007

Many Variations Possible

- Address space (flat, hierarchical)
- Record term-position information
- Precalculate TF-IDF info
- Stored header, font \& tag info
- Compression strategies

Using Inverted Files

Some data structures:

Lexicon: a hash table for all terms in the collection.

- Inverted file lists previously stored on disk.
- Now fit in main memory

Using Inverted Files

Several data structures:
2. For each term t_{j}, create a list (occurrence file list) that contains all document ids that have t_{j}.
$\mathrm{I}\left(\mathrm{t}_{\mathrm{j}}\right)=\left\{\left(\mathrm{d}_{1}, \mathrm{w}_{1 \mathrm{j}}\right)\right.$,
$\left(d_{2}, \ldots\right.$
... \}

- $\quad d_{i}$ is the document id number of the $i^{\text {th }}$ document.
- Weights come from freq of term in doc
- Only entries with non-zero weights are kept.

Inverted files continued

More data structures:
3. Normalization factors of documents are precomputed and stored similarly to lexicon $n f[i]$ stores $1 /\left|\mathrm{d}_{\mathrm{i}}\right|$.

The Lexicon

- Grows Slowly (Heap’s law)
- $\mathrm{O}\left(\mathrm{n}^{\beta}\right)$ where $\mathrm{n}=$ text size; β is constant $\sim 0.4-0.6$
- E.g. for 1 GB corpus, lexicon $=5 \mathrm{Mb}$
- Can reduce with stemming (Porter algorithm)
- Store lexicon in file in lexicographic order
- Each entry points to loc in occurrence file (aka inverted file list)

More Elaborate Inverted File

Several data structures:

2. For each term t_{j}, create a list (occurrence file list) that contains all document ids that have t_{j}.
$\mathrm{I}\left(\mathrm{t}_{\mathrm{j}}\right)=\left\{\left(\mathrm{d}_{1}\right.\right.$, freq, $\operatorname{pos}_{1}, \ldots$ pos $\left._{\mathrm{k}}\right)$,
(d_{2}, \ldots
... \}

- $\quad d_{i}$ is the document id number of the $i^{\text {th }}$ document.
- Weights come from freq of term in doc
- Only entries with non-zero weights are kept.

Retrieval Using Inverted Files

$$
\begin{aligned}
& \text { initialize all } \operatorname{sim}\left(\mathbf{q}, \mathbf{d}_{\mathbf{i}}\right)=0 \\
& \text { for each term } \mathbf{t}_{\mathbf{j}} \text { in } \mathbf{q} \\
& \text { find } \mathbf{I}(\mathbf{t}) \text { using the hash table } \\
& \text { for each }\left(\mathbf{d}_{\mathbf{i}}, w_{i j} \text { in } I(t)\right. \\
& \operatorname{sim}\left(\mathbf{q}, \mathbf{d}_{\mathbf{i}}\right)+=\mathbf{q}_{\mathbf{j}} * \mathbf{w}_{\mathbf{i j}} \\
& \text { for each }(\text { relevant }) \operatorname{document} \mathbf{d}_{\mathbf{i}} \\
& \operatorname{sim}\left(\mathbf{q}, \mathbf{d}_{\mathbf{i}}\right)=\operatorname{sim}\left(\mathbf{q}, \mathbf{d}_{\mathbf{i}}\right) * \operatorname{nf[i]}
\end{aligned}
$$

sort documents in descending similarities and display the top \mathbf{k} to the user;

Observations about Method 2

- If doc d doesn't contain any term of query q, then d won't be considered when evaluating q.
- Only non-zero entries in the columns of the document-term matrix which correspond to query terms ... are used to evaluate the query.
- Computes the similarities of multiple documents simultaneously (w.r.t. each query word)

Efficiency versus Flexibility

- Storing computed document weights is good for efficiency, but bad for flexibility.
- Recomputation needed if TF and IDF formulas change and/or TF and DF information changes.
- Flexibility improved by storing raw TF, DF information, but efficiency suffers.
- A compromise
- Store pre-computed TF weights of documents.
- Use IDF weights with query term TF weights instead of document term TF weights.

Creating Inverted Files

Repository

- File containing all documents downloaded
- Each doc has unique ID
- Ptr file maps from IDs to start of doc in repository

Stop lists

- Language-based stop list:
- words that bear little meaning
- 20-500 words
- http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words
- Subject-dependent stop lists
- Removing stop words
- From document
- From query

From Peter Brusilovsky Univ Pittsburg INFSCI 2140

Stemming

Are there different index terms?

- retrieve, retrieving, retrieval, retrieved, retrieves...

Stemming algorithm:

- (retrieve, retrieving, retrieval, retrieved, retrieves) \Rightarrow retriev
- Strips prefixes of suffixes (-s, -ed, -ly, -ness)
- Morphological stemming

Compression

What Should We Compress?

- Repository
- Lexicon
- Inv Index

What properties do we want?

- Compression ratio
- Compression speed
- Decompression speed
- Memory requirements
- Pattern matching on compressed text
- Random access

Text Compression

Two classes of text compression methods

- Symbolwise (or statistical) methods
- Estimate probabilities of symbols - modeling step
- Code one symbol at a time - coding step
- Use shorter code for the most likely symbol
- Usually based on either arithmetic or Huffman coding
- Dictionary methods
- Replace fragments of text with a single code word
- Typically an index to an entry in the dictionary. - eg: Ziv-Lempel coding: replaces strings of characters with a pointer to a previous occurrence of the string
- No probability estimates needed

Symbolwise methods are more suited for coding d-gaps

Stemming Continued

- Can reduce vocabulary by $\sim 1 / 3$
- C, Java, Perl versions, python, c\# www.tartarus.org/~martin/PorterStemmer
- Criterion for removing a suffix
- Does "a document is about w_{1} " mean the same as
- a "a document about w_{2} "
- Problems: sand / sander \& wand / wander
- Commercial SEs use giant in-memory tables

Inverted File Compression

Each inverted list has the form $<f_{t} ; d_{1}, d_{2}, d_{3}, \ldots, d_{f_{t}}>$
A naïve representation results in a storage overhead of $(f+n) *\lceil\log N\rceil$
This can also be stored as $\left\langle f_{t} ; d_{1}, d_{2}-d_{1}, \ldots, d_{f_{t}}-d_{f_{t}-1}\right\rangle$
Each difference is called a d-gap. Since $\sum(d-$ gaps $) \leq N$,
each pointer requires fewer than $\lceil\log N\rceil$ bits.
Trick is encoding since worst case
Assume d-gap representation for the rest of the talk, unless stated otherwise
Slides adapted from Tapas Kanungo and David Mount, Univ Maryland Copyright © Weld 2002-2007

Classifying d-gap Compression Methods:

- Global: each list compressed using same model
- non-parameterized: probability distribution for d-gap sizes is predetermined.
- parameterized: probability distribution is adjusted according to certain parameters of the collection.
- Local: model is adjusted according to some parameter, like the frequency of the term
- By definition, local methods are parameterized.

Conclusion	
- Local methods best	
- Parameterized global models \sim non-parameterized - Pointers not scattered randomly in file	
- In practice, best index compression algorithm is: - Local Bernoulli method (using Golomb coding)	
- Compressed inverted indices usually faster+smaller than - Signature files - Bitmaps	
Local < Parameterized Global < Non-parameterized Global	
Copyight weld 2022 2007	${ }^{43}$

