
CSE 454

Indexing

Todo
• A bit repetitive – cut some slides
• Some inconsistencie – eg are positions in the

index or not.

• Do we want nutch as case study instead of
google?

Cool UIs (Zoetrope & Revisiting)

CSE 454 Overview

Inverted Indicies

Supervised Learning

Information Extraction

W
eb Tables

Parsing & POS Tags

Adverts

Search
Engines

HTTP, HTML, Scaling & Crawling
Cryptography & Security

Open IE

Human Comp
CSE 454 Overview

Inverted Indicies

Search
Engines

CSE 454 Overview

Inverted Indicies

Google

PageRank

AltaVista

6

Review
• Vector Space Representation

– Dot Product as Similarity Metric

• TF-IDF for Computing Weights
– wij = f(i,j) * log(N/ni)
– Where q = … wordi…
– N = |docs| ni = |docs with wordi|

• But How Process Efficiently?
documents

te
rm

s

q dj

t1

t2

Copyright © Weld 2002-2007

7

Retrieval

Document-term matrix
t1 t2 . . . tj . . . tm nf

d1 w11 w12 . . . w1j . . . w1m 1/|d1|
d2 w21 w22 . . . w2j . . . w2m 1/|d2|

.
di wi1 wi2 . . . wij . . . wim 1/|di|

.
dn wn1 wn2 . . . wnj . . . wnm 1/|dn|

wij is the weight of term tj in document di

Most wij’s will be zero.
Copyright © Weld 2002-2007 8

Naïve Retrieval
Consider query Q = (q1, q2, …, qj, …, qn), nf = 1/|q|.

How evaluate Q?
(i.e., compute the similarity between q and every document)?

Method 1: Compare Q with every doc.
Document data structure:

di : ((t1, wi1), (t2, wi2), . . ., (tj, wij), . . ., (tm, wim), 1/|di|)
– Only terms with positive weights are kept.
– Terms are in alphabetic order.

Query data structure:
Q : ((t1, q1), (t2, q2), . . ., (tj, qj), . . ., (tm, qm), 1/|q|)

Copyright © Weld 2002-2007

9

Naïve Retrieval (continued)

Method 1: Compare q with documents directly

initialize all sim(q, di) = 0;
for each document di (i = 1, …, n)

{ for each term tj (j = 1, …, m)
if tj appears in both q and di

sim(q, di) += qj ∗wij;
sim(q, di) = sim(q, di) ∗(1/|q|) ∗(1/|di|); }

sort documents in descending similarities;
display the top k to the user;

Copyright © Weld 2002-2007 10

Observation

• Method 1 is not efficient
– Needs to access most non-zero entries in doc-term matrix.

• Solution: Use Index (Inverted File)
– Data structure to permit fast searching.

• Like an Index in the back of a text book.
– Key words --- page numbers.
– E.g, “Etzioni, 40, 55, 60-63, 89, 220”
– Lexicon
– Occurrences

Copyright © Weld 2002-2007

11

Search Processing (Overview)
1. Lexicon search

– E.g. looking in index to find entry
2. Retrieval of occurrences

– Seeing where term occurs
3. Manipulation of occurrences

– Going to the right page

Copyright © Weld 2002-2007 12

Simple Index for One Document

A file is a list of words by position
First entry is the word in position 1 (first word)
Entry 4562 is the word in position 4562 (4562nd word)
Last entry is the last word
An inverted file is a list of positions by word!

POS
1

10

20

30

36

FILE

a (1, 4, 40)
entry (11, 20, 31)
file (2, 38)
list (5, 41)
position (9, 16, 26)
positions (44)
word (14, 19, 24, 29, 35, 45)
words (7)
4562 (21, 27)

INVERTED FILE

aka “Index”

Copyright © Weld 2002-2007

Requirements for Search
• Need index structure

– Must handle multiple documents
– Must support phrase queries
– Must encode TF/IDF values
– Must minimize disk seeks & reads

Copyright © Weld 2002-2007 13

a (1, 4, 40)
entry (11, 20, 31)
file (2, 38)
list (5, 41)
position (9, 16, 26)
positions (44)

t1 t2 … tm

d1 w11 w12 … w1m
d2 w21 w22 … w2m

…
dn wn1 wn2 …wnm

a (1, 4, 40)
entry (11, 20, 31)
file (2, 38)
list (5, 41)
position (9, 16, 26)
positions (44)

a (1, 4, 40)
entry (11, 20, 31)
file (2, 38)
list (5, 41)
position (9, 16, 26)
positions (44)

a (1, 4, 40)
entry (11, 20, 31)
file (2, 38)
list (5, 41)
position (9, 16, 26)
positions (44)

+
Number of indexed pages, self-reported
Google: 50% of the web?

Index Size over Time

14Copyright © Weld 2002-2007

15

Thinking about Efficiency
• Clock cycle: 2 GHz

– Typically completes 2 instructions / cycle
• ~10 cycles / instruction, but pipelining & parallel execution

– Thus: 4 billion instructions / sec
• Disk access: 1-10ms

– Depends on seek distance, published average is 5ms
– Thus perform 200 seeks / sec
– (And we are ignoring rotation and transfer times)

• Disk is 20 Million times slower !!!

• Store index in Oracle database?
• Store index using files and unix filesystem?

Copyright © Weld 2002-2007

The Solution
• Inverted Files for Multiple Documents

– Broken into Two Files
• Lexicon

– Hashtable on disk (one read)
– Nowadays: stored in main memory

• Occurrence List
– Stored on Disk
– “Google Filesystem”

Copyright © Weld 2002-2007 16

a
aa
add
and
…

…
docID # pos1, …

…

Lexicon Occurrence List

17

Inverted Files for Multiple Documents

107 4 322 354 381 405
232 6 15 195 248 1897 1951 2192
677 1 481
713 3 42 312 802

WORD NDOCS PTR
jezebel 20
jezer 3
jezerit 1
jeziah 1
jeziel 1
jezliah 1

jezoar 1
jezrahliah 1
jezreel 39

jezoar

34 6 1 118 2087 3922 3981 5002
44 3 215 2291 3010
56 4 5 22 134 992

DOCID OCCUR POS 1 POS 2 . . .

566 3 203 245 287

67 1 132

. . .

“jezebel” occurs
6 times in document 34,
3 times in document 44,
4 times in document 56 . . .

LEXICON

OCCURENCE
INDEX

• One method. Alta Vista uses alternative

…

Copyright © Weld 2002-2007 18

Many Variations Possible

• Address space (flat, hierarchical)
• Record term-position information
• Precalculate TF-IDF info
• Stored header, font & tag info
• Compression strategies

Copyright © Weld 2002-2007

19

Using Inverted Files

Some data structures:

Lexicon: a hash table for all terms in the collection.
.

tj pointer to I(tj)
.

– Inverted file lists previously stored on disk.
– Now fit in main memory

Copyright © Weld 2002-2007 20

The Lexicon

• Grows Slowly (Heap’s law)
– O(nβ) where n=text size; β is constant ~0.4 – 0.6
– E.g. for 1GB corpus, lexicon = 5Mb
– Can reduce with stemming (Porter algorithm)

• Store lexicon in file in lexicographic order
– Each entry points to loc in occurrence file

(aka inverted file list)

Copyright © Weld 2002-2007

21

Using Inverted Files
Several data structures:
2. For each term tj, create a list (occurrence file list)

that contains all document ids that have tj.
I(tj) = { (d1, w1j),

(d2, …
… }

– di is the document id number of the ith document.
– Weights come from freq of term in doc
– Only entries with non-zero weights are kept.

Copyright © Weld 2002-2007 22

More Elaborate Inverted File
Several data structures:
2. For each term tj, create a list (occurrence file list)

that contains all document ids that have tj.
I(tj) = { (d1, freq, pos1, … posk),

(d2, …
… }

– di is the document id number of the ith document.
– Weights come from freq of term in doc
– Only entries with non-zero weights are kept.

Copyright © Weld 2002-2007

23

Inverted files continued

More data structures:

3. Normalization factors of documents are pre-
computed and stored similarly to lexicon

nf[i] stores 1/|di|.

Copyright © Weld 2002-2007 24

Retrieval Using Inverted Files
initialize all sim(q, di) = 0
for each term tj in q

find I(t) using the hash table
for each (di, wij) in I(t)

sim(q, di) += qj ∗wij

for each (relevant) document di

sim(q, di) = sim(q, di) ∗ nf[i]
sort documents in descending similarities

and display the top k to the user;
Copyright © Weld 2002-2007

25

Observations about Method 2
• If doc d doesn’t contain any term of query q,

then d won’t be considered when evaluating q.

• Only non-zero entries in the columns of the
document-term matrix which correspond to query
terms … are used to evaluate the query.

• Computes the similarities of multiple documents
simultaneously (w.r.t. each query word)

Copyright © Weld 2002-2007 26

Efficient Retrieval

Example (Method 2): Suppose
q = { (t1, 1), (t3, 1) }, 1/|q| = 0.7071

d1 = { (t1, 2), (t2, 1), (t3, 1) }, nf[1] = 0.4082
d2 = { (t2, 2), (t3, 1), (t4, 1) }, nf[2] = 0.4082
d3 = { (t1, 1), (t3, 1), (t4, 1) }, nf[3] = 0.5774
d4 = { (t1, 2), (t2, 1), (t3, 2), (t4, 2) }, nf[4] = 0.2774
d5 = { (t2, 2), (t4, 1), (t5, 2) }, nf[5] = 0.3333
I(t1) = { (d1, 2), (d3, 1), (d4, 2) }
I(t2) = { (d1, 1), (d2, 2), (d4, 1), (d5, 2) }
I(t3) = { (d1, 1), (d2, 1), (d3, 1), (d4, 2) }
I(t4) = { (d2, 1), (d3, 1), (d4, 1), (d5, 1) }
I(t5) = { (d5, 2) }

Copyright © Weld 2002-2007

27

Efficient Retrieval q = { (t1, 1), (t3, 1) }, 1/|q| = 0.7071

d1 = { (t1, 2), (t2, 1), (t3, 1) }, nf[1] = 0.4082
d2 = { (t2, 2), (t3, 1), (t4, 1) }, nf[2] = 0.4082
d3 = { (t1, 1), (t3, 1), (t4, 1) }, nf[3] = 0.5774
d4 = { (t1, 2), (t2, 1), (t3, 2), (t4, 2) }, nf[4] = 0.2774
d5 = { (t2, 2), (t4, 1), (t5, 2) }, nf[5] = 0.3333

I(t1) = { (d1, 2), (d3, 1), (d4, 2) }
I(t2) = { (d1, 1), (d2, 2), (d4, 1), (d5, 2) }
I(t3) = { (d1, 1), (d2, 1), (d3, 1), (d4, 2) }
I(t4) = { (d2, 1), (d3, 1), (d4, 1), (d5, 1) }
I(t5) = { (d5, 2) }

After t1 is processed:
sim(q, d1) = 2, sim(q, d2) = 0,
sim(q, d3) = 1
sim(q, d4) = 2, sim(q, d5) = 0

After t3 is processed:
sim(q, d1) = 3, sim(q, d2) = 1,
sim(q, d3) = 2
sim(q, d4) = 4, sim(q, d5) = 0

After normalization:
sim(q, d1) = .87, sim(q, d2) = .29,
sim(q, d3) = .82
sim(q, d4) = .78, sim(q, d5) = 0

Copyright © Weld 2002-2007 28

Efficiency versus Flexibility

• Storing computed document weights is good
for efficiency, but bad for flexibility.

– Recomputation needed if TF and IDF formulas
change and/or TF and DF information changes.

• Flexibility improved by storing raw TF, DF
information, but efficiency suffers.

• A compromise
– Store pre-computed TF weights of documents.
– Use IDF weights with query term TF weights

instead of document term TF weights.
Copyright © Weld 2002-2007

29

How Inverted Files are Created

Crawler Repository Scan Forward
Index

Sort

Sorted
IndexScan

NF
(docs)

Lexicon

Inverted
File
List

ptrs
to

docs

Copyright © Weld 2002-2007 30

Creating Inverted Files Crawler Repository Scan Forward
Index

Sort

Sorted
IndexScan

NF
(docs)

Lexicon

Inverted
File
List

Repository
• File containing all documents downloaded
• Each doc has unique ID
• Ptr file maps from IDs to start of doc in repository

ptrs
to

docs

Copyright © Weld 2002-2007

31

Creating Inverted Files Crawler Repository Scan Forward
Index

Sort

Sorted
IndexScan

NF
(docs)

Lexicon

Inverted
File
List

ptrs
to

docs

NF ~ Length of each document

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2

Forward Index Pos
1
2
3
4
5
6
7

Copyright © Weld 2002-2007 32

Creating Inverted Files Crawler Repository Scan Forward
Index

Sort

Sorted
IndexScan

NF
(docs)

Lexicon

Inverted
File
List

ptrs
to

docs

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Sorted Index

(positional info as well)

Copyright © Weld 2002-2007

33

Creating Inverted Files Crawler Repository Scan Forward
Index

Sort

Sorted
IndexScan

NF
(docs)

Lexicon

Inverted
File
List

WORD NDOCS PTR
jezebel 20
jezer 3
jezerit 1
jeziah 1
jeziel 1
jezliah 1
jezoar 1
jezrahliah 1
jezreel 39

jezoar

34 6 1 118 2087 3922 3981 5002
44 3 215 2291 3010
56 4 5 22 134 992

DOCID OCCUR POS 1 POS 2 . . .

566 3 203 245 287

67 1 132

. . .

ptrs
to

docs

Lexicon

Inverted File List

Copyright © Weld 2002-2007 34

Lexicon Construction

• Build Trie (or hash table)

1 6 9 11 17 19 24 28 33 40 46 50 55 60
This is a text. A text has many words. Words are made from letters.

letters: 60

text: 11, 19

words: 33, 40

made: 50

many: 28

l
m a

d

n
t

w

Copyright © Weld 2002-2007

35

Memory Too Small?

1 2 3 4

1-2

1-4

3-4

• Merging
– When word is shared in two lexicons
– Concatenate occurrence lists
– O(n1 + n2)

• Overall complexity
– O(n log(n/M)

Copyright © Weld 2002-2007 36

Stop lists
• Language-based stop list:

– words that bear little meaning
– 20-500 words
– http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words

• Subject-dependent stop lists
• Removing stop words

– From document
– From query

From Peter Brusilovsky Univ Pittsburg INFSCI 2140

Copyright © Weld 2002-2007

37

Stemming
• Are there different index terms?

– retrieve, retrieving, retrieval, retrieved, retrieves…
• Stemming algorithm:

– (retrieve, retrieving, retrieval, retrieved, retrieves)
retriev

– Strips prefixes of suffixes (-s, -ed, -ly, -ness)
– Morphological stemming

Copyright © Weld 2002-2007 38

Stemming Continued
• Can reduce vocabulary by ~ 1/3
• C, Java, Perl versions, python, c#

www.tartarus.org/~martin/PorterStemmer
• Criterion for removing a suffix

– Does "a document is about w1" mean the same as
– a "a document about w2"

• Problems: sand / sander & wand / wander

• Commercial SEs use giant in-memory tables

Copyright © Weld 2002-2007

39

Compression
• What Should We Compress?

– Repository
– Lexicon
– Inv Index

• What properties do we want?
– Compression ratio
– Compression speed
– Decompression speed
– Memory requirements
– Pattern matching on compressed text
– Random access

Copyright © Weld 2002-2007 40

Inverted File Compression

Each inverted list has the form 1 2 3 ; , , , ... ,
tt ff d d d d< >

A naïve representation results in a storage overhead of () * logf n N+ ⎡ ⎤

This can also be stored as 1 2 1 1; , ,...,
t tt f ff d d d d d −< − − >

Each difference is called a d-gap. Since () ,d gaps N− ≤∑
each pointer requires fewer than

Trick is encoding …. since worst case ….

log N⎡ ⎤ bits.

Assume d-gap representation for the rest of the talk, unless stated
otherwise

Slides adapted from Tapas Kanungo and David Mount, Univ Maryland
Copyright © Weld 2002-2007

41

Text Compression
Two classes of text compression methods
• Symbolwise (or statistical) methods

– Estimate probabilities of symbols - modeling step
– Code one symbol at a time - coding step
– Use shorter code for the most likely symbol
– Usually based on either arithmetic or Huffman coding

• Dictionary methods
– Replace fragments of text with a single code word
– Typically an index to an entry in the dictionary.

• eg: Ziv-Lempel coding: replaces strings of characters with a pointer to
a previous occurrence of the string.

– No probability estimates needed

Symbolwise methods are more suited for coding d-gaps

Copyright © Weld 2002-2007 42

Classifying d-gap Compression Methods:

• Global: each list compressed using same model
– non-parameterized: probability distribution for d-gap sizes is

predetermined.
– parameterized: probability distribution is adjusted according to

certain parameters of the collection.

• Local: model is adjusted according to some parameter,
like the frequency of the term

• By definition, local methods are parameterized.

Copyright © Weld 2002-2007

43

Conclusion
• Local methods best

• Parameterized global models ~ non-parameterized
– Pointers not scattered randomly in file

• In practice, best index compression algorithm is:
– Local Bernoulli method (using Golomb coding)

• Compressed inverted indices usually faster+smaller than
– Signature files
– Bitmaps

Local < Parameterized Global < Non-parameterized Global

Not by much

Copyright © Weld 2002-2007

