Open Information Extraction

CSE 454 Daniel Weld

To change

- More textrunner,
- more pattern learning
- Reorder:
 - Kia start

	Traditional IE	Open IE
Input	Corpus + Labeled Data	Corpus + Domain-Independent Methods
Relations	Specified In Advance	Discovered Automatically
Complexity	O (D * R) D documents, R relations	O (D) D documents
	D documents, R relations	D documents

Methods for Open IE

Self Supervision

- Kylin (Wikipedia)
- Shrinkage & Retraining
- Temporal Extraction
- Hearst Patterns
 - PMI Validation
 - Subclass Extraction
- Pattern Learning
- Structural Extraction
- List Extraction & WebTables
- TextRunner

The Intelligence in Wikipedia Project

Daniel S. Weld

Department of Computer Science & Engineering University of Washington Seattle, WA, USA

Joint Work with

Fei Wu, Raphael Hoffmann, Stef Schoenmackers, Eytan Adar, Saleema Amershi, Oren Etzioni, James Fogarty, Chloe Kiddon, Shawn Ling & Kayur Patel

Kyl	in: Sel	f-Supervised [Wu & Weld CIKM 2007] Information Extraction from Wikipedia From infoboxes to a training set
Clearfield Founded Seat	County, Pennsylvania Statistics March 28, 1804 Clearfield	Clearfield County was created in 1804 from parts of Huntingdon and Lycoming Counties but was administered as part of Centre County until 1812.
Area - Total	2,988 km² (1,154 m²)	Its county seat is Clearfield.
- Land - Water Population	sq mi (km²) 17 km² (8 mi²) , 0.56%	2,972 km² (1,147 mi²) of it is land and 17 km² (7 mi²) of it (0.56%) is water.
- (2000) - Density	83,382 288m ⁹	As of 2005, the population density was 28.2/km².

Improving Recall on Sparse Classes [Wu et al. KDD-08] Retraining • Compare Kylin Extractions with Tuples from Textrunner • Additional Positive Examples • Eliminate False Negatives • Eliminate False Negatives • Relation-Independent Extraction • Relation-Independent Extraction • Exploits Grammatical Structure • CRF Extractor with POS Tag Features

"Generate and Test" Paradigm

1. Find extractions from generic rules

- 2. Validate each extraction
 - Assign probability that extraction is correct
 - Use search engine hit counts to compute PMI
 - PMI (pointwise mutual information) between
 - extraction
 - "discriminator" phrases for target concept

PMI-IR: P.D.Turney, "Mining the Web for synonyms: PMI-IR versus LSA on TOEFL". In Proceedings of ECML, 2001.

Bootstrap Training

- Only input is set of predicates with class labels. instanceOf(Country), class labels "country", "nation"
- Combine predicates with domain-independent templates <class> such as NP => instanceOf(class, NP) to create extraction rules and discriminator phrases
 - rule: "countries such as" NP => instanceOf(Country, NP) discrim: "country X"
- 3. Use extraction rules to find set of candidate seeds
- 4. Select best seeds by average PMI score
- 5. Use seeds to train discriminators and select best discriminators
- 6. Use discriminators to rerank candidate seeds, select new seeds
- 7. Use new seeds to retrain discriminators, ...

Bootstrap Parameters

- Select candidate seeds with minimum support
 Over 1.000 hit counts for the instance
- Otherwise unreliable PMI scores
- Parameter settings:
- 100 candidate seeds
- · Pick best 20 as seeds
- Iteration 1, rank candidate seeds by average PMI
- Iteration 2, use trained discriminators to rank candidate seeds
- Select best 5 discriminators after training
 Favor best ratio of P(PMI > thresh | φ) to P(PMI > thresh | ¬φ)
- Slight preference for higher thresholds
- Produced seeds without errors in all classes tested

Discriminator Phrases from Class Labels From the class labels "country" and "nation" country X nation X countries X nations X X country X nation X countries X nations Equivalent to weak extraction rules - no syntactic analysis in search engine queries - ignores punctuation between terms in phrase PMI counts how often the weak rule fires on entire Web - low hit count for random errors - higher hit count for true positives

Discriminator Phrases from Rule Keywords From extraction rules for instanceOf(Country) countries such as X nations such as X such countries as X such nations as X countries including X nations including X countries especially X nations especially X X and other countries X and other nations X or other countries X or other nations

X is a nation

X is the country X is the nation Higher precision but lower coverage than discriminators from class labels

X is a country

Using PMI to Compute Probability

Standard formula for Naïve Bayes probability update

- useful as a ranking function
- probabilities skewed prove that $P(\phi \mid f_1, f_2, ..., f_n) = \frac{1}{P(\phi) \prod_i P(f_i \mid \phi) + P(\neg \phi) \prod_i P(f_i \mid \neg \phi)} 1.0$

Probability that fact ϕ is a correct, given features $f_1, f_2, \dots f_n$

Need to turn PMI-scores into features $f_1, f_2, \dots f_n$

Need to estimate conditional probabilities $P(f_i | \phi)$ and $P(f_i | \neg \phi)$

Features from PMI: Method #1

Thresholded PMI scores

Learn a PMI threshold from training Learn conditional probabilities for PMI > threshold,

given that ϕ is in the target class, or not

P(PMI > thresh | class)P(PMI <= thresh | class) P(PMI > thresh | not class) P(PMI <= thresh | not class)

Impact	of Unm	naskii	ng on	PMI
Name Washington Casablanca Chevy Chase Chicago	Recessive city city actor movie	Original 0.50 0.41 0.09 0.02	Unmask 0.99 0.93 0.58 0.21	Boost 96% 127% 512% 972%
				53

Relative Frequency	Category	Simplified Lexico-Syntactic Pattern
37.8	Verb	E ₁ Verb E ₂ X established Y
22.8	Noun + Prep	E ₁ NP Prep E ₂ X settlement with Y
16.0	Verb + Prep	E ₁ Verb Prep E ₂ X moved to Y
9.4	Infinitive	E ₁ to Verb E ₂ X plans to acquire Y
5.2	Modifier	E ₁ Verb E ₂ Noun X is Y winner
1.8	Coordinate	E ₁ (andI,I-I:) E ₂ NP X-Y deal
1.0	Coordinate,	E ₁ (andl.) E ₂ Verb X, Y merge
0.8	Appositive	E ₁ NP (:I,)? E ₂ X hometown : Y

