

Announcements

- We do have a Hadoop cluster!
- It's offsite. I need to know all groups who want it!
- You all have accounts for MySQL on the cubist machine (cubist.cs.washington.edu)
- Your folder is /projects/instr/cse454/a-f
- I'll have a better email out this afternoon I hope
- Grading HW1 should be finished by next week.

Timely warning

- POS tagging and parsing are two large topics in NLP
- Usually covered in 2-4 lectures
- We have an hour and twenty minutes.

Part-of-speech tagging

- Often want to know what part of speech (POS) or word class (noun, verb,...) should be assigned to words in a piece of text
- Part-of-speech tagging assigns POS labels to words

JJ JJ NNS VBP RB
Colorless green ideas sleep furiously.

Ambiguity
Buffalo buffalo buffalo.

Naïve approach!

- Pick the most common tag for the word

Word	POS listings in Brown		
heat	noun/89	verb/5	
oil	noun/87		
in	prep/20731	noun/1	adv/462
a	det/22943	noun $/ 50$	noun-proper $/ 30$
large	adj/354	noun/2	adv/5
pot	noun/27		

- 91% success rate!

We have more information

- We are not just tagging words, we are tagging sequences of words

For a sequence of words W :

$$
W=w_{1} w_{2} w_{3} \ldots w_{n}
$$

We are looking for a sequence of tags T :

$$
\mathrm{T}=\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3} \ldots \mathrm{t}_{\mathrm{n}}
$$

where $P(T \mid W)$ is maximized

- Find all instances of a sequence in the dataset and pick the most common sequence of tags
- Count("heat oil in a large pot") $=0$????
- Uhh...
- Spare data problem
- Most sequences will never occur, or will occur too few times for good predictions

Bayes’ Rule

- To find $\mathrm{P}(\mathrm{T} \mid \mathrm{W})$, use Bayes' Rule:
- We can maximize $\mathrm{P}(\mathrm{T} \mid \mathrm{W})$ by maximizing $P(W \mid T) * P(T)$

Finding $P(T)$

- Generally,

$$
\begin{aligned}
& P\left(t_{1} t_{2} \ldots t_{n}\right)=P\left(t_{1}\right) \times P\left(t_{2} \ldots t_{n} \mid t_{1}\right) \\
& P\left(t_{1} t_{2} \ldots t_{n}\right)=P\left(t_{1}\right) \times P\left(t_{2} \mid t_{1}\right) \times P\left(t_{3} \ldots t_{n} \mid t_{1} t_{2}\right) \\
& P\left(t_{1} t_{2} \ldots t_{n}\right)=\prod_{i} P\left(t_{i} \mid t_{1} t_{2} \ldots t_{i-1}\right)
\end{aligned}
$$

- Usually not feasible to accurately estimate more than tag bigrams (possibly trigrams)

Markov assumption

- Assume that the probability of a tag only depends on the tag that came directly before it

$$
P\left(t_{i} \mid t_{1} t_{2} \ldots t_{i-1}\right)=P\left(t_{i} \mid t_{i-1}\right)
$$

- Then,

$$
\left.P\left(t_{1} t_{2} \ldots t_{n} P \in t_{1}\left(t_{1} t_{1}\right)\right)_{1}\right)\left(z_{2}\right] t_{1} R\left(P_{1}\left(t+t_{5} \mid t_{1}\right)\right) \times \ldots \times P\left(t_{n} \mid t_{n-1}\right)
$$

- Only need to count tag bigrams.

Putting it all together

- We can similarly assume

$$
P\left(w_{i} \mid t_{1} \ldots t_{n}\right)=P\left(w_{i} \mid t_{i}\right)
$$

- So:

$$
P\left(w_{1} \ldots w_{n} \mid t_{1} \ldots t_{n}\right)=P\left(w_{1} \mid t_{1}\right) \times P\left(w_{2} \mid t_{2}\right) \times \ldots \times P\left(w_{n} \mid t_{n}\right)
$$

- And the final equation becomes:

$$
\begin{aligned}
P(W \mid T) \times P(T)= & P\left(w_{1} \mid t_{1}\right) \times P\left(w_{2} \mid t_{2}\right) \times \ldots \times P\left(w_{n} \mid t_{n}\right) \times \\
& P\left(t_{1}\right) \times P\left(t_{2} \mid t_{1}\right) \times P\left(t_{3} \mid t_{2}\right) \times \ldots \times P\left(t_{n} \mid t_{n-1}\right)
\end{aligned}
$$

Three Questions for HMMs

1. Evaluation - Given a sequence of words $\mathrm{W}=\mathrm{w}_{1} \mathrm{w}_{2} \mathrm{~W}_{3} \ldots \mathrm{w}_{\mathrm{n}}$ and an HMM model Θ, what is $\mathrm{P}(\mathrm{W} \mid \Theta)$
2. Decoding - Given a sequence of words W and an HMM model Θ, find the most probable parse $T=t_{1} t_{2} t_{3} \ldots t_{n}$
3. Learning - Given a tagged (or untagged) dataset, find the HMM Θ that maximizes the data

Three Questions for HMMs

1. Evaluation - Given a sequence of words $\mathrm{W}=\mathrm{W}_{1} \mathrm{~W}_{2} \mathrm{~W}_{3} \ldots \mathrm{w}_{\mathrm{n}}$ and an HMM model Θ, what is $\mathrm{P}(\mathrm{W} \mid \Theta)$
2. Tagging - Given a sequence of words \mathbf{W} and an HMM model Θ, find the most probable parse $T=t_{1} \mathrm{t}_{2} \mathrm{t}_{3} \ldots \mathrm{t}_{\mathrm{n}}$
3. Learning - Given a tagged (or untagged) dataset, find the HMM Θ that maximizes the data

Tagging
- Need to find the most likely tag sequence given a sequence of words o maximizes $\mathrm{P}(\mathrm{W} \mid \mathrm{T})^{*} \mathrm{P}(\mathrm{T})$ and thus $\mathrm{P}(\mathrm{T} \mid \mathrm{W})$ - Use Viterbi!

Learning a POS-tagging HMM

- Estimate the parameters in the model using counts

$$
P\left(t_{i} \mid t_{i-1}\right) \rightarrow
$$

$$
P\left(w_{i} \mid t_{i}\right) \rightarrow
$$

- With smoothing, this model can get 95-96\% correct tagging

Use back pointers to pick best sequence

Problem with supervised learning

- Requires a large hand-labeled corpus
- Doesn't scale to new languages
- Expensive to produce
- Doesn't scale to new domains
- Instead, apply unsupervised learning with Expectation Maximization (EM)
- Expectation step: calculate probability of all sequences using set of parameters
- Maximization step: re-estimate parameters using results from E-step

Lots of other techniques!

- Trigram models (more common)
- Text normalization
- Error-based transformation learning ("Brill learning")
- Rule-based system
- Calculate initial states: proper noun detection, tagged corpus
- Acquire transformation rules
- Change VB to NN when prev word was adjective
- The long race finally ended
- Minimally supervised learning
- Unlabeled data but have a dictionary

Seems like POS-tagging is solved

- Penn Treebank POS-tagging accuracy \sim human ceiling
- Human agreement 97\%
- In other languages, not so much

So now we are HMM Masters

Syntax

- We can use HMMs to...
- Tag words in a sentence with their parts of speech
- Extract entities and other information from a sentence
- Can we use them to determine syntactic categories?
- Refers to the study of the way words are arranged together, and the relationship between them.
- Prescriptive vs. Descriptive
- Goal of syntax is to model the knowledge of that people unconsciously have about the grammar of their native language
- Parsing extracts the syntax from a sentence

Parsing applications
- High-precision Question-Answering systems
- Named Entity Recognition (NER) and
information extraction
- Opinion extraction in product reviews
- Improved interaction during computer
applications/games

Language has recursive properties

Coronel Mustard killed Mrs. Peacock in the library with the candlestick at midnight

HMMs can't generate hierarchical structure

Coronel Mustard killed Mrs. Peacock in the library with the candlestick at midnight.

- Does Mustard have the candlestick?
- Or is the candlestick just sitting in the library?
- Memoryless
- Can't make long range decisions about attachments
- Need a better model

Words work in groups

- Constituents - words or groupings of words that function as single units
- Noun phrases (NPs)
- The computer science class
- Peter, Paul, and Mary
- PAC10 Schools, such as UW,
- He
- The reason I was late

Words work in groups

- Constituents - words or groupings of words that function as single units
- Noun phrases (NPs)
- The computer science class listened

NPs can appear before a verb.

- He juggled ...
- The reason I was late was ...
- *the listened
- *such sing
- *late was

Many different constituents

S-simple declarative clause	k the head of the NP. Corresponds very
2. SBAR - Clause introduced by a (possibly empty) subordinating conjunction	roughly to N -bar level but used quite differently.
3. SBARQ - Direct question introduced by a whword or a wh-phrase	15. PP - Prepositional Phrase. 16. PRN - Parenthetical.
4. SINV - Inverted declarative sentence	17. PRT - Particle.
5. SQ - Inverted yes/no question, or main clause of a wh-question	18. QP - Quantifier Phrase (i.e. complex measure/amount phrase); used within NP.
6. ADJP - Adjective Phrase.	19. RRC - Reduced Relative Clause.
7. ADVP - Adverb Phrase.	20. UCP - Unlike Coordinated Phrase.
8. CONJP - Conjunction Phrase.	21. VP - Vereb Phras
9. FRAG - Fragment.	22. WHADJP - Wh-adjective Phrase.
10. INTJ - Interjection.	23. WHAVP - Wh-adverb Phrase.
11. LST - List marker.	24. WHNP - Wh-noun Phrase.
12. NAC - Not a Constituent; used to show the scope of certain prenominal modifiers within an NP.	25. WHPP - Wh-prepositional Phrase. 26. X - Unknown, uncertain, or unbracketable. X is often used for bracketing typos and in
13. NP - Noun Phrase.	bracketing the...the-constructions.
14. NX - Used within certain complex NPs to	

Many different constituents					
1.	CC	Coordinating conjunction	20.	RB	Adverb
	CD	Cardinal number	21.	RBR	Adverb, comparative
3.	DT	Determiner	22.	RBS	Adverb, superlative
	EX	Existential there	23.	RP	Particle
5.	FW	Foreign word	24.	SYM	Symbol
	IN	Preposition or subordinating	25.	TO	to
		conjunction	26.	UH	Interjection
7.	JJ	Adjective	27.	VB	Verb, base form
8.	JJR	Adjective, comparative	28.	VBD	Verb, past tense
9.	JJS	Adjective, superlative	29.	VBG	Verb, gerund or
10.	LS	List item marker			present participle
	MD	Modal	30.	VBN	Verb, past participle
12.	NN	Noun, singular or mass	31.	VBP	Verb, non-3rd person
13.	NNS	Noun, plural			singular present
14.	NP	Proper noun, singular	32.	VBZ	Verb, 3rd person
15.	NPS	Proper noun, plural			singular present
	PDT	Predeterminer	33.	WDT	Wh-determiner
	POS	Possessive ending	34.	WP	Wh-pronoun
		Personal pronoun	35.	WP\$	Possessive wh-pronoun
		Possessive pronoun	36.	WRB	Wh-adverb

Attachment ambiguities
- Teacher Strikes Idle Kids
- Squad Helps Dog Bite Victim
- Complaints About NBA Referees Getting Ugly
- Soviet Virgin Lands Short of Goal Again
- Milk Drinkers are Turning to Powder

Attachment ambiguities

- The key parsing decision: How do we 'attach' various kinds of constituents - PPs, adverbial or participial phrases, coordinations, etc.
- Prepositional phrase attachment
- I saw the man with the telescope.
- What does with a telescope modify?
- The verb saw?
- The noun man?
- Very hard problem. AI Complete.

Parsing

- We want to run a grammar backwards to find possible structures for a sentence
- Parsing can be viewed as a search problem
- Parsing is a hidden data problem

Context-free grammars (CFGs)
Phrase structure grammars = Context-free grammars

- Specifies a set of tree structures that capture constituency and ordering in language
- A noun phrase can come before a verb phrase
- $G=(T, N, S, R)$
- T is the set of terminals (i.e. words)
- N is the set of non-terminals
- Usually separate the set P of preterminals (POS tags) from the rest of the non-terminals
- S is the start symbol
- R is the set of rules/productions of the form $X \rightarrow \gamma$ where X is a nonterminal and γ is a sequence of terminals and nonterminals (possibly empty)
- A grammer G generates a language L

A phrase structure grammar

- By convention, S is the start symbol
$\therefore S \rightarrow$ NP VP
- NP \rightarrow DT NN
- NP \rightarrow NNS
- VP \rightarrow V NP
- VP \rightarrow V
- ...

$$
\mathrm{DT} \rightarrow \mathrm{a}
$$

But since a sentence can have more than one parse...

$$
\text { NN } \rightarrow \text { boy }
$$

$$
\text { NNS } \rightarrow \text { sports } \quad \text { S }
$$

$$
\mathrm{NN} \rightarrow \text { bruise }
$$

$$
\mathrm{V} \rightarrow \text { sports }
$$

$$
\mathrm{V} \rightarrow \text { likes }
$$

a brưise likes sports

Probabilistic context-free grammars (PCFGs)

- $G=(T, N, S, R, P)$
- T is the set of terminals (i.e. words)
- N is the set of non-terminals
- Usually separate the set P of preterminals (POS tags) from the rest of the non-terminals
- S is the start symbol
- R is the set of rules/productions of the form $X \rightarrow Y$ where X is a nonterminal and γ is a sequence of terminals and nonterminals (possibly empty)
- $\mathrm{P}(\mathrm{R})$ gives the probability of each rule

$$
\forall X \in N, \sum_{X \rightarrow v \in R} P(X \rightarrow \gamma)=1
$$

- A grammer G generates a language L

Given a sentence S...

- We want to find the most likely parse τ

$$
\begin{aligned}
\arg \max _{\tau} P(\tau \mid S) & =\arg \max _{\tau} \frac{P(\tau, S)}{P(S)} \\
& =\arg \max _{\tau} P(\tau, S) \\
& =\arg \max _{\tau} P(\tau) \quad \text { If } \mathrm{S}=\operatorname{yield}(\tau)
\end{aligned}
$$

- How are we supposed to find $P(\tau)$?
- Infinitely many trees in the language!

Finding $P(\tau)$

- Define probability distributions over the rules in the grammar

S	\rightarrow NP VP	0.8
S	\rightarrow S conj S	0.2
NP \rightarrow Noun	0.2	
NP \rightarrow Det Noun	0.4	
NP \rightarrow NP PP	0.2	
NP \rightarrow NP conj NP	0.2	
VP \rightarrow Verb	0.4	
VP \rightarrow Verb NP	0.3	
VP \rightarrow Verb NP NP	0.1	
VP \rightarrow VP PP	0.2	
PP \rightarrow P NP	1.0	
		Hockenmaier

Finding $P(\tau)$

- The probability of a tree is the product of the probability of
- Context free!

Estimating $P(X \rightarrow a)$

- Supervised
- Relative frequency estimation
- Count what is seen in a treebank corpus

$$
P(X \rightarrow \alpha)=\frac{C(X \rightarrow \alpha)}{C(X)}
$$

- Unsupervised
- Expected relative frequency estimation
- Use Inside-Outside Algorithm (EM variant)

$$
P(X \rightarrow \alpha)=\frac{E[C(X \rightarrow \alpha)]}{E[C(X)]}
$$

How well do PCFGs perform?

+ Robust to variations in language
- Strong independence assumptions
? WSJ parsing accuracy: about 73\% LP/LR F1
- Lack of lexicalization
- A PCFG uses the actual words only to determine the probability of parts-of-speech (the preterminals)
- I like to eat cake with white frosting.
- I like to eat cake with a spork.

Huge area of research

- Coarse-to-fine parsing
- Parse with a simpler grammar
- Refine with a more complex one
- Dependency parsing
- A sentence is parsed by relating each word to other words in the sentence which depend on it.
- Discriminative parsing
- Given training examples, learn a function that classifies a sentence with its parse tree
- and more!

The good news!
- Part of speech taggers and sentence parsers are freely available! - So why did we sit through this lecture? - Maybe you'll be interested in this area - Write a parser to parse web tables - PCFGs for information extraction Like to know how things work

It's over!

