Information Extraction from the World Wide Web

CSE 454

Based on Slides by William W. Cohen Carnegie Mellon University Andrew McCallum

University of Massachusetts Amherst

From KDD 2003

Administrivia

- Homework

 Due today
- Projects
 - Proposals due today
 - Group meetings (30min) next week.
 - Please email me with times that work

© Daniel S. Weld

	Tues	Wed	Thurs	Fri
9:00				XXXX
9:30				XXXX
10:00				
10:30		XXXXX		
11:00		XXXXX		XXXX
11:30		XXXXX		XXXX
12:00				XXXX
12:30		XXXXX		XXXX
1:00		XXXXX		XXXX
1:30		XXXXX	XXXXX	XXXX
	XXXXX	XXXXX	XXXXX	XXXX
4:30		XXXXX	XXXXX	XXXX
5:00		XXXXX	XXXXX	XXXX

Naïve Bayesian Motivation

- Problem: Too many possible instances (exponential in *m*) to estimate all P(*E* | *c_i*)
- If we assume features of an instance are independent given the category (*c_i*) (*conditionally independent*).

$$P(E \mid c_i) = P(e_1 \land e_2 \land \dots \land e_m \mid c_i) = \prod_{j=1}^m P(e_j \mid c_j)$$

7

• Therefore, we then only need to know $P(e_j | c_i)$ for each feature and category.

Landscape of IE Tasks (4/4):								
Pattern Combinations								
Jack Welch will retire as CEO of General Electric tomorrow. The top role at the Connecticut company will be filled by Jeffrey Immelt.								
Single entity Binary relationship N-ary record								
Person: Jack Welch	Relation: Person:	Person-Title Jack Welch	Relation: Company:	Succession General Ele				
Person: Jeffrey Immelt	Title:	CEO	Title:	CEO Jack Welsh Jeffrey Imme				
Location: Connecticut	Relation: Company: Location:	Company-l General Ele Connecticu	In: ectric					
"Named entity" extraction Slides from Cohen & McCallum								

State of the Art Performance Named entity recognition Person, Location, Organization, ... F1 in high 80's or low- to mid-90's Binary relation extraction Contained-in (Location1, Location2) Member-of (Person1, Organization1) F1 in 60's or 70's or 80's Wrapper induction Extremely accurate performance obtainable Human effort (~30min) required on each site

Slides from Cohen & McC

- What windows to consider?
 - all windows containing as many tokens as the shortest example, but no more tokens than the longest example
- How to represent a classifier? It might:
 - Restrict the length of window;
 - Restrict the vocabulary or formatting used before/after/inside window;
 - Restrict the relative order of tokens, etc.

• Learning Method

- SRV: Top-Down Rule Learning [Frietag AAAI '98]
- Rapier: Bottom-Up [Califf & Mooney, AAAI '99]

Slides from Cohen & McCallu

Rapier – results <i>vs.</i> SRV									
System	stime		etime		loc		speaker		
, i	Prec	Rec	Prec	Rec	Prec	Rec	Prec	Rec	
RAPIER	93.9	92.9	95.8	94.6	91.0	60.5	80.9	39.4	
RAP-WT	96.5	95.3	94.9	94.4	91.0	61.5	79.0	40.0	
RAP-W	96.5	95.9	96.8	96.6	90.0	54.8	76.9	29.1	
NAIBAY	98.2	98.2	49.5	95.7	57.3	58.8	34.5	25.6	
SRV	98.6	98.4	67.3	92.6	74.5	70.1	54.4	58.4	
Whisk	86.2	100.0	85.0	87.2	83.6	55.4	52.6	11.1	
WH-PR	96.2	100.0	89.5	87.2	93.8	36.1	0.0	0.0	
Slides from Cohen & McCallu									

Rule-learning approaches to slidingwindow classification: Summary

- SRV, Rapier, and WHISK [Soderland KDD '97]
 - Representations for classifiers allow restriction of the relationships between tokens, etc
 - Representations are carefully chosen subsets of even more powerful representations based on logic programming (ILP and Prolog)
 - Use of these "heavyweight" representations is complicated, but seems to pay off in results
- Can simpler representations for classifiers work?

Question #1 – Evaluation

GIVEN

A sequence of rolls by the casino player

 $124552646214614613613666166466163661636616361\ldots$

QUESTION

How likely is this sequence, given our model of how the casino works?

This is the **EVALUATION** problem in HMMs

Slides from Serafim Batzoglou

Question #2 – Decoding

GIVEN

A sequence of rolls by the casino player

1245526462146146136136661664661636616366163...

QUESTION

What portion of the sequence was generated with the fair die, and what portion with the loaded die?

This is the **DECODING** question in HMMs

Slides from Serafim Batzoglou

Question # 3 – Learning

A sequence of rolls by the casino player

124552646214614613613666166466163661636616361651...

QUESTION

How "loaded" is the loaded die? How "fair" is the fair die? How often does the casino player change from fair to loaded, and back?

This is the **LEARNING** question in HMMs

Slides from Serafim Batzoglou

IE Resources

- Data
 - RISE, http://www.isi.edu/~muslea/RISE/index.html Linguistic Data Consortium (LDC)
 Penn Treebank, Named Entities, Relations, etc.

 - http://www.biostat.wisc.edu/~craven/ie
 http://www.cs.umass.edu/~mccallum/data
- · Code
 - TextPro, http://www.ai.sri.com/~appelt/TextPro
 - MALLET, http://www.cs.umass.edu/~mccallum/mallet
 - SecondString, http://secondstring.sourceforge.net/
- Both
 - http://www.cis.upenn.edu/~adwait/penntools.html

Slides from Cohen & McCallur

References

- .
- .
- •
- •
- .
- •
- .
- .
- .
- •
- •
- :
- : .
- <section-header><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text>

Slides from Cohen & McCallum