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Text Categorization 

CSE 454 
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Categorization 

• Given: 
– A description of an instance, x∈X, where X is 

the instance language or instance space. 
– A fixed set of categories:                           

C={c1, c2,…cn} 
• Determine: 

– The category of x: c(x)∈C, where c(x) is a 
categorization function whose domain is X and 
whose range is C. 
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Sample Category Learning Problem 

•  Instance language: <size, color, shape> 
–  size ∈ {small, medium, large} 
–  color ∈ {red, blue, green} 
–  shape ∈ {square, circle, triangle} 

•  C = {positive, negative} 

• D: Example Size Color Shape Category 

1 small red circle positive 

2 large red circle positive 

3 small red triangle negative 

4 large blue circle negative 

Another Example: County vs. Country? 
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Example: County vs. Country? 
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• Given: 
– A description of an instance, x∈X, 

where X is the instance language or 
instance space. 

– A fixed set of categories:                           
C={c1, c2,…cn} 

• Determine: 
– The category of x: c(x)∈C, where c(x) 

is a categorization function whose 
domain is X and whose range is C. 
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Text Categorization 

•  Assigning documents to a fixed set of categories, e.g. 
•  Web pages  

– Yahoo-like classification 
•  Newsgroup Messages  

– Recommending 
– Spam filtering 

•  News articles  
– Personalized newspaper 

•  Email messages  
– Routing 
– Prioritizing  
– Folderizing 
–  spam filtering 
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Learning for Text Categorization 

• Hard to construct text categorization functions. 
•  Learning Algorithms: 

– Bayesian (naïve) 
– Neural network 
– Relevance Feedback (Rocchio) 
– Rule based (C4.5, Ripper, Slipper) 
– Nearest Neighbor (case based) 
– Support Vector Machines (SVM) 
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Applications of ML 

•  Credit card fraud 
•  Product placement / consumer behavior 
•  Recommender systems 
•  Speech recognition 

Most mature & successful  
area of AI 
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Learning for Categorization 
• A training example is an instance x∈X, paired 

with its correct category c(x):         <x, c(x)> for 
an unknown categorization function, c.  

• Given a set of training examples, D. 

•  Find a hypothesized categorization function, 
h(x), such that: 

Consistency 

{<          , county>, <       , country>,…  

Function Approximation 
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c(x) 

x 

May not be any perfect fit 
Classification ~ discrete functions 

h(x) 
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General Learning Issues 

•  Many hypotheses are usually consistent with the 
training data. 

•  Bias 
– Any criteria other than consistency with the training 

data that is used to select a hypothesis. 
•  Classification accuracy  

– % of instances classified correctly 
–  (Measured on independent test data.) 

•  Training time  
– Efficiency of training algorithm 

•  Testing time  
– Efficiency of subsequent classification 12 

Generalization 

• Hypotheses must generalize to correctly 
classify instances not in the training data. 

•  Simply memorizing training examples is a 
consistent hypothesis that does not 
generalize. 

• Occam’s razor: 
– Finding a simple hypothesis helps ensure 

generalization. 
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Why is Learning Possible? 

Experience alone never justifies any 
conclusion about any unseen instance. 

Learning occurs when  
PREJUDICE meets DATA! 

Learning a “Frobnitz” 
© Daniel S. Weld 14 

Bias 

• The nice word for prejudice is “bias”. 

• What kind of hypotheses will you consider? 
– What is allowable range of functions you use when 

approximating? 
• What kind of hypotheses do you prefer? 
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Some Typical Biases 

– Occam’s razor 
“It is needless to do more when less will suffice”  
– William of Occam,  
  died 1349 of the Black plague 

– MDL – Minimum description length 
– Concepts can be approximated by  
–  ... conjunctions of predicates 

... by linear functions 

... by short decision trees 
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A Learning Problem 
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Hypothesis Spaces 
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Terminology 
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Two Strategies for ML 

• Restriction bias: use prior knowledge to 
specify a restricted hypothesis space. 

– Naïve Bayes Classifier 
• Preference bias: use a broad hypothesis 

space, but impose an ordering on the 
hypotheses. 

– Decision trees. 
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Bayesian Methods 

•  Learning and classification methods based 
on probability theory. 
– Bayes theorem plays a critical role in 

probabilistic learning and classification. 
– Uses prior probability of each category given 

no information about an item. 
•  Categorization produces a posterior 

probability distribution over the possible 
categories given a description of an item. 
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Axioms of Probability Theory 

• All probabilities between 0 and 1 

•  Probability of truth and falsity  
        P(true) = 1        P(false) = 0. 
      
•  The probability of  disjunction is: 

A B 
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Probability: Simple & Logical 
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Conditional Probability  

•  P(A | B) is the probability of A given B 
• Assumes:  

– B is all and only information known. 

• Defined by: 

A B 
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Independence 

•  A and B are independent iff: 

•  Therefore, if A and B are independent: 

These two constraints are logically equivalent 
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Independence 

Tr
ue

  B 

A A ∧ B 

P(A∧B) = P(A)P(B) 
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Conditional Independence 

Tr
ue

  B 

A A ∧ B 

A&B not independent, since P(A|B) < P(A) 
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Conditional Independence 

Tr
ue

  B 

A A ∧ B 

C 

B ∧ C 

A∧C 

But:  A&B are made independent by ¬C 

P(A|B,¬C) 
= P(A|¬C)  
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Bayes Theorem 

Simple proof from definition of conditional probability: 

QED: 

(Def. cond. prob.) 

(Def. cond. prob.) 

(Mult both sides of 2 by P(H).) 

(Substitute 3 in 1.) 

1702-1761 
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Bayesian Categorization 

•  Let set of categories be {c1, c2,…cn} 
•  Let E be description of an instance. 
•  Determine category of E by determining for each ci 

•  P(E) can be determined since categories are 
complete and disjoint. 
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Bayesian Categorization (cont.) 

•  Need to know: 
– Priors: P(ci)  
– Conditionals: P(E | ci) 

•  P(ci) are easily estimated from data.  
–  If ni of the examples in D are in ci,then  P(ci) =  ni / |D| 

•  Assume instance is a conjunction of binary features: 

•  Too many possible instances (exponential in m) to 
estimate all P(E | ci) 
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Naïve Bayesian Motivation 

•  Problem: Too many possible instances (exponential in 
m) to estimate all P(E | ci) 

•  If we assume features of an instance are independent 
given the category (ci) (conditionally independent). 

•  Therefore, we then only need to know  P(ej | ci) for 
each feature and category. 
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Naïve Bayes Example 

•  C = {allergy, cold, well} 
•  e1 = sneeze; e2 = cough; e3 = fever 
•  E = {sneeze, cough, ¬fever} 

Prob Well Cold Allergy 
P(ci)      0.9       0.05       0.05 

P(sneeze|ci)      0.1       0.9       0.9 

P(cough|ci)      0.1       0.8       0.7 

P(fever|ci)      0.01       0.7       0.4 
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Naïve Bayes Example (cont.) 

P(well | E) = (0.9)(0.1)(0.1)(0.99)/P(E)=0.0089/P(E) 
P(cold | E) = (0.05)(0.9)(0.8)(0.3)/P(E)=0.01/P(E) 
P(allergy | E) = (0.05)(0.9)(0.7)(0.6)/P(E)=0.019/P(E) 

Most probable category: allergy 
P(E) = 0.089 + 0.01 + 0.019 = 0.0379 
P(well | E) = 0.23 
P(cold | E) = 0.26 
P(allergy | E) = 0.50 

Probability Well Cold Allergy 

P(ci)      0.9       0.05       0.05 

P(sneeze | ci)      0.1       0.9       0.9 

P(cough | ci)      0.1       0.8       0.7 

P(fever | ci)      0.01       0.7       0.4 

E={sneeze, cough, ¬fever} 
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Estimating Probabilities 

•  Normally, probabilities are estimated based on 
observed frequencies in the training data. 

•  If D contains ni examples in category ci, and nij of 
these ni examples contains feature ej, then: 

•  However, estimating such probabilities from small 
training sets is error-prone. 

•  If due only to chance, a rare feature, ek, is always 
false in the training data, ∀ci :P(ek | ci) = 0. 

•  If ek then occurs in a test example, E, the result is 
that ∀ci: P(E | ci) = 0 and ∀ci: P(ci | E) = 0 
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Smoothing 

•  To account for estimation from small samples, 
probability estimates are adjusted or smoothed. 

•  Laplace smoothing using an m-estimate assumes 
that each feature is given a prior probability, p, that 
is assumed to have been previously observed in a 
“virtual” sample of size m. 

•  For binary features, p is simply assumed to be 0.5. 

= (nij + 1) / (ni + 2) 
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Naïve Bayes for Text 

• Modeled as generating a bag of words for a 
document in a given category by repeatedly 
sampling with replacement from a 
vocabulary V = {w1, w2,…wm} based on the 
probabilities P(wj | ci). 

•  Smooth probability estimates with Laplace         
m-estimates assuming a uniform distribution 
over all words (p = 1/|V|) and m = |V| 
– Equivalent to a virtual sample of seeing each word in 

each category exactly once. 
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Text Naïve Bayes Algorithm 
(Train) 

Let V be the vocabulary of all words in the documents in D 
For each category ci  ∈ C 

        Let Di be the subset of documents in D in category ci 

        P(ci) = |Di| / |D| 
      Let Ti be the concatenation of all the documents in Di 

         Let ni be the total number of word occurrences in Ti 

         For each word wj ∈ V 
             Let nij be the number of occurrences of wj in Ti 

                   Let P(wi | ci) = (nij + 1) / (ni + |V|)   

38 

Text Naïve Bayes Algorithm 
(Test) 

Given a test document X 
Let n be the number of word occurrences in X 
Return the category: 

     where ai is the word occurring the ith position in X 
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Naïve Bayes Time Complexity 

•  Training Time:  O(|D|Ld + |C||V|))           
where Ld is the average length of a document in D. 
– Assumes V and all Di , ni, and nij pre-computed in O(|D|

Ld) time during one pass through all of the data. 
– Generally just O(|D|Ld) since usually |C||V| < |D|Ld  

•  Test Time: O(|C| Lt)                                
where Lt  is the average length of a test document. 

•  Very efficient overall, linearly proportional to the 
time needed to just read in all the data. 
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Easy to Implement 

•  But… 

•  If you do… it probably won’t work… 
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Probabilities: Important Detail! 

Any more potential problems here? 

•  P(spam | E1 … En) =  Π P(spam | Ei) i 

 We are multiplying lots of small numbers  
 Danger of underflow! 
 0.557 = 7 E -18        

 Solution? Use logs and add! 
 p1 * p2 = e log(p1)+log(p2) 

 Always keep in log form 42 

Underflow Prevention 

• Multiplying lots of probabilities, which are 
between 0 and 1 by definition, can result in 
floating-point underflow. 

•  Since log(xy) = log(x) + log(y), it is better to 
perform all computations by summing logs 
of probabilities rather than multiplying 
probabilities. 

•  Class with highest final un-normalized log 
probability score is still the most probable. 
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Naïve Bayes Posterior Probabilities 

•  Classification results of naïve Bayes  
– I.e. the class with maximum posterior probability… 
– Usually fairly accurate (?!?!?) 

• However, due to the inadequacy of the 
conditional independence assumption… 
– Actual posterior-probability estimates not accurate. 
– Output probabilities generally very close to 0 or 1. 

Multi-Class Categorization 

•  Pick the category with max probability 
•  Create many 1 vs other classifiers 
• Use a hierarchical approach (wherever 

hierarchy available) 
        Entity 

         Person                    Location 

 Scientist   Artist    City    County    Country 
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