

Categorization

- Given:

- A description of an instance, $x \in X$, where X is the instance language or instance space.
- A fixed set of categories:

$$
C=\left\{c_{1}, c_{2}, \ldots c_{\mathrm{n}}\right\}
$$

- Determine:
- The category of $x: c(x) \in C$, where $c(x)$ is a categorization function whose domain is X and whose range is C.

Sample Category Learning Problem

- Instance language: <size, color, shape>
- size \in \{small, medium, large $\}$
- color \in \{red, blue, green\}
- shape \in \{square, circle, triangle $\}$
- $C=\{$ positive, negative $\}$
- $D:$| Example | Size | Color | Shape | Category |
| :--- | :--- | :--- | :--- | :--- |
| 1 | small | red | circle | positive |
| 2 | large | red | circle | positive |
| 3 | small | red | triangle | negative |
| 4 | large | blue | circle | negative |

Example: County vs. Country?

- Given:
- A description of an instance, $x \in X$, where X is the instance language or instance space.
- A fixed set of categories:
$C=\left\{c_{1}, c_{2}, \ldots c_{\mathrm{n}}\right\}$
- Determine:
- The category of $x: c(x) \in C$, where $c(x)$ is a categorization function whose domain is X and whose range is C.

Text Categorization

- Assigning documents to a fixed set of categories, e.g.
- Web pages

Yahoo-like classification

- Newsgroup Messages
- Recommending

Spam filtering

- News articles
- Personalized newspaper
- Email messages
- Routing
- Prioritizing
- Folderizing
- spam filtering

Learning for Text Categorization

- Hard to construct text categorization functions.
- Learning Algorithms:
- Bayesian (naïve)
- Neural network
- Relevance Feedback (Rocchio)
- Rule based (C4.5, Ripper, Slipper)
- Nearest Neighbor (case based)
- Support Vector Machines (SVM)

Applications of ML

- Credit card fraud
- Product placement / consumer behavior
- Recommender systems
- Speech recognition

Most mature \& successful area of AI

Learning for Categorization

- A training example is an instance $x \in X$, paired with its correct category $c(x)$: $\quad<x, c(x)>$ for an unknown categorization function, c.
- Given a set of training examples, D.

- Find a hypothesized categorization function, $h(x)$, such that: $\forall<x, c(x)>\in D: h(x)=c(x)$

Consistency

$$
9
$$

Function Approximation

Classification \sim discrete functions

General Learning Issues

- Many hypotheses are usually consistent with the training data.
- Bias
- Any criteria other than consistency with the training data that is used to select a hypothesis.
- Classification accuracy
- \% of instances classified correctly
- (Measured on independent test data.)
- Training time
- Efficiency of training algorithm
- Testing time
- Efficiency of subsequent classification

Generalization

- Hypotheses must generalize to correctly classify instances not in the training data.
- Simply memorizing training examples is a consistent hypothesis that does not generalize.
- Occam's razor:
- Finding a simple hypothesis helps ensure generalization.

Terminology

- Training example. An example of the form $\langle\mathbf{x}, f(\mathbf{x})\rangle$.
- Target function (target concept). The true function f.
- Hypothesis. A proposed function h believed to be similar to f.
- Concept. A boolean function. Examples for which $f(\mathbf{x})=1$ are called positive examples or positive instances of the concept. Examples for which $f(\mathbf{x})=0$ are called negative examples or negative instances.
- Classifier. A discrete-valued function. The possible values $f(\mathbf{x}) \in\{1, \ldots, K\}$ are called the classes or class labels.
- Hypothesis Space. The space of all hypotheses that can, in princiiple, be output by a learning algorithm.
- Version Space. The space of all hypotheses in the hypothesis space that have not yet been ruled out by a training example.
- Restriction bias: use prior knowledge to specify a restricted hypothesis space.
- Naïve Bayes Classifier
- Preference bias: use a broad hypothesis space, but impose an ordering on the hypotheses.
- Decision trees.

Bayesian Methods

- Learning and classification methods based on probability theory.
- Bayes theorem plays a critical role in probabilistic learning and classification.
- Uses prior probability of each category given no information about an item.
- Categorization produces a posterior probability distribution over the possible categories given a description of an item.

Axioms of Probability Theory

- All probabilities between 0 and 1

$$
0 \leq P(A) \leq 1
$$

- Probability of truth and falsity

$$
P(\text { true })=1 \quad \mathrm{P}(\text { false })=0 .
$$

- The probability of disjunction is:
$P(A \vee B)=P(A)+P(B)-P(A \wedge B)$

Probability: Simple \& Logical

- The definitions imply that certain logically related events must have related probabilities
E.g. $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$

de Finetti (1931): an agent who bets according to probabilities that violate these axioms can be forced to bet so as to lose money regardless of outcome.

Independence

- A and B are independent iff:

$$
P(A \mid B)=P(A)
$$

$P(B \mid A)=P(B)$

- Therefore, if A and B are independent:
$P(A \mid B)=\frac{P(A \wedge B)}{P(B)}=P(A)$
$P(A \wedge B)=P(A) P(B)$

Bayesian Categorization

- Let set of categories be $\left\{c_{1}, c_{2}, \ldots c_{\mathrm{n}}\right\}$
- Let E be description of an instance.
- Determine category of E by determining for each c_{i} $P\left(c_{i} \mid E\right)=\frac{P\left(c_{i}\right) P\left(E \mid c_{i}\right)}{P(E)}$
- $\mathrm{P}(E)$ can be determined since categories are complete and disjoint.

$$
\begin{aligned}
& \sum_{i=1}^{n} P\left(c_{i} \mid E\right)=\sum_{i=1}^{n} \frac{P\left(c_{i}\right) P\left(E \mid c_{i}\right)}{P(E E)}=1 \\
& P(E)=\sum_{i=1}^{n} P\left(c_{i}\right) P\left(E \mid c_{i}\right)
\end{aligned}
$$

Bayesian Categorization (cont.)

- Need to know:
- Priors: $\mathrm{P}\left(c_{i}\right)$
- Conditionals: $\mathrm{P}\left(E \mid c_{i}\right)$
- $\mathrm{P}\left(c_{i}\right)$ are easily estimated from data.
- If n_{i} of the examples in D are in c_{i} then
$\mathrm{P}\left(c_{i}\right)=n_{i}| | D \mid$
- Assume instance is a conjunction of binary features:

$$
E=e_{1} \wedge e_{2} \wedge \cdots \wedge e_{m}
$$

- Too many possible instances (exponential in m) to estimate all $\mathrm{P}\left(E \mid c_{i}\right)$

Naïve Bayesian Motivation

- Problem: Too many possible instances (exponential in $m)$ to estimate all $\mathrm{P}\left(E \mid c_{i}\right)$
- If we assume features of an instance are independent given the category $\left(c_{i}\right)$ (conditionally independent).

$$
P\left(E \mid c_{i}\right)=P\left(e_{1} \wedge e_{2} \wedge \cdots \wedge e_{m} \mid c_{i}\right)=\prod_{j=1}^{m} P\left(e_{j} \mid c_{i}\right)
$$

- Therefore, we then only need to know $\mathrm{P}\left(e_{j} \mid c_{i}\right)$ for each feature and category. m) to estimate all $P\left(E \mid c_{i}\right)$

Naïve Bayes Example

- $\mathrm{C}=$ \{allergy, cold, well\}
- $e_{1}=$ sneeze; $e_{2}=$ cough; $e_{3}=$ fever
- $\mathrm{E}=\{$ sneeze, cough, \neg fever $\}$

Prob	Well	Cold	Allergy
$\mathrm{P}\left(c_{i}\right)$	0.9	0.05	0.05
$\mathrm{P}\left(\right.$ sneeze $\left.\mid c_{i}\right)$	0.1	0.9	0.9
$\mathrm{P}\left(\right.$ cough $\left.\mid c_{i}\right)$	0.1	0.8	0.7
$\mathrm{P}\left(\right.$ fever $\left.\mid c_{i}\right)$	0.01	0.7	0.4

Naïve Bayes Example (cont.)				
Probability	Well	Cold	Allergy	$\mathrm{E}=\{$ sneeze, cough, \neg fever $\}$
$\mathrm{P}\left(c_{i}\right)$	0.9	0.05	0.05	
$\mathrm{P}\left(\right.$ sneeze $\left.\mid c_{i}\right)$	0.1	0.9	0.9	
$\mathrm{P}\left(\right.$ cough $\left.\mid c_{i}\right)$	0.1	0.8	0.7	
$\mathrm{P}\left(\right.$ fever $\left.\mid c_{i}\right)$	0.01	0.7	0.4	
$\begin{aligned} & \mathrm{P}(\text { well } \mid \mathrm{E})=(0.9)(0.1)(0.1)(0.99) / \mathrm{P}(\mathrm{E})=0.0089 / \mathrm{P}(\mathrm{E}) \\ & \mathrm{P}(\text { cold } \mid \mathrm{E})=(0.05)(0.9)(0.8)(0.3) / \mathrm{P}(\mathrm{E})=0.01 / \mathrm{P}(\mathrm{E}) \\ & \mathrm{P}(\text { allergy } \mid \mathrm{E})=(0.05)(0.9)(0.7)(0.6) / \mathrm{P}(\mathrm{E})=0.019 / \mathrm{P}(\mathrm{E}) \end{aligned}$				
Most probable category: allergy$\begin{aligned} & P(E)=0.089+0.01+0.019=0.0379 \\ & P(\text { well } \mid E)=0.23 \\ & P(\text { cold } \mid E)=0.26 \\ & P(\text { allergy } \mid E)=0.50 \end{aligned}$				33

Estimating Probabilities

- Normally, probabilities are estimated based on observed frequencies in the training data.
- If D contains n_{i} examples in category c_{i}, and $n_{i j}$ of these n_{i} examples contains feature e_{j}, then:

$$
P\left(e_{j} \mid c_{i}\right)=\frac{n_{i j}}{n_{i}}
$$

- However, estimating such probabilities from small training sets is error-prone.
- If due only to chance, a rare feature, e_{k}, is always false in the training data, $\forall c_{i}: \mathrm{P}\left(e_{k} \mid c_{i}\right)=0$.
- If e_{k} then occurs in a test example, E, the result is that $\forall c_{i}: \mathrm{P}\left(E \mid c_{i}\right)=0$ and $\forall c_{i}: \mathrm{P}\left(c_{i} \mid E\right)=0$

Smoothing

- To account for estimation from small samples, probability estimates are adjusted or smoothed.
- Laplace smoothing using an m-estimate assumes that each feature is given a prior probability, p, that is assumed to have been previously observed in a "virtual" sample of size m.

$$
P\left(e_{j} \mid c_{i}\right)=\frac{n_{i j}+m p}{n_{i}+m}=\left(\mathrm{n}_{\mathrm{ij}}+1\right) /\left(\mathrm{n}_{\mathrm{i}}+2\right)
$$

- For binary features, p is simply assumed to be 0.5 .

Naïve Bayes for Text

- Modeled as generating a bag of words for a document in a given category by repeatedly sampling with replacement from a vocabulary $V=\left\{w_{1}, w_{2}, \ldots w_{\mathrm{m}}\right\}$ based on the probabilities $\mathrm{P}\left(w_{j} \mid c_{i}\right)$.
- Smooth probability estimates with Laplace m-estimates assuming a uniform distribution over all words $(p=1 /|V|)$ and $m=|V|$
- Equivalent to a virtual sample of seeing each word in each category exactly once.

Text Naïve Bayes Algorithm (Train)
Let V be the vocabulary of all words in the documents in D For each category $c_{i} \in C$ Let D_{i} be the subset of documents in D in category c_{i} $\mathrm{P}\left(c_{i}\right)=\left\|D_{i}\right\| /\|D\|$ Let T_{i} be the concatenation of all the documents in D_{i} Let n_{i} be the total number of word occurrences in T_{i} For each word $w_{j} \in V$ Let $n_{i j}$ be the number of occurrences of w_{j} in T_{i} Let $\mathrm{P}\left(w_{i} \mid c_{i}\right)=\left(n_{i j}+1\right) /\left(n_{i}+\|V\|\right)$

Naïve Bayes Time Complexity

- Training Time: $\left.\mathrm{O}\left(|D| L_{d}+|C||V|\right)\right)$
where L_{d} is the average length of a document in D.
- Assumes V and all D_{i}, n_{i}, and $n_{i j}$ pre-computed in $\mathrm{O}(|D|$ L_{d}) time during one pass through all of the data.
- Generally just $\mathrm{O}\left(|D| L_{d}\right)$ since usually $|C||V|<|D| L_{d}$
- Test Time: $\mathrm{O}\left(|C| L_{t}\right)$
where L_{t} is the average length of a test document.
- Very efficient overall, linearly proportional to the time needed to just read in all the data.

Easy to Implement

- But...
- If you do... it probably won’t work...

Probabilities: Important Detail!

- $\mathrm{P}\left(\right.$ spam $\left.\mid \mathrm{E}_{1} \ldots \mathrm{E}_{\mathrm{n}}\right)=\prod_{\mathrm{i}} \mathrm{P}\left(\right.$ spam $\left.\mid \mathrm{E}_{\mathrm{i}}\right)$

Any more potential problems here?

- We are multiplying lots of small numbers

Danger of underflow!

- $0.5^{57}=7 \mathrm{E}-18$
- Solution? Use logs and add!
- $\mathrm{p}_{1} * \mathrm{p}_{2}=\mathrm{e}^{\log (\mathrm{p} 1)+\log (\mathrm{p} 2)}$
- Always keep in log form

Underflow Prevention

- Multiplying lots of probabilities, which are between 0 and 1 by definition, can result in floating-point underflow.
- Since $\log (x y)=\log (x)+\log (y)$, it is better to perform all computations by summing logs of probabilities rather than multiplying probabilities.
- Class with highest final un-normalized \log probability score is still the most probable.

Naïve Bayes Posterior Probabilities

- Classification results of naïve Bayes
- I.e. the class with maximum posterior probability...
- Usually fairly accurate (?!?!?)
- However, due to the inadequacy of the conditional independence assumption...
- Actual posterior-probability estimates not accurate.
- Output probabilities generally very close to 0 or 1 .

Multi-Class Categorization

- Pick the category with max probability
- Create many 1 vs other classifiers
- Use a hierarchical approach (wherever hierarchy available)

