

Sa	ample C	Catego	ry Leari	ning Pro	blem
• Inst - s - c - s • C =	ance lang ize \in {sma color \in {rec hape \in {so	guage: <s ill, mediur d, blue, gr juare, circ e, negati</s 	size, color m, large} reen} le, triangle ve}	r, shape>	
• D:	Example	Size	Color	Shape	Category
	1	small	red	circle	positive
	2	large	red	circle	positive
	3	small	red	triangle	negative
	4	large	blue	circle	negative

Learning for Text Categorization

- Hard to construct text categorization functions.
- Learning Algorithms:
 - Bayesian (naïve)
 - Neural network
 - Relevance Feedback (Rocchio)
 - Rule based (C4.5, Ripper, Slipper)
 - Nearest Neighbor (case based)
 - Support Vector Machines (SVM)

Applications of ML

- Credit card fraud
- Product placement / consumer behavior
- Recommender systems
- Speech recognition

Most mature & successful area of AI

© Daniel S. W

General Learning Issues

- Many hypotheses are usually consistent with the training data.
- Bias
 - Any criteria other than consistency with the training data that is used to select a hypothesis.

11

- Classification accuracy
 % of instances classified correctly
 - (Measured on independent test data.)
- Training time
- Efficiency of training algorithm
- Testing time
- Efficiency of subsequent classification

Generalization

- Hypotheses must generalize to correctly classify instances not in the training data.
- Simply memorizing training examples is a consistent hypothesis that does not generalize.
- Occam's razor:
 Finding a simple hypothesis helps ensure
 - generalization.

Bias

- The nice word for prejudice is "bias".
- What kind of hypotheses will you consider?
 What is allowable *range* of functions you use when approximating?

14

• What kind of hypotheses do you prefer?

© Daniel S. Weld

Hypoth	he	es	is	S	Spaces
• Complete Ignorance. There a	ne 2	16	= 6	553	6 possible boolean functions over four
input features. We can't figure out	wł	nich	OD6	2 18	correct until we've seen every possible
input-output pair. After 7 examples	, we	e sti	II na	ave	2° possibilities.
	x_1	x_2	x_3	x_4	y
	0	0	0	0	?
	0	0	0	1	?
	0	0	1	0	0
	0	0	1	1	1
	0	1	0	0	0
	0	1	0	1	0
	0	1	1	0	0
	0	1	1	1	?
	1	U	0	0	7 -
	1	0	0	1	1
	1	0	1	1	2
	1	1	0	0	1
	î	÷.	0	1	2
	1	1	1	0	2
	î	î	î.	1	2
		<u> </u>	-		

Terminology

- Training example. An example of the form $\langle \mathbf{x}, f(\mathbf{x}) \rangle$.
- Target function (target concept). The true function f.
- \bullet Hypothesis. A proposed function h believed to be similar to f.
- Concept. A boolean function. Examples for which f(x) = 1 are called positive examples or positive instances of the concept. Examples for which f(x) = 0 are called negative examples or negative instances.
- Classifier. A discrete-valued function. The possible values $f(\mathbf{x}) \in \{1, \dots, K\}$ are called the classes or class labels.
- Hypothesis Space. The space of all hypotheses that can, in principle, be output by a learning algorithm.
- Version Space. The space of all hypotheses in the hypothesis space that have not yet been ruled out by a training example.

Two Strategies for ML

- Restriction bias: use prior knowledge to specify a restricted hypothesis space. – Naïve Bayes Classifier
- Preference bias: use a broad hypothesis space, but impose an ordering on the

hypotheses.

-Decision trees.

© Daniel S. Weld

19

Bayesian Methods

- Learning and classification methods based on probability theory.
 - Bayes theorem plays a critical role in probabilistic learning and classification.
 - Uses *prior* probability of each category given no information about an item.
- Categorization produces a *posterior* probability distribution over the possible categories given a description of an item.

Independence

- *A* and *B* are *independent* iff: P(A | B) = P(A) These two constraints are logically equivalent
- Therefore, if *A* and *B* are independent:

$$P(A \mid B) = \frac{P(A \land B)}{P(B)} = P(A)$$

$$P(A \land B) = P(A)P(B)$$

Bayes The	orem
$P(H \mid E) = \frac{P(E \mid H)P(H)}{P(E)}$	1702-1761
Simple proof from definition of	conditional probability:
$P(H \mid E) = \frac{P(H \land E)}{P(E)}$	(Def. cond. prob.)
$P(E \mid H) = \frac{P(H \land E)}{P(H)}$	(Def. cond. prob.)
$P(H \land E) = P(E \mid H)P(H)$	(Mult both sides of 2 by P(H).)
QED: $P(H E) = \frac{P(E H)P(H)}{P(E)}$	(Substitute 3 in 1.)
	28

29

$$\sum_{i=1}^{n} P(c_i \mid E) = \sum_{i=1}^{n} \frac{P(c_i)P(E \mid c_i)}{P(E)} = 1$$

$$P(E) = \sum_{i=1}^{n} P(c_i) P(E \mid c_i)$$

Naïve Bayesian Motivation

- Problem: Too many possible instances (exponential in *m*) to estimate all P(E | c_i)
- If we assume features of an instance are independent given the category (c_i) (conditionally independent).

$$P(E \mid c_i) = P(e_1 \land e_2 \land \dots \land e_m \mid c_i) = \prod_{i=1}^{n} P(e_i \mid c_i)$$

• Therefore, we then only need to know $P(e_j | c_i)$ for each feature and category.

Naïve Bayes Example

- C = {allergy, cold, well}
- e_1 = sneeze; e_2 = cough; e_3 = fever
- $E = \{\text{sneeze, cough, } \neg \text{fever}\}$

Prob	Well	Cold	Allergy
$P(c_i)$	0.9	0.05	0.05
$P(\text{sneeze} c_i)$	0.1	0.9	0.9
$P(\text{cough} c_i)$	0.1	0.8	0.7
$P(\text{fever} c_i)$	0.01	0.7	0.4

Smoothing

- To account for estimation from small samples, probability estimates are adjusted or *smoothed*.
- Laplace smoothing using an *m*-estimate assumes that each feature is given a prior probability, *p*, that is assumed to have been previously observed in a "virtual" sample of size *m*.

$$P(e_j | c_i) = \frac{n_{ij} + mp}{n_i + m} = (n_{ij} + 1) / (n_i + 2)$$

• For binary features, p is simply assumed to be 0.5.

probabilities $P(w_j | c_i)$. Smooth probability estimates with Laplace

m-estimates assuming a uniform distribution over all words (p = 1/|V|) and m = |V|

Naïve Bayes for Text

Modeled as generating a bag of words for a

document in a given category by repeatedly

vocabulary $V = \{w_1, w_2, \dots, w_m\}$ based on the

sampling with replacement from a

 Equivalent to a virtual sample of seeing each word in each category exactly once.

Text Naïve Bayes Algorithm (Train)

Let V be the vocabulary of all words in the documents in D For each category $c_i \in C$ Let D_i be the subset of documents in D in category c_i $P(c_i) = |D_i| / |D|$ Let T_i be the concatenation of all the documents in D_i Let n_i be the total number of word occurrences in T_i For each word $w_i \in V$

Let n_{ij} be the number of occurrences of w_j in T_i Let $P(w_i | c_i) = (n_{ij} + 1) / (n_i + |V|)$

Text Naïve Bayes Algorithm (Test)

Given a test document XLet n be the number of word occurrences in XReturn the category:

 $\underset{c_i \in C}{\operatorname{argmax}} P(c_i) \prod_{i=1} P(a_i \mid c_i)$ where a_i is the word occurring the *i*th position in X

Naïve Bayes Time Complexity

- Training Time: O(|D|L_d + |C||V|)) where L_d is the average length of a document in D.
 Assumes V and all D_i, n_i and n_{ii} pre-computed in O(|D|)
 - L_d) time during one pass through all of the data. - Generally just $O(|D|L_d)$ since usually $|C||V| \le |D|L_d$
- Test Time: $O(|C| L_t)$ where L_t is the average length of a test document.
- Very efficient overall, linearly proportional to the time needed to just read in all the data.

39

Easy to Implement

• But...

• If you do... it probably won't work...

Underflow Prevention

- Multiplying lots of probabilities, which are between 0 and 1 by definition, can result in floating-point underflow.
- Since log(xy) = log(x) + log(y), it is better to perform all computations by summing logs of probabilities rather than multiplying probabilities.
- Class with highest final un-normalized log probability score is still the most probable.

Naïve Bayes Posterior Probabilities

- Classification results of naïve Bayes
 - I.e. the class with maximum posterior probability...Usually fairly accurate (?!?!?)
- However, due to the inadequacy of the conditional independence assumption...
 - Actual posterior-probability estimates not accurate.
 - Output probabilities generally very close to 0 or 1.

43