
1

Information Retrieval (IR)

Based on slides by
Prabhakar Raghavan, Hinrich Schütze,

Ray Larson

Administriva

Problem Set – online tomorrow; due 4/14
Work in pairs

Office hours:
Dan: Fridays 10-11am (CSE 588) – or via email

Chloe: TBA

Dan OOT next week
Project teams & ideas also due 4/14,

But I expect iteration, so do the best you can.

More Project Ideas

Information extraction from
wikipedia, products, reviews,
hiking,
some specialized area

Extracting events (concerts, ….
E.g. time is easy, but the event, harder

Webcam classification (location, orientation, …)
WebTables

Main Ideas for Today

Information retrieval
Boolean, similarity, relevance

Term-document matrix
Inverted index
Stemming & stop-words
Vector-space model
TF-IDF
Precision, recall & F measure

Query

Which plays of Shakespeare contain the
words Brutus AND Caesar but NOT
Calpurnia?

Could grep all of Shakespeare’s plays for
Brutus and Caesar then strip out lines
containing Calpurnia?

Slow (for large corpora)
NOT is hard to do
Other operations (e.g., find the Romans NEAR
countrymen) unfeasibly slow

Term-document incidence

1 if play contains word,
0 otherwise

Tempest Hamlet Othello Macbeth
Antony 0 0 0 1
Brutus 0 1 0 0
Caesar 0 1 1 1

Calpurnia 0 0 0 0
Cleopatra 0 0 0 0

mercy 1 1 1 1
worser 1 1 1 0

2

Booleans over Incidence Vectors

So we have a 0/1 vector for each term.

To answer query: take the vectors for Brutus,
Caesar and Calpurnia (complemented)
bitwise AND.

110100 AND 110111 AND 101111 = 100100.

Answers to Query

Antony and Cleopatra, Act III, Scene ii
Agrippa [Aside to DOMITIUS ENOBARBUS]:

Why, Enobarbus,
When Antony found Julius Caesar dead,
He cried almost to roaring; and he wept
When at Philippi he found Brutus slain.

Hamlet, Act III, Scene ii
Lord Polonius:

I did enact Julius Caesar I was killed i' the Capitol;
Brutus killed me.

So we’re done?

Pretty easy, huh?

Bigger Corpora

Consider
n = 1M documents,
each with about 1K terms.

Avg 6 bytes/term incl spaces/punctuation
6GB of data.

Say there are m = 500K distinct terms….

Can’t Build the Matrix

500K x 1M matrix: 500 Billion 0’s and 1’s.

But it has no more than 1 billion 1’s.
matrix is extremely sparse.

What’s a better representation?

Why?

Documents are parsed to extract
words and these are saved with the
document ID.

I did enact Julius
Caesar I was

killed i' the
Capitol; Brutus

killed me.

Doc 1

So let it be with
Caesar. The

Noble Brutus hath
told you Caesar
was ambitious

Doc 2

Term Doc
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2

Inverted index

3

Later, sort inverted file by terms
Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1

Multiple term entries
in a single document
are merged and
frequency
information added

Term Doc # Freq
ambitious 2 1
be 2 1
brutus 1 1
brutus 2 1
capitol 1 1
caesar 1 1
caesar 2 2
did 1 1
enact 1 1
hath 2 1
I 1 2
i' 1 1
it 2 1
julius 1 1
killed 1 2
let 2 1
me 1 1
noble 2 1
so 2 1
the 1 1
the 2 1
told 2 1
you 2 1
was 1 1
was 2 1
with 2 1

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Issues with index we just built

How do we process a query?
What terms in a doc do we index?

All words or only “important” ones?

Stopword list: terms that are so common
that they’re ignored for indexing.

e.g., the, a, an, of, to …
language-specific.

Issues in what to index

Cooper’s vs. Cooper vs. Coopers.
Full-text vs. full text vs. {full, text} vs. fulltext.

Accents: résumé vs. resume.

Cooper’s concordance of Wordsworth was published in
1911. The applications of full-text retrieval are legion:
they include résumé scanning, litigation support and
searching published journals on-line.

Punctuation

Ne’er: use language-specific, handcrafted
“locale” to normalize.
State-of-the-art: break up hyphenated
sequence.
U.S.A. vs. USA - use locale.
a.out

Numbers

3/12/91
Mar. 12, 1991
55 B.C.
B-52
100.2.86.144

Generally, don’t index as text
Creation dates for docs

4

Case folding

Reduce all letters to lower case
Exception: upper case in mid-sentence

e.g., General Motors

Fed vs. fed

SAIL vs. sail

Thesauri and soundex

Handle synonyms and homonyms
Hand-constructed equivalence classes

e.g., car = automobile

your ≠ you’re

Index such equivalences?
Or expand query?

More later ...

Spell correction

Look for all words within (say) edit distance
3 (Insert/Delete/Replace) at query time

e.g., Alanis Morisette

Spell correction is expensive and slows the
query (up to a factor of 100)

Invoke only when index returns zero
matches?
What if docs contain mis-spellings?

Lemmatization

Reduce inflectional/variant forms to base
form
E.g.,

am, are, is → be

car, cars, car's, cars' → car

the boy's cars are different colors → the boy
car be different color

Stemming

Reduce terms to their “roots” before
indexing

language dependent
e.g., automate(s), automatic, automation all
reduced to automat.

for example compressed
and compression are both
accepted as equivalent to
compress.

for exampl compres and
compres are both accept
as equival to compres.

Porter’s algorithm

Most common algorithm for stemming English
Conventions + 5 phases of reductions

phases applied sequentially
each phase consists of a set of commands
sample convention: Of the rules in a compound
command, select the one that applies to the
longest suffix.

Porter’s stemmer available:
http//www.sims.berkeley.edu/~hearst/irbook/porter.html

5

Typical rules in Porter

sses → ss
ies → i
ational → ate
tional → tion

Challenges

Sandy
Sanded Sand ???

Beyond Term Search

Phrases?

Proximity: Find Gates NEAR Microsoft.
Index must capture position info in docs.

Zones in documents: Find documents with
(author = Ullman) AND (text contains
automata).

Evidence accumulation

1 vs. 0 occurrence of a search term
2 vs. 1 occurrence
3 vs. 2 occurrences, etc.

Need term frequency information / docs

Ranking search results

Boolean queries give inclusion or
exclusion of docs.

Need to measure proximity from query
to each doc.

Whether docs presented to user are
singletons, or a group of docs
covering various aspects of the query.

Test Corpora

6

Standard relevance benchmarks

TREC - National Institute of Standards and
Testing (NIST) has run large IR testbed for
many years
Reuters and other benchmark sets used
“Retrieval tasks” specified

sometimes as queries

Human experts mark, for each query and for
each doc, “Relevant” or “Not relevant”

or at least for subset that some system
returned

Sample TREC query

Credit: Marti Hearst

Precision and recall

Precision: fraction of retrieved docs that are
relevant = P(relevant|retrieved)
Recall: fraction of relevant docs that are
retrieved = P(retrieved|relevant)

Precision P = tp/(tp + fp)
Recall R = tp/(tp + fn)

tnfnNot Retrieved

fptpRetrieved

Not RelevantRelevant

Precision & Recall

Precision

Proportion of selected
items that are correct

Recall
% of target items that

were selected

Precision-Recall curve
Shows tradeoff

tn

fp tp fn

System returned these

Actual relevant docs
fptp

tp
+

fntp
tp
+

Recall

Precision

Precision/Recall

Can get high recall (but low precision) by
retrieving all docs on all queries!
Recall is a non-decreasing function of the
number of docs retrieved

Precision usually decreases (in a good system)

Difficulties in using precision/recall
Binary relevance
Should average over large corpus/query
ensembles
Need human relevance judgements
Heavily skewed by corpus/authorship

A combined measure: F

Combined measure that assesses this
tradeoff is F measure (weighted harmonic
mean):

People usually use balanced F1 measure
i.e., with β = 1 or α = ½

Harmonic mean is conservative average
See CJ van Rijsbergen, Information Retrieval

RP
PR

RP

F
+

+
=

−+
= 2

2)1(
1)1(1

1
β
β

αα

7

Precision-recall curves

Evaluation of ranked results:
You can return any number of results ordered
by similarity
By taking various numbers of documents
(levels of recall), you can produce a precision-
recall curve

Precision-recall curves

Evaluation
There are various other measures

Precision at fixed recall
This is perhaps the most appropriate thing for
web search: all people want to know is how
many good matches there are in the first one
or two pages of results

11-point interpolated average precision
The standard measure in the TREC
competitions: Take the precision at 11 levels
of recall varying from 0 to 1 by tenths of the
documents, using interpolation (the value for
0 is always interpolated!), and average them

Ranking models in IR

Key idea:
We wish to return in order the documents
most likely to be useful to the searcher

To do this, we want to know which
documents best satisfy a query

An obvious idea is that if a document talks
about a topic more then it is a better match

A query should then just specify terms that
are relevant to the information need, without
requiring that all of them must be present

Document relevant if it has a lot of the terms

Binary term presence matrices

Record whether a document contains a
word: document is binary vector in {0,1}v

Idea: Query satisfaction = overlap measure:

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

YX ∩

Overlap matching

What are the problems with the overlap
measure?
It doesn’t consider:

Term frequency in document
Term scarcity in collection

(How many documents mention term?)

Length of documents

8

Many Overlap Measures

|)||,min(|
||
||||

||
||
||

||||
||2

||

2
1

2
1

DQ
DQ
DQ

DQ
DQ
DQ
DQ

DQ
DQ

∩
×

∩
∪
∩
+
∩

∩ Simple matching (coordination level match)

Dice’s Coefficient

Jaccard’s Coefficient

Cosine Coefficient

Overlap Coefficient

Documents as vectors

Each doc j can be viewed as a vector of tf
values, one component for each term
So we have a vector space

terms are axes
docs live in this space
even with stemming, may have 20,000+
dimensions

(The corpus of documents gives us a matrix,
which we could also view as a vector space
in which words live – transposable data)

Documents in 3D Space

Assumption: Documents that are “close together”
in space are similar in meaning.

The vector space model

Query as vector:

Regard query as short document
Return the docs, ranked by distance to the query
Easy to compute, since both query & docs are
vectors.

Developed in the SMART system (Salton, c. 1970)
and standardly used by TREC participants and web
IR systems

Vector Representation

Documents & Queries represented as vectors.
Position 1 corresponds to term 1, …position t to
term t
The weight of the term is stored in each position

Vector distance measure used to rank retrieved documents

absent is terma if 0

 ,...,,

,...,,

21

21

=

=

=

w

wwwQ

wwwD

qtqq

dddi itii

Documents in 3D Space

Documents that are close to query
(measured using vector-space metric)

=> returned first.

Query

9

Document Space has High
Dimensionality

What happens beyond 2 or 3 dimensions?
Similarity still has to do with the number of
shared tokens.
More terms -> harder to understand which
subsets of words are shared among similar
documents.

We will look in detail at ranking methods
One approach to handling high
dimensionality: Clustering

Word Frequency

Which word is more indicative of document
similarity?

‘book,’ or ‘Rumplestiltskin’?
Need to consider “document frequency”---how
frequently the word appears in doc collection.

Which doc is a better match for the query
“Kangaroo”?

One with a single mention of Kangaroos…
or a doc that mentions it 10 times?

Need to consider “term frequency”---how many
times the word appears in the current document.

TF x IDF

)/log(* kikik nNtfw =

log

Tcontain that in documents ofnumber the
 collection in the documents ofnumber total

in T termoffrequency document inverse
document in T termoffrequency

document in term

⎟
⎠
⎞⎜

⎝
⎛=

=
=
=
=
=

n
Nidf

Cn
CN
Cidf

Dtf
DkT

k
k

kk

kk

ikik

ik

Inverse Document Frequency

IDF provides high values for rare words and
low values for common words

4
1

10000log

698.2
20

10000log

301.0
5000

10000log

0
10000
10000log

=⎟
⎠
⎞

⎜
⎝
⎛

=⎟
⎠
⎞

⎜
⎝
⎛

=⎟
⎠
⎞

⎜
⎝
⎛

=⎟
⎠
⎞

⎜
⎝
⎛

TF-IDF normalization

Normalize the term weights
so longer docs not given more weight
(fairness)
force all values to fall within a certain range:
[0, 1]

∑ =

=
t

k kik

kik
ik

nNtf

nNtfw
1

22)]/[log()(

)/log(

Vector space similarity
(use the weights to compare the
documents)

 terms.) thehting when weigdone tion was(Normaliza
product.inner normalizedor cosine, thecalled also is This

),(

 :is documents twoof similarity theNow,

1
∑
=

∗=
t

k
jkikji wwDDsim

10

What’s Cosine anyway?

One of the basic trigonometric functions encountered in trigonometry.
Let theta be an angle measured counterclockwise from the x-axis along the
arc of the unit circle. Then cos(theta) is the horizontal coordinate of the arc
endpoint. As a result of this definition, the cosine function is periodic
with period 2pi.

From http://mathworld.wolfram.com/Cosine.html

Cosine Detail (degrees)

Computing Cosine Similarity
Scores

2α

1α 1D

Q
2D

98.0cos
74.0cos

)8.0 ,4.0(
)7.0 ,2.0(
)3.0 ,8.0(

2

1

2

1

=
=

=
=
=

α
α

Q
D
D

1.0

0.8

0.6

0.8

0.4

0.60.4 1.00.2

0.2

Computing a similarity score

98.0
42.0

64.0

])7.0()2.0[(*])8.0()4.0[(
)7.0*8.0()2.0*4.0(),(

yield? comparison similarity their doesWhat
)7.0,2.0(document Also,

)8.0,4.0(or query vect have Say we

22222

2

==

++

+
=

=
=

DQsim

D
Q

To Think About

How does this ranking algorithm behave?
Make a set of hypothetical documents
consisting of terms and their weights
Create some hypothetical queries
How are the documents ranked, depending
on the weights of their terms and the queries’
terms?

Summary: Why use vector
spaces?

User’s query treated as a (very) short
document.

Query a vector in the same space as the
docs.
Easily measure each doc’s proximity to query.
Natural measure of scores/ranking

No longer Boolean.

11

Main Ideas for Today

Information retrieval
Boolean, similarity, relevance

Term-document matrix
Inverted index
Stemming & stop-words
Vector-space model
TF-IDF
Precision, recall & F measure

