Cluster-Based Scalable Network Services

Armando fex Steven D. Gribble Yatin Chavathe Eric A. Braver

University of California at Berdey
{fox, gribble, yatin, brever}@cs.berkley.edu

We identify thee fundamentalequirements for scalable net-
work services: in@mental scalability andverflow gowth povi-
sioning 24x7 availability though fault masking and cost-
effectiveness. ague that cluster of commodity workstations
interconnected by a high-speed SAN atceptionally well-suited
to meeting thesehallenges for Internet-server workloads, gar
vided the softwar infrastructue for managing partial failures and
administering a lage cluster does not have to beirwented for
ead new service To this end, we pose a gneal, layered achi-
tectue for huilding clusterbased scalable network services that
encapsulates the abe requirments foreuse and a service-mr
gramming model based on composable wisrkhat perform tns-
formation, agregation, cating, and customization SCC) of
Internet content. & both performance and implementation sim-
plicity, the achitectue and BCC programming model >@loit
BASE, a wealr-than-ACID data semantics thaesults fom trad-
ing consistency for availability an@lying on soft state foobust-
ness in failue mangement. Our ahitectue can be used as an
“of f the shelf” inflastructual platform for ceating nev network
services, allowing autherto focus on the “content” of the service
(by composing ACC huilding bloks) rather than its implementa-
tion. W discuss twoeal implementations of services based on this
architectue: TranSend, a @b distillation poxy deployed to the
UC Berleley dialup IP population, and HotBot, the comuiat
implementation of the Inktomi sehrengine We present detailed
measuements of lanSend performance based on substantial cli-
ent traces, as well as anecdotalidence fom the TanSend and
HotBot experienceto support the claims made for theldtectue.

1 Introduction

“One of the werall design goals is to eate a computing
system whic is capable of meeting almost all of the
requirrments of a laje computer utilitySud systems must
run continuously andelfiably 7 days a week, 24 haua
day.. and must be capable of meeting wide service
demands.

“Because the system must ultimately be camn@nsive
and able to adapt to unknown futurequirrments, its
framavork must be gneal, and capable ofwlving over
time’

— Corbat6 and Vyssotgkon Multics, 1965[17]

Although it is normally vieved as an operating system, Multics
(Multiplexed Information and Computer Servicepsvoriginally

conceved as an infrastructural computing service, so it is not sur-

prising that its goals as stated adare similar to ourwen. The
primary obstacle to deptong Multics was the absence of the net-
work infrastructure, which is moin place. Netwrk applications
have exploded in popularity in part becauseyttae easier to man-
age and wolve than their desktop application counterpartsy the
eliminate the need for softwe distrilution, and simplify customer
service and g tracking by woiding the dificulty of dealing with
multiple platforms and ersions. Also, basic queueing theory

Paul Gauthier

Inktomi Corporation
gauthier@inktomi.com

shaws that a lage central (virtual) seer is more dicient in both
cost and utilization than a collection of smaller sesy standalone
desktop systems represent thgeaterate case of one “ser¥ per
user All of these support the gument for Netwrk Computers
[28].

However, network services remain di€ult to deply because
of three fundamental challenges: scalabilayailability and cost
effectiveness.

« By scalability we mean that when the loadfeotd to the
service increases, an incremental and linear increase in
hardware can maintain the same juser level of service.

» By availability, we mean that the service as a whole must be
available 24x7, despite transient partial haagevor softare
failures.

* By cost efectivenesswe mean that the service must be
economical to administer andxpand, &en though it
potentially comprises marworkstation nodes.

We obsere that clusters of arkstations hee some fundamen-
tal properties that can bemoited to meet these requirements:
using commodity PCs as the unit of scalingwafidhe service to
ride the leading edge of the cost/performance euttve inherent
redundang of clusters can be used to mask transieittifes, and
“embarrassingly parallel” netwk service wrkloads map well
onto netvorks of workstations. Havever, developing cluster soft-
ware and administering a running cluster remain coxnflee pri-
mary contrilutions of this wrk are the design, analysis, and
implementation of a layered framerk for kuilding network ser-
vices that addresses this conxitie New services can use this
framevork as an dfthe-shelf solution to scalabilityavailability,
and seeral other problems, and focus instead orctirgentof the
service being deloped. The lver layer handles scalabiljtsail-
ability, load balancing, support foutsty ofered load, and system
monitoring and visualization, while the middle layer \pdes
extensible support for caching, transformation among MIME
types, aggrgation of information from multiple sources, and per-
sonalization of the service for each of agamumber of users
(mass customizatidnThe top layer allvs composition of trans-
formation and agggation into a specific service, such as acceler-
ated Vb bravsing or a search engine.

Penasive throughout our design and implementation sjiate
is the obseration that much of the data manipulated by a ogtw
service can tolerate semantics werathan ACID [26]. We combine
ideas from prior wrk on tradedt between ailability and consis-
teng, and the use of soft state for usb fault-tolerance to charac-
terize the data semantics of rgaretwork services, which we refer
to as ASE semantics (basicallyailable, soft state ventual con-
sisteng). In addition to demonstrating WoBASE simplifies the
implementation of our architecture, we present a programming
model for service authoring that is a good fit fé&x3E semantics
and that maps well onto our clustesed service fram®rk.

1.1 Validation: Two Real Services

Our framavork reflects the implementation ofaweal netwrk
services in use today:rdhSend, a scalable transformation and
caching proxy for the 25,000 Bedlley dialup IP users (connecting
through a bank of 600 modems), and the Inktomi search engine
(commercialized as HotBot), which performs millions of queries
per day aginst a database o¥er 50 million web pages.

The Inktomi search engine is an aggon serer that vas
initially developed to eplore the use of cluster technology to han-

dle the scalability andvailability requirements of netwk ser-
vices. The commercialersion, HotBot, handles &eral million
queries per day ainst a full-tet database of 54 million web
pages. It has been incrementally scaled up to 60 nodesdgso
high availability, and is &tremely cost déctive. Inktomi predates
the framevork we describe, and thus féifs from it in some
respects. Hwoever, it strongly influenced the framerk’s design,
and we will use it to @lidate particular design decisions.

We focus our detailed discussion amiSend, which prades
Web caching and data transformation. In particutegl-time,
datatype-specific distillation and refinemgng] of inline Web
images results in an end-to-end latereduction by adctor of 3-5,
giving the user a much more respersiAeb surfing gperience
with only modest image quality deadation. TanSend s deel-
oped at UC Berdey and has been depied for the 25,000 dialup
IP users there, and is being degg@d to a similar community at UC
Davis.

In the remainder of this section wegae that clusters are an
excellent fit for Internet services, prided the challenges we
describe for cluster sofwe deelopment can be surmounted. In
Section 2 we describe the proposed layered architecturaifdr b

tage is cost/performance, since memaligks, and nodes can all
track the leading edge; fox@mple, we changed theilding block
every time we grer the HotBot clustereach time picking the reli-
able high wlume pr&ious-generation commodity units, helping to
ensure stability and roistness. Furthermore, since maommod-
ity vendors compete on service (particularly for PC hardyy it is
easy to get high-quality configured nodes in 48 hours or less. In
contrast, lage SMPs typically hae a lead time of 45 days, are
more cumbersome to purchase, install, and upgrade, and are sup-
ported by a singleandor so it is much harder to get help when dif-
ficulties arise. Once af, it is a “simple matter of sofawe” to tie
together a collection of possibly heterogeneous commoditg-b
ing blocks.

To summarize, clusters V&significant adantages in scalabil-
ity, grownth, availability, and cost. Although fundamental, these
adwantages are not easy to realize.

1.3 Challenges of Cluster Computing

There are a number of areas in which clusters are at a @isadv
tage relatre to SMPS. In this section we describe some of these
challenges and ko they influenced the architecture we will pro-

ing nav services, and a programming model for creating servicespose in Section 2.

that maps well onto the architecturee \8hev how TranSend and

Administration: Administration is a serious concern for sys-

HotBot map onto this architecture, using HotBot to justify specific tems of map nodes. W leverage ideas in prior avk [1], which
design decisions within the architecture. Sections 3 and 4 describdescribes he a unified monitoring/reporting framerk with data
the TranSend implementation and its measured performancevisualization support as an d&ctive tool for simplifying cluster

including experiments on its scalability anduit tolerance proper-
ties. Section 5 discusses relatearkvand the continuingvelution
of this work, and we summarize our obsatiens and contrilttions
in Section 6.

1.2 Advantagesof Clusters

Particularly in the area of Internet service dgphent, clusters
provide three primary benefitver single lager machines, such as
SMPs: incremental scalabiljtyhigh aailability, and the cost/per-
formance and maintenance benefits of commodity P elabo-
rate on each of these in turn.

Scalability: Clusters are well suited to Internet servioerky
loads, which are highly parallel (mamdependent simultaneous

administration.

Component vs. system replication: Each commodity PC in a
cluster is not usually peerful enough to support an entire service,
but can probably support some components of the service. Compo-
nent-level rather than whole-system replication thereforewadlo
commodity PCs to seevas the unit of incremental scaling, pro-
vided the softwre can be naturally decomposed into loosely cou-
pled modules. & address this challenge by proposing an
architecture in which each component has well-circumscribed
functional responsibilities and is ¢mly “interchangeable” with
other components of the same typer &le, a cache node can
run arywhere that a disk isvailable, and a wrker that performs a
specific kind of data compression can rupvetmere that significant

users) and for which the grain size typically corresponds to at mosCPU gcles are ailable.

a fav CPU-seconds on a commodity PQir Rhese wrkloads,
large clusters can dwf the paver of the lagest machines. df

Partial failures: Component-leel replication leads directly to
the fundamental issue separating clusters from SMPs: the need to

example, Inktomis HotBot cluster contains 60 nodes with 120 pro- handle partialdilures (i.e., the ability to sumeé and adapt tcafl-

cessors, 30 GB of ghical memoryand hundreds of commodity
disks. Wal-Mart uses a cluster fronefaData with 768 processors
and 16 terabytes of online storage.

Furthermore, the ability to gwo clusters incrementallyver

ures of subsets of the systemdaditional workstations and SMPs
never face this issue, since the machine is either upwndo

Shared state: Unlike SMPs, clusters kia no shared state.
Although much wrk has been done to emulate global shared state

time is a tremendous aaltage in areas such as Internet service through software distriluted shared memor§s3,34,36] we can

deployment, where capacity planning depends on gelarumber

improve performance and reduce conxite if we can &oid or

of unknavn variables. Incremental scalability replaces capacity minimize the need for shared state across the cluster

planning with relatiely fluid reactionary scaling. Clusters corre-

These last t@ concerns, partiabflure and shared state, lead us

spondingly eliminate the “forklift upgrade”, in which you must to focus on the sharing semantics actually required byonktser-

throv out the current machine (and related/estments) and
replace it via forklift with aneen lager one.

High Availability: Clusters hee natural redundag@ue to the
independence of the nodes: Each node hasitshosses, poer
supply disks, etc., so it is “merely” a matter of sadiw to mask
(possibly multiple simultaneous) transieatlts. A natural en-

vices.

1.4 BASE Semantics

We beliere that the design space for netw services can be
partitioned according to the data semantics that each service
demands. At onexéreme is the traditional transactional database

sion of this capability is to temporarily disable a subset of nodesmodel with the AID properties (atomicityconsisteny; isolation,
and then upgrade them in place (“hot upgrade”). Such capabilitieddurability) [26], providing the strongest semantics at the highest

are essential for netwk services, whose usersveacome to
expect 24-hour uptime despite the vitable reality of hardare
and softvare fwlts due to rapid systermaaution.

Commodity Building Blocks: The final set of adntages of
clustering follavs from the use of commodityuliding blocks
rather than high-end, Wevolume machines. The vious adan-

cost and compigty. ACID makes no guaranteesgarding &ail-
ability; indeed, it is preferable for anCAD service to be unail-

able than to function in aay that relags the AID constraints.
ACID semantics are well suited for Internet commerce transac-
tions, billing users, or maintaining user profile information for per-
sonalized services.

For other Internet services, wever, the primary alue to the
user is not necessarily strong consisyeac durability but rather
high availability of data:

« Stale data can be temporarily tolerated as long as all copies

of data gentually reach consistepafter a short timege.g.,
DNS serers do not reach consistgnantil entry timeouts
expire [41]).

« Soft state, which can be @generated at thexpense of
additional computation or file I/O, isxgloited to impree
performance; data is not durable.

« Approximate answers (based on stale data or incomplete
soft state) deliered quickly may be morealuable thanact
answers deliered slavly.

We refer to the data semantics resulting from the combinatior

of these techniques aBASE-Basically Available, Soft State,
Eventual Consistenyc By definition, ag data semantics that are
not strictly ACID are BASE. BASE semantics all® us to handle
partial filure in clusters with less comply and cost. Lile pio-
neering systems such as Gnape [9] , BASE reduces the com-
plexity of the service implementation, essentially trading
consisteng for simplicity; like later systems such as Bayjad]
that allav trading consistenc for availability, BASE provides
opportunities for better performanceorFexample, where &ID
requires durable and consistent state across patilialels, BASE
semantics often alles us to goid communication and disk agty

or to postpone it until a more ocmmient time.

In practice, it is simplistic to cagerize @ery service as either
ACID or BASE; instead, dferent components of services demand
varying data semantics. Directories such aBo6![64] maintain a
database of soft state wittABE semantics, i keep user customi-
zation profiles in an 81D database.rfinsformation proxieR3,57]
interposed between clients and sesvtransform Internet content
on-the-fly; the transformed content iA8E data that can begen-
erated by computationubif the service bills the user per session,
the billing should certainly be dgjated to an £ID database.

We focus on services that veaan ACID component, bt
manipulate primarily BSE data. &b serers, search/aggyation
seners[58], caching proxiefl4,44], and transformation proxies are
all examples of such services; our framoek supports a superset of
these services by prigling integrated support for the requirements
of all four. As we will shav, BASE semantics greatly simplify the
implementation of dult tolerance andvailability and permit per-
formance optimizations within our framerk that would be pre-
cluded by ACID.

2 Cluster-Based Scalable Service Architecture

Wide—Area|1 Network
| | |

FE| |[FE| [FE Graphical
MS| | MS MS Monitor

System Area

Network User
Profile DB

Worker
API

Worker Pool

Figure 1: Architecture of a generic SNS. Components include
front ends (FE), a pool of workers (W) some of which may be
caches ($), a user profile database, a graphical monitor, and a
fault-tolerant load manager, whose functionality logically
extends into the manager stubs (MS) and worker stubs (WS).

map directly onto it.

* Detailed measurements of a production service that
instantiates the architecture andligdgates our performance
and reliability claims.

In the remainder of this section weviev the benefits and
challenges of cluster computing and propose a or&tgervice
architecture thatloits these obseafions and alles encapsula-
tion of the SNS requirements.éMhen describe a programming
model that minimizes service \ddopment €brt by alloving
implementation of n& services entirely at the higher layers.

2.1 Proposed Functional Organization of an SNS

The abee obserations lead us to the sofne-component
block diagram of a generic SNS sho Figure 1.Each plysical
workstation in a netark of workstations (N@V [2]) supports one
or more softare components in the figurejtteach component in
the diagram is confined to one node. In general, the components
whose tasks are naturally parallelizable are replicated for scalabil-
ity, fault tolerance, or both. In our measurements (Section 4), we
will argue that the performance demands on the non-replicated
components are not significant for the implementation of gelar
class of services, and that the practical bottlenecks are bandwidth

In this section we propose a system architecture and serviceinto and out of the system and bandwidth in the system area net-

programming model forwlding scalable netark services on clus-
ters. The architecture attempts to address both the challenges
cluster computing and the challenges of dgpig network ser-
vices, while &ploiting clusters’ strengths. Wiev our contrilu-
tions as follevs:

« A proposed system architecture for scalable agtvservices
that eploits the strengths of cluster computing, as
exemplified by clustebased seers such asranSend and
HotBot.

Separation of theontentof network services (i.e., what the

services do) from their implementation, by encapsulating the

“scalable netwrk service” (SNS) requirements of high
availability, scalability and fult tolerance in a reusable layer
with narrav interfaces.

worker modules into ne services. The model maps well
onto our system architecture and numeraxistiag services

A programming model based on composition of stateless

work (SAN).

Front Ends provide the interfice to the SNS as seen by the
outside wvorld (e.g., HTTP seer). Thg “shepherd”
incoming requests by matching them up with the appropriate
user profile from the customization database, and queueing
them for service by one or moreokkers. Front ends
maximize system throughput by maintaining state foryman
simultaneous outstanding requests, and can be replicated for
both scalability andailability.

The Worker Pool consists of caches and service-specific
modules that implement the actual service (data
transformation/filtering, content aggedion, etc.) Each type
of module may be instantiated zero or more times, depending
on ofered load.

The Customization Database stores user profiles that allo
mass customization of request processing.

ager and possibly the user profile database. Our measurements in

Service: Service-specific code Section 4 confirm thatven for \ery lage systems, these shared
» Workers that present human intré to what ACC components do not become a bottleneck.
modules do, including dée-specific presentation The static partitioning of functionality between front ends and
« User interfice to control the service workers reflects our desire tedép vorkers as simple as possible,
X X X — by localizing in the front ends the control decisions associated with
TACC: Transformation,Aggmgation, Caching, Customizatign satisfying user requests. In addition to managing theanktstate
* API for composition of stateless data transformatp for outstanding requests, a front end encapsulates service-specific
and content agggation modules worker dispatch logic, accesses the profile database to pass the
» Uniform caching of original, post-agga&ion and post- appropriate parameters to the@rkers, notifies the end user in a
transformation data service-specific ay (e.g., constructing an HTML page describing
« Transparent access to Customization database the error) when one or moreovkers fils unreceerably provides
the user integce to the profile database, and so forth. Thisidn
SNS: Scalable Netark Service support of responsibility allavs workers to remain simple and stateless, and
« Incremental and absolute scalability allows the behaor of the service as a whole to be defined almost
« Worker load balancing andzerflon management entirely in the front end. If the avkers are analogous to processes
- . in a Unix pipeline, the front end is analogous to an interastiell.
* Front-end wmailability, fault tolerance mechanisms
+ System monitoring and logging 2.2.2 Centralized L oad Balancing
Figure 2: Scalable Network Service Layered Model Load balancing is controlled by a centralized polimple-
The Manager balances load acrossorkers and spans mented in the managefhe manager collects load information

additional vorkers as dered load fluctuates oadlts occur from the vorkers, synthesizes load balancing hints based on the
When necessaynyit may assign wrk to machines in the policy, and periodically transmits the hints to the front ends, which
overflow pool a set of backup machines (perhaps on make local scheduling decisions based on the most recent hints.
desktops) that can be harnessed to handle logstsband The load balancing ano\/erflcw_ policies are left to the system
provide a smooth transition during incrementalvgite The operator We describe ourxperiments with load balancing and
overflow pool is discussed in Section 2.2.3. overflow in Section 4.5.
; ; The decision to centralize rather than distiibload balancing
The Graphical Monitor for system management supports
trackii% and visualizationy of the sy%tsm’behaigf is intentional: If the load balancer can be masétftolerant, and if
asynchronous error notification via email or pag&na we can ensure it does not become a performance bottleneck, cen-
: ; tralization males it easier to implement and reason about the
temporary disabling of system components for hot upgrades. , . X X -
porary 9 4 P P9 behaior of the load balancing policin Section 3.1.3 we discuss

The System-Area Network provides a lov-lateng, high- the eolution that led to this design decision and its implications
bandwidth interconnect, such as switched 100-Mb/s Ethernetqr herformance,dult tolerance, and scalability

or Myrinet [43]. Its main goal is to puent the interconnect
from becoming the bottleneck as the system scales. 2.2.3 Prolonged Burstsand Incremental Growth

2.2 Separating Service Content From I mplementa- Although we vould IiI@ to assume that the.re is a yve!l-;iefined
tion: A Reusable SNS Su tL average load and that anmg trafic follows a Poisson distritiion,
ron: eu e pport L ayer burstiness has been demonstrated for Ethernéittfad], file sys-

Layered softwre models allw layers to be isolated from each tem trafic [27], and Wb request$18], and is confirmed by our
other and allv existing software in one layer to be reused in dif- traces of web tréit (discussed later). In addition, Internet services
ferent implementations. &/obsere that the components in the can &perience relately rare lut prolonged brsts of high load:
above architecture can be grouped naturally into three layers ofafter the recent landing ofathfinder on Mars, its web site sedv
functionality, as sharn in Figure 2: SNS (scalable netik service over 220 million hits in a 4-day periodq]. Often, it is during such
implementation), ACC (transformation, agggation, caching, bursts that uninterrupted operation is most critical.
customization), and Service. Theylcontritutions of our architec- Our architecture includes the notion of aredlon pool for
ture are the reusability of the SNS Igyemd the ability to add sim- absorbing theseubsts. The werflov machines are not dedicated to
ple, stateless ‘lilding blocks” at the ACC layer and compose the service, and normally do noMeanorkers running on themyip
them in the Service layewWe discuss ACC in Section 2.3. The the manager can spa workers on the werflov machines on

SNS layerwhich we describe here, mides scalabilityload bal- demand when umpected load Wrsts arnve, and release the
ancing, ault tolerance, and higlvailability; it comprises the front ~ machines when theubst subsides. In an institutional or corporate
ends, manageBAN, and monitor in Figure 1. setting, the werflow pool could consist of arkstations on indid-

L uals’ desktops. Becauserker nodes are already interchangeable,
2.2.1 Scalability workers do not need to kmowhether thg are running on a dedi-

Components in our SNS architecture may be replicated forcated or an werflov node, since load balancing is handletee
fault tolerance or highvailability, but we also use replication to nally. In addition to absorbing sustainedrsts, the ability to
achieve scalability When the dered load to the system saturates temporarily harnessverflov machines eases incrementalvgitu
the capacity of some component class, more instances of that conwhen the werflov machines are being recruited unusually often, it
ponent can be launched on incrementally added nodes. The dutiéS time to purchase more dedicated nodes for the service.
of our replicated components areglaly independent of each other s
(because of the nature of the internet servicagkiwad), which 2.2.4 Soft Statefor Fault Tolerance and Availability
means the amount of additional resources required is a linear func ~ The technique of constructing et entities by relying on
tion of the increase in fafred load. Although the components are cached soft state refreshed by periodic messages from peers has
mostly independent, tlgedo hare some dependence on the shared, been enormously successful in wide-area TCP/IP orésv
non-replicated system components: the SAN, the resource mar[5,20,39] another arena in which transient componaiitrfe is a

fact of life. Correspondinglyour SNS components operate in this ized information agggators [59,13] and search engines. The
manner and monitor one another usipgocess peer fault toler- selection of which wrkers to ivoke for a particular request is ser-
ancel: when a componenails, one of its peers restarts it (on a dif- vice-specific and controlled outside th@rkers themseles; for
ferent node if necessary), while cached stale state carries thexample, gien a collection of wrkers that cowert images
surviving components through thailure. After the component is between pairs of encodings, a correctly chosen sequence of trans-
restarted, it gradually rellds its soft state, typically by listening to formations can be used for general imagevesion.
multicasts from other componentseWie specific kamples of Customization represents a fundamentabatkge of the Inter-
this mechanism in Section 3.1.3. net over traditional wide-area media such as visien. Mary

We use timeouts as an additiorallt-tolerance mechanism, to online services, including theaN Street Journal, the Los Angeles
infer certain &ilure modes that cannot be otherwise detected. If theTimes, and C/Net, v@ deplged “personalized” ersions of their
condition that caused the timeout can be automatically ex$olv service as a ay to increase i@lty and the quality of the service.
(e.q., if workers lost because of a SAN partition can be restarted orSuch mass customization requires the ability to track users and
still-visible nodes), the manager performs the necessary actionkeep profile data for each usafthough the content of the profiles
Otherwise, the SNS layer reports the suspeaédré condition, differs across services. The customization database, a traditional
and the service layer determinesvhto proceed (e.g., report the ACID database, maps a user identificationetoksuch as an IP
error or &ll back to a simpler task that does not require dliled address or cookie) to a list ofkvalue pairs for each user of the
worker). service. A ley strength of the ACC model is that the appropriate

) . profile information is automatically deéred to verkers along

2.2.5 Narrow Interface to Sewice-Specific Wrkers with the input data for a particular user request; thisaallthe

To allow new services to reuse all thesgeilities, the manager ~Same verkers to be reused for &éfent services. ¢ example, an

and front ends prade a narra API, shavn as the Manager Stubs IMage-compression avker can be run with one set of parameters
and Worker Stubs in Figure 1, for communicating with therkers, t0 reduce image resolution faster Véb bravsing, and a diérent

the managerand the graphical system monitdhe vorker stub set of parameters to reduce image size and bit depth for handheld
provides mechanisms for awkers to implement some required devices. V& have found composable, customizablerkers to be a
behaviors for participating in the system (e.g., supplying load dataPowerful building block for deeloping nev services, and we dis-

to assist the manager in load balancing decisions and reportinCUsS our xperience with ACC and its continuingwelution in
detectabledilures in their wn operation). The worker stub hides ~ S€cton 5. _ i

fault tolerance, load balancing, and multithreading consideration; ~ €aching is important because recomputing or storing data has
from the worker code, which may use all theclities of the operat- ~ P€come cheaper than wiag it across the InternetoFexample, a

ing system, need not be thread-safe, and caactndrash without ~ Study of the UK National web cache haswhdhat een a small
taking the system am. The minimal restrictions onasker code ~ ¢&che (400MB) can reduce the load on the okvnfrastructure
allow worker authors to focus instead on tioatent of the service, ~ 0Y 40%[61], and SingNet, the Igest ISP in Singpore, has sad

even using dfthe-shelf code (as we v in TranSend) to imple- ~ 40% of its telecom chges using web cachirgo]. In the TACC
ment the varker modules. model, caches can store post-transformation (or postgaigne)

The manager stub liekl to the front ends prigles support for ~ content anden intermediate-state content, in addition to caching

implementing the dispatch logic that selects whidhker type(s) ~ ©figinal Internet content.
are needed to satisfy a request; since the dispatch logic is indepe Marny existing services are subsumed by t#eCC model and

dent of the core load balancing armuilf tolerance mechanisms, a fit well with it. (In Section 5.4 we_describe some that do nair) F
variety of services can beiilt using the same set oforkers. example, the HotBot search engine collects search results from a

number of database partitions and collates the resu#tssfbrma-
2.3 TACC: A Programming Model for Inter net Sewices tion involves corerting the input data from one form to anotter
TranSend, graphic images can be scaled and filtered through a lo
pass filter to tune them for a specific client or to reduce their size. A
key strength of our architecture is the ease of composition of tasks;
this afords considerable figbility in the transformations and
aggreations the service can perform, without requiringrkers to
understand service-specific dispatch logic, load balancing, efc., an
gmore than programs in a Unix pipeline need to understand the
implementation of the pipe mechanism.

We claim that a lagje number of interesting services can be
implemented entirely at the service amCIC layers, and that rela-
tively few services will benefit from direct modification to the SNS
layer unless thehave ery specific lav-level performance needs.

In Section 5.1 we describe outperience adding functionality at
both the RCC and service layers.

Having encapsulated the “SNS requirements” into a separate
software layer we nav require a programming model fouilding
the services themseas in higher layers. /focus on a particular
subset of services, based toansformation, aggregation, caching,
and customization of Internet content (ACC). Transformation is
an operation on a single data object that changes its contant; e
ples include filtering, transcoding, re-rendering, encryption, an
compression. Aggoation involves collecting data from eeral
objects and collating it in a prespecifiedywfor example, collect-
ing all listings of cultural eents from a prespecified set ofeldv
pages, ®racting the date andvent information from each, and
composing the result into a dynamically-generated “culture this
week” page. Our initial implementation alle Unix-pipeline-lile
chaining of an arbitrary number of stateless transformations ani
aggreations; this results in aevy general programming model that
subsumes transformation proxig], proxy filters[67], custom- 3 Sewice Implementation

This section focuses on the implementation odnBend, a
scalable Wb distillation proxyand compares it with HotBot. The
mechanism for hard-state processes, discussed in [6]. Process peers are sgoaIS .Of t.hls section are to demonStratav.lmczh Component
ilar to the fult tolerance mechanisnxored in the early “Wrm” pro- shcwn_m Figure 1 maps into the layered archltectur_e, to discuss rel-
grams [55] and to “Robin Hood/Friau@k” fault tolerance: “Each ghost- ~ &vantimplementation details and tradéspand to preide the nec-
job would detect thedict that the other had been killed, anoutd start a ~ €ssary conté for the measurements we report in thetrsection.
new copy of the recently slain program within arfenilliseconds. The only
way to kill both ghosts as to kill them simultaneously € difficult) or to
deliberately crash the systérfs0]

1: Not to be confused withprocess pairs, a diferent fiult-tolerance

3.1 TranSend SNS Components manager can resort to starting up temporary distillers on a set of
overflov nodes. Once theubst subsides, the distillers may be

3.1.1 Font Ends reaped.

TranSend runs on a cluster of AACstation 10 and 20 3.1.3 FRult Tolerance and Crash Recmery
machines, interconnected by switched 10 Mb/s Ethernet and con

nected to the dialup IP pool by a single 10 Mb/gnsent. The _In the original prototype for the managérformation about
TranSend front end presents an HTTP imieefto the client popu- distillers vas lept as hard state, using a log file and crashvezgo
lation. A thread is assigned to each ving TCP connection. pro;ocols similar to _those used_ byCH databases. Resnllence
Request processingviolves fetching Wb data from the caching agpinst crashes as via procespair fault tolerance, as if®]: the
subsystem (or from the Internet on a cache miss), pairing up thiPfimary manager processaa/mirrored by a secondary whose role
request with the user customization preferences, sending the Was to maintain a current oppf the primarys state, and takover
request and preferences to a pipeline of one or distilers (the ~ the primarys tasks if it detects that the primary hased. In this
TranSend lossy-compressiororkers) to perform the appropriate Scenario, crash recery is seamless, since all state in the second-
transformation, and returning the result to the client. Alterelyi ary process is up-to-date. _

if an appropriate distilled representationvsitable in the cache, it However, by maving entirely to BASE semantics, we were able
can be sent directly to the client. Adarthread pool alles the to simplify the manager greatly and increase our confidence in its
front end to sustain throughput and maximakpleit parallelism ~ Correctness. InfénSend, all state maintained by the manager is
despite the lgre number of potentially long, blocking operations .e(pllcmy deS|gned to be soft state. When a d.IStI!|eI’ starts upgit re
associated with each task, and vides a clean programming isters itself with the managegvhose gistence it dlscv_z:e(s by sub-
model. The productionr@nSend runs with a single front-end of scribing to a well-knan multicast channel. If the distiller crashes

about 400 threads. before de-rgistering itself, the manager detects the brokonnec-
tion; if the manager crashes and restarts, the distillers detect bea-
3.1.2 Load Balancing Manager cons from the ne manager and regester themseks. Tmeouts

are used as a backup mechanism to irddures. Since all state is
soft and is periodically beaconed, nepkcit crash receery or
state mirroring mechanisms are required gererate lost state.
Similarly, the front end does not requireyaspecial crash regery
code, since it can reconstruct its state as it vesethe net few
beacons from the manager

With this use of soft state, eachédteher” process only needs
to detect that its peer isai (rather than mirroring the pegstate)
and, in some cases, be able to restart the peer (rather thamaak
the peess duties). Brokn connections, timeouts, or loss of beacons
are used to infer componemtltires and restart thaifed process.
The managedistillers, and front ends are process peers:

The manager periodically beacons itstence on an IP multi- » The manager reports distilleaifures to the manager stubs,

cast group to which the other components subscribe. The use of | Which update their caches of where distillers are running.
multicast preides a lgel of indirection and reliees components * The manager detects and restarts a crashed front end.

of having to eplicitly locate each otheiWhen the front end has a » The front end detects and restarts a crashed manager

task for a distillerthe manager stub code contacts the manager This process peer functionality is encapsulated within the man-
which locates an appropriate distillspavning a n& one if neces- ager stub code. Simply by linking @igst the stub, front ends are

sary The manager stub caches theswistiller’'s location for future automatica”y recruited as process peers of the manager
requests.

The worker stub attached to each distiller accepts and gueue:3_1_4 User Pofile Database
requests on behalf of the distiller and periodically reports“load

information to the managefhe manager agggates load informa-
tion from all distillers, computes weighted wing averages, and
piggybacks the resulting information on its beacons to the manage
stub The manager stub (at the front end) caches the information ir
these beacons and uses lottery scheddigigto select a distiller

for each request. The cached informationvigles a backup so that
the system can continue to operate (using slightly stale load date
even if the manager crashes.dftally the fult tolerance mecha- 3 1.5 Cache Nodes
nisms (discussed in Section 3.1.3) restart the manager and the sy
tem returns to normal.

To allow the system to scale as the load increases, the managq
can automatically span a nev distiller on an unused node if it
detects rcessie load on distillers of a particular class. (The
spavning and load balancing policies are described in detail in
Section 4.5.) Another mechanism used for adjustingutst® in
load is werflow: if all the nodes in the system are used up,

Client-side JeaScript supporf46] balances load across multi-
ple front ends and masks transient front eaiflifes, although
other mechanisms such as round-robin DS or commercial
routers [16] could also be used.oF internal load balancing,
TranSend uses a centralized manager whose responsibilitie
include tracking the location of distillers, sp@ng nev distillers
on demand, balancing load across distillers of the same class, ar.
providing the assurance oddlt tolerance and system tuninge W
amue for a centralized as opposed to digted manager because
it is easier to change the load balancing padied reason about its
behaior; the net section discusses thault-tolerance implications
of this decision.

The service intedce to TanSend allavs each user to géster a
series of customization settings, using either HTML forms or a
Java/JaaScript combination applet. The actual database is imple-
mented usinggdbm because it is freelyvailable and its perfor-
mance is adequate for our needs: user preference reads are much
more frequent than writes, and the reads are absorbed by a write-
through cache in the front end.

TranSend runs Haest object cacheavkers[10] on four sepa-
rate nodes. Hapst sufers from three functional/performance defi-
ciencies, tw of which we resolked.

First, although a collection of Hagst caches can be treated as
“siblings”, by defult all siblings are queried on each request, so
that the cache service timeould increase as the load increases
the €ven if more cache nodes were added. Therefore, for both scalabil-

ity and improed fault tolerance, the manager stub can manage a

number of separate cache nodes as a single virtual cache, hashing
2: In the current implementation, distiller load is characterized in terms .the key space across the separate caches and automatlcally re-hash—
of the queue length at the distilleptionally weighted by thexpected cost iNg When cache nodes are added or redoSecond, we modified
of distilling each item. Harwest to allev data to be injected into it, alling distillers (via

Figure 3: Scaling this JPEG image by a factor of 2 in each
dimension and reducing JPEG quality to 25 results in a size

reduction from 10KB to 1.5KB.

Figure 4: User Interface for manipulating preferences.

= T]
Kovagic s Fundiy -

kb prea
B drcaak: praa

B oo iy

L ¥ odue al

- E
(1513

LA st r_.;:-

the worker stub) to store post-transformed or intermediate-state

data into the laye virtual cache. Finallybecause the intexfe to
each cache node is HT,T&® separate TCP connection is required
for each cache requesteWilid not repair this deficiepcue to the

delay interconnect), what resources the system is using, and other
such figures of interest.

3.1.8 Hav TranSend Exploits BASE

Distinguishing ACID vs. BASE semantics in the design of ser-
vice components greatly simplifiesahSend fault-tolerance and
improves its aailability. Only the useprofile database is @ID;
everything else xploits some aspect of ABE semantics, both in
manipulating application data (i.e.,e/ content) and in the imple-
mentation of the system components theneselv

Stale load balancing data The load balancing data in the
manager stub is slightly stale between updates from the
managerwhich arrve a fav seconds apart. The use of stale
data for the load balancing andeoflov decisions imprees
performance and helps to hidmufts, since using cached data
avoids communicating with the sourcanieouts are used to
recover from cases where stale data causes an incorrect load
balancing choice. ¢t example, if a request is sent to a
worker that no longersts, the request will time out and
another werker will be chosen. From the standpoint of
performance, as we will stwoin our measurements, the use
of slightly stale data is not a problem in practice.

compleity of the Hanest code, and as a result some of the mea- Soft state The two adwantages of soft state are imped

surements reported in Section 4.4 are slightly pessimistic.
Caching in TanSend is only an optimization. All cached data

can be thraen avay at the cost of performance—cache nodes are

workers whose only job is the management ABE data.

3.1.6 Datatype-Specific Distillers

The second group of avkers is the distillers, which perform
transformation and agggation. As a result, we were able tode
age a lage amount of dfthe-shelf code for our distillers. &\have
built three parameterizable distillers farafiSend: scaling andvie
pass filtering of JPEG images using thietbé-shelfjpeg-6a library
[29], GIF-to-JPEG coversion follaved by JPEG cgaradatioﬁ, and
a Perl HTML “munger” that marks up inline image references with
distillation preferences, addsten links nat to distilled images so
that users can retsie the original content, and adds a “toolbar”
(Figure 4) to each page that all® users to controlarious aspects
of TranSend operation. The user intade for TanSend is thus
controlled by the HTML distillerunder the direction of the user
preferences from the front end.

Each of these distillers took approximately 5-6 hours to imple-
ment, debg, and optimize. Although pathological input data occa-
sionally causes a distiller to crash, the process-pedtrtblerance
guaranteed by the SNS layer means that wetdwae to worry
about eliminating all such possibleds and corner cases from the
system.

3.1.7 Graphical Monitor

Our etensible Tcl/Tk48] graphical monitor presents a unified
view of the system as single virtual entity. Components of the
system report state information to the monitor using a multicast

performance from widing (blocking) commits and tial
recovery. Transformed content is cached and can be
regenerated from the original (which may be also cached).

Approximate answers Users of TanSend request objects that
are named by the object URL and the user preferences,
which are used to dews distillation parameters. Mever, if
the system is too hedy loaded to perform distillation, it can
return a somehat diferent \ersion from the cache; if the
user clicks the “Reload” uiton later they will get the
distilled representation thieasled for if the system wo has
sufficient resources to perform the distillation. If the required
distiller has temporarily or permanentlgiled, the system
can return the original content. In all cases, an approximate
answer deliered quickly is more useful than theaet
answer deliered slavly.

3.2 HotBot Implementation

In this section we highlight the principal ®@ifences between
the implementations ofrfinSend and HotBot.The original Inktomi
work, which is the basis of HotBot, predates the layered model and
scalable seer architecture presented here and uses ad hoc rather
than generalized mechanisms in some places.

Front ends and sevice interface: HotBot runs on a mixture
of single- and multiple-CPU &iRCstation serer nodes, intercon-
nected by Myrinef43]. The HTTP front ends in HotBot run 50-80
threads per node and handle the presentation and customization of
results based on user preferences anddeotype. The presenta-
tion is performed using a form of “dynamic HTML" based on Tcl
macrog54].

Load balancing: HotBot workers statically partition the

group, alleving multiple monitors to run at geographically dis- search-engine database for load balancing. Thus eaenhan-
persed locations for remote management. The monitor can page dles a subset of the database proportional to its CRe¢rpand

email the system operator if a serious error occursxtmple, if it
stops receiing reports from some component.

The benefits of visualization are not just cosmeti@ Wén
immediately detect by looking at the visualization panel what state
the system as a whole is in, whethey aamponent is currently

every query goes to allavkers in parallel.

Failure management:Unlike the vorkers in TanSend, Hot-
Bot worker nodes are not interchangeable, since eackewuses a
local disk to store its part of the databaSke original Inktomi
nodes cross-mounted databases, so that there wexgsahultiple

causing a bottleneck (such as cache-miss time, distillation queueinnodes that could reachyadatabase partition. Thus, when a node
when davn, other nodes auld automatically taé over responsi-
3: We chose this approach after digedng that the JPEG representation bility for that data, maintaining 100% dateadability with grace-

is smaller anddster to operate on for most images, and produces aesthetful degradation in performance.
cally superior results.

Component

TranSend

HotBot

Load balancing

Dynamic, by queue
lengths at wrker

Static partitioning
of read-only data

nodes
N Composable ACC | Fixed search servic
Application layer workers application

Service layer

Worker dispatch
logic, HTML / Java-
Script Ul

Dynamic HTML
generation, HTML
ul

Failure manage-
ment

Centralized bt
fault-tolerant using
process-peers

Distributed to each
node

Worker place-
ment

FE'’s and caches
bound to their node

5

All workers bound
to their nodes

User profile
(ACID) databasH

Berkeley DB with
read caches

Parallel Informix
sener

Caching

Harwest caches

store pre- and post;

transformation Wb

integrated cache of
recent searches, fd
incremental deliery

o
o
>

m— HTML

— GIF

0.05 H

Probability

- JPG

AN

\
“V\\\
AW

”1’(’)00 o ”’]’.’0’000 o

Data Size (bytes)
Figure 5: Distribution of content lengths for HTML, GIF, and
JPEG files. The spikes to the left of the main GIF and JPEG
distributions are error messages mistaken for image data,
based on file name extension. Average content lengths: HTML -
5131 bytes, GIF - 3428 bytes, JPEG - 12070 bytes.

measurements requiring Internet access, the accassvia a
10 Mb/s switched Ethernet nebrk connecting our erkstation to
the outside wrld. In the follaving subsections we analyze the size
distribution and hrstiness characteristics ofahSendS expected
workload, describe the performance ofotwhroughput-critical
components (the cache nodes and data-transformatidens) in

0.04: / v
0.03 ,I
AN

Wi

T —TTT
10 100

0.02

001

\ T

100000 1000000

data isolation, and report onxperiments that stressranSends fault

tolerance, responstness to lrsts, and scalability

4.1 HTTP Traces and the Playback Engine
Many of the performance tests are based upon HTTP trace data

Table 1: Main differences between TranSend and HotBot.

Since the database partitioning disftds documents ran-
domly and it is acceptable to lose part of the database temporarily

HotBot maved to a model in which RAID storage handles el that we gthered from our intended user population, namely the
ures, while &st restart minimizes the impact of noddures. Br 25,000 UC Berkley dialup IP users, up to 600 of whom may be
example, with 26 nodes the loss of one machine results in the dateConnected via a bank of 14.4K or 28.8K modems. The modems’

base dropping from 54M to about 51M documents, which is still . .
o . ' connection to the Internet passes through a single 10 Mb/s Ethernet
gl(g)gl\l}ll)flcantly lager than other search engines (such as Akta\at segment; we placed a tracing machine running an IP gigiler
Tﬁe success of thadlt management of HotBot igemplified on this sgment for a month anq a half, anq unobrelsi gathered
a trace of approximately 20 million (angnized) HTTP requests.

by the fct that during February 1997, HotBotsv plysically
h . GIF, HTML, and JPEG were bwf the three most common MIME
moved (from Berleley to San Jose) withoutver being dan, by types obserd in our traces (5%%’ 220, and 18%, respely,

m%lggnri]c?glem ;\nﬁoﬂ;it;rricﬁsaptgg c?fntigzzrt]gtl)ggsgxesr res.oléutlon and hence our three implemented distillersecathese common
able at diferent times during the me, the oerall service \as still Eigfs' Data for which no distillexists is passed unmodified to the
up and useful—user ieedback indicated thav feople were Figure 5 illustrates the disttiion of sizes occurring for these

affected by the transient changes. .
. g . three MIME types. Although most content accessed on the web is
a regf?j;tpz;ggls?e?‘itra?gs;ﬁe Oer(]%?% cargtrggtr Cdile?ﬁt]% Tnii;(OV\ztshe small (considerably less than 1 KB), themage byte transferred is
primary/backup dilover for th?a user p;rofile and advemue track- part of lage content (3-12 KB). This means that the users’ modems
ing database, with each front end linking in an Informix SQL cli- spend most of tht_alr_tlme tre}nsferrlng W,fdarge_ f'l.es' It IS the goal
- . of TranSend to eliminate this bottleneck by distilling thigéacon-
ent. Havever, all other HotBot data isASE, and as in fanSend, . lerbut still ful ons- d d .
timeouts are used to re@ from stale clustestate data tent into smaller tstn usetu rt_epresentatlor_ls,_ a_ta under 1 KB is
’ transferred to the client unmodified, since distillation of such small
content rarely results in a size reduction.
Figure 5 also neeals a number of interesting properties of the
individual data types. The GIF distution has tw plateaus—one
for data sizes under 1KB (which correspond to iconBets, etc.)

. - o0 ; i and one for data sizewver 1KB (which correspond to photos or
balancing by data partitioning, anarkers that are tied to particu- ar100ns). Our 1KB distillation threshold therefoseaetly sepa-

lar machines. The careful separation of responsibility inferdifit rates these tw classes of data, and deals with each correctly

components of the system, and the layering of components accor(peGs do not shothis same distinction: the distrition falls of
ing to the architecture, made the implementation caxitplenan- rapidly under the 1KB mark.

ageable. In order to realistically stress testahiSend, we created a high
performance trace playback engine. The engine can generate
requests at a constant (and dynamically tunable) rate, or it can
faithfully play back a trace according to the timestamps in the trace
file. We thus had fine-grained controles both the amount and
nature of the load téred to our implementation during owperi-
mentation.

3.3 Summary

The TranSend implementation quite closely maps into the lay-
ered architecture presented in Section 2, while the HotBot imple
mentation difers in the use of a distdbed managerstatic load

4 Measurements of the TanSend Implementation

We took measurements ofahSend using a cluster of 15 Sun
SFARC Ultra-1 workstations connected by 100 Mb/s switched
Ethernet and isolated fronxternal load or netark trafic. For

0.3

0.25 i

. R
M

120 seconds/bucket

tasks/bucket
©
o
(=]

N
o
O

o
Avg. Distillation latency (s)

18:00 22:40 02:00 07:30 18:00 01 \ 4
time
@ o w
0.05
30 seconds/bucket 32/

0 5000 10000 15000 20000 25000 30000
GIF size (bytes)

Figure 7: Average distillation latency vs. GIF size, based on GIF
data gathered from the dialup IP trace.

tasks/bucket

22:40 23:34 23:39 00:20 01:10 02:00 — — — -
time the performance of our distillers by timing distillation latglas a func-

(®) tion of input data size, calculated across approximately 100,000 items
from the dialup IP trace file. Figure 7 si®that for the GIF distiller
there is an approximately linear relationship between distillation time
and input size, although a d¢gr\ariation in distillation time is obseed
12 for ary particular data size. The slope of this relationship is approxi-
mately 8 milliseconds per kilobyte of input. Similar results were
obsered for the JPEG and HTML distillers, although the HTML dis-

0 tiller is far more dicient.
23:34:10 23:35:50 23:37:30 23:37:30

© time 4.4 Cache Partition Performance

In [10], a detailed performance analysis of the l¢atwcaching sys-
tem is presented. 'summarize the results here:

1 second/bucket

18

tasks/bucket

6

Figure 6: The number of requests per second for traced dialup
IP users, showing burstiness across different time scales. (a) 24

hours with 2 minute buckets, 5.8 reg/s avg., 12.6 reg/s max. (b) » The aerage cache hit tak 27 ms to service, including neik
3 hr 20 min with 30 second buckets, 5.6 reg/s avg., 10.3 req/s and OS werhead, implying a maximunverage service rate from
peak. (c) 3 min 20 sec, 8.1 req/s avg., 20 req/s peak. each partitioned cache instance of 37 requests per second. TCP
4.2 Burstiness connection and teatown overhead is attrited to 15 ms of this
service time.

Burstiness is a fundamental property of a gresiety of computing
systems, and can be obssshacross all time scalgis,27,35] Our HTTP
traces she that the diered load to our implementation will contain
bursts—Figure 6 shws the request rate obsedsfrom the user base
across a 24 houB.5 houy and 3.5 minute time inteal; The 24 hour
intenal exhibits a strong 24 hourycle that is werlaid with shorter time-
scale lorsts. The 3.5 hour and 3.5 minute intswreveal finer grained lateny through the system, and therefore mudorefshould be
bursts. expended to minimize cache miss rate.

We described in Section 2.2.3vhaur architecture alles an arbi- As a supplement to these results, we ran a number of cache simula-
trary subset of machines to be managed averilav pool during tem- tions to eplore the relationship between user population size, cache
porary lut prolonged periods of high load. Theedlow pool can also be size, and cache hit rate, using U Replacement. & obsered that the
used to absorbupsts on shorter time scalese\aigue that there are tw Size of the user population greatlfeats the attainable hit rate. Cache
possible administrate asenues for managing thearflov pool: hit rate increases monotonically as a function of cache sir@ldieaus

1. Select an werage desired utilization vel for the dedicated Out at aleel thatis a function of the user population sizer fae user
worker pool. Since we can obsera daily gcle, this amounts to ~ Population obseed across the traces (approximately 8000 peoptie o
draving a line across Figure 6a (i.e., picking a number of tasks/ the 1.5 month period), six gigytes of cache space (in total, partitioned
sec) such that the fraction of black under the line is the desired9ver all instances)aye us a hit rate of 56%. Similariywe obsered that
utilization level. for a gven cache size, increasing the size of the user population
2. Select an acceptable percentage of time that the system Wi"increases the hit rate in the cache (due to an increase in locality across
" resort to the werflow pool. This amounts to dmng a line the users), until the point at which the sum of the useosking sets

across Figure 6a such that the fraction of columns that cross the®xc€€ds the cache size, causing the cache hit redé. to f)
line is this percentag®. From these results, we can deduce that the capacity of a single front

Since we hee measured thevarage number of requests/s that a dis-end will be limited by the high cache miss penalties. The number of
tiller of a given class can handle, the number of tasks /s that wedpick simultaneous, outstanding requests at a front end is equdixd ,
(from step 1 or 2 ahee) dictates hw mary distillers will need to be in whereN is the number of requests ainig per second, arilis the aer-

95% of all cache hits takless than 100 ms to service, implying
cache hit rate haswovariation.

The miss penalty (i.e., the time to fetch data from the Internet)
varies widely from 100 ms through 100 seconds. This implies that
should a cache miss ocgliris likely to dominate the end-to-end

the dedicated (nonverflow) pool. age service time of a request. A high cache miss penalty implie$ that
. will be large. Because wTCP connections (one between the client and
4.3 Distiller Performance front end, the other between the front end and a cache partition) and one

If the system is beling well, the distillation of images is the most thread contet are maintained in the front end for each outstanding
computationally pensve task performed byr&nSend. W measured request, implying that front ends are vulnerable to state management and
contt switching werhead. As anxample, for ofered loads of 15

4: Note that the utilization el cannot necessarily be predictedegi a certain ~ requests per second to a front end, weehebsered 150-350 outstand-
acceptable percentage, and viegsa. ing requests and therefore up to 700 open TCP connections and 300

loaded and started up one more distilterusing the load to stabi-
25 . 40 lize.

Distiller 1 ——

Distler When we first ran thisxperiment, we noticed rapid oscilla-
| OﬁBiigllliigii tions in queue lengths. Inspectiorvealed that since the front
* crea e * ends manager stubs only periodically rees distiller queue
’ length reports, thewere making load balancing decisions based on

s : 124 stale data. @ repair this, we changed the manager stubegpla

’ | running estimate of the change in distiller queue lengths between
successie reports; these estimates werdisigit to eliminate the
oscillations. The data in Figure 8 reflects the modified load balanc-
Distiler 5 ing functionality

FDistiller.4 4.6 Scalabi ||ty

sfarted
. f ‘ ‘ AR Wk . To demonstrate the scalability of the system, we needed to
@ ° so [100 150 200 250 [300 350 400 eliminate two bottlenecks that limit the load we couldenf the

Distiller Queue Length

Distiller 1
& 2 died

a

Time (seconds)

Distller2 Distllers Distiler 4 overhead associated with\iag a \ery lage number of open file
descriptors, and the bottleneck 10Mb/s Ethernet connecting our
2 : : : : : : : cluster to the Internet.oldo this, we prepared a trace file that

Distiller 1

Distiler 2 - repeatedly requested adtk number of JPEG images, all approxi-

Distiller 3
Distiller 4

oL : Bisuier 5 <~ | mately 10KB in size, based on the diattibns we obserd (Sec-
‘ tion 4.1). These imagesould then remain resident in the cache
partitions, eliminating cache miss penalty and the resultifigup

g o [] of file descriptors in the front end.8Mecognize that although a

g P non-zero cache miss penalty does not introdugeadditional net-

§ A . work, stable storage, or computationalrden on the system, it
podlers L e does result in an increase in the amount of state in the front end,

& 2 died

/i started

which as we mentioned in Section 4.4 limits the performance of a
single front end. On the other hand, by turninigcathing of dis-

] tilled images, we force our system to re-distill the imageyetime
%s0 260 a0 1 e G T w0 310 320 it was requested, and in that respect our measurements are pessi-
(b) Dister 4 mistic relatve to the systera’normal mode of operation.

Our stratgy for the &periment vas as follavs:

Figure 8: Distiller queue lengths observed over time as the load . : . .
9 d g 1. Begin with a minimal instance of the system: one front

presented to the system fluctuates, and as distillers are

manually brought down. (b) is an enlargement of (a). end, one d_is_tillerthe_ managerand some fied number of

- - - cache partitions. (Since for thesgperiments we repeat-
actve thread contés at ay given time. As a result, the front end edly requested the same subset of images, the camhe w
spends more than 70% of its time in tlegriel (as reported by the effectively not tested.)

top utility) under this load. Eliminating thisverhead is the subject 2

) . Increase the éred load until some system component sat-
of ongoing research.

urates (e.g., distiller queues wgrotoo long, front ends

: : cannot accept additional connections, etc.).
4.5 Sdlf Tuning and L oad Balancing 3. Add more resources to the system to eliminate this satura-

TranSend uses queue lengths at the distillers as a metric fc tion (in mary cases the system does this automaticay

load balancing. As queue lengthswgrdue to increased load, the when it recruits werflov nodes to run more avkers), and
moving average of the queue length maintained by the manage! record the amount of resources added as a function of the
starts increasing; when theesiage crosses a configurable threshold increase in déred load, measured in requests per second.

H, the manager spas a nw distiller to absorb the load. The 4. Continue until the saturated resource cannot be replenished
thresholdH maps to the greatest delay the user is willing to tolerate (i.e., we run out of hardave), or until adding more of the

when the system is under high load. dllow the nev distiller to saturated resource no longer results in a linear or close-to-

stabilize the system, the spaing mechanism is disabled for linear improvement in performance.

seconds; the parametBr represents a tradddetween stability Table2 presents the results of thigperiment. At 24 requests

(rate of spaning and reaping distillers) and ugeerceptible delay ~ Per second, as thefefed load eceeded the capacity of the single
Figure 8(a) shes the \ariation in distiller queue lengthver available distiller the manager automatically spsed one addi-

time. The system as bootstrapped with one front end and the tional distiller and then subsequent distillers as neces@ﬂrﬁ?

manager On-demand spening of the first distiller \as obsered requests per second, the Etherngmeent leading into the front

as soon as load as ofered. Wth increasing load, the distiller ~€nd saturated, requiring awndront end to be spened. Vi were

queue gradually increased until the manager decided tenspa unable to test the system at rates higher than_159 requests per sec-

second distillerwhich reduced the queue length of the first distiller ©nd, as all of our cluster'machines were hosting distillers, front

and balanced the load across both distillers withia §gconds. ~ €nds, or playback engines.eVdid obsere nearly perfectly linear

Continued increase in load caused a third distiller to start up, whictdrowth of the systemer the scaled range: a distiller can handle

agpin reduced and balanced the queue lengths withirséigonds. ~ @pproximately 23 requests per second, and a 100 Mb/s Ethernet
Figure 8(b) shars an enlaged viav of the graph in Figure 8(a). S€gment into a front-end can handle approximately 70 requests per

During the &periment, we manually killed the first wdistillers, second® We were unable to saturate the front end, the cache parti-
causing the load on the remaining distiller to rapidly increase. The : : ' _
manager immediately reacted and started upnadigtiller. Even 5: We believe that TCP connection setup and processirghead is the
after D seconds, the manager digeted that the systemas wver- dominating &ctor Using a more éitient TCP implementation such aast

Soclets [52] may alleiate this limitation, although morevestigation is
needed.

Requests/ | # Front # Element that
Second Ends | Didtillers saturated
0-24 1 1 distillers
25-47 1 2 distillers
48-72 1 3 distillers
73-87 1 4 FE Ethernet

88-91 2 4 distillers
92-112 2 5 distillers
113-135 2 6 d'StE"t'ﬁ;s”f‘etFE
136-159 3 7 distillers

Table 2: Results of the scalability experiment

tions, or fully saturate the interior SAN during thigeriment. \é
draw two conclusions from this result:

* Even with a commodity 100 Mb/s SAN, linear scaling is
limited primarily by bandwidth into the system rather than
bandwidth inside the system.

e Although we run TanSend on four $fRC 10%, a single
Ultra-1 class machine auld sufice to sere the entire dialup
IP population of UC Bemdey (25,000 users &€ially, over
8000 of whom surfed during the trace).

Ultimately, the scalability of our system is limited by the
shared or centralized components of the system, namely the us
profile database, the managand the SAN. In oungerience, nei-
ther the database nor the managetwehaer been close to satura-
tion. The main task of the manager (in steady state) is tc
accumulate load announcements from all distillers and multicas
this information to the front ends.éM¢onducted anxgeriment to
test the capability of the manager to handle these load announc
ments. Nine hundred distillers were created on four machines. Eac
of these distillers generated a load announcementepdok the
manager eery half a second. The manageasaeasily able to han-
dle this aggrgate load of 1800 announcements per secorith W
each distiller capable of processingen 20 front end requests per
second, the manager is computationally capable of sustaining
total number of distillers equalent to 18000 requests per second.
This number is nearly three orders of magnitude greater than th
peak load eer seen on UC Beekey’s modem pool which is com-
parable to a modest-sized |SFmilarly, HotBot's ACID database
(parallel Informix serer), used for ad wenue tracking and user
profiles, can sers about 400 requests per second, significantly
greater than HotBat'load.

On the other hand, SAN saturation is a potential concern fol
communication-intenge workloads such asr@nSends. The prob-
lem of optimizing component placemenven a specific netark
topology technologyand vorkload is an important topic for future
research. As a preliminarxg@oration of hav TranSend behas as
the SAN saturates, we repeated the scalabiipeements using a
10 Mb/s switched Ethernet. As the netw was drven closer to
saturation, we noticed that most of our (unreliable) multicagictraf
was being dropped, crippling the ability of the manager to balance
load and the ability of the monitor to report system conditions.

One possible solution to this problem is the addition ofaa lo
speed utility netwrk to isolate control trdt from data trdic,
allowing the system to more gracefully handle (and perhegqis)a
SAN saturation. Another possibility is to use a higberformance
SAN interconnect: a Myring#3] microbenchmark run on the Hot-
Bot implementation measured 32 MBytes/s all-pairs fitraf
between 40 nodesarf greater than the tfaf experienced during

the normal use of the system, suggesting that Myrinet will support
systems of at least\ggral tens of nodes.

5 Discussion

In previous sections we presented detailed measurements of a
scalable netark service implementation that confirmed thieef
tiveness of our layered architecture. In this section, we discuss
some of the more interesting andrabaspects of our architecture,
reflect on further potential applications of this research, and com-
pare our wrk with others’ eforts.

5.1 Extensibility: New Workersand Composition

One of our goals as to mak the system easilytnsible at
the TACC and Service layers by making it easy to createkavs
and chain them togethe®dur HTML and JPEG distillers consist
almost entirely of dfthe-shelf code, and each took an afternoon to
write. Dehlugging the pathological cases for the HTML distiller
was spread outver a period of days—since the system redsk
transient &ults by bypassing original content “around” thalfing
distiller, we could only deduce theistence of bhgs by noticing
(using the Monitor display) that the HTML distiller had been
restarted seeral times wer a period of hours.

The other aspect ofxtensibility is the ease with which we
services can be added by composirgrkers and modifying the
service presentation intade. V@ nav discuss seeral xamples of
new services in arious stages of construction, indicating what
must be changed in thATC and Service layers for each. The ser-
vices share the foleing common features, which makhem ame-
nable to implementation using our franmk:

« Compute-intensie transformation or aggyation

« Computation is parallelizable with granularity of avf€PU
seconds

» Substantial &lue added by mass customization
» Data manipulated hasdSE semantics

We restrict our discussion here to services that can be imple-
mented using the HTTP proxy model (i.e., transparent interposition
of computation between &% clients and \&b serers). The follav-
ing applications hee all been prototyped usingahSend.

Keyword Filtering: The leyword filter aggrgator is \ery
simple (about 10 lines of Perl). It alls users to specify a
Perl rgular epression as customization preference. This
regular epression is then applied to all HTML before
delivery. A simple eample filter marks all occurrences of
the chosendywords with lage, bold, red typefce.

Bay Area Culture Page: This service retriees scheduling
information from a number of cultural pages on the web, and
collates the results into a single, comprehensialendar of
upcoming &ents, bounded by dates stored as part of each
users profile. The service is implemented as a single
aggregator in the ACC layer and is composed with the
unmodified TanSend service layedelivering the benefits of
distillation automatically This service xploits BASE
“approximate answers” semantics at the application layer:
extremely general, layout-independent heuristics are used to
extract scheduling information from the cultural pages.
About 10-20% of the time, the heuristics spuriously pick up
non-date tet (and the accompgimg non-descriptions of
events), lut the service is still useful and users simply ignore
spurious results. Earlyxperience with services such as this
one suggest that our SNS architecture may be a promising
platform for deplging certain kinds of simple nebsk
agents.

TranSend Metasearch: The metasearch service is similar to 5.3 Related Wor k
the Bay Area Culture &e in that it collates content from
other sources in the Internet. This contentwdver, is
dynamically produced—an aggador accepts a search
string from a userqueries a number of popular search
engines, and collates the top results from each into a single
result page. Commercial metasearch engines alrexidy e
[58], but the FanSend metasearch enginaswimplemented
using 3 pages of Perl code in roughly 2.5 hours, and inherit

%ﬁlsag% fault tolerance, and highvailability from the [13,59], and personalized agent services fai\Vdravsing[7].
]] Fault tolerance and high availability: The Worm programs
Anonymous Rewebber: Just as angmous remailer chains [s5] are an early>@mple of process-peealt tolerance. ahdem
[24] allow email authors to angmously disseminate their Computer and otherscglored a related mechanism, process-pair
content, an anonymous rewebber network allows web fault tolerance[6] in which a secondary (backup) process ran in
authors to angmmously publish their content. Thewebber parallel with the primary and maintained a mirror of the prinsary’
described in25] was implemented in one week using our internal state by processing the same messadi taaf the pri-
TACC architecture. The weebbers workers perform mary allowing it to immediately replace the primary in theet of
encryption and decryption, its user profile database maintainsajlure. Tandem also adcated the use of simpleuttding blocks”
public key information for anoymous serers, and its cache to ensure highailability. The Open Group SHAS project[49]
stores decrypted evsions of frequently accessed pages. plans to hild scalable highly ailable web semrs using adult
Since encryption and decryption of distinct pages requesteciolerance toolkit called CORDSubthat project is still in progress.

Content transformation by proxy: Filtering and on-the-fly
compression he become particularly popular for HTTB1],
whose proxy mechanismas originally intended for users behind
security firgvalls. The mechanism has been used to shield clients
from the efects of poor (especially wireless) netks [22,37] per-
form filtering [67] and anowmization, and perform alue-added
Jtransformations on content, including Kanji transcodisg],
“Kaniji-to-GIF cowversion[65], application-lgel stream transducing

by independent users is both computationally intensind BASE: Grapeine [9] was an important earlyxample of trad-
hlghl_y parallelizable, this service is a natural fit for our jng consisteng for simplicity; Bayou 1] later eplored trading
architecture. consisteng for availability in application-specific ays, preiding

Real Web Access for PDAs and Smart Phones. We hae an operational spectrum betwee@IR and BASE for a distrilited
already &tended TanSend to support graphical ey database. The use of soft state tovjgle improed performance
browsing on the USR @mPilot [62], a typical “thin client” and increasealllt tolerance ralstness has been wekpgored in
device. Previous attempts to pwide Web bravsing on such the wide-area Internet, in the coxttef IP paclet routing[39], mul-
devices hae foundered on the were limitations imposed by ticast routing[20], and wireless TCP optimizations such as TCP
small screens, limited computing capabjlitgnd austere Snoop[5]; the lessons learned in those areas strongly influenced
programming evironments, and virtually all wa fallen our design philosophfor the TACC serer architecture.
back to simple te-only bravsing. But the ability of our Load balancing and scaling: WebOS[66] and SWEB++3]
architecture to mee compleity into the service wrkers have eploited the &tensibility of client bravsers via Jea and Je-
rather than the client alies us to approach this problem aScript to enhance scalability of netk-based services bywiil-
from a diferent perspecte. We hae Hhiilt TranSend ing labor between the client and sarw\e note that our system
workers that output simplified markup and scaledsdlo does not preclude, and iact benefits from,gloiting intelligence
images ready to be “spoon fed” to artremely simple and computational resources at the client, as we do for the
browser client, gren knavledge of the cliens screen TranSend user intex€e and coarse-grained load balancingwHo
dimensions and font metrics. This greatly simplifies client- ever, as discussed in the Introduction, w@ect the utility of cen-
side code since no HTML parsing, layout, or image tralized, highly-aailable services to continue to increase, and this
processing is necessaand as a side benefit, the smaller and cannot occur without the gath path preided by linear incremen-
more eficient data representation reduces transmission timetal scalability in the SNS sense.

to the client.
5.4 Future Work

5.2 Economic Feasibility Our past wrk on adaptation via distillatiof23,22] described

Given the improed quality of service prided by TanSend, how distillation could be dynamically tuned to match the béara
an interesting question is the additional cost required to operate thiof the uses network connection, and we & successfully demon-
service. From our performance data, a US$5000 Pentium Prstrated adaptation to netvk changes by combining our original
sener should be able to support about 750 modems, or abouwwWw proxy prototype with the Ent Notification mechanisms
15,000 subscribers (assuming a 20:1 subscriber to modem ratiodeveloped by Wlling and Badrinatf4], and plan to leerage these
Amortized wer 1 yearthe maginal cost per user is an amazing 25 mechanisms to puide an adapte solution for Véb access from
cents/month. wireless clients.

If we include the sangs to the ISP due to a cache hit rate of We hare not irvestigated hav well our proposed architecture
50% or more, as we obsed/in our cachexperiments, then we works outside the Internet-servdomain. In particulawe do not
can eliminate the equalent of 1-2 T1 lines perrdnSend installa- believe it will work well for write-intensie services where the
tion, which reduces operating costs by about US$3000 per monthwrites carry hard state or where strong consistéidesired, such
Thus, we gpect that the seer would pay for itself in only tw as commerce seevs, file systems, or onlineting systems.

months. In this @ument we hee ignored the cost of administra- The programming model forACC services is still embryonic.
tion, which is nontwial, but we beli@e administration costs for \We plan to deelop it into a well-defined programmingwémon-
TranSend wuld be minimal— we runrénSend at Begey with ment with an SDK, and we will encourage our colleagues to author

essentially no administratiorxeept for feature upgrades andgb services of theirwn using our system.

fixes, both of which are performed without bringing the service Previous research into operating systems support fmyb

down. Internet serers[32, 42] has identified inadequacies in OS imple-
mentations and the set of abstractiovailable to applications. &
plan to irvesticate similar issues related specifically to cluster

based middl@are services, as meaéited by our obseafions in
Section 4.4.

6 Conclusions

We proposed a layered architecture for clubtesed scalable
network services. W identified challenges of clusteased com-
puting, and shwed hav our architecture addresses these chal-
lenges. The architecture is reusable: authors of network
services write and compose statelesskers that transform, aggre-
gate, cache, and customize AQC) Internet content, Ut are
shielded from the softare complgity of automatic scaling, high
availability, and filure management. 8Vagued that a lge class
of network services can get by withABE, a weakrthan-ACID
data semantics that results from the combination of trading consis
teng for availability and eploiting soft state for performance and
failure management.

We discussed in depth the design and implementation @f tw
clusterbased scalable netrk services: the rinSend distillation
Web proxy and the HotBot search engine. Usixigresie client
traces, we conducted detailed performance measurements i
TranSend. While athering these measurements, we scaled
TranSend up to 10 Ultra-1askstations serving 159 web requests
per second, and demonstrated that a single sodkstation is suf-
ficient to sere the needs of the entire 600 modem UC Bleyk
dialup IP bank.

Since the class of clustbased scalable netrk services we
have identified can substantially increase tteug of Internet
access to end users while remaining coiitieft to deply and
administer we beliee that clustebased alue-added netwrk ser-
vices will become an important Internet-service paradigm.

7 Acknowledgments

This paper has benefited from the detailed and peveegim-
ments of our réewers, especially our shepherd Hankvi.eWe
thank Randy Katz and Eric Anderson for their detailed readings o
early drafts of this papeand Daid Culler for his ideas onACC’s
potential as a model for cluster programmingnKLutz and Eric
Fraser configured and administered the test arhon which the
TranSend scalingxperiments were performed. GliFrost of the
UC Berleley Data Communications and Neivks Services group
allowed us to collect traces on the Beldy dialup IP netwrk and
has vorked with us to deplpand promote fanSend within Berdc-
ley. Undegraduate researchers AntlyoRolito, Benjamin Ling,
and Andrev Huang implementedavious parts of lanSends user
profile database and user ingexé. lan Goldberand Daid Wag-
ner helped us delg TranSend, especially through their implemen-
tation of the revebber

8 References

[1] E. Anderson and David A. Patters@ixtensible, Scalable Monitoring
For Clusters of Computers. Proc. 1997 Large Installation System Ad-
ministration Confere (LISA Xl), to appear.

[2] T. E. Anderson et allhe Case for NOW (Networks of Workstations).
IEEE Micro, February 1995.

[3] D. Andresen, T. Yang, O. Egecioglu, O. H. Ibarra, and T. R. SBuith.
ability Issues for High Performance Digital Libraries on the World
Wide Web.Proceedings of ADL ‘96, Forum on Research and Technol-
ogy Advances in Digital Libraries, IEEE, Washington D.C., May 1996

[4] B. R. Badrinath and G. Welling\ Framework for Environment Aware
Mobile Applications. International Conference on Distributed Com-
puting Systems, May 1997 (to appear)

[5] H. Balakrishnan, S. Seshan, E. Amir, R. Kataproving TCP/IP Per-

formance over Wireless Networks. Proeedings. of the 1st ACM Con-
ference on Mobile Computing and Networking, Berkeley, CA,
November 1995.

[6] J. F. BartlettA NonSop Kernel. Proc. 8th SOSP and Operating Systems
Review 15(5), December 1981

[7] Rob Barrett, Paul Maglio, and Daniel Kellehinw to Personalize the
Web. Proc. CHI 97.

[8] Berkeley Home IP Service FAQ. http://ack.berkeley.edu/dcns/modems/
hip/hip_fag.html.

[9] A.D. Birrell et al.Grapevine: An Exercisein Distributed Computing.
Communications of the ACM 25(4), Feb. 1984.

[10] C.M. Bowman et al. Harvesk Scalable, Customizable Discovery and
Access System. Technical Report CU-CS-732-94, Department of
Computer Science, University of Colorado, Boulder, August 1994

[11] Tim Bray.Measuring the Web. Proc. WWW-5, Paris, May 1996.
[12] T. Brisco.RFC 1764: DNS Support for Load Balancing, April 1995.

[13] C. Brooks, M.S. Mazer, S. Meeks and J. Milkgoplication-Specific
Proxy ServersasHTTP Stream Transducers. Proc. WWW-4, Boston,
May 1996. http://www.w3.org/pub/Conferences/WWW4/Papers/56.

14] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz and K.
J. Worrell.A Hierarchical Internet Object Cache. Proceedings of the
1996 Usenix Annual Technical Conference, 153-163, January 1996.

D.Clark.Palicy Routing in Internet Protocols. Internet Request for
Comments 1102, May 1989,

Cisco Systemd.ocal Director. http://www.cisco.com/warp/public/
751/lodir/index.html.

F. J. Corbaté and V. A. Vyssotsky. Introduction and Overview of the
Multics SystemAFIPS Conference Proceedings, 27, 185-196, (1965
Fall Joint Computer Conference), 1965. http://www.lilli.com/ficc1.ht-
ml

M.E. Crovella and A. BestavroBxplaining World Wide Web Traffic
Self-Smilarity. Tech Rep. TR-95-015, Computer Science Department,
Boston University, October 1995.

P. B. Danzig, R. S. Hall and M. F. SchwaAzZase for Caching File
Objects Inside Internetworks. Proceedings of SIGCOMM '93. 239-
248, September 1993.

[20] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C.-G. Liu, and L. Wei.
An Architecture for Wide-Area Multicast Routing. Proceedings of
SIGCOMM ‘94, University College London, London, U.K., Septem-
ber 1994.

[21] A. Demers, K. Petersen, M. Spreitzer, D. Terry, M. Theimer, B. Welch.
The Bayou Architecture: Support for Data Sharing Among Mobile Us-
ers.

[22] A. Fox and E. A. BreweReducing WMV Latency and Bandwidth Re-
quirements via Real-Time Distillation. Proc. WWW-5, Paris, May
1996.

[23] A. Fox, S. D. Gribble, E. Brewer and E. Anfdapting to Network
and Client Variation Via On-Demand Dynamic Distillation. Proceed-
ings of ASPLOS-VII, Boston, October 1996.

lan Goldberg, David Wagner, and Eric Brewgnivacy-enhancing
Technologiesfor the Internet. Proc. of IEEE Spring COMPCON, 1997

lan Goldberg and David Wagn@AZ Servers and the Rewebber Net-
work: Enabling Anonymous Publishing on the World Wide Web. Un-
published manuscript, May 1997, available at http://
www.cs.berkeley.edu/~daw/cs268/.

[15]

[16]

(17]

(18]

[19]

[24]

[25]

[26] J. Gray.The Transaction Concept: Virtues and Limitations. Proceed-
ings of VLDB. Cannes, France, September 1981, 144-154.

[27] S.D. Gribble, G.S. Manku, and E. Brewer. Self-Similarity in File-Sys-
tems: Measurement and Applicatiobspublished, available at http:/
www.cs.berkel ey.edu/~gribble/papers/papers.html

[28] T.R. Hdfhill. Inside the Web PMyte Magazine, March 1996.
[29]
[30]

Independent JPEG Group. jpeg6alibrary.

Inktomi Corporation: The Inktomi Technology Behind HotBidtay
1996. http://www.inktomi.com/whitepap.html.

[31] Internet Engineering Task Force. Hypertext Transfer Protocol—HTTP
1.1.RFC 2068, March 1, 1997.

[32] M. F.Kaashoek, D. R. Engler, G. R. Ganger, and D. A. Wallach. Server
Operating SystemBroceedings of the SIGOPS European Workshop,
September 1996.

[33] P.Keleher, A. Cox, and W. Zwaenepoel. Lazy Release Consistency for
Software Distributed Shared MemoPRyoceedings of the 19th Annual
Symposium on Computer Architecture. May, 1992.

P. Keleher, A. Cox, S. Swarkadas, and W. Zwaenepoel. TreadMarks:
Distributed Shared Memory on Standard Workstations and Operating
SystemsProceedings of the 1994 Winter USENIX Conference, Janu-

ary, 1994.

[35] W. Leland, M.S. Tagqu, W. Willinger, and D.V. Wilson. On the Self-
Similar Nature of Ethernet Traffic (extended versiéBEE/ACM
Transactions on Network v2, February 1994.

[34]

[36] K.Li.Shared Virtual Memory on Loosely Coupled Microprocessors

PhD Thesis, Yale University, September 1986.

M. Liljeberg et al. Enhanced Services for World Wide Web in Mobile
WAN EnvironmentUniversity of Helsinki CS Technical Report No.
C-1996-28, April 1996.

Bruce A. Mah. An Empirical Model of HTTP Network Traffieroc.
INFOCOM 97, Kobe, Japan, April 1997.

[39] J. McQuillan, | Richer, E. Rosen. The New Routing Algorithm for the
ARPANETIEEE Transactions on Communications COM-28, No. 5,
pp. 711-719 , May 1980.

[40] M. Meeker and C. DePuy. The Internet RepariMorgan Stanley Equity
Research, April 1996. http://www.mas.com/misc/inet/morganh.html

[37]

(38]

[41] P.V. Mockapetrisand K.J. Dunlap. Development of the Domain Name
SystemACM SIGCOMM Computer Communication Review, 1988.

[42] Jeffrey C. Mogul. Operating Systems Support for Busy Internet Serv-
ers. Proceedings of HotOS-V, Orcas Island, Washington, May 1995.

Myricom Inc. Myrinet: A Gigabit Per Second Local Area Network
|IEEE-Micro, Vol.15, No.1, February 1995, pp. 29-36.

National Laboratory for Applied Network Research. The Squid Inter-
net Object Cachenttp://squid.nlanr.net.

[45] National Aeronauticsand Space Administration. The Mars Pathfinder
Mission Home Pagéhttp://mpfwww.jpl.nasa.gov/defaultl.html.

[43]

[44

[46] Netscape Communications Corporation. Netscape Proxy Automatic
Configuration http://home.netscape.com/eng/mozilla/2.02/relnotes/

unix-2.02.html#Proxies.

Nokia Communicator 9000 Press Release. Available at http://
www.club.nokia com/support/9000/press.html.

[48] JK. Ousterhout. Tcl and the Tk ToolkiAddison-Wesley, 1994.

[49] Open Group Research Institute. Scalable Highly Available Web Server
Project (SHAWShttp://www.osf.org/RI/PubProjPgs/SFTWWW.htm

[50] Eric S. Raymond, ed. The New Hackers’ DictionarfCambridge, MA:
MIT Press, 1991. Also http://www.ccil.org/jargon/jargon.html.

[51] P.Resnick, N. lacovou, M. Suchak, P. Bergstrom, J. Ried. GrouplLens:
An Open Architecture for Collaborative Filtering of NetneRr®-
ceedings of 1994 Conference on Computer Supported Cooperative

[47]

Work, Chapel Hill, NC.

[52] S.H. Rodriguesand T. E. Anderson. High-Performance Local-Area
Communication Using Fast Socke®soc. 1997 Winter USENIX,
Anaheim, CA.

[53] Jacques A.J. Roufs. Perceptual Image Quality: Concept and Measure-
ment.Philips Journal of Research, 47:3-14, 1992.

[54] A. Sah, K. E. Brown and E. Brewer. Programming the Internet from
the Server-Side with Tcl and Audiencefbceedings of Tcl96, July
1996.

[55] J.F. Shochand J. A. Hupp. The “Worm” Programs—Early Experience
with a Distributed SystenCACM 25(3):172-180, March 1982.

[56] Y. Sato. DeleGate Server. Documentation available at http:/
www.aubg.edu:8080/cii/src/del egate3.0.17/doc/M anual .txt.

[57] B. Schilit and T. Bickmore. Digestor: Device-Independent Access to
the World Wide WellProc. WWW-6, Santa Clara, CA, April 1997.

[58] E. Selberg, O. Etzioni and G. Lauckhart. Metacrawler: About Our Ser-
vice http://www.metacrawler.com/about.html.

[59] M.A. Schickler, M.S. Mazer, and C. Brooks. Pan-Browser Support for
Annotations and Other Meta-Information on the World Wide Web.
Proc. WWW-5, Paris, May 1996. http://www5conf.inriafr/fich_html/
papers/P15/Overview.html

[60] SingNet (Singapore ISP). Heretical Caching Effort for SingNet Cus-
tomers http://www.singnet.com.sg/cache/proxy

[61] N.Smith. The UK National Web Cache - The State of the Art..Proc
WWW-5, paris, May 1996. http://www5conf.inriafr/fich_html/pa-
pers/P45/Overview.html

[62] US Robotics Palm Pilot home page - http://www.usr.com/palm/.

[63] C. Waldspurger and W. Weihl. Lottery Scheduling: Flexible Propor-
tional Share Resource Managemdbceedings of the First OSDI,
November 1994.

[64] Yahoo!, Inc. http://www.yahoo.com

[65] Kao-Ping Y ee. Shoduoka Mediator Service. http://www.Ifw.org/
shodouka.

[66] C.Yoshikawa, B. Chun, P. Eastham, A. Vahdat, T. Anderson, and D.
Culler. Using Smart Clients to Build Scalable Servi¢®sceedings of
Winter 1997 USENIX, January 1997.

[67] B.Zenel. A Proxy Based Filtering Mechanism for the Mobile Environ-
ment Ph.D. Thesis Proposal, Department of Computer Science, Co-
lumbia University, March 1996.

