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We identify three fundamental requirements for scalable net-
work services: incremental scalability and overflow growth provi-
sioning, 24x7 availability through fault masking, and cost-
effectiveness. We argue that clusters of commodity workstations
interconnected by a high-speed SAN are exceptionally well-suited
to meeting these challenges for Internet-server workloads, pro-
vided the software infrastructure for managing partial failures and
administering a large cluster does not have to be reinvented for
each new service. To this end, we propose a general, layered archi-
tecture for building cluster-based scalable network services that
encapsulates the above requirements for reuse, and a service-pro-
gramming model based on composable workers that perform trans-
formation, aggregation, caching, and customization (TACC) of
Internet content.  For both performance and implementation sim-
plicity, the architecture and TACC programming model exploit
BASE, a weaker-than-ACID data semantics that results from trad-
ing consistency for availability and relying on soft state for robust-
ness in failure management. Our architecture can be used as an
“of f the shelf” infrastructural platform for creating new network
services, allowing authors to focus on the “content” of the service
(by composing TACC building blocks) rather than its implementa-
tion. We discuss two real implementations of services based on this
architecture: TranSend, a Web distillation proxy deployed to the
UC Berkeley dialup IP population, and HotBot, the commercial
implementation of the Inktomi search engine. We present detailed
measurements of TranSend’s performance based on substantial cli-
ent traces, as well as anecdotal evidence from the TranSend and
HotBot experience, to support the claims made for the architecture.

1  Introduction
“One of the overall design goals is to create a computing

system which is capable of meeting almost all of the
requirements of a large computer utility. Such systems must
run continuously and reliably 7 days a week, 24 hours a
day... and must be capable of meeting wide service
demands.

“Because the system must ultimately be comprehensive
and able to adapt to unknown future requirements, its
framework must be general, and capable of evolving over
time.”

—Corbató and Vyssotsky on Multics, 1965[17]

Although it is normally viewed as an operating system, Multics
(Multiplexed Information and Computer Service) was originally
conceived as an infrastructural computing service, so it is not sur-
prising that its goals as stated above are similar to our own. The
primary obstacle to deploying Multics was the absence of the net-
work infrastructure, which is now in place. Network applications
have exploded in popularity in part because they are easier to man-
age and evolve than their desktop application counterparts: they
eliminate the need for software distribution, and simplify customer
service and bug tracking by avoiding the difficulty of dealing with
multiple platforms and versions. Also, basic queueing theory

shows that a large central (virtual) server is more efficient in both
cost and utilization than a collection of smaller servers; standalone
desktop systems represent the degenerate case of one “server” per
user. All of these support the argument for Network Computers
[28].

However, network services remain difficult to deploy because
of three fundamental challenges: scalability, availability and cost
effectiveness.

• By scalability, we mean that when the load offered to the
service increases, an incremental and linear increase in
hardware can maintain the same per-user level of service.

• By availability, we mean that the service as a whole must be
available 24x7, despite transient partial hardware or software
failures.

• By cost effectiveness, we mean that the service must be
economical to administer and expand, even though it
potentially comprises many workstation nodes.
We observe that clusters of workstations have some fundamen-

tal properties that can be exploited to meet these requirements:
using commodity PCs as the unit of scaling allows the service to
ride the leading edge of the cost/performance curve, the inherent
redundancy of clusters can be used to mask transient failures, and
“embarrassingly parallel” network service workloads map well
onto networks of workstations. However, developing cluster soft-
ware and administering a running cluster remain complex. The pri-
mary contributions of this work are the design, analysis, and
implementation of a layered framework for building network ser-
vices that addresses this complexity. New services can use this
framework as an off-the-shelf solution to scalability, availability,
and several other problems, and focus instead on thecontent of the
service being developed. The lower layer handles scalability, avail-
ability, load balancing, support for bursty offered load, and system
monitoring and visualization, while the middle layer provides
extensible support for caching, transformation among MIME
types, aggregation of information from multiple sources, and per-
sonalization of the service for each of a large number of users
(mass customization). The top layer allows composition of trans-
formation and aggregation into a specific service, such as acceler-
ated Web browsing or a search engine.

Pervasive throughout our design and implementation strategies
is the observation that much of the data manipulated by a network
service can tolerate semantics weaker than ACID [26]. We combine
ideas from prior work on tradeoffs between availability and consis-
tency, and the use of soft state for robust fault-tolerance to charac-
terize the data semantics of many network services, which we refer
to as BASE semantics (basically available, soft state, eventual con-
sistency). In addition to demonstrating how BASE simplifies the
implementation of our architecture, we present a programming
model for service authoring that is a good fit for BASE semantics
and that maps well onto our cluster-based service framework.

1.1  Validation: Two Real Services
Our framework reflects the implementation of two real network

services in use today: TranSend, a scalable transformation and
caching proxy for the 25,000 Berkeley dialup IP users (connecting
through a bank of 600 modems), and the Inktomi search engine
(commercialized as HotBot), which performs millions of queries
per day against a database of over 50 million web pages.

The Inktomi search engine is an aggregation server that was
initially developed to explore the use of cluster technology to han-



dle the scalability and availability requirements of network ser-
vices. The commercial version, HotBot, handles several million
queries per day against a full-text database of 54 million web
pages. It has been incrementally scaled up to 60 nodes, provides
high availability, and is extremely cost effective. Inktomi predates
the framework we describe, and thus differs from it in some
respects. However, it strongly influenced the framework’s design,
and we will use it to validate particular design decisions.

We focus our detailed discussion on TranSend, which provides
Web caching and data transformation. In particular, real-time,
datatype-specific distillation and refinement[22] of inline Web
images results in an end-to-end latency reduction by a factor of 3-5,
giving the user a much more responsive Web surfing experience
with only modest image quality degradation. TranSend was devel-
oped at UC Berkeley and has been deployed for the 25,000 dialup
IP users there, and is being deployed to a similar community at UC
Davis.

In the remainder of this section we argue that clusters are an
excellent fit for Internet services, provided the challenges we
describe for cluster software development can be surmounted. In
Section 2 we describe the proposed layered architecture for build-
ing new services, and a programming model for creating services
that maps well onto the architecture. We show how TranSend and
HotBot map onto this architecture, using HotBot to justify specific
design decisions within the architecture. Sections 3 and 4 describe
the TranSend implementation and its measured performance,
including experiments on its scalability and fault tolerance proper-
ties. Section 5 discusses related work and the continuing evolution
of this work, and we summarize our observations and contributions
in Section 6.

1.2  Advantages of Clusters
Particularly in the area of Internet service deployment, clusters

provide three primary benefits over single larger machines, such as
SMPs: incremental scalability, high availability, and the cost/per-
formance and maintenance benefits of commodity PC’s. We elabo-
rate on each of these in turn.

Scalability: Clusters are well suited to Internet service work-
loads, which are highly parallel (many independent simultaneous
users) and for which the grain size typically corresponds to at most
a few CPU-seconds on a commodity PC. For these workloads,
large clusters can dwarf the power of the largest machines. For
example, Inktomi’s HotBot cluster contains 60 nodes with 120 pro-
cessors, 30 GB of physical memory, and hundreds of commodity
disks. Wal-Mart uses a cluster from TeraData with 768 processors
and 16 terabytes of online storage.

Furthermore, the ability to grow clusters incrementally over
time is a tremendous advantage in areas such as Internet service
deployment, where capacity planning depends on a large number
of unknown variables. Incremental scalability replaces capacity
planning with relatively fluid reactionary scaling. Clusters corre-
spondingly eliminate the “forklift upgrade”, in which you must
throw out the current machine (and related investments) and
replace it via forklift with an even larger one.

High Availability: Clusters have natural redundancy due to the
independence of the nodes: Each node has its own busses, power
supply, disks, etc., so it is “merely” a matter of software to mask
(possibly multiple simultaneous) transient faults. A natural exten-
sion of this capability is to temporarily disable a subset of nodes
and then upgrade them in place (“hot upgrade”). Such capabilities
are essential for network services, whose users have come to
expect 24-hour uptime despite the inevitable reality of hardware
and software faults due to rapid system evolution.

Commodity Building Blocks: The final set of advantages of
clustering follows from the use of commodity building blocks
rather than high-end, low-volume machines. The obvious advan-

tage is cost/performance, since memory, disks, and nodes can all
track the leading edge; for example, we changed the building block
every time we grew the HotBot cluster, each time picking the reli-
able high volume previous-generation commodity units, helping to
ensure stability and robustness. Furthermore, since many commod-
ity vendors compete on service (particularly for PC hardware), it is
easy to get high-quality configured nodes in 48 hours or less. In
contrast, large SMPs typically have a lead time of 45 days, are
more cumbersome to purchase, install, and upgrade, and are sup-
ported by a single vendor, so it is much harder to get help when dif-
ficulties arise. Once again, it is a “simple matter of software” to tie
together a collection of possibly heterogeneous commodity build-
ing blocks.

To summarize, clusters have significant advantages in scalabil-
ity, growth, availability, and cost. Although fundamental, these
advantages are not easy to realize.

1.3  Challenges of Cluster Computing
There are a number of areas in which clusters are at a disadvan-

tage relative to SMP’s. In this section we describe some of these
challenges and how they influenced the architecture we will pro-
pose in Section 2.

Administration: Administration is a serious concern for sys-
tems of many nodes. We leverage ideas in prior work [1], which
describes how a unified monitoring/reporting framework with data
visualization support was an effective tool for simplifying cluster
administration.

Component vs. system replication: Each commodity PC in a
cluster is not usually powerful enough to support an entire service,
but can probably support some components of the service. Compo-
nent-level rather than whole-system replication therefore allows
commodity PCs to serve as the unit of incremental scaling, pro-
vided the software can be naturally decomposed into loosely cou-
pled modules. We address this challenge by proposing an
architecture in which each component has well-circumscribed
functional responsibilities and is largely “interchangeable” with
other components of the same type. For example, a cache node can
run anywhere that a disk is available, and a worker that performs a
specific kind of data compression can run anywhere that significant
CPU cycles are available.

Partial failures: Component-level replication leads directly to
the fundamental issue separating clusters from SMPs: the need to
handle partial failures (i.e., the ability to survive and adapt to fail-
ures of subsets of the system). Traditional workstations and SMPs
never face this issue, since the machine is either up or down.

Shared state: Unlike SMPs, clusters have no shared state.
Although much work has been done to emulate global shared state
through software distributed shared memory[33,34,36], we can
improve performance and reduce complexity if we can avoid or
minimize the need for shared state across the cluster.

These last two concerns, partial failure and shared state, lead us
to focus on the sharing semantics actually required by network ser-
vices.

1.4  BASE Semantics
We believe that the design space for network services can be

partitioned according to the data semantics that each service
demands. At one extreme is the traditional transactional database
model with the ACID properties (atomicity, consistency, isolation,
durability) [26], providing the strongest semantics at the highest
cost and complexity. ACID makes no guarantees regarding avail-
ability; indeed, it is preferable for an ACID service to be unavail-
able than to function in a way that relaxes the ACID constraints.
ACID semantics are well suited for Internet commerce transac-
tions, billing users, or maintaining user profile information for per-
sonalized services.



For other Internet services, however, the primary value to the
user is not necessarily strong consistency or durability, but rather
high availability of data:

• Stale data can be temporarily tolerated as long as all copies
of data eventually reach consistency after a short time(e.g.,
DNS servers do not reach consistency until entry timeouts
expire [41]).

• Soft state, which can be regenerated at the expense of
additional computation or file I/O, is exploited to improve
performance; data is not durable.

• Approximate answers (based on stale data or incomplete
soft state) delivered quickly may be more valuable than exact
answers delivered slowly.
We refer to the data semantics resulting from the combination

of these techniques asBASE—Basically Available, Soft State,
Eventual Consistency. By definition, any data semantics that are
not strictly ACID are BASE. BASE semantics allow us to handle
partial failure in clusters with less complexity and cost. Like pio-
neering systems such as Grapevine [9] , BASE reduces the com-
plexity of the service implementation, essentially trading
consistency for simplicity; like later systems such as Bayou[21]
that allow trading consistency for availability, BASE provides
opportunities for better performance. For example, where ACID
requires durable and consistent state across partial failures, BASE
semantics often allows us to avoid communication and disk activity
or to postpone it until a more convenient time.

In practice, it is simplistic to categorize every service as either
ACID or BASE; instead, different components of services demand
varying data semantics. Directories such as Yahoo![64] maintain a
database of soft state with BASE semantics, but keep user customi-
zation profiles in an ACID database. Transformation proxies[23,57]
interposed between clients and servers transform Internet content
on-the-fly; the transformed content is BASE data that can be regen-
erated by computation, but if the service bills the user per session,
the billing should certainly be delegated to an ACID database.

We focus on services that have an ACID component, but
manipulate primarily BASE data. Web servers, search/aggregation
servers[58], caching proxies[14,44], and transformation proxies are
all examples of such services; our framework supports a superset of
these services by providing integrated support for the requirements
of all four. As we will show, BASE semantics greatly simplify the
implementation of fault tolerance and availability and permit per-
formance optimizations within our framework that would be pre-
cluded by ACID.

2  Cluster-Based Scalable Service Architecture
In this section we propose a system architecture and service-

programming model for building scalable network services on clus-
ters. The architecture attempts to address both the challenges of
cluster computing and the challenges of deploying network ser-
vices, while exploiting clusters’ strengths. We view our contribu-
tions as follows:

• A proposed system architecture for scalable network services
that exploits the strengths of cluster computing, as
exemplified by cluster-based servers such as TranSend and
HotBot.

• Separation of thecontent of network services (i.e., what the
services do) from their implementation, by encapsulating the
“scalable network service” (SNS) requirements of high
availability, scalability, and fault tolerance in a reusable layer
with narrow interfaces.

• A programming model based on composition of stateless
worker modules into new services. The model maps well
onto our system architecture and numerous existing services

map directly onto it.
• Detailed measurements of a production service that

instantiates the architecture and validates our performance
and reliability claims.
In the remainder of this section we review the benefits and

challenges of cluster computing and propose a network service
architecture that exploits these observations and allows encapsula-
tion of the SNS requirements. We then describe a programming
model that minimizes service development effort by allowing
implementation of new services entirely at the higher layers.

2.1  Proposed Functional Organization of an SNS
The above observations lead us to the software-component

block diagram of a generic SNS shown Figure 1. Each physical
workstation in a network of workstations (NOW [2]) supports one
or more software components in the figure, but each component in
the diagram is confined to one node. In general, the components
whose tasks are naturally parallelizable are replicated for scalabil-
ity, fault tolerance, or both. In our measurements (Section 4), we
will argue that the performance demands on the non-replicated
components are not significant for the implementation of a large
class of services, and that the practical bottlenecks are bandwidth
into and out of the system and bandwidth in the system area net-
work (SAN).

Front Ends provide the interface to the SNS as seen by the
outside world (e.g., HTTP server). They “shepherd”
incoming requests by matching them up with the appropriate
user profile from the customization database, and queueing
them for service by one or more workers. Front ends
maximize system throughput by maintaining state for many
simultaneous outstanding requests, and can be replicated for
both scalability and availability.

The Worker Pool consists of caches and service-specific
modules that implement the actual service (data
transformation/filtering, content aggregation, etc.) Each type
of module may be instantiated zero or more times, depending
on offered load.

The Customization Database stores user profiles that allow
mass customization of request processing.

System Area

Wide-Area Network

Figure 1: Architecture of a generic SNS. Components include
front ends (FE), a pool of workers (W) some of which may be
caches ($), a user profile database, a graphical monitor, and a
fault-tolerant load manager, whose functionality logically
extends into the manager stubs (MS) and worker stubs (WS).
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The Manager balances load across workers and spawns
additional workers as offered load fluctuates or faults occur.
When necessary, it may assign work to machines in the
overflow pool, a set of backup machines (perhaps on
desktops) that can be harnessed to handle load bursts and
provide a smooth transition during incremental growth. The
overflow pool is discussed in Section 2.2.3.

The Graphical Monitor for system management supports
tracking and visualization of the system’s behavior,
asynchronous error notification via email or pager, and
temporary disabling of system components for hot upgrades.

The System-Area Network provides a low-latency, high-
bandwidth interconnect, such as switched 100-Mb/s Ethernet
or Myrinet [43]. Its main goal is to prevent the interconnect
from becoming the bottleneck as the system scales.

2.2  Separating Service Content From Implementa-
tion: A Reusable SNS Support Layer

Layered software models allow layers to be isolated from each
other and allow existing software in one layer to be reused in dif-
ferent implementations. We observe that the components in the
above architecture can be grouped naturally into three layers of
functionality, as shown in Figure 2: SNS (scalable network service
implementation), TACC (transformation, aggregation, caching,
customization), and Service. The key contributions of our architec-
ture are the reusability of the SNS layer, and the ability to add sim-
ple, stateless “building blocks” at the TACC layer and compose
them in the Service layer. We discuss TACC in Section 2.3. The
SNS layer, which we describe here, provides scalability, load bal-
ancing, fault tolerance, and high availability; it comprises the front
ends, manager, SAN, and monitor in Figure 1.

2.2.1  Scalability
Components in our SNS architecture may be replicated for

fault tolerance or high availability, but we also use replication to
achieve scalability. When the offered load to the system saturates
the capacity of some component class, more instances of that com-
ponent can be launched on incrementally added nodes. The duties
of our replicated components are largely independent of each other
(because of the nature of the internet services’ workload), which
means the amount of additional resources required is a linear func-
tion of the increase in offered load. Although the components are
mostly independent, they do have some dependence on the shared,
non-replicated system components: the SAN, the resource man-

Figure 2: Scalable Network Service Layered Model

Service: Service-specific code
• Workers that present human interface to what TACC

modules do, including device-specific presentation
• User interface to control the service

TACC: Transformation,Aggregation, Caching, Customization
• API for composition of stateless data transformation

and content aggregation modules
• Uniform caching of original, post-aggregation and post-

transformation data
• Transparent access to Customization database

SNS: Scalable Network Service support
• Incremental and absolute scalability
• Worker load balancing and overflow management
• Front-end availability, fault tolerance mechanisms
• System monitoring and logging

ager, and possibly the user profile database. Our measurements in
Section 4 confirm that even for very large systems, these shared
components do not become a bottleneck.

The static partitioning of functionality between front ends and
workers reflects our desire to keep workers as simple as possible,
by localizing in the front ends the control decisions associated with
satisfying user requests. In addition to managing the network state
for outstanding requests, a front end encapsulates service-specific
worker dispatch logic, accesses the profile database to pass the
appropriate parameters to the workers, notifies the end user in a
service-specific way (e.g., constructing an HTML page describing
the error) when one or more workers fails unrecoverably, provides
the user interface to the profile database, and so forth. This division
of responsibility allows workers to remain simple and stateless, and
allows the behavior of the service as a whole to be defined almost
entirely in the front end. If the workers are analogous to processes
in a Unix pipeline, the front end is analogous to an interactive shell.

2.2.2  Centralized Load Balancing
Load balancing is controlled by a centralized policy imple-

mented in the manager. The manager collects load information
from the workers, synthesizes load balancing hints based on the
policy, and periodically transmits the hints to the front ends, which
make local scheduling decisions based on the most recent hints.
The load balancing and overflow policies are left to the system
operator. We describe our experiments with load balancing and
overflow in Section 4.5.

The decision to centralize rather than distribute load balancing
is intentional: If the load balancer can be made fault tolerant, and if
we can ensure it does not become a performance bottleneck, cen-
tralization makes it easier to implement and reason about the
behavior of the load balancing policy. In Section 3.1.3 we discuss
the evolution that led to this design decision and its implications
for performance, fault tolerance, and scalability.

2.2.3  Prolonged Bursts and Incremental Growth
Although we would like to assume that there is a well-defined

average load and that arriving traffic follows a Poisson distribution,
burstiness has been demonstrated for Ethernet traffic [35], file sys-
tem traffic [27], and Web requests[18], and is confirmed by our
traces of web traffic (discussed later). In addition, Internet services
can experience relatively rare but prolonged bursts of high load:
after the recent landing of Pathfinder on Mars, its web site served
over 220 million hits in a 4-day period [45]. Often, it is during such
bursts that uninterrupted operation is most critical.

Our architecture includes the notion of an overflow pool for
absorbing these bursts. The overflow machines are not dedicated to
the service, and normally do not have workers running on them, but
the manager can spawn workers on the overflow machines on
demand when unexpected load bursts arrive, and release the
machines when the burst subsides. In an institutional or corporate
setting, the overflow pool could consist of workstations on individ-
uals’ desktops. Because worker nodes are already interchangeable,
workers do not need to know whether they are running on a dedi-
cated or an overflow node, since load balancing is handled exter-
nally. In addition to absorbing sustained bursts, the ability to
temporarily harness overflow machines eases incremental growth:
when the overflow machines are being recruited unusually often, it
is time to purchase more dedicated nodes for the service.

2.2.4  Soft State for Fault Tolerance and Availability
The technique of constructing robust entities by relying on

cached soft state refreshed by periodic messages from peers has
been enormously successful in wide-area TCP/IP networks
[5,20,39], another arena in which transient component failure is a



fact of life. Correspondingly, our SNS components operate in this
manner, and monitor one another usingprocess peer fault toler-
ance1: when a component fails, one of its peers restarts it (on a dif-
ferent node if necessary), while cached stale state carries the
surviving components through the failure. After the component is
restarted, it gradually rebuilds its soft state, typically by listening to
multicasts from other components. We give specific examples of
this mechanism in Section 3.1.3.

We use timeouts as an additional fault-tolerance mechanism, to
infer certain failure modes that cannot be otherwise detected. If the
condition that caused the timeout can be automatically resolved
(e.g., if workers lost because of a SAN partition can be restarted on
still-visible nodes), the manager performs the necessary actions.
Otherwise, the SNS layer reports the suspected failure condition,
and the service layer determines how to proceed (e.g., report the
error or fall back to a simpler task that does not require the failed
worker).

2.2.5  Narrow Interface to Service-Specific Workers
To allow new services to reuse all these facilities, the manager

and front ends provide a narrow API, shown as the Manager Stubs
and Worker Stubs in Figure 1, for communicating with the workers,
the manager, and the graphical system monitor. The worker stub
provides mechanisms for workers to implement some required
behaviors for participating in the system (e.g., supplying load data
to assist the manager in load balancing decisions and reporting
detectable failures in their own operation). The worker stub hides
fault tolerance, load balancing, and multithreading considerations
from the worker code, which may use all the facilities of the operat-
ing system, need not be thread-safe, and can, in fact, crash without
taking the system down. The minimal restrictions on worker code
allow worker authors to focus instead on thecontent of the service,
even using off-the-shelf code (as we have in TranSend) to imple-
ment the worker modules.

The manager stub linked to the front ends provides support for
implementing the dispatch logic that selects which worker type(s)
are needed to satisfy a request; since the dispatch logic is indepen-
dent of the core load balancing and fault tolerance mechanisms, a
variety of services can be built using the same set of workers.

2.3  TACC: A Programming Model for Inter net Services
Having encapsulated the “SNS requirements” into a separate

software layer, we now require a programming model for building
the services themselves in higher layers. We focus on a particular
subset of services, based ontransformation, aggregation, caching,
and customization of Internet content (TACC). Transformation is
an operation on a single data object that changes its content; exam-
ples include filtering, transcoding, re-rendering, encryption, and
compression. Aggregation involves collecting data from several
objects and collating it in a prespecified way; for example, collect-
ing all listings of cultural events from a prespecified set of Web
pages, extracting the date and event information from each, and
composing the result into a dynamically-generated “culture this
week” page. Our initial implementation allows Unix-pipeline-like
chaining of an arbitrary number of stateless transformations and
aggregations; this results in a very general programming model that
subsumes transformation proxies[22], proxy filters [67], custom-

1: Not to be confused withprocess pairs, a different fault-tolerance
mechanism for hard-state processes, discussed in [6]. Process peers are sim-
ilar to the fault tolerance mechanism explored in the early “Worm” pro-
grams [55] and to “Robin Hood/Friar Tuck” fault tolerance: “Each ghost-
job would detect the fact that the other had been killed, and would start a
new copy of the recently slain program within a few milliseconds. The only
way to kill both ghosts was to kill them simultaneously (very difficult) or to
deliberately crash the system.” [50]

ized information aggregators [59,13], and search engines. The
selection of which workers to invoke for a particular request is ser-
vice-specific and controlled outside the workers themselves; for
example, given a collection of workers that convert images
between pairs of encodings, a correctly chosen sequence of trans-
formations can be used for general image conversion.

Customization represents a fundamental advantage of the Inter-
net over traditional wide-area media such as television. Many
online services, including the Wall Street Journal, the Los Angeles
Times, and C/Net, have deployed “personalized” versions of their
service as a way to increase loyalty and the quality of the service.
Such mass customization requires the ability to track users and
keep profile data for each user, although the content of the profiles
differs across services. The customization database, a traditional
ACID database, maps a user identification token (such as an IP
address or cookie) to a list of key-value pairs for each user of the
service. A key strength of the TACC model is that the appropriate
profile information is automatically delivered to workers along
with the input data for a particular user request; this allows the
same workers to be reused for different services. For example, an
image-compression worker can be run with one set of parameters
to reduce image resolution for faster Web browsing, and a different
set of parameters to reduce image size and bit depth for handheld
devices. We have found composable, customizable workers to be a
powerful building block for developing new services, and we dis-
cuss our experience with TACC and its continuing evolution in
Section 5.

Caching is important because recomputing or storing data has
become cheaper than moving it across the Internet. For example, a
study of the UK National web cache has shown that even a small
cache (400MB) can reduce the load on the network infrastructure
by 40%[61], and SingNet, the largest ISP in Singapore, has saved
40% of its telecom charges using web caching[60]. In the TACC
model, caches can store post-transformation (or post-aggregation)
content and even intermediate-state content, in addition to caching
original Internet content.

Many existing services are subsumed by the TACC model and
fit well with it. (In Section 5.4 we describe some that do not.) For
example, the HotBot search engine collects search results from a
number of database partitions and collates the results. Transforma-
tion involves converting the input data from one form to another. In
TranSend, graphic images can be scaled and filtered through a low-
pass filter to tune them for a specific client or to reduce their size. A
key strength of our architecture is the ease of composition of tasks;
this affords considerable flexibility in the transformations and
aggregations the service can perform, without requiring workers to
understand service-specific dispatch logic, load balancing, etc., any
more than programs in a Unix pipeline need to understand the
implementation of the pipe mechanism.

We claim that a large number of interesting services can be
implemented entirely at the service and TACC layers, and that rela-
tively few services will benefit from direct modification to the SNS
layer unless they have very specific low-level performance needs.
In Section 5.1 we describe our experience adding functionality at
both the TACC and service layers.

3  Service Implementation
This section focuses on the implementation of TranSend, a

scalable Web distillation proxy, and compares it with HotBot. The
goals of this section are to demonstrate how each component
shown in Figure 1 maps into the layered architecture, to discuss rel-
evant implementation details and trade-offs, and to provide the nec-
essary context for the measurements we report in the next section.



3.1  TranSend SNS Components

3.1.1  Front Ends
TranSend runs on a cluster of SPARCstation 10 and 20

machines, interconnected by switched 10 Mb/s Ethernet and con-
nected to the dialup IP pool by a single 10 Mb/s segment. The
TranSend front end presents an HTTP interface to the client popu-
lation. A thread is assigned to each arriving TCP connection.
Request processing involves fetching Web data from the caching
subsystem (or from the Internet on a cache miss), pairing up the
request with the user’s customization preferences, sending the
request and preferences to a pipeline of one or moredistillers (the
TranSend lossy-compression workers) to perform the appropriate
transformation, and returning the result to the client. Alternatively,
if an appropriate distilled representation is available in the cache, it
can be sent directly to the client. A large thread pool allows the
front end to sustain throughput and maximally exploit parallelism
despite the large number of potentially long, blocking operations
associated with each task, and provides a clean programming
model. The production TranSend runs with a single front-end of
about 400 threads.

3.1.2  Load Balancing Manager
Client-side JavaScript support[46] balances load across multi-

ple front ends and masks transient front end failures, although
other mechanisms such as round-robin DNS[12] or commercial
routers [16] could also be used. For internal load balancing,
TranSend uses a centralized manager whose responsibilities
include tracking the location of distillers, spawning new distillers
on demand, balancing load across distillers of the same class, and
providing the assurance of fault tolerance and system tuning. We
argue for a centralized as opposed to distributed manager because
it is easier to change the load balancing policy and reason about its
behavior; the next section discusses the fault-tolerance implications
of this decision.

The manager periodically beacons its existence on an IP multi-
cast group to which the other components subscribe. The use of IP
multicast provides a level of indirection and relieves components
of having to explicitly locate each other. When the front end has a
task for a distiller, the manager stub code contacts the manager,
which locates an appropriate distiller, spawning a new one if neces-
sary. The manager stub caches the new distiller’s location for future
requests.

The worker stub attached to each distiller accepts and queues
requests on behalf of the distiller and periodically reports load2

information to the manager. The manager aggregates load informa-
tion from all distillers, computes weighted moving averages, and
piggybacks the resulting information on its beacons to the manager
stub. The manager stub (at the front end) caches the information in
these beacons and uses lottery scheduling[63] to select a distiller
for each request. The cached information provides a backup so that
the system can continue to operate (using slightly stale load data)
even if the manager crashes. Eventually, the fault tolerance mecha-
nisms (discussed in Section 3.1.3) restart the manager and the sys-
tem returns to normal.

To allow the system to scale as the load increases, the manager
can automatically spawn a new distiller on an unused node if it
detects excessive load on distillers of a particular class. (The
spawning and load balancing policies are described in detail in
Section 4.5.) Another mechanism used for adjusting to bursts in
load is overflow: if all the nodes in the system are used up, the

2: In the current implementation, distiller load is characterized in terms
of the queue length at the distiller, optionally weighted by the expected cost
of distilling each item.

manager can resort to starting up temporary distillers on a set of
overflow nodes. Once the burst subsides, the distillers may be
reaped.

3.1.3  Fault Tolerance and Crash Recovery
In the original prototype for the manager, information about

distillers was kept as hard state, using a log file and crash recovery
protocols similar to those used by ACID databases. Resilience
against crashes was via process-pair fault tolerance, as in[6]: the
primary manager process was mirrored by a secondary whose role
was to maintain a current copy of the primary’s state, and take over
the primary’s tasks if it detects that the primary has failed. In this
scenario, crash recovery is seamless, since all state in the second-
ary process is up-to-date.

However, by moving entirely to BASE semantics, we were able
to simplify the manager greatly and increase our confidence in its
correctness. In TranSend, all state maintained by the manager is
explicitly designed to be soft state. When a distiller starts up, it reg-
isters itself with the manager, whose existence it discovers by sub-
scribing to a well-known multicast channel. If the distiller crashes
before de-registering itself, the manager detects the broken connec-
tion; if the manager crashes and restarts, the distillers detect bea-
cons from the new manager and re-register themselves. Timeouts
are used as a backup mechanism to infer failures. Since all state is
soft and is periodically beaconed, no explicit crash recovery or
state mirroring mechanisms are required to regenerate lost state.
Similarly, the front end does not require any special crash recovery
code, since it can reconstruct its state as it receives the next few
beacons from the manager.

With this use of soft state, each “watcher” process only needs
to detect that its peer is alive (rather than mirroring the peer’s state)
and, in some cases, be able to restart the peer (rather than take over
the peer’s duties). Broken connections, timeouts, or loss of beacons
are used to infer component failures and restart the failed process.
The manager, distillers, and front ends are process peers:

• The manager reports distiller failures to the manager stubs,
which update their caches of where distillers are running.

• The manager detects and restarts a crashed front end.
• The front end detects and restarts a crashed manager.

This process peer functionality is encapsulated within the man-
ager stub code. Simply by linking against the stub, front ends are
automatically recruited as process peers of the manager.

3.1.4  User Profile Database
The service interface to TranSend allows each user to register a

series of customization settings, using either HTML forms or a
Java/JavaScript combination applet. The actual database is imple-
mented usinggdbm because it is freely available and its perfor-
mance is adequate for our needs: user preference reads are much
more frequent than writes, and the reads are absorbed by a write-
through cache in the front end.

3.1.5  Cache Nodes
TranSend runs Harvest object cache workers[10] on four sepa-

rate nodes. Harvest suffers from three functional/performance defi-
ciencies, two of which we resolved.

First, although a collection of Harvest caches can be treated as
“siblings”, by default all siblings are queried on each request, so
that the cache service time would increase as the load increases
even if more cache nodes were added. Therefore, for both scalabil-
ity and improved fault tolerance, the manager stub can manage a
number of separate cache nodes as a single virtual cache, hashing
the key space across the separate caches and automatically re-hash-
ing when cache nodes are added or removed. Second, we modified
Harvest to allow data to be injected into it, allowing distillers (via



the worker stub) to store post-transformed or intermediate-state
data into the large virtual cache. Finally, because the interface to
each cache node is HTTP, a separate TCP connection is required
for each cache request. We did not repair this deficiency due to the
complexity of the Harvest code, and as a result some of the mea-
surements reported in Section 4.4 are slightly pessimistic.

Caching in TranSend is only an optimization. All cached data
can be thrown away at the cost of performance—cache nodes are
workers whose only job is the management of BASE data.

3.1.6  Datatype-Specific Distillers
The second group of workers is the distillers, which perform

transformation and aggregation. As a result, we were able to lever-
age a large amount of off-the-shelf code for our distillers. We have
built three parameterizable distillers for TranSend: scaling and low-
pass filtering of JPEG images using the off-the-shelfjpeg-6a library
[29], GIF-to-JPEG conversion followed by JPEG degradation3, and
a Perl HTML “munger” that marks up inline image references with
distillation preferences, adds extra links next to distilled images so
that users can retrieve the original content, and adds a “toolbar”
(Figure 4) to each page that allows users to control various aspects
of TranSend’s operation. The user interface for TranSend is thus
controlled by the HTML distiller, under the direction of the user
preferences from the front end.

Each of these distillers took approximately 5-6 hours to imple-
ment, debug, and optimize. Although pathological input data occa-
sionally causes a distiller to crash, the process-peer fault tolerance
guaranteed by the SNS layer means that we don’t have to worry
about eliminating all such possible bugs and corner cases from the
system.

3.1.7  Graphical Monitor
Our extensible Tcl/Tk[48] graphical monitor presents a unified

view of the system as asingle virtual entity. Components of the
system report state information to the monitor using a multicast
group, allowing multiple monitors to run at geographically dis-
persed locations for remote management. The monitor can page or
email the system operator if a serious error occurs, for example, if it
stops receiving reports from some component.

The benefits of visualization are not just cosmetic: We can
immediately detect by looking at the visualization panel what state
the system as a whole is in, whether any component is currently
causing a bottleneck (such as cache-miss time, distillation queueing

3: We chose this approach after discovering that the JPEG representation
is smaller and faster to operate on for most images, and produces aestheti-
cally superior results.

Figure 3: Scaling this JPEG image by a factor of 2 in each
dimension and reducing JPEG quality to 25 results in a size
reduction from 10KB to 1.5KB.

Figure 4: User Interface for manipulating preferences.

delay, interconnect), what resources the system is using, and other
such figures of interest.

3.1.8  How TranSend Exploits BASE
Distinguishing ACID vs. BASE semantics in the design of ser-

vice components greatly simplifies TranSend’s fault-tolerance and
improves its availability. Only the user-profile database is ACID;
everything else exploits some aspect of BASE semantics, both in
manipulating application data (i.e., Web content) and in the imple-
mentation of the system components themselves.

Stale load balancing data: The load balancing data in the
manager stub is slightly stale between updates from the
manager, which arrive a few seconds apart. The use of stale
data for the load balancing and overflow decisions improves
performance and helps to hide faults, since using cached data
avoids communicating with the source. Timeouts are used to
recover from cases where stale data causes an incorrect load
balancing choice. For example, if a request is sent to a
worker that no longer exists, the request will time out and
another worker will be chosen. From the standpoint of
performance, as we will show in our measurements, the use
of slightly stale data is not a problem in practice.

Soft state: The two advantages of soft state are improved
performance from avoiding (blocking) commits and trivial
recovery. Transformed content is cached and can be
regenerated from the original (which may be also cached).

Approximate answers: Users of TranSend request objects that
are named by the object URL and the user preferences,
which are used to derive distillation parameters. However, if
the system is too heavily loaded to perform distillation, it can
return a somewhat different version from the cache; if the
user clicks the “Reload” button later, they will get the
distilled representation they asked for if the system now has
sufficient resources to perform the distillation. If the required
distiller has temporarily or permanently failed, the system
can return the original content. In all cases, an approximate
answer delivered quickly is more useful than the exact
answer delivered slowly.

3.2  HotBot Implementation
In this section we highlight the principal differences between

the implementations of TranSend and HotBot.The original Inktomi
work, which is the basis of HotBot, predates the layered model and
scalable server architecture presented here and uses ad hoc rather
than generalized mechanisms in some places.

Front ends and service interface: HotBot runs on a mixture
of single- and multiple-CPU SPARCstation server nodes, intercon-
nected by Myrinet[43]. The HTTP front ends in HotBot run 50-80
threads per node and handle the presentation and customization of
results based on user preferences and browser type. The presenta-
tion is performed using a form of “dynamic HTML” based on Tcl
macros[54].

Load balancing: HotBot workers statically partition the
search-engine database for load balancing. Thus each worker han-
dles a subset of the database proportional to its CPU power, and
every query goes to all workers in parallel.

Failur e management:Unlike the workers in TranSend, Hot-
Bot worker nodes are not interchangeable, since each worker uses a
local disk to store its part of the database.The original Inktomi
nodes cross-mounted databases, so that there were always multiple
nodes that could reach any database partition.  Thus, when a node
when down, other nodes would automatically take over responsi-
bility for that data, maintaining 100% data availability with grace-
ful degradation in performance.



Since the database partitioning distributes documents ran-
domly and it is acceptable to lose part of the database temporarily,
HotBot moved to a model in which RAID storage handles disk fail-
ures, while fast restart minimizes the impact of node failures. For
example, with 26 nodes the loss of one machine results in the data-
base dropping from 54M to about 51M documents, which is still
significantly larger than other search engines (such as Alta Vista at
30M).

The success of the fault management of HotBot is exemplified
by the fact that during February 1997, HotBot was physically
moved (from Berkeley to San Jose) without ever being down, by
moving half of the cluster at a time and changing DNS resolution
in the middle. Although various parts of the database were unavail-
able at different times during the move, the overall service was still
up and useful—user feedback indicated that few people were
affected by the transient changes.

User profile database:We expect commercial systems to use
a real database for ACID components. HotBot uses Informix with
primary/backup failover for the user profile and ad revenue track-
ing database, with each front end linking in an Informix SQL cli-
ent. However, all other HotBot data is BASE, and as in TranSend,
timeouts are used to recover from stale cluster-state data.

3.3  Summary
The TranSend implementation quite closely maps into the lay-

ered architecture presented in Section 2, while the HotBot imple-
mentation differs in the use of a distributed manager, static load
balancing by data partitioning, and workers that are tied to particu-
lar machines. The careful separation of responsibility into different
components of the system, and the layering of components accord-
ing to the architecture, made the implementation complexity man-
ageable.

4  Measurements of the TranSend Implementation
We took measurements of TranSend using a cluster of 15 Sun

SPARC Ultra-1 workstations connected by 100 Mb/s switched
Ethernet and isolated from external load or network traffic. For

Table 1: Main differences between TranSend and HotBot.

Component TranSend HotBot

Load balancing
Dynamic, by queue
lengths at worker

nodes

Static partitioning
of read-only data

Application layer Composable TACC
workers

Fixed search service
application

Service layer
Worker dispatch

logic, HTML / Java-
Script UI

Dynamic HTML
generation, HTML

UI

Failure manage-
ment

Centralized but
fault-tolerant using

process-peers

Distributed to each
node

Worker place-
ment

FE’s and caches
bound to their nodes

All workers bound
to their nodes

User profile
(ACID) database

Berkeley DB with
read caches

Parallel Informix
server

Caching

 Harvest caches
store pre- and post-
transformation Web

data

integrated cache of
recent searches, for
incremental delivery

measurements requiring Internet access, the access was via a
10Mb/s switched Ethernet network connecting our workstation to
the outside world. In the following subsections we analyze the size
distribution and burstiness characteristics of TranSend’s expected
workload, describe the performance of two throughput-critical
components (the cache nodes and data-transformation workers) in
isolation, and report on experiments that stress TranSend’s fault
tolerance, responsiveness to bursts, and scalability.

4.1  HTTP Traces and the Playback Engine
Many of the performance tests are based upon HTTP trace data

that we gathered from our intended user population, namely the
25,000 UC Berkeley dialup IP users, up to 600 of whom may be
connected via a bank of 14.4K or 28.8K modems. The modems’
connection to the Internet passes through a single 10 Mb/s Ethernet
segment; we placed a tracing machine running an IP packet filter
on this segment for a month and a half, and unobtrusively gathered
a trace of approximately 20 million (anonymized) HTTP requests.
GIF, HTML, and JPEG were by far the three most common MIME
types observed in our traces (50%, 22%, and 18%, respectively),
and hence our three implemented distillers cover these common
cases. Data for which no distiller exists is passed unmodified to the
user.

Figure 5 illustrates the distribution of sizes occurring for these
three MIME types. Although most content accessed on the web is
small (considerably less than 1 KB), the average byte transferred is
part of large content (3-12 KB). This means that the users’ modems
spend most of their time transferring a few, large files. It is the goal
of TranSend to eliminate this bottleneck by distilling this large con-
tent into smaller, but still useful representations; data under 1 KB is
transferred to the client unmodified, since distillation of such small
content rarely results in a size reduction.

Figure 5 also reveals a number of interesting properties of the
individual data types. The GIF distribution has two plateaus—one
for data sizes under 1KB (which correspond to icons, bullets, etc.)
and one for data sizes over 1KB (which correspond to photos or
cartoons). Our 1KB distillation threshold therefore exactly sepa-
rates these two classes of data, and deals with each correctly.
JPEGs do not show this same distinction: the distribution falls of
rapidly under the 1KB mark.

In order to realistically stress test TranSend, we created a high
performance trace playback engine. The engine can generate
requests at a constant (and dynamically tunable) rate, or it can
faithfully play back a trace according to the timestamps in the trace
file. We thus had fine-grained control over both the amount and
nature of the load offered to our implementation during our experi-
mentation.

Figure 5: Distribution of content lengths for HTML, GIF, and
JPEG files. The spikes to the left of the main GIF and JPEG
distributions are error messages mistaken for image data,
based on file name extension. Average content lengths: HTML -
5131 bytes, GIF - 3428 bytes, JPEG - 12070 bytes.
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4.2  Burstiness
Burstiness is a fundamental property of a great variety of computing

systems, and can be observed across all time scales[18,27,35]. Our HTTP
traces show that the offered load to our implementation will contain
bursts—Figure 6 shows the request rate observed from the user base
across a 24 hour, 3.5 hour, and 3.5 minute time interval. The 24 hour
interval exhibits a strong 24 hour cycle that is overlaid with shorter time-
scale bursts. The 3.5 hour and 3.5 minute intervals reveal finer grained
bursts.

We described in Section 2.2.3 how our architecture allows an arbi-
trary subset of machines to be managed as an overflow pool during tem-
porary but prolonged periods of high load. The overflow pool can also be
used to absorb bursts on shorter time scales. We argue that there are two
possible administrative avenues for managing the overflow pool:

1. Select an average desired utilization level for the dedicated
worker pool. Since we can observe a daily cycle, this amounts to
drawing a line across Figure 6a (i.e., picking a number of tasks/
sec) such that the fraction of black under the line is the desired
utilization level.

2. Select an acceptable percentage of time that the system will
resort to the overflow pool. This amounts to drawing a line
across Figure 6a such that the fraction of columns that cross the
line is this percentage.4

Since we have measured the average number of requests/s that a dis-
tiller of a given class can handle, the number of tasks /s that we picked
(from step 1 or 2 above) dictates how many distillers will need to be in
the dedicated (non-overflow) pool.

4.3  Distiller Performance
If the system is behaving well, the distillation of images is the most

computationally expensive task performed by TranSend. We measured

4: Note that the utilization level cannot necessarily be predicted given a certain
acceptable percentage, and vice-versa.
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Figure 6: The number of requests per second for traced dialup
IP users, showing burstiness across different time scales. (a) 24
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the performance of our distillers by timing distillation latency as a func-
tion of input data size, calculated across approximately 100,000 items
from the dialup IP trace file. Figure 7 shows that for the GIF distiller,
there is an approximately linear relationship between distillation time
and input size, although a large variation in distillation time is observed
for any particular data size. The slope of this relationship is approxi-
mately 8 milliseconds per kilobyte of input. Similar results were
observed for the JPEG and HTML distillers, although the HTML dis-
tiller is far more efficient.

4.4  Cache Partition Performance
In [10], a detailed performance analysis of the Harvest caching sys-

tem is presented. We summarize the results here:
• The average cache hit takes 27 ms to service, including network

and OS overhead, implying a maximum average service rate from
each partitioned cache instance of 37 requests per second. TCP
connection and tear-down overhead is attributed to 15 ms of this
service time.

• 95% of all cache hits take less than 100 ms to service, implying
cache hit rate has low variation.

• The miss penalty (i.e., the time to fetch data from the Internet)
varies widely, from 100 ms through 100 seconds. This implies that
should a cache miss occur, it is likely to dominate the end-to-end
latency through the system, and therefore much effort should be
expended to minimize cache miss rate.
As a supplement to these results, we ran a number of cache simula-

tions to explore the relationship between user population size, cache
size, and cache hit rate, using LRU replacement. We observed that the
size of the user population greatly affects the attainable hit rate. Cache
hit rate increases monotonically as a function of cache size, but plateaus
out at a level that is a function of the user population size. For the user
population observed across the traces (approximately 8000 people over
the 1.5 month period), six gigabytes of cache space (in total, partitioned
over all instances) gave us a hit rate of 56%. Similarly, we observed that
for a given cache size, increasing the size of the user population
increases the hit rate in the cache (due to an increase in locality across
the users), until the point at which the sum of the users’ working sets
exceeds the cache size, causing the cache hit rate to fall.

From these results, we can deduce that the capacity of a single front
end will be limited by the high cache miss penalties. The number of
simultaneous, outstanding requests at a front end is equal to ,
whereN is the number of requests arriving per second, andT is the aver-
age service time of a request. A high cache miss penalty implies thatT
will be large. Because two TCP connections (one between the client and
front end, the other between the front end and a cache partition) and one
thread context are maintained in the front end for each outstanding
request, implying that front ends are vulnerable to state management and
context switching overhead. As an example, for offered loads of 15
requests per second to a front end, we have observed 150-350 outstand-
ing requests and therefore up to 700 open TCP connections and 300
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active thread contexts at any given time. As a result, the front end
spends more than 70% of its time in the kernel (as reported by the
top utility) under this load. Eliminating this overhead is the subject
of ongoing research.

4.5  Self Tuning and Load Balancing
TranSend uses queue lengths at the distillers as a metric for

load balancing. As queue lengths grow due to increased load, the
moving average of the queue length maintained by the manager
starts increasing; when the average crosses a configurable threshold
H, the manager spawns a new distiller to absorb the load. The
thresholdH maps to the greatest delay the user is willing to tolerate
when the system is under high load. To allow the new distiller to
stabilize the system, the spawning mechanism is disabled forD
seconds; the parameterD represents a tradeoff between stability
(rate of spawning and reaping distillers) and user-perceptible delay.

Figure 8(a) shows the variation in distiller queue lengths over
time. The system was bootstrapped with one front end and the
manager. On-demand spawning of the first distiller was observed
as soon as load was offered. With increasing load, the distiller
queue gradually increased until the manager decided to spawn a
second distiller, which reduced the queue length of the first distiller
and balanced the load across both distillers within five seconds.
Continued increase in load caused a third distiller to start up, which
again reduced and balanced the queue lengths within five seconds.

Figure 8(b) shows an enlarged view of the graph in Figure 8(a).
During the experiment, we manually killed the first two distillers,
causing the load on the remaining distiller to rapidly increase. The
manager immediately reacted and started up a new distiller. Even
afterD seconds, the manager discovered that the system was over-
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Figure 8: Distiller queue lengths observed over time as the load
presented to the system fluctuates, and as distillers are
manually brought down. (b) is an enlargement of (a).
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loaded and started up one more distiller, causing the load to stabi-
lize.

When we first ran this experiment, we noticed rapid oscilla-
tions in queue lengths. Inspection revealed that since the front
end’s manager stubs only periodically received distiller queue
length reports, they were making load balancing decisions based on
stale data. To repair this, we changed the manager stub to keep a
running estimate of the change in distiller queue lengths between
successive reports; these estimates were sufficient to eliminate the
oscillations. The data in Figure 8 reflects the modified load balanc-
ing functionality.

4.6  Scalability
To demonstrate the scalability of the system, we needed to

eliminate two bottlenecks that limit the load we could offer: the
overhead associated with having a very large number of open file
descriptors, and the bottleneck 10Mb/s Ethernet connecting our
cluster to the Internet. To do this, we prepared a trace file that
repeatedly requested a fixed number of JPEG images, all approxi-
mately 10KB in size, based on the distributions we observed (Sec-
tion 4.1). These images would then remain resident in the cache
partitions, eliminating cache miss penalty and the resulting buildup
of file descriptors in the front end. We recognize that although a
non-zero cache miss penalty does not introduce any additional net-
work, stable storage, or computational burden on the system, it
does result in an increase in the amount of state in the front end,
which as we mentioned in Section 4.4 limits the performance of a
single front end. On the other hand, by turning off caching of dis-
tilled images, we force our system to re-distill the image every time
it was requested, and in that respect our measurements are pessi-
mistic relative to the system’s normal mode of operation.

Our strategy for the experiment was as follows:
1. Begin with a minimal instance of the system: one front

end, one distiller, the manager, and some fixed number of
cache partitions. (Since for these experiments we repeat-
edly requested the same subset of images, the cache was
effectively not tested.)

2. Increase the offered load until some system component sat-
urates (e.g., distiller queues grow too long, front ends
cannot accept additional connections, etc.).

3. Add more resources to the system to eliminate this satura-
tion (in many cases the system does this automatically, as
when it recruits overflow nodes to run more workers), and
record the amount of resources added as a function of the
increase in offered load, measured in requests per second.

4. Continue until the saturated resource cannot be replenished
(i.e., we run out of hardware), or until adding more of the
saturated resource no longer results in a linear or close-to-
linear improvement in performance.

Table2 presents the results of this experiment. At 24 requests
per second, as the offered load exceeded the capacity of the single
available distiller, the manager automatically spawned one addi-
tional distiller, and then subsequent distillers as necessary. At 87
requests per second, the Ethernet segment leading into the front
end saturated, requiring a new front end to be spawned. We were
unable to test the system at rates higher than 159 requests per sec-
ond, as all of our cluster’s machines were hosting distillers, front
ends, or playback engines. We did observe nearly perfectly linear
growth of the system over the scaled range: a distiller can handle
approximately 23 requests per second, and a 100 Mb/s Ethernet
segment into a front-end can handle approximately 70 requests per
second.5 We were unable to saturate the front end, the cache parti-

5: We believe that TCP connection setup and processing overhead is the
dominating factor. Using a more efficient TCP implementation such as Fast
Sockets [52] may alleviate this limitation, although more investigation is
needed.



tions, or fully saturate the interior SAN during this experiment. We
draw two conclusions from this result:

• Even with a commodity 100 Mb/s SAN, linear scaling is
limited primarily by bandwidth into the system rather than
bandwidth inside the system.

• Although we run TranSend on four SPARC 10’s, a single
Ultra-1 class machine would suffice to serve the entire dialup
IP population of UC Berkeley (25,000 users officially, over
8000 of whom surfed during the trace).
Ultimately, the scalability of our system is limited by the

shared or centralized components of the system, namely the user
profile database, the manager, and the SAN. In our experience, nei-
ther the database nor the manager have ever been close to satura-
tion. The main task of the manager (in steady state) is to
accumulate load announcements from all distillers and multicast
this information to the front ends. We conducted an experiment to
test the capability of the manager to handle these load announce-
ments. Nine hundred distillers were created on four machines. Each
of these distillers generated a load announcement packet for the
manager every half a second. The manager was easily able to han-
dle this aggregate load of 1800 announcements per second. With
each distiller capable of processing over 20 front end requests per
second, the manager is computationally capable of sustaining a
total number of distillers equivalent to 18000 requests per second.
This number is nearly three orders of magnitude greater than the
peak load ever seen on UC Berkeley’s modem pool which is com-
parable to a modest-sized ISP. Similarly, HotBot’s ACID database
(parallel Informix server), used for ad revenue tracking and user
profiles, can serve about 400 requests per second, significantly
greater than HotBot’s load.

On the other hand, SAN saturation is a potential concern for
communication-intensive workloads such as TranSend’s. The prob-
lem of optimizing component placement given a specific network
topology, technology, and workload is an important topic for future
research. As a preliminary exploration of how TranSend behaves as
the SAN saturates, we repeated the scalability experiments using a
10 Mb/s switched Ethernet. As the network was driven closer to
saturation, we noticed that most of our (unreliable) multicast traffic
was being dropped, crippling the ability of the manager to balance
load and the ability of the monitor to report system conditions.

One possible solution to this problem is the addition of a low-
speed utility network to isolate control traffic from data traffic,
allowing the system to more gracefully handle (and perhaps avoid)
SAN saturation. Another possibility is to use a higher-performance
SAN interconnect: a Myrinet[43] microbenchmark run on the Hot-
Bot implementation measured 32 MBytes/s all-pairs traffic
between 40 nodes, far greater than the traffic experienced during

Requests/
Second

# Front
Ends

#
Distillers

Element that
saturated

0-24 1 1 distillers

25-47 1 2 distillers

48-72 1 3 distillers

73-87 1 4 FE Ethernet

88-91 2 4 distillers

92-112 2 5 distillers

113-135 2 6 distillers & FE
Ethernet

136-159 3 7 distillers

Table 2: Results of the scalability experiment

the normal use of the system, suggesting that Myrinet will support
systems of at least several tens of nodes.

5  Discussion
In previous sections we presented detailed measurements of a

scalable network service implementation that confirmed the effec-
tiveness of our layered architecture. In this section, we discuss
some of the more interesting and novel aspects of our architecture,
reflect on further potential applications of this research, and com-
pare our work with others’ efforts.

5.1  Extensibility: New Workers and Composition
One of our goals was to make the system easily extensible at

the TACC and Service layers by making it easy to create workers
and chain them together. Our HTML and JPEG distillers consist
almost entirely of off-the-shelf code, and each took an afternoon to
write. Debugging the pathological cases for the HTML distiller
was spread out over a period of days—since the system masked
transient faults by bypassing original content “around” the faulting
distiller, we could only deduce the existence of bugs by noticing
(using the Monitor display) that the HTML distiller had been
restarted several times over a period of hours.

The other aspect of extensibility is the ease with which new
services can be added by composing workers and modifying the
service presentation interface. We now discuss several examples of
new services in various stages of construction, indicating what
must be changed in the TACC and Service layers for each. The ser-
vices share the following common features, which make them ame-
nable to implementation using our framework:

• Compute-intensive transformation or aggregation
• Computation is parallelizable with granularity of a few CPU

seconds
• Substantial value added by mass customization
• Data manipulated has BASE semantics

We restrict our discussion here to services that can be imple-
mented using the HTTP proxy model (i.e., transparent interposition
of computation between Web clients and Web servers). The follow-
ing applications have all been prototyped using TranSend.

Keyword Filtering: The keyword filter aggregator is very
simple (about 10 lines of Perl). It allows users to specify a
Perl regular expression as customization preference. This
regular expression is then applied to all HTML before
delivery. A simple example filter marks all occurrences of
the chosen keywords with large, bold, red typeface.

Bay Area Culture Page: This service retrieves scheduling
information from a number of cultural pages on the web, and
collates the results into a single, comprehensive calendar of
upcoming events, bounded by dates stored as part of each
user’s profile. The service is implemented as a single
aggregator in the TACC layer, and is composed with the
unmodified TranSend service layer, delivering the benefits of
distillation automatically. This service exploits BASE
“approximate answers” semantics at the application layer:
extremely general, layout-independent heuristics are used to
extract scheduling information from the cultural pages.
About 10-20% of the time, the heuristics spuriously pick up
non-date text (and the accompanying non-descriptions of
events), but the service is still useful and users simply ignore
spurious results. Early experience with services such as this
one suggest that our SNS architecture may be a promising
platform for deploying certain kinds of simple network
agents.



TranSend Metasearch: The metasearch service is similar to
the Bay Area Culture Page in that it collates content from
other sources in the Internet. This content, however, is
dynamically produced—an aggregator accepts a search
string from a user, queries a number of popular search
engines, and collates the top results from each into a single
result page. Commercial metasearch engines already exist
[58], but the TranSend metasearch engine was implemented
using 3 pages of Perl code in roughly 2.5 hours, and inherits
scalability, fault tolerance, and high availability from the
SNS layer.

Anonymous Rewebber: Just as anonymous remailer chains
[24] allow email authors to anonymously disseminate their
content, an anonymous rewebber network allows web
authors to anonymously publish their content. The rewebber
described in[25] was implemented in one week using our
TACC architecture. The rewebber’s workers perform
encryption and decryption, its user profile database maintains
public key information for anonymous servers, and its cache
stores decrypted versions of frequently accessed pages.
Since encryption and decryption of distinct pages requested
by independent users is both computationally intensive and
highly parallelizable, this service is a natural fit for our
architecture.

Real Web Access for PDAs and Smart Phones: We have
already extended TranSend to support graphical Web
browsing on the USR PalmPilot [62], a typical “thin client”
device. Previous attempts to provide Web browsing on such
devices have foundered on the severe limitations imposed by
small screens, limited computing capability, and austere
programming environments, and virtually all have fallen
back to simple text-only browsing. But the ability of our
architecture to move complexity into the service workers
rather than the client allows us to approach this problem
from a different perspective. We have built TranSend
workers that output simplified markup and scaled-down
images ready to be “spoon fed” to an extremely simple
browser client, given knowledge of the client’s screen
dimensions and font metrics. This greatly simplifies client-
side code since no HTML parsing, layout, or image
processing is necessary, and as a side benefit, the smaller and
more efficient data representation reduces transmission time
to the client.

5.2  Economic Feasibility
Given the improved quality of service provided by TranSend,

an interesting question is the additional cost required to operate this
service. From our performance data, a US$5000 Pentium Pro
server should be able to support about 750 modems, or about
15,000 subscribers (assuming a 20:1 subscriber to modem ratio).
Amortized over 1 year, the marginal cost per user is an amazing 25
cents/month.

If we include the savings to the ISP due to a cache hit rate of
50% or more, as we observed in our cache experiments, then we
can eliminate the equivalent of 1-2 T1 lines per TranSend installa-
tion, which reduces operating costs by about US$3000 per month.
Thus, we expect that the server would pay for itself in only two
months. In this argument we have ignored the cost of administra-
tion, which is nontrivial, but we believe administration costs for
TranSend would be minimal— we run TranSend at Berkeley with
essentially no administration except for feature upgrades and bug
fixes, both of which are performed without bringing the service
down.

5.3  Related Work
Content transformation by proxy: Filtering and on-the-fly

compression have become particularly popular for HTTP[31],
whose proxy mechanism was originally intended for users behind
security firewalls. The mechanism has been used to shield clients
from the effects of poor (especially wireless) networks [22,37], per-
form filtering [67] and anonymization, and perform value-added
transformations on content, including Kanji transcoding[56],
Kanji-to-GIF conversion[65], application-level stream transducing
[13,59], and personalized agent services for Web browsing [7].

Fault tolerance and high availability: The Worm programs
[55] are an early example of process-peer fault tolerance. Tandem
Computer and others explored a related mechanism, process-pair
fault tolerance,[6] in which a secondary (backup) process ran in
parallel with the primary and maintained a mirror of the primary’s
internal state by processing the same message traffic as the pri-
mary, allowing it to immediately replace the primary in the event of
failure. Tandem also advocated the use of simple “building blocks”
to ensure high availability. The Open Group SHAWS project[49]
plans to build scalable highly available web servers using a fault
tolerance toolkit called CORDS, but that project is still in progress.

BASE: Grapevine [9] was an important early example of trad-
ing consistency for simplicity; Bayou [21] later explored trading
consistency for availability in application-specific ways, providing
an operational spectrum between ACID and BASE for a distributed
database. The use of soft state to provide improved performance
and increase fault tolerance robustness has been well explored in
the wide-area Internet, in the context of IP packet routing[39], mul-
ticast routing[20], and wireless TCP optimizations such as TCP
Snoop[5]; the lessons learned in those areas strongly influenced
our design philosophy for the TACC server architecture.

Load balancing and scaling: WebOS[66] and SWEB++[3]
have exploited the extensibility of client browsers via Java and Jav-
aScript to enhance scalability of network-based services by divid-
ing labor between the client and server. We note that our system
does not preclude, and in fact benefits from, exploiting intelligence
and computational resources at the client, as we do for the
TranSend user interface and coarse-grained load balancing. How-
ever, as discussed in the Introduction, we expect the utility of cen-
tralized, highly-available services to continue to increase, and this
cannot occur without the growth path provided by linear incremen-
tal scalability in the SNS sense.

5.4  Future Work
Our past work on adaptation via distillation[23,22] described

how distillation could be dynamically tuned to match the behavior
of the user’s network connection, and we have successfully demon-
strated adaptation to network changes by combining our original
WWW proxy prototype with the Event Notification mechanisms
developed by Welling and Badrinath[4], and plan to leverage these
mechanisms to provide an adaptive solution for Web access from
wireless clients.

We have not investigated how well our proposed architecture
works outside the Internet-server domain. In particular, we do not
believe it will work well for write-intensive services where the
writes carry hard state or where strong consistency is desired, such
as commerce servers, file systems, or online voting systems.

The programming model for TACC services is still embryonic.
We plan to develop it into a well-defined programming environ-
ment with an SDK, and we will encourage our colleagues to author
services of their own using our system.

Previous research into operating systems support for busy
Internet servers [32, 42] has identified inadequacies in OS imple-
mentations and the set of abstractions available to applications. We
plan to investigate similar issues related specifically to cluster-



based middleware services, as motivated by our observations in
Section 4.4.

6  Conclusions
We proposed a layered architecture for cluster-based scalable

network services.  We identified challenges of cluster-based com-
puting, and showed how our architecture addresses these chal-
lenges.  The architecture is reusable: authors of new network
services write and compose stateless workers that transform, aggre-
gate, cache, and customize (TACC) Internet content, but are
shielded from the software complexity of automatic scaling, high
availability, and failure management. We argued that a large class
of network services can get by with BASE, a weaker-than-ACID
data semantics that results from the combination of trading consis-
tency for availability and exploiting soft state for performance and
failure management.

We discussed in depth the design and implementation of two
cluster-based scalable network services: the TranSend distillation
Web proxy and the HotBot search engine.  Using extensive client
traces, we conducted detailed performance measurements of
TranSend. While gathering these measurements, we scaled
TranSend up to 10 Ultra-1 workstations serving 159 web requests
per second, and demonstrated that a single such workstation is suf-
ficient to serve the needs of the entire 600 modem UC Berkeley
dialup IP bank.

Since the class of cluster-based scalable network services we
have identified can substantially increase the value of Internet
access to end users while remaining cost-efficient to deploy and
administer, we believe that cluster-based value-added network ser-
vices will become an important Internet-service paradigm.
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