
Extracting and Querying a Comprehensive Web Database

Michael J. Cafarella
University of Washington
Seattle, WA 98107, USA

mjc@cs.washington.edu

ABSTRACT
Recent research in domain-independent information extrac-
tion holds the promise of an automatically-constructed struc-
tured database derived from the Web. A query system
based on this database would offer the same breadth as
a Web search engine, but with much more sophisticated
query tools than are common today. Unfortunately, these
domain-independent Web extractors are usually not model-
independent; e.g., an extractor that only finds binary re-
lations from text will be blind to relational data found in
tables. Because a topic area often has a data model that
is a natural fit (e.g., population statistics are usually in ta-
bles, while biographical facts about Einstein are embedded
in text), even a high-quality domain-independent extractor
will miss a substantial amount of data.

Our omnivore system attempts to build a comprehen-
sive Web database by running multiple domain-independent
extractors in parallel over a Web crawl, then combining
their outputs into a single large entity-relationship database.
Each item in the database describes a single real-world en-
tity, and can contain information drawn from a number of
popular Web data models. The user can correct flaws in the
database, and can query it using either a structured query
language or a search-like interface. Due to the Web’s sheer
size, users cannot be expected to know the result set’s meta-
data a priori, so omnivore automatically chooses an output
model and schema when it renders results. In this paper we
outline the omnivore architecture and provide specific de-
tails about our current prototype.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Online Infor-
mation Services; H.2 [Database Management]: Miscella-
neous

1. INTRODUCTION
Domain-independent information extraction has been an

active research area in the last few years, often using a large

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/3.0/).
You may copy, distribute, display, and perform the work, make derivative
works and make commercial use of the work, but you must attribute the
work to the author and CIDR 2009.
CIDR ’09 Monterey, California

democrat.instances

UNION

republican.instances

SELECT country FROM ALL.instances

WHERE country.gdp > 2T

AND country.debt < 1T

SELECT a.location FROM company.instances

WHERE a.profit > 1000

AND a.num employees > 100

Table 1: Sample queries expressed over a simple
entity-relation data model for Web-derived informa-
tion. Each entity in the database represents an ex-
tracted “real world” object. An entity is identified
by a unique string (e.g., CIDR or Seattle) and has a
set of attributes/value pairs as well as a set of types.
A query returns a set of zero or more entities. The
first query uses type information to compute a new
set of entities. The second query finds a subset of en-
tities by filtering on attribute/value data. The third
query combines filtering and type information.

set of crawled Web pages as input [1, 8, 10, 17, 19, 20].
There is a huge amount of structured data on the Web, on
almost every topic imaginable. The combination of a large
Web crawl and a domain-independent extractor should en-
able the automatic construction of a live structured Web
database, combining the breadth of a search engine with a
powerful structured query language (instead of just textual
relevance queries). Recently several researchers have pro-
posed structured-Web database systems with varying levels
of coverage and automation, though always with a strong
information extraction component [3, 7, 11, 20].

A Web topic can strongly determine the model in which
its data is expressed. For example, it would be surpris-
ing (as well as clumsy and error-prone) to publish economic
statistics as a long series of natural-language sentences (e.g.,
“France has GDP of X. Spain has GDP of Y...”) rather
than in tabular form. Similarly, some fact triples (such as
biographical data) are expressed only or mainly in natu-
ral language. Unfortunately, while a domain-independent
extractor is not tied explicitly to a topic, it is often tied
to a data model. For example, the TextRunner system
extracts fact triples from natural-language text: the extrac-
tion contains a binary relation and a tuple for that rela-
tion (e.g., {Einstein, was born in, Germany} [4]. Mean-
while the WebTables system extracts relational-style table

Preprocessing Pipeline

Runtime System

Entity Database

Web
Crawl

Multimodel
Extraction

User Query

Multimodel Translation

Figure 1: The omnivore architecture. The prepro-
cessing pipeline is a single large batch job that con-
sumes a Web crawl and generates a large structured
database of extracted entities. The runtime sys-
tem applies read-only queries against the resulting
database. Users can also correct errors in the query
output, but these are not applied through the stan-
dard query mechanism.

data from HTML tables (e.g., a table on population statis-
tics) [10]. The combination of these two facts means that
even a high-quality domain-independent extractor comes with
a strong tie to certain domains and will miss out on a large
amount of useful data.

Indeed, the author’s experience with previous Web extrac-
tion systems (KnowItAll, TextRunner, WebTables)
has been that while an extractor can achieve very high per-
formance on its “signature” data model, it is fairly easy to
formulate a query that cannot be answered with a given ex-
tractor’s data [4, 10, 17]. (In contrast, a traditional search
engine is relatively difficult to “stump.”) The problem is
exacerbated with queries that involve multiple extracted do-
mains (e.g., when performing a join or multi-predicate se-
lection): a single extractor will fail to find data that satisfies
such queries unless all the extractor is suited to all of the
domains. For example, a query that seeks the GDP of all
countries where Einstein visited would involve data best de-
rived from multiple extractors/data models.

We encounter a second problem when generating query
results against a comprehensive Web-derived database. It
should be possible for a user to query the database without
knowing how the query results (if any) should be structured.
For example, suppose the user queries for all entities that
are located in Seattle. The query:

SELECT x FROM ALL WHERE x.location=Seattle

would return companies, people, buildings, etc. The best
possible output format for these results is probably a se-
ries of domain-sensitive relational tables, one for each entity
type. The output schema(s) should differ with another re-
sult set. The scale of the Web and the general low quality
of data has a heavy impact on query-processing for the Web
database: not only is there no single schema for the user

to query, the user cannot even reasonably request a target
schema without knowing the query results ahead of time.

Data model decisions are deeply tied to the data’s domain,
both at database-creation time and at query time. In a tra-
ditional (generally single-domain) database setting, a single
data model and schema limit the actions of data-creators
and query-writers. But in a Web setting, centralizing con-
trol in this way is not feasible. Each Web data creator simply
chooses the model and schema that is most-appropriate to
her own small part of the overall Web database. The Web
database query-writer is handicapped even further due to
the sheer volume of topics and data; she may not be able
to describe a target model and schema without knowing the
actual query result.

In response, we propose the omnivore system. Omni-
vore offers two main architectural contributions, each of
which motivates an algorithmic database problem.

First, it attempts to recover a comprehensive set of Web
topics by running multiple domain-independent extractors
in parallel, then combining their outputs into a single entity-
relationship database. Each item in the database represents
an extracted “real-world” entity, with associated types and
attribute/value pairs. (Table 1 shows a few example queries
against the Web database.) Simply combining multiple ex-
tractor outputs can improve topic coverage. In addition,
we can sometimes boost the quality of individual extractors
by allowing them to share raw extraction information. For
example, imagine that a simple association-extractor finds
that Einstein and patent-clerk are strongly associated
with each other, though it cannot extract the relationship
between them. Meanwhile, a fact-triple extractor finds weak
information that {Einstein, had-job, patent-clerk}. By
translating the extractions into a common data model, we
can find stronger evidence for the {Einstein, had-job,

patent-clerk} triple. Combining extractions from multi-
ple sources into a single entity database is thus similar to
a reference reconciliation problem, but with a dataset that
can easily run into the hundreds of millions of data items,
far beyond any published reconciliation results that we are
aware of (many of which focus on paper citation databases
of just a few thousand items) [13, 16, 18].

The second contribution of omnivore is to render query
results using an automatically-chosen “presentation-time”
data schema and model. For example, if the above Seattle

query were to return mainly corporations, omnivore could
present its data with a relational table that has attributes
CEO, earnings, etc. In this way, the query-writer does not
have to indicate a schema ahead of time, but can enjoy the
benefits of seeing result data in a relevant schema (without
first examining all the results by hand). This task is very
similar to the ModelGen operator from the model manage-
ment literature: the system must map some source data
to an appropriate target schema, given only the data and
the target data model [2, 5]. (Indeed, we can also frame
the extractor-to-Web-database mapping task as instance of
ModelGen, in which each source model is determined by an
extractor, a source schema is determined by the extractor’s
output, and the target model is the Web database’s entity-
relation model.) However, unlike previous implementations
of ModelGen, ours must operate without any human super-
vision or revision, and must incorporate some user-modeling
aspects to determine a candidate schema’s quality.

Note that omnivore’s focus is on surfaced, and general

Extractor1(W) ⇒ (DW1, SW
M1

, M1)

Extractor2(W) ⇒ (DW2, SW
M2

, M2)

Extractork(W) ⇒ (DWk, SW
Mk

, Mk)

unfold(DW
In, SW

MIn
, MIn, MWeb) ⇒

(DW
In, SW

MWeb
, MWeb)

WN
U

Web Crawl Information Extraction Extraction Unfolding to Entity Model Unification Entity Db

...

Figure 2: The omnivore preprocessing pipeline. It runs k extractors in parallel, transforms these extractions
into the entity-relation data model using model-specific unfold operators, then performs the unification step,
which entails reference reconciliation and extraction thresholding. The result is a single entity-relation Web
database.

structured Web data. Thus, we do not spend any effort on
extracting data from the deep-web per se, though we may
indirectly obtain the surfaced part. Also, we focus on the
broad class of data that we believe can be expressed using a
handful of popular domain-independent data models; while
the omnivore architecture supports site-specific extractors,
we believe they are in general so expensive that there will
be too few to cover most of the Web. The objection that
domain-independent extractors will never recover the struc-
tured Web as well as domain- or site-specific extractors is
beside the point if the latter can only be obtained at a pro-
hibitive cost. Thus, to a large extent, the success of omni-
vore as a usable system depends on whether most of the
Web’s data is expressed using a fairly-small number (say, a
dozen) of simple extractable models.

As Figure 1 shows, our proposed architecture for omni-
vore closely resembles a traditional search engine: a major
crawl/batch stage followed by query processing. The extrac-
tion pipeline is described in Section 2, and the resulting Web
database in Section 3. Users can then pose structured read-
only queries (and database corrections) against the runtime
system, which we describe in Section 4. Finally, we briefly
discuss the status of our current prototype in Section 5, in
which we make specific decisions about things like how to
compile the Web crawl, which extractors to deploy, etc. We
then conclude with a brief discussion of related work in Sec-
tions 6 and 7.

2. EXTRACTION AND DATA INTEGRATION
The goal of the omnivore preprocessing pipeline is to

produce the entity-relation Web database for later query
processing. As Figure 2 shows, it works by taking a general
Web crawl and running it through three processing steps.

Step 1. Information Extraction. The system runs k ex-
tractors in parallel over the input pages. Each extractor
Ei has a fixed associated data model Mi. (As we describe
in Section 5, our current implementation has four extrac-
tors with four corresponding data models, including rela-
tional tables (from HTML tables) and typed entities (from
natural-language text), and others). When an extractor is
run on a given page W , it emits a piece of data DW that is
described using extractor-dependent model Mi in a schema

that depends on both extractor and Web page: SW
Mi

.
Step 2. Extraction Unfolding. The next step is trans-

forming the extracted data into the entity-relation Web data
model, which we unfolding. For each extractor output (DW , SW

Mi
, Mi),

the unfold operator translates the data into the target entity
model MWeb. Each extraction that is sent to unfold results
in output (DW

In, SW
MW eb

, MWeb).
The entity-relation model is a common “metamodel” used

to describe schemas in other data models. Our implemen-
tation for unfold can in some cases be extremely basic. For
types, ModelGen creates an entity for both instance and
type, filling out the instances and type relation fields ap-
propriately. For a fact triple (A, R, B), we create an entity
for A/B. We then add attribute R to A, with value B.
The directionality of R is determined by the source language
string that links the two entities.

Transforming data from a relational table is somewhat
more interesting. If the leftmost column of the table is non-
numeric and unique, we assume it acts like a primary key
for the table and is thus probably a good guess to label an
entity. There are |MN | examples of (key, attr, val), where
M is the number of columns, and N is the number of rows in
the table. We add entities key and val to the database, with
relationship attr between them. This algorithm essentially
assumes a functional dependency between the primary key
and every column in the table; this is not a good assumption
in general, and in the future it would be better to attempt
to detect when these dependencies are present. We also cre-
ate some synthetic entities to represent each tuple and the
overall relational set, as we discuss below in Section 3.

Note that unfold can also be described as a very straight-
forward implementation of the ModelGen operator.

Step 3. Unification. We now have a huge amount of data
that is framed in a single data model, but it still does not
make up a single usable database. To assemble a coherent
database, omnivore has to reconcile all the entity references
made across a huge number of extractions. For example, ref-
erences to George Bush should be unified to (at most) two
individual objects. Also, omnivore must threshold bad ex-
tractions where possible so they do not enter the database.
Sifting good from bad extractions is a task usually embedded
inside the extractor, but we move this step into the unifica-

tion stage so we can take advantage of reconciled references
and data from multiple extractors.

There is a substantial body of work on algorithms for
reference reconciliation (such as [13, 16, 18]) and it is a diffi-
cult challenge for even small datasets (regarding both output
quality and computational difficulty). The omnivore task
is much harder than most previous instances of the prob-
lem, as the set of extractions entering the unification step
can easily reach hundreds of millions of items, scaling with
the product of the number of extractors and the number of
Web pages in the input crawl. Further, it must reconcile
references without any domain-specific schemas or rules.

However, unlike many reference reconciliation datasets,
omnivore enjoys a very dense set of constraints on the set
of possible reconciliations. A single data item that reaches
the reference reconciliation step has four associated pieces
of extraction-lineage: the entity reference itself, the source
extractor, the source data object (e.g., a region of a Web
page), and the source Web domain. We can eliminate a
vast number of potential reconciliations by making a few
broad assumptions about Web authorship (e.g., references
on a single page always consistently refer to the same entity;
an entity label is not plausible unless it appears via several
extractors).

Beyond the algorithmic step, omnivore follows a few
rules that make reference reconciliation a more handleable
problem. Because most entity labels do not refer to multi-
ple real-world objects, string matches imply entity matches
by default. Thus, we would start with a single George Bush

item (barring any action by a pipeline-time reconciliation
algorithm). The alternative is to create a new object for
every new extracted entity label, even if the label has been
seen before; such an approach is tailored to the less-frequent
case and entails integrating even just multiple item men-
tions on a single page. We believe the better strategy is an
“optimistic” one that assumes identical strings refer to the
same entity, while also running tests to detect the compar-
atively few cases when the assumption is a bad one. For
example, when the system detects that the George Bush,
George W Bush, and George H W Bush objects overlap and
are obviously very close in string similarity, omnivore can
ask the user whether George Bush should be split into mul-
tiple objects.

Thresholding simply means deciding whether an extrac-
tion is “good enough” to be admitted to the database. Ex-
tractors have their own techniques for performing thresh-
olding, often based on probabilistic models or extraction
frequency. Omnivore creates a thresholding classifier via
a machine learning technique called cotraining. Cotraining
uses multiple distinct classifiers (one for each extractor, in
our case) to generate additional training data for each other,
thus bootstrapping each classifier into higher performance [6].
Data from distinct extractors form distinct “views” of an en-
tity and thus are a good cotraining candidate.

Finally, the unification step can also include explicit user
“corrections” of previous versions of the database. The
stream of user updates to the Web database is simply treated
as a special “extraction” stream that is always assumed to be
correct. Combining user and machine-driven updates into
a single collaborative database is a relatively-new but very
exciting area of research [7, 14, 22].

3. THE ENTITY WEB DATABASE

The heart of omnivore is an entity-relation database that
describes every entity we can extract from the Web. There
is a unique data object for each entity (with a unique identi-
fier), and each entity object has a label that is either unique
or equal to “anonymous.” An entity has an associated set of
attribute/value pairs. It can have zero or more types (e.g.,
the Seattle item has type city, haven, and several others).
A data value can be one of the standard primitive types
(i.e., string, integer, etc.), a reference to another item in
the database, or a set of those values.

The type and instances attributes are set-valued and
implement type relationships (e.g., the Albert Einstein ob-
ject has scientist in its type field). The special ALL object
has an instances attribute that points to every object in
the database. A query returns a set of zero or more objects.
A query can refer to arbitrary attribute names; a predicate
test that involves an object’s non-existent attribute will sim-
ply evaluate to false. Figure 2 shows some sample data from
the extracted Seattle object.

The Web data model as described so far is fairly straight-
forward and can represent data from a number of different
models. We also make a few adjustments so it can accom-
modate extracted data more easily.

First, attributes can be anonymous. It is often true that
it is much easier to relate an entity to a data value than
it is to precisely describe that relationship. For example,
Albert Einstein and scientist should be quite strongly
related, but it would be quite difficult to extract the job-

title relationship.
Second, our notion of type is very weak and implies noth-

ing about inheritance between super and subentity; a type
is simply a way of describing a 1:n relationship between
items. We implement types by filling out two special at-
tributes in each entity: type and instances, which each
hold a set of references to other database objects. We do not
want to enforce strict inheritance-style rules because even
a mainly-correct extracted object can lack attributes and
values (whether because of flawed extractors or incomplete
source data). Instead, types are used mainly as a shorthand
for the query-writer to refer to a well-known set of items.
Note that because a omnivore type is simply a set and a
label, a “type” is functionally the same as a “set.”

All of our examples so far have involved explicitly-labeled
entities, but this is not required. The extractor may find an
item that appears to be a real-world entity, but for which
there is no good unique key. (Consider that it would be very
useful to distinguish between multiple instances of Toyota Camry

extracted from a collection of classified ads. The classified
ads probably do not provide a unique label for each.) Thus,
omnivore will create some anonymous objects; for exam-
ple, assuming that each tuple in a relational table represents
some useful entity, it may create a new synthetically-named
object for each.

Similarly, human-understandable types/sets such as city
are easy to label, though others are not. For example, ev-
ery relational table carries a set-membership assertion about
each tuple (or at least primary key) that the table contains.
omnivore thus can create unlabeled types/sets just like it
can with entities.

Objects do not require labels, but no two objects can
share a single label. Not only would such “aliased” labels
be confusing for the user, there is some evidence that they
are unnecessary. Existing named-entity collections such as

attribute value extractor lineage

name Seattle various ...

type city, startup hub KnowItAll ...
instances none
ismayorof Greg Nickles TextRunner ...
population 592,800 WebTables ...

? Northwest WeakAssoc ...
? grunge WeakAssoc ...

Table 2: Selected data associated with the Seattle

entity. Each extraction is also logged with its ex-
tractor and associated lineage information (source
page(s), actions taken by the unification and refer-
ence reconciliation steps, etc.).

Wikipedia have shown that even a fairly large collection
of items can be distinguished by label. (E.g., there is no
“George Bush” entity in Wikipedia, but rather one for “George
W. Bush” and one for “George H.W. Bush.”) When two
real world entities genuinely do share a label, it is the re-
sponsibility of the extraction and integration pipeline (from
Section 2 above) to either generate or ask the user for addi-
tional distinct object-appropriate labels.

There are two methods of querying the system. The struc-
tured query interface takes as input a structured query and
a set of entities; it also returns a set of entities. The query
language offers set operators, and selection predicates on
entity attributes. A set may be specified by one of:

• A labeled set of objects, such as city.instances

• The ALL keyword, meaning the set of all items in the
database.

• A subquery

Figure 1 has a few examples of the structured query inter-
face.

The unstructured query interface takes as input a text
search string; it returns a ranked list of entities relevant to
the input (we might rank the CIDR entity highly with the
query database conference California). As part of its
ranking task, the ranker may use information external to
the extracted database itself, such as a Web corpus. For
example, omnivore may use the query string to find a set
of highly-relevant documents, and then rank all entities that
appear within the given docs.

4. QUERY PROCESSING
The omnivore query interface, depicted in Figure 3, is

responsible for two main tasks.
The first task is accepting queries (both structured and

search-style) and returning results to the user. The Web
database itself returns a simple set of entities (this level
of query-processing is fairly straightforward so we do not
discuss it any depth in this paper).

However, note that items from the Web database share
no common schema for the objects, and objects may have
very different types. Recall the query for Seattle-located
items from Section 1 above. Without a schema, the näıve
method of presenting query results is a simple list of objects.
This would be a terrible experience for the end-user, who
has probably not queried for a completely-arbitrary set of

Refined Results (DOut, SOut, MRelational)

Raw Results (DQ, SQ, MWeb)

Query Interface

Entity Db

Query Q

map(DQ, ModelGen(SQ, MWeb, MRelational)
⇒ (DOut, SOut, MRelational)

Query Rendering Operations

Update
DbUser updates

Figure 3: The omnivore query processing system.

entities. It is more likely that the returned objects (or sub-
sets of the returned objects) share some relevant attributes
in common. So, rather than presenting raw objects to the
user, omnivore transforms the results into an on-the-fly
relational table with its own “presentation schema.” This
schema has a row for each returned object and a relevant
attribute in each column. Computing a mapping between
the query result data and an appropriate schema in the re-
lational model is similar to mapping the query result data
DQ to a relational schema produced by the ModelGen oper-
ator. ModelGen in this case finds a relational schema that
is appropriate given the Web entity-relation data’s schema.

Choosing a high-quality output schema mapping for (in-
evitably) incomplete extracted objects can be difficult, in-
volving user-interface decisions, competing optimization cri-
teria and fast runtime requirements. For example, two sub-
sets of the query results may have data that only partially
overlaps, forcing the system to either place the subsets in
different tables or emit a table with many NULL values.
The TGen system previously attempted to create an opti-
mal relational schema for a set of extracted objects, though
with execution times firmly above a minute for large data
sets [12]. For both efficiency and result quality, omnivore
constrains the ModelGen task substantially by simply al-
lowing only one relational table per type in the query result
set.

The second main task is accepting user feedback to correct
inaccurate data in query results. A user can add, delete, or
update any object in the returned data, possibly examining
the lineage data that accompanies each result. This data is
logged and stored until the database-construction pipeline
is run again. Currently, we simply use the feedback to cor-
rect the end-product, but eventually it should be possible
to “push the feedback down” and thus boost or lower con-
fidence in the source extractor, data object, or site so that
user-given corrections have impact beyond the fact immedi-

ately at hand.

5. PROTOTYPE SYSTEM
We are in the midst of constructing an omnivore imple-

mentation, on a general Web crawl of about 60M Web pages.
So far we are using four different extractors:

1. The KnowItAll extractor, for type information de-
rived from natural language.

2. The TextRunner extractor, for relation-independent
fact-triple information derived from natural language.

3. A simplified version of the WebTables extractor, for
relational tables derived from the HTML table tag.
(We do not have access to the original WebTables
implementation as described in [9] and [10].)

4. A novel “extractor of last resort” called WeakAssoc
that operates over any text, including nonstandard
(and unparseable) natural language such as classified
posts. It emits anonymous-attribute/value pairs for
an entity label. This output is less structured com-
pared to other extractors’, but because WeakAssoc
assumes very little about the input Web page struc-
ture, it can find relationships that might otherwise be
difficult or impossible to find.

For example, Michael Cafarella is fairly strongly as-
sociated with Alon Halevy on the Web, but recovering
the coauthor relationship label would be very difficult.
WeakAssoc output is not very useful by itself, but
is helpful for bolstering detailed-but-weakly-supported
data from other extractors.

To support fast query processing, our prototype distributes
the resulting object database over a cluster of 35 nodes. We
are in the process of adding index support to quickly map
from attribute labels and values to the containing object.

6. RELATED WORK
A few projects have focused on query processing, or on in-

tegrating extracted data from various sources. IBM’s AVATAR
project combines the results of many extractor-like “annota-
tors,” which consume text and emit typed (e.g., person) [21].
While AVATAR itself is not domain-specific, it would re-
quire a huge number of domain-specific extractors in order
to process the entire Web.

Our ExDB system used a probabilistic database to com-
bine information from a few different extractors, with several
notable differences from omnivore: all extractions were de-
rived from natural language text, the ExDB data model
was limited to triples and is-a hierarchies, and information
from multiple extractors was never combined at the raw-
count level [11]. The DBLife project is a useful data portal
of information about database science and researchers, but
this one domain requires nontrivial human intervention, an
approach we do not believe can scale to all topics on the
Web [15].

Metaweb’s Freebase system is a “wiki”-style collaborative
structured database, with a broad range of topics, similar
to Wikipedia [7]. The system is designed primarily for hu-
man updates, but is seeded with structured data extracted
from Wikipedia and other more structured sources. It has
a similar entity-centric data model to omnivore, though

with a much stronger type system. The DBPedia project
has similar ambitions to be a “general-purpose” structured
database, though it relies almost exclusively on RDF triples
derived from Wikipedia [3].

7. CONCLUSIONS
Simply compiling a large amount of data using a domain-

independent extraction technique has proven insufficient for
creating a truly comprehensive database of Web informa-
tion. omnivore attempts to solve many of these problems
(e.g., poor extraction coverage, poor user knowledge of any
relevant schemas) by placing the data model management-
related tasks at the center of the extraction system archi-
tecture. We believe that as lower-level pieces of extractor
technology become more established, data model issues like
those discussed in this paper will become critical hurdles
that all usable Web-scale extraction systems must overcome.

8. REFERENCES
[1] E. Agichtein, L. Gravano, V. Sokolovna, and

A. Voskoboynik. Snowball: A prototype system for
extracting relations from large text collections. In SIGMOD
Conference, 2001.

[2] P. Atzeni, P. Cappellari, and P. A. Bernstein. Modelgen:
Model independent schema translation. In ICDE, pages
1111–1112, 2005.

[3] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak,
and Z. G. Ives. Dbpedia: A nucleus for a web of open data.
In ISWC/ASWC, pages 722–735, 2007.

[4] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead,
and O. Etzioni. Open information extraction from the web.
In IJCAI, pages 2670–2676, 2007.

[5] P. A. Bernstein. Applying model management to classical
meta data problems. In CIDR, 2003.

[6] A. Blum and T. M. Mitchell. Combining labeled and
unlabeled sata with co-training. In COLT, pages 92–100,
1998.

[7] K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and
J. Taylor. Freebase: a collaboratively created graph
database for structuring human knowledge. In SIGMOD
Conference, pages 1247–1250, 2008.

[8] S. Brin. Extracting patterns and relations from the world
wide web. In WebDB, 1998.

[9] M. J. Cafarella, A. Y. Halevy, Y. Zhang, D. Z. Wang, and
E. Wu. Uncovering the relational web. In WebDB, 2008.

[10] M. J. Cafarella, A. Y. Halevy, Y. Zhang, D. Z. Wang, and
E. Wu. Webtables: Exploring the power of tables on the
web. In VLDB, 2008.

[11] M. J. Cafarella, C. Re, D. Suciu, and O. Etzioni.
Structured querying of web text data: A technical
challenge. In CIDR, pages 225–234, 2007.

[12] M. J. Cafarella, D. Suciu, and O. Etzioni. Navigating
extracted data with schema discovery. In WebDB, 2007.

[13] A. Culotta and A. McCallum. Joint deduplication of
multiple record types in relational data. In CIKM, pages
257–258, 2005.

[14] P. DeRose, X. Chai, B. J. Gao, W. Shen, A. Doan,
P. Bohannon, and X. Zhu. Building community wikipedias:
A machine-human partnership approach. In ICDE, pages
646–655, 2008.

[15] P. DeRose, W. Shen, F. Chen, A. Doan, and
R. Ramakrishnan. Building structured web community
portals: A top-down, compositional, and incremental
approach. In VLDB, pages 399–410, 2007.

[16] X. Dong, A. Y. Halevy, and J. Madhavan. Reference
reconciliation in complex information spaces. In SIGMOD
Conference, pages 85–96, 2005.

[17] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A. Popescu,
T. Shaked, S. Soderland, D. Weld, and A. Yates. Web-scale

information extraction in knowitall (preliminary results). In
Thirteenth International World Wide Web Conference,
2004.

[18] P. Singla and P. Domingos. Entity resolution with markov
logic. In ICDM, pages 572–582, 2006.

[19] F. M. Suchanek, G. Ifrim, and G. Weikum. Combining
linguistic and statistical analysis to extract relations from
web documents. In KDD, pages 712–717, 2006.

[20] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core
of semantic knowledge. In WWW, pages 697–706, 2007.

[21] T.S.Jayram, R. Krishnamurthy, S. Raghavan,
S. Vaithyanathan, and H. Zhu. Avatar information
extraction system. IEEE Data Eng. Bull, 29(1):40–48,
2006.

[22] D. S. Weld, F. Wu, E. Adar, S. Amershi, J. Fogarty,
R. Hoffmann, K. Patel, and M. Skinner. Intelligence in
wikipedia. In AAAI, pages 1609–1614, 2008.

