Ranking Search Results

- TF / IDF or BM25
- Tag Information
 - Title, headers
- Font Size / Capitalization
- Anchor Text on Other Pages
- Classifier Predictions
 - Spam, Adult, Review, Celebrity, …
- Link Analysis
 - HITS – (Hubs and Authorities)
 - PageRank

Pagerank Intuition

Think of Web as a big graph.

Suppose surfer keeps randomly clicking on the links.

Importance of a page = probability of being on the page

Derive *transition matrix* from adjacency matrix

Suppose \(\exists N \) forward links from page \(P \)
Then the probability that surfer clicks on any one is \(1/N \)

Matrix Representation

Let \(M \) be an \(N \times N \) matrix

\[
M_{uv} = \frac{1}{N} \quad \text{if page } v \text{ has a link to page } u \\
M_{uv} = 0 \quad \text{if there is no link from } v \text{ to } u
\]

Let \(R_0 \) be the initial rank vector

Let \(R_i \) be the \(N \times 1 \) rank vector for \(i^{th} \) iteration

Then \(R_i = M \times R_{i-1} \)

Problem: Page Sinks.

- Sink = node (or set of nodes) with no out-edges.
- Why is this a problem?

Solution to Sink Nodes

Let:

\((1-c) \) = chance of random transition from a sink.
\(N \) = the number of pages

\[
K = \begin{pmatrix}
\vdots \\
\frac{1}{N} & \cdots \\
\vdots
\end{pmatrix}
\]

\[
M' = cM + (1-c)K \\
R_i = M' \times R_{i-1}
\]
Computing PageRank - Example

\[
M = \begin{pmatrix}
A & 0 & 0 & 0 & \frac{1}{2} \\
B & 0 & 0 & 0 & \frac{1}{2} \\
C & 1 & 1 & 0 & 0 \\
D & 0 & 0 & 1 & 0
\end{pmatrix}
\]

\[
M^* = \begin{pmatrix}
0.05 & 0.05 & 0.05 & 0.45 \\
0.05 & 0.05 & 0.05 & 0.45 \\
0.85 & 0.85 & 0.05 & 0.05 \\
0.05 & 0.05 & 0.85 & 0.05
\end{pmatrix}
\]

Ooops

- What About Sparsity?

\[
M^* = cM + (1-c)K
\]

\[
K = \begin{pmatrix}
\frac{1}{N} & \frac{1}{N} & \frac{1}{N} & \frac{1}{N} \\
\frac{1}{N} & \frac{1}{N} & \frac{1}{N} & \frac{1}{N} \\
\frac{1}{N} & \frac{1}{N} & \frac{1}{N} & \frac{1}{N} \\
\frac{1}{N} & \frac{1}{N} & \frac{1}{N} & \frac{1}{N}
\end{pmatrix}
\]

Authority and Hub Pages (1)

- A page is a good authority (with respect to a given query)
 if it is pointed to by many good hubs (with respect to the query).

- A page is a good hub page (with respect to a given query)
 if it points to many good authorities (for the query).

- Good authorities & hubs reinforce

Authority and Hub Pages (2)

Authorities and hubs for a query tend to form a bipartite subgraph of the web graph.

(A page can be a good authority and a good hub)

Linear Algebraic Interpretation

- PageRank = principle eigenvector of \(M^*\)
 - in limit

- HITS = principle eigenvector of \(M^* \times (M^*)^T\)
 - Where \([\cdot]^T\) denotes transpose

- Stability
 Small changes to graph \(\rightarrow\) small changes to weights.
 - Can prove PageRank is stable
 - And HITS isn’t

Stability Analysis (Empirical)

- Make 5 subsets by deleting 30% randomly

\[
\begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
2 & 2 & 3 & 3 & 2 \\
3 & 3 & 6 & 6 & 3 \\
4 & 4 & 2 & 2 & 4 \\
5 & 5 & 119 & 19 & 5 \\
6 & 6 & 135 & 56 & 8 \\
7 & 7 & 179 & 59 & 7 \\
8 & 8 & 316 & 141 & 6 \\
9 & 9 & 247 & 107 & 9 \\
10 & 10 & 170 & 80 & 18
\end{pmatrix}
\]

- PageRank much more stable
Practicality

- **Challenges**
 - M no longer sparse (don’t represent explicitly!)
 - Data too big for memory (be sneaky about disk usage)

- **Stanford Version of Google**:
 - 24 million documents in crawl
 - 147GB documents
 - 259 million links
 - Computing pagerank “few hours” on single 1997 workstation

- **But How?**
 - Next discussion from Haveliwala paper…

Efficient Computation: Preprocess

- **Remove ‘dangling’ nodes**
 - Pages w/ no children

- **Then repeat process**
 - Since now more danglers

- **Stanford WebBase**
 - 25 M pages
 - 81 M URLs in the link graph
 - After two prune iterations: 19 M nodes

Representing ‘Links’ Table

- **Stored on disk in binary format**

<table>
<thead>
<tr>
<th>Source node (32 bit integer)</th>
<th>Outdegree (16 bit int)</th>
<th>Destination nodes (32 bit integers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>12, 26, 58, 94</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5, 56, 69</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1, 9, 10, 36, 78</td>
</tr>
</tbody>
</table>

- **Size for Stanford WebBase: 1.01 GB**
 - Assumed to exceed main memory
 - (But source & dest assumed to fit)

Algorithm 1

-∀ Source[s] = 1/N
-while residual > τ {
 ∀ Dest[d] = 0
 while not Links.eof() {
 Links.read(source, n, dest1, … destn)
 for j = 1… n
 Dest[destj] = Dest[destj]+Source[source]/n
 }
 ∀ Dest[d] = (1-c) * Dest[d] + c/N /* dampening c= 1/N */
 residual = ⎥⎜Source – Dest�⎟ /* recompute every few iterations */
 Source = Dest
}

Analysis

- **If memory can hold both source & dest**
 - IO cost per iteration is |Links|
 - Fine for a crawl of 24 M pages
 - But web > 8 B pages in 2005 [Google]
 - Increase from 320 M pages in 1997 [NEC study]

- **If memory only big enough to hold just dest…?**
 - Sort Links on source field
 - Read Source sequentially during rank propagation step
 - Write Dest to disk to serve as Source for next iteration
 - IO cost per iteration is |Source| + |Dest| + |Links|

- **But What if memory can’t even hold dest?**
 - Random access pattern will make working set = |Dest|
 - Thrash!!!

Block-Based Algorithm

- **Partition Dest into B blocks of D pages each**
 - If memory = P physical pages
 - D < P-2 since need input buffers for Source & Links

- **Partition (sorted) Links into B files**
 - Links, only has some of the dest nodes for each source
 - Specifically, Links, only has dest nodes such that
 - DD*i <= dest < DD*(i+1)
 - Where DD = number of 32 bit integers that fit in D pages
Partitioned Link File

<table>
<thead>
<tr>
<th>Bucket</th>
<th>Source node (16 bit int)</th>
<th>Outdeg (16 bit)</th>
<th>Num out (16 bit)</th>
<th>Destination nodes (32 bit integers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-31</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>12, 26</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>1, 9, 10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bucket</th>
<th>32-63</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bucket</th>
<th>64-95</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Analysis of Block Algorithm

- IO Cost per iteration = \(B^*\cdot|\text{Source}| + |\text{Dest}| + |\text{Links}|(1+\epsilon) \)
- \(\epsilon \) is factor by which Links increased in size
 - Typically 0.1-0.3
 - Depends on number of blocks
- Algorithm ~ nested-loops join

Comparing the Algorithms

Adding PageRank to a SearchEngine

- Weighted sum of importance + similarity with query
- Score(q, d) = \(w\cdot\text{sim}(q, p) + (1-w)\cdot R(p), \) if \(\text{sim}(q, p) > 0 \)
 = 0, otherwise
- Where
 - \(0 < w < 1 \)
 - \(\text{sim}(q, p), R(p) \) must be normalized to [0, 1].

Summary of Key Points

- PageRank Iterative Algorithm
- Sink Pages
- Efficiency of computation – Memory!
 - Don’t represent \(M^* \) explicitly.
 - Minimize IO Cost.
 - Break arrays into Blocks.
 - Single precision numbers ok.
- Number of iterations of PageRank.
- Weighting of PageRank vs. doc similarity.