Group Name: Timedex fttp://www.timedex.ory
Team Members. Alex Loddengaard, Brandon Bell, Robert Gay, SeaChtthy

Project Goals

Our high-level goal in creating Timedex was to agtrevents from a full-size dump of
the Wikipedia corpus and then create an easy-tavebenterface around the events we
extracted. The main goal of the web interface wanake the events we extracted
accessible in fast and intuitive way.

System Architecture

The most important component of our architectutbesdatabase that stores the
Wikipedia dump and the extracted events. This dealis common to our event
extraction step and the web application and costanported Wikipedia tables
containing pages, revisions, text, and page liskaell as an additional table that stores
events. Figure 1 gives an overview of the systeshitacture.

Web app

Database
Wikipedia Timedex

Pages Events == | |
Page links Date Range Query
Text \\‘\.\‘.

Revisions Lucene | Text Query |

i

Data Extraction Pipeline

Date
Extraction

Figure 1: Timedex system architecture.

A Hibernate persistence/data-access layer is aar@&tharound the database in order to
allow the web app and the extractor to use the sarde to access the database. The
data-access layer consists of a set of classearidatapped to database tables by
Hibernate. Because of the Hibernate API, the detess code doesn’t require a single
SQL statement, making it maintainable and robMgée were also able to write effective
JUnit tests for all of our data-access code.

Extraction

The goal of the extraction step is to fill the etgetable in the database. To do this, we
first scan through the text of each Wikipedia &etia the default namespace and parse
the page text into a tree of headings, with theegdlg as the root heading. (We ignore
all non-heading-related Wikipedia formatting.) Ed&ading in the tree has the text
under it organized into a list of sentences. Fatege edge detection, we used a library
called Lingpipe that works well in almost all casé& have yet to observe a mistake in
sentence parsing by our system on real data; ibhigsmessed up on some carefully
chosen test cases (e.g., sentences that end \bitbvaditions like ‘B.C.’ or ‘etc.’).

Next, we try to detect dates in each sentence.i$hiene with a simple set of regular
expressions. Although there are many different waysrmat dates, we chose to focus
on the types of dates that might be encounterdaeinext of a general Wikipedia article.
These formats are the ones outlined in Wikipedstyge guidelines. Since many dates are
only years without indicated eras like BC or AD, dexided to treat all numbers between
1500 and 3000 as dates if they are preceded bgircdtywords such as “in” or “before.”
Although some of these decisions may omit some fdateats, we chose to use this strict
date detection to increase the precision of oysuwtuSince dates are easy to detect in
general, we have found that the results find alllorost all dates in the average article
with few false positives. Our precision and reea# good enough that it would be
difficult to collect enough manually processed dataail down those numbers.
Sentences that have a date are stored in the elegatsase along with their parent
headings, page title, extracted date, and numblarksf into the page. One thing we have
avoided is extracting more than one date from argsentence. We made a conscious
decision in the early planning stages that it watsworth worrying about that.

The date extraction matches dates that are lesffisghan a given day. (e.g., “May
20077). In order to support this in the database have two columns: a start date and an
end date. When we match something like “May 200utii¢h is accurate to the month)

we set the start date to be the first day of thattimin that year and the end date to be the
last day of that month in that year. In this wayave able to take advantage of the
database’s date type to allow simple, efficientd@ag and are still able to differentiate
between events where we have all the date infoomaind events where the date
information is incomplete. We implanted supportriamges over a month and over a
year, but it would not be difficult to extend thestem to, for example, treat “the™13
century” as ranging from the beginning of 1200he €nd of 1299.

The final step of extraction is the creation ofucéne index. The Lucene index stores
three pieces of information: an event sentencesuibbeading the event was in, and the

id of the event, where the sentence and the subtgsadre indexed. Indexing the
sentence and the subheadings allows for robustdelysearches in the web app.
Although the Lucene library handles most of theadgtthe index is created treating each
sentence combined with the headings it is underseparate document. Each document
is separated into words, which are the basis #®iridex. This means that the results for a
guery are composed of a list of the sentencesiiath the query. Because the sentences

are referenced by their id in the database, theserie queries can be easily combined
with date range queries on the database. The isdg#rred in memory on our production
machine for better performance, although we usdidkabased index during
development.

Web Application

The user interface for the web app is compriseal ddite range search and a keyword
search. Figure 2 shows a screenshot of the Timedbxapp (also accessible at
http://www.timedex.ory

Timedex

We extracted historical events from Wikipedia and indexed them based off of their date of
occurrence.

Search for an event in a given range: Search our database of Wikipedia events
. using the date they occured {month, day,
Date (or start date of range): year) and/or a search phrase that will be
January -j |1 x| 2000 matched to the name of the event. You
End date of range: must fill out at least one year field or the
February =] |15 || [2000 text search field.

Event match:
demand Learn more about this project

Enter some keywords to match with the

event.
Results:
Displaying 1 of 1 events Show More Results
IN DEMAND

However, the service changed the name and on-air lock to iN Demand on January 1, 2000.
http:/fwww.encyclopedia.com/doc/1G1-55731634 . htm|

Figure 2: Screenshot of the Timedex UlI.

The date range search runs a query against théseade and returns all the events
within the given range. The query also sorts bkyatowing us to limit the number of
results returned without potentially losing goo@ets. Searching by keywords looks up
events using the Lucene index. When both the raagech and the keyword search are
used, an intersection between both searches isutethg-igure 3 breaks down the way
in which queries work.

Date Range Query Text Query

Generalize dates In L idl f I
X and Y. In SQL. n Lucene, get event_id for a

events that contain keywordl
and keyword2 and ... keywordh

v

In 5CL. get all events whose
event_ids were returmned by
Lucens

get all events
between X and Y

Date Range and TextQuery

Figure 3: Timedex query breakdown.

Figure 4 shows a breakdown of what each eventrigoased of along with metadata
about the event such as its rank.

Page Subheading the Sentence the Date
Title Event Was Found in Was Found In Date

l

19905:‘Signiﬁcant events | l

Many feared that it would cause the world to end on new years day on|January 1, 2000|due to a massive
computer crash.

Figure 4: Result breakdown.

The presentation layer uses Spring MVC, a Javafveebework, for server-side
dependency injection and mapping request URLs¢ciBp controllers.

Workflow

When a user hits the “Submit” button, an asynchugntavaScript request is made to a
query controller. The request contains all of thareh parameters such as the start
month, the end day, and the keywords. The contradkeirns JavaScript Object Notation
(JSON) plain text that is interpreted by the Javg®as a sequence of serialized objects.
These objects are then displayed and can be sitfogvn or hidden depending on their
rank and their positions in the distribution ofkarn the result set. Figure 5 shows the
steps that happen when a user submits a query.

User Submits a Query is
Query —— GET Request —» Parbnsad

Results o
gvaluated into |e—— JSON —— Hﬁtﬂ!ﬁ‘ Ke
JS Objects Retumed ¥
[Serversice Gava) |
| Client-side (JavaScript) |
Rank Events at Top of
Distribution - Distribution
Calculated Displayed

Figure5: Web app workflow.

Database Challenges

One large challenge encountered was the managefna Wikipedia corpus. The
entire corpus exceeded 10GB, including 177 milkaws in the page links table and 5
million rows in the page table. The production vgelver only had 4GB of main
memory, so all of our applications had to be cdrefavoid excessive memory page
thrashing.

Another challenge became apparent with the usenaf\ee database transaction-
management strategy. Initially the transactiontsgawas implemented as one
transaction per Wikipedia page processed. Thisegtyavorked, but it was found that
running this algorithm on a dataset with 5,000 gagek around 3.5 minutes even
though the entire database could fit in memorytaedefore, in theory, be processed all
at once. This translated into a huge delay on thdyztion machine. The solution to this
problem was to refactor the data-access layeldw ahultiple select and update
statements per transaction. This allowed partitigrihe set of pages up into large chunks
that could fit into memory and be processed as @eaviin the case of the small dataset,
the total number of pages was much smaller thactibak size, so the improvement was
very dramatic: the time to run the algorithm drogpp@ around 48 seconds, a drastic
improvement. Although this new transaction modelidiprove performance on the large
dataset, the time that the PageRank algorithm akasg was still far too long.

After not finding large enough gains in performabgamplementing a better transaction
strategy, a third implementation of PageRank watesrthat was multi-threaded and
processed multiple chunks at a time. The idea loethiis implementation was that the
Java process would fill the web server’'s main mgmath data and only access the
database when a chunk was finished being procegsgartunately this didn’t account

for disk seeks when a query is performed in MyS€ the algorithm still ran too slowly
to be completed during the course of the quartar.90lution to our PageRank problems
was ultimately to abandon PageRank altogethethfmptrrposes of this class. The
ranking algorithm instead just counts the numbdmnés coming into each page, and
uses that in combination with the depth of the &sesentence in the page’s subheading
hierarchy to calculate a relative rank.

A transaction model similar to the one used fordRank was also used for event
extraction. Event extraction took a matter of sesoto execute on a 5,000-page data set
and on the order of a few days for the full Wiki@edorpus. The total number of events
ended up being around 7.5 million, implying there @ughly 1.5 events associated with
each page on Wikipedia.

I ssues With Extraction

Our original plan for event extraction involved stmicting a summary of the event from
important words in the sentence. Only this sumnaauy the date itself would then be
displayed to the user. In pursuit of this goal,sgeup an intermediate step to tag the
parts of speech in our sentences using Lingpipeatsudconstructed a Mallet CRF to
process these features for us. A simple Ul wadewrito allow us to label some training
data quickly and efficiently.

Unfortunately, what we discovered when runningtthaing Ul was that most of the
sentences were unsalvageable. Problems includeeingé pronoun subjects, events
spread over more than one sentence, and dateagusibned in passing that had almost
no relation to the content of the sentence. We kgewg into the project that
“understanding” any given sentence enough to edias going to be hard and we
quickly realized processing one sentence at awasenot likely to result in data that was
useful to the classifier. Even if the classifieravable to extract important words from
the sentence, the summary that we would displaydvoel next to useless because of
extensive use of pronouns. Generating good traidiétg also turned out to be extremely
difficult because evewe had trouble figuring out what the relevant paftthe sentence
were. Solving this problem would be a great macheaening project but it is well
beyond the scope of what we had planned for.

Luckily, we also noticed while using the training tbat the closest heading was a
surprisingly good indicator for the subject or dgstton of the event. Since we were
already tracking that information, it was easywaitsh over to a model where the main
piece of text representing an event was the headfititge section of the parent Wikipedia
page. We were quite disappointed that we did ndtugnusing any machine learning to
solve the problem, but are very happy with the lteia whole.

Thoughts on Storing Data in a Database Versus Files

The original reason behind managing data in MySQ@k fecause it would allow us to
make our data accessible to a web app very eatlyhe time of this decision, we were
not considering writing a PageRank algorithm or ather computationally intensive
algorithm. As previously illustrated, algorithmsch as PageRank do not perform well in

a single MySQL database. Had we made the dediiamthe beginning to use custom
file formats and Hadoop, we could have been comtbBEgeRank much more
efficiently. We would have had to write customigts to turn plain text files into SQL
insert statements, but that seems like a smak poipay for a much more robust,
scalable computational model. MySQL is great lavahg for easy inserts and queries,
but complex algorithms such as PageRank shouldrbera distributed environment
with a custom file structure.

Conclusions

On the whole, our group is very pleased with thie@me of this project. We had initially
hoped to use more machine learning in our appraauhjn hindsight should have
realized sooner how complex our efforts would haviee for that to work. We also had
hoped to have more time to work on a graphical ltmaeJl, but in the end it was more
important to us to provide meaningful data so weu$ed on that. We think that the end
result is interesting and quite useful, and wepaoaid of what we were able to
accomplish in only a few weeks.

Breakdown of work:
The following people did the following things:

- Alex
» Data-access layer, database work, JavaScript/éoatwvork, attempted
PageRank
- Brandon

» Date extraction, Lucene index integration, evemecten using CRF
(unused), exploration of CRF/HMM capabilities of \d&a
- Sean
* Wikipedia page text parsing, events table schemsgdgeranking results,
part-of-speech labeling for CRF (unused), trairdatp labeling Ul for
CRF (unused), result display
- Robert
* Events table schema design, web app setup andeanaimte, transaction
performance tuning, sentence extraction applicafromt-end JavaScript
and result display

External Librariesand Tools Used
The following external libraries were used in diffet areas:
- Mallet
o0 Machine learning API. Used for CRF (unused).
Lingpipe
0 Sentence recognition, part-of-speech labeling (edus
- Lucene
o Full-text index of the extracted events.
- Hibernate
o Relational/persistence API for Java.
- Spring MVC
o Java MVC framework.
- Scriptaculous
o JavaScript library for visual effects.
- Maven
0 A Java build tool
- JUnit
o0 Java unit testing framework

Viewing the Project
Visit http://www.timedex.org in any browser, alttghuonly Firefox has been tested.

