
The Clown Shoes Collective
Balatero, Brajkovic, Chu, Otero

CSE 454: Advanced Internet Systems
Weld

SpaceWalr.us
Intuitive Culinary Help

 When it comes to cooks, there are two types. There are those that cook out of passion for
food and creativity. Chances are, however, that you are not one of these. Most find themselves in
the kitchen in order to satisfy the unfortunate human need to ingest food on a regular basis. As a
result, they tend to be inexperienced, and able to prepare very few things. They tend to eat the
same limited set of meals without variation, and even if they wanted to branch out, they wouldn’t
know where to begin. With nothing more than large recipe books and obtuse online recipe
databases to browse, how can a busy fledgling cook find a recipe that meets dietary needs and
personal tastes, and to be blunt, doesn’t suck?
 Our goal was precisely to solve this problem: an easy-to-use web application as gateway
to thousands of recipes. In order to provide users with answers to their common questions, we
would need to allow users to browse these recipes in non-standard, slightly more semantic ways.
For instance, a user should be able to search for recipes that included chicken, onion, and garlic.
Similarly, users who dislike certain ingredients should be able to quickly exclude them from all
searches. This would require more than keyword recognition, as it is surprisingly common for
the text of a recipe to include names of ingredients that aren’t actually called for. Like most sites
in the Web 2.0 world, users should be able to rate recipes that they have tried, and use other
users’ ratings as a guide when trying new recipes. Most importantly, we wanted to be able to
provide recommendations to a user based on their rating history.
 We quickly realized that this would require far more knowledge of what went into a
given recipe than was available from any source. It would be easy to get our hands on large
quantities of recipes in plain text form. We could simply crawl existing recipe sites for all of their
recipes. To acquire structured data about the ingredients each recipe contained, cook times and
prep times, yield, and so on would require some work. Some fields would be easy to extract, as
they’d often be clearly marked by standard blocks of HTML, but more complex fields like
ingredients couldn’t be simply parsed out. For these we’d need some bigger guns: natural
language processing and classification. Finally, in order to recommend recipes based on user
preferences, we’d need a user rating data set and some way to compare users’ preferences to each
other in order to glean recommendation ideas. Theoretically, we could crawl the same sites for
their non-anonymous user ratings and comments to create a test data set. Then using some form
of clustering, we could group users by similarity of preference, and recommend recipes based on
recipes liked by others in a particular user’s cluster. This lead us to envision a system architecture
like that depicted in the following figure.

 Crawling and fetching recipes was fairly straightforward. We used a Distributed Ruby
(DRB) framework to parallelize the downloading of hundreds of thousands of recipes. Because
each site would need slightly different handling, and a different approach when parsed, we
abstracted common logic into a crawling framework, implementing specialized features only
when necessary. Most of the specialized code was written to handle the widely varying HTML
layouts of each site. Once downloaded, each recipe was assigned a unique MD5 hash (based on
URL) and then parsed into a standard plain-text format (using delimiters between fields) and
stored on a single line of a recipe data file, along with many other recipes. This format was ideal
for use in our scripted Hadoop jobs, which, one after the other, would handle the remainder of
the data processing pipeline.
 Information extraction would aid us in attempted to learn something about all the
ingredients in every recipe we collected. If we wanted our users to be able to search and filter by
ingredients on our web front-end, we’d need concrete information about each ingredient used in
a particular recipe. Because of human inconsistency in authoring recipes, and even the huge
variation in possible expressions of a single ingredient requirement, this data could not be
satisfactorily parsed by simple means (e.g. text processing or regular expressions).
 To make further discussion more transparent, let us define a few terms. All recipes call
for certain ingredients. In a recipe, these requirements are often given one line each. We call each

of these an ingredient line item. For example, "1 cup flour" and "3 tablespoons of light cream
cheese" are both ingredient line items. When we say ingredient line or line item we are also
referring to ingredient line items. When we say ingredient, we refer only to the ingredient called
for (i.e. “flour” and “cream cheese” in the previous examples), not the whole line item.
 To provide users with all the features we wanted, we’d need to know for each line item:

1) how much of the ingredient was called for, and subsequently what unit was being used,
2) what the ingredient was, and finally
3) what non-ingredient text would help us differentiate between instances of the same

ingredient (i.e. “light whipping cream” and “heavy whipping cream” are
fundamentally the same ingredient, but must be differentiated).

To abstract this, we chose to break down each ingredient line into 5 parts: quantity, unit type,
“prefix,” ingredient, and “suffix.”

 Splitting up each ingredient line was done in two parts: quantity and unit extraction, and
ingredient extraction. By first removing quantity and unit information, we would make the latter
task somewhat easier. Extracting both quantity and unit turned out to be pretty easy. We did
regular expression matching for extracting quantities from the ingredient line. The regular
expression was able to handle integers, as well as identify fractional numbers, which are very
common in recipes (e.g. “3/4,” or “1 1/2”). We could then convert fractions to decimal
equivalents (e.g. 0.75 and 1.5, respectively). Once we matched a number, we would then check
the next tokens for a known unit from a hash table of units that were predetermined by us (after
looking through thousands of recipes for common types). If we didn't match a quantity or a unit,
we just assumed that these values were not given in the string. Consider the ingredient line
"sugar to taste," which conveys neither a standard unit or a fixed quantity. We did, however, also
track non-standard units often used in cooking to help us better understand the recipes. To make
this somewhat academic, we looked quickly at an alphabetical listing of ingredient lines sans
quantity to find common non-standard “units” (e.g. “pinch,”, “bunch,” “can,” etc.). While this
was somewhat unnecessary, we did it so that such a “unit” wouldn’t be lumped in with the words
used to classify ingredients (those in the prefix and suffix). We had original hoped for at least
70% correctness in our quantity/unit extraction, yet we observed 100% correctness in our
evaluation.
 Once we extracted quantity and unit from an ingredient line, we attempted to extract the
ingredient from the remainder of the string. Any remaining words before and after the ingredient
would be put in the prefix and suffix, respectively. However, this turns out to be a fairly non-
trivial problem to solve. Not only can ingredients have varying amounts of words describing

them, they can also be put in different places in a sentence. In addition, it is very difficult to
know which of the words modifying the final noun portion of the ingredient are intrinsically part
of the ingredient, or are additional modifiers. For instance, how do you know that “teriyaki” in
“teriyaki sauce” is part of the ingredient, but the “chopped” in “chopped carrots” is not?
 We initially tried a naive approach to ingredient extraction: given the remaining sentence,
choose the last token before a comma or the end of the line as the ingredient, anything before it
as the prefix, and anything after as the suffix.

While it proves to be 100% accurate for one-token ingredients, the is a substantial percentage of
ingredient lines with two-token ingredients (and even a tiny percentage with three). This lowers
the accuracy of the overall extraction to about 60%, where we define “accurate” extraction such
that a cook would accurately be able to recreate the original recipe with our version of the
ingredient. Recall, of course, is 100%, as we don’t have the flexibility to eliminate ingredients
which we can’t accurately extract. The problem with this approach is that it doesn't capture
crucial information about the ingredient. In the above case, simply classifying the ingredient as
"cheese" would not be specific enough, as types of cheeses are generally not at all
interchangeable. In this case, it is important to know the actual ingredient in question is, in fact,
"cream cheese." Sometimes, as in the case of “sauce,” the final token is so uninformative that
even a cook wouldn’t be able to make a good guess as to what previous tokens should be.
 To combat this issue, we started looking at part of speech taggers. We first tried
OpenNLP, but later switched over to a Java API for the WordNet database (http://
wordnet.princeton.edu). We were able to use a part-of-speech heuristic to extract multi-word
ingredients from line items. We search the string for the right-most noun as the most likely
candidate to be an ingredient. Then, we check the words to the left of the noun to see if they
could be possible modifiers to the noun. This method works much better for extracting full
ingredient phrases. When employing the part-of-speech technique, we are able to extract strings
such as "cream cheese" for the ingredient, therefore getting the most meaning out of it. In very
rare cases this fails and includes too many tokens, but nonetheless we were able to achieve a
95.2% accuracy with this improved method. Our notion of “accuracy” involves some
subjectivity, though we could do little else than randomly sample about one thousand of the
resulting extracted ingredients and evaluate them.

http://wordnet.princeton.edu
http://wordnet.princeton.edu
http://wordnet.princeton.edu
http://wordnet.princeton.edu

 Our next task was to put recipes into a uniform set of categories. A category hierarchy
would make browsing easier for users, helping them to more quickly identify recipes they were
interested in. However, the bulk of our data set was unlabeled, categorically speaking. What we
managed to do was find a website, Epicurious.com, that included the category of each of its
recipes in a canonical format in each recipe’s URL. When fetching these recipes, we simply used
regular expressions to extract category labels, and then built a hierarchically organized directory
structure and fed the labeled set to a pair of classifiers.
 Our first attempt at classification utilized MALLET’s Naive-Bayes Classifier trained on
the plain HTML-stripped text of the labeled recipes. This was somewhat successful, but not
nearly accurate enough for us to use in a user-facing application. Ultimately, the advantage of
using Naive-Bayes was speed of training and classification. We came across Maximum Entropy
classification as an alternative, and while far slower (by about an order of magnitude), we were
able to label recipes much more accurately than with Naive-Bayes. In addition, because there are
many different axes of similarity between recipes, we wanted to be able to classify based the
results of multiple classifiers. For instance, there is information about the similarity of two
recipes in their titles, but also in what ingredients they contain. However, to compare their
ingredients in any meaningful way, you can’t train a classifier on the same data as you would
with the plain text of the title. Thus we implemented a multi-classifier framework, allowing us to
aggregate with different weights the results of independently trained classifiers, each working on
different elements of a recipe. With this final implementation improvement, we were able to
achieve precision of about 91.3% in classifying recipes. Recall, again, was 100%, as we didn’t
want to throw any recipes away.
 As a result of crawling numerous sources, the problem of duplicate recipes was
inevitable. Even though a good solution was not apparent at first, we discovered a simple yet
powerful technique to de-duplicate our data set. Using a generic Near Duplicate algorithm, we
were able to efficiently remove about 7% from our original set of recipes, all deemed duplicates.
This type of algorithm is essentially an O(n2) comparison not unlike many clustering methods, in
which a distance metric is computed between each pair of objects in a data space. The difference
lies in that, rather than grouping items which are sufficient close, you are marking them for
removal. To determine the similarity of any two recipes, we use the following relationship:

 P(Ri, Rj) = Rtitle(Ri, Rj) + (1 - Rtitle(Ri, Rj))Ringredients(Ri, Rj)

In other words, the probability that two recipes, Ri and Rj, are duplicates is a composite of
the resemblance of their titles and the resemblance of their ingredients. Below is a formal
definition of the resemblance function, R(i, j), where S(Ri) denotes the “lexicon” of either
title or ingredients in recipe Ri:

 As mentioned, we removed about 7% of our original data set in this stage of the pipeline.
(around 20,000 recipes). Testing these results, however, was a bit harder than we’d expected. It

was fairly easy to test the accuracy of removal (92%), as we only needed to look at the recipes
removed, versus the recipes they were considered to be similar to. However, testing the accuracy
of non-removal (that is to say, which recipes should have been removed that weren’t) would be
nearly impossible without a labeled data set to work with. Given more time, we may have been
able to better validate our de-duplication mechanism, but with the time constraints that we faced,
it was not the highest priority.
 The final portion of the large-scale data processing pipeline was occupied by user
clustering for the purpose of recipe recommendation. If a given user u has a known rating
history, we can compare that user to another user and compute how similar their tastes are. This
is done using a standard sort of vector-space approach, where each user represents a rating
vector. Each dimension of the vector is a different recipe, and the value at each dimension is the
particular user’s rating of that recipe. Once we form clusters of similar users, we could
recommend recipes to u from the set of recipes highly rated by other members of u’s cluster(s),
but not rated by u.
 We faced a fundamental problem in attempting to add this feature. We had no users. We
had no rating histories. Designing a user clustering system would be useless to the initial users of
our application as there would be no existing users to fuel the recommendation process. We
solved this problem by re-crawling the same sites that we had used previously. This time we
aggregated the rating data for each recipe, correlating common users across recipes in order to
build up a database of existing users and their rating histories. With this problem solved, we
began forming clusters of like-minded users.
 In order to resolve the problem of clustering users efficiently, we tackled three main
goals. First, given the scale of the data set involved, our algorithm needed to be parallelizable.
This also implied that the data structures used had to be very fine-grained. More importantly,
still, we needed to be able to efficiently re-cluster based on new users or ratings as they became
available. This would allow our recommendation system to be much more dynamic and
responsive to changes.
 The technique developed proceeds as follows. Let us assume there are N users to be
clustered. Having M existing user groups in the pipeline, where M approaches N, would produce
a greater level of parallelism and increase the accuracy, but would also increase the total
complexity of computation. On the other hand, having some M which approaches a constant c,
where N > c > 1, will definitely reduce the complexity at the cost of LP (level of parallelism) and
accuracy. One can see the disadvantages of the latter approach by simply introducing number of
Hadoop cluster nodes Knodes, such that Knodes is greater then the number of total user groups.
From a utilization perspective this would be very inefficient.
 Yet another limitation that was potentially problematic was the size of memory. In our
early experiments it was made clear that relying on disk reads or writes during large-scale
clustering operations would be prohibitively expensive. We were therefore determined to keep all
data memory. There were two approaches that we considered to handle excess data:

1) Have a user cluster grow and periodically check the size. If the size is bound to exceed
the limit, break it into N smaller clusters using some heuristic.

2) Keep the cluster size small with a constant limit. Limiting could be achieved by
filtering out recommendations below a certain similarity threshold.

 As mentioned, the determining factor was ease of incorporating new data. Clustering data
from scratch each time could not be even be considered a solution. Traditional clustering
algorithms such as k-Means or any form of Agglomerative Hierarchical Clustering fail to meet
this need, and thus we needed a new method of grouping users. It is important to understand that
none of the mentioned solutions could be optimal in all cases. We had to carefully choose which
implementation to use depending on size, time and complexity.
 First, we will talk about the relevant data structures we used for this pipeline. We need to
keep track of each rated recipe. This is done through key-value pairs of <Recipe, List<Rating>>.
A Rating object consists of two fields:

1) The name of the user who has rated that particular recipe and the associated value, as shown in
(2).

2) We also needed another data structure which would keep track of user similarity. We
accomplished this via a HashTable<User, SortedList<UserMatch>> where UserMatch contains
the name of the user, the score and the number of common rated recipes. The list is sorted based
upon the score. Users with higher number of common recipes and low score can purged from the
list. With high probability it can be assumed that those users will never yield good
recommendations. Each entry of the above mentioned data structures can be stored in a hash
table or as a separate files, depending upon the size of the structure.
 Once we have a user similarity list, we look at the recipes which have been rated by users
with high scores relative to a single user, and recommend their highest-rated recipes.

 After obtaining the recipe rating, we populate <Recipe, List<Rating>> pairs. We
accomplish this with a MapReduce job that does the following:

1) It computes a similarity metric between all users solely based on a given recipe and
outputs two tuples: (User X, [User Y, Score]) and (User Y, [User X, Score]).

2) The reducer iterates through all of the scores for particular users, removes the
duplicates by adding up the scores, and finally populates the user similarity data
structure ensuring that the list is in sorted order.

3) Finally, both the mapper and the reducer dump the data structures to the filesystem, so
that later clusterings can use previous cached results.

 Assuming we have established both of the data structures described in the previous
section, we need to be able to incorporate new ratings. To accomplish this, we used yet another
MapReduce job for the initial clustering along with a new one.

1) Compute and update scores for all new ratings using the existing MapReduce job.
2) Next, for each new rating, we compare it to all of the old ratings for that particular

recipe, which produces new scores between users. Using the same algorithm as our
first MapReduce job, we can update the user similarity data structure, making sure our
list is still in sorted order.

 The results of these computations do us little good in SequenceFileFormat, so we wrote
an extra script to dump the user cluster data to our web application database. This would allow us
to calculate recommendations in real time, and, at the same time, quickly incorporate new data
into the recommendation logic as it became available.
 Finally, we had the task of implementing a web application to give purpose to all of this
data. We chose Ruby on Rails (RoR) as the development platform due to its robustness and
implied programmer efficiency. The application was built on top of a MySQL database full of
our various data sets created during the data processing pipeline. To ensure that our application
would be feature-rich and meet all of our goals, we parallelized our design process, spending
many hours prototyping and creating specifications while simultaneously working on the data
processing pipeline. This, in combination with our use of Test-Driven development (using a
Ruby library called rSpec), allowed us to hit the ground at full speed the moment we had data to
work with. By writing test code for almost every aspect of the application prior to coding the
application itself, we made development much more straightforward and deterministic.
 As a side note, it’s worth mentioning that most of the following screenshots were
captured using a local instance of our application (and subsequently, only a series of test fixtures
populating our database). Hence, there are only three recipes, and a small number of available
ingredients.
 Upon arrival at our site, the user is greeted by a typical home portal:

 The core search features of the site are available without logging in. Users can browse by
category or search more discerningly. To take full advantage of the site, users must create
accounts. Were a user to log in initially, they would be given a recommendation rather than a list
of top-rated recipes. Recommendations are also offered on a user’s profile page.

Note that a personalized menu also appears in the place of the login form. This gives the user
access to the app’s user-only features.
 Search is very straightforward. The user can do a standard keyword-only query, which
will scan the text of the recipes. The true power of our search engine comes from being able to

search by ingredient (not by keyword for an ingredient). At the most basic level, users can add
ingredients to their query that they either want to include or exclude. In both the case of
exclusion and inclusion, there are use cases in which users would want to have persistent lists of
ingredients ready to go for each search.

 Users may often want to know what they can cook using
only ingredients they have on-hand. Therefore they can maintain
their “inventory,” a list of ingredients they currently stock, and with
a single click, search only for recipes that are composed of some
subset of their inventory. It is equally easy to instead search for
recipes that contain specific ingredients. The user can specify

ingredients by typing into the “include” text input, and as they type, possible completions will
appear. When they select one of these completions, it will be added to the list of ingredients to
include. This same AJAX auto-complete ingredient list creation is
used all over the site. In fact, the exact same mechanism operates
the exclude ingredient feature as well. However, exclusion also
sports the use of a user’s “dislikes” list, which again is a list of
ingredients maintained by the user. Dislikes are automatically
excluded from every search, making it easy to avoid allergens and
hated foods. Finally, it is also possible to narrow search results by
specifying a minimum rating.
 When the user receives a set of search results, they can
also further refine their query, or sort the results alphabetically, by average rating, or when
available, by the user’s own rating. Search results will be delivered in paginated form (i.e. 10 per
page).

 To meet our goal, we wanted to eclipse existing recipe sites. Thus we also provide a
standard recipe viewing feature. This page is somewhat important, as it is also the gateway for
users to rate recipes, and to add them to their list of favorites. We also implemented a batching
system, leveraging our knowledge of required ingredient quantities.

 Among the most surprising things we found was that it was possible to meet our goals
and do so with a high degree of accuracy. Most of us were shocked when we started extracting
multi-token ingredients that were almost always correct. Initially we were unsure that there was
enough information in a recipe that would allow classification of that recipe into some category
of food, but this again turned out to be incorrect. Classification worked very well, though there is
much that could be done, from an end-user point of view, to improve (more on this later). In
addition, there was a great deal of nervousness when it came to the feasibility of implementation
of our web application, and even here we surprised ourself.
 This is not to say that all went ideally or according to plan. We were incredibly lucky in
that we were able to come across or develop techniques to accomplish the tasks set before us, all
the while doing so within our required timeframe. It took us weeks to develop accurate
ingredient extraction, and we came very close to giving up. The sheer inconsistency present in
recipes was hard to believe, and a daunting obstacle to overcome. Vjeko, for instance, was
convinced that natural language processing would help us, and that part of speech would be the
key to solving the problem. Yet some were skeptical that the computational complexity added by
NLP and POS tagging, and the time lost in researching it, learning to use required libraries, and
implementing experimental techniques, would make it prohibitively expensive in all senses. In
the end he prevailed (and thanks for that!), but we came very close to missing this mark.
 A similar problem arose when we came to user clustering. Some of us had previous
experience with clustering data, and were ready with scalable approaches that we thought would
serve us well. However, we soon realized that the scalability of an initial clustering meant little if
the entire computation needed to be repeated each time a user rated a new recipe. Because of the
dimensions that we were dealing with (almost 300,000 recipes and an unbounded number of
potential users), it would be impossible to use a traditional clustering method without having
sacrifice two key criteria.
 First, we would not be able to provide up-to-date recommendations as it would take far to
long to re-cluster. Our initial user clustering implementation took about eight hours to execute,
and that even with a relatively small user set. This would prohibit us from re-clustering much

more than twice daily, or even less as our data set continued to grow. Second, we would sacrifice
the sustainability of the application once separated from CSE’s Hadoop cluster. Since we
wouldn’t necessarily have access to a large cluster once the course ended, we would be unable to
provide the services we promised to users, were we to take the site live. The approach that we
finally came up with sacrificed some theoretical elegance in order to allow incorporation of new
user data with very little computation.
 A final pleasant surprise was the development of SpaceWalr.us. David and Daniel have
both worked on a number of web applications in the past, some also implemented in Ruby on
Rails. Each time we’ve figured out how to improve the development process so as to be efficient,
yet minimize the number of problems we run into. Our last project, for instance, while it only
occupied three week’s time, was thrown together for the most part in a furious 72 hour coding
marathon. Because we began planning SpaceWalr.us far in advance of actually creating it, we
could both keep in mind new developments or realizations that came about as a result of our data
processing work, and go about its development in a far more structured and agile way. While
there are certainly snags that come from rushed development and lack of time, we feel the
application is, bugs aside, very well written and organized in a flexible and maintainable way.
This is a first!
 There are a multitude of ways in which we could have improved our final product. These
range from planning to implementation. We all agree that our single biggest source of problems
was writing code to do data processing early, but not actually processing the data until it was
needed. This created all kinds of problems for a number of reasons:

1) Not all of our code worked quite as well as we’d hoped (shocking!)
2) Some data formats hadn’t been sufficiently standardized, creating problems down the

pipeline
3) The elements of our pipeline were often in need of serious tweaking due to their

production of unacceptable output
4) The task of parsing and loading large amounts of text-based MapReduce output into a

structured database was not a trivial task, and was unfortunately left until the last
minute.

 While 95% accuracy in ingredient extraction sounds impressive, it is not nearly sufficient
for a user-facing web application. With ~300K recipes come a huge number of ingredients, and
5% of a huge number is an unacceptable margin of inaccuracy. What this means is that users of
our application will run into many irregularities when they work with our actual data set, though
they are in fact dealing with a relatively tiny subset of the overall data. There are a number of
common irregularities in ingredient lines that we didn’t deal with for lack of time (i.e. “3-5 tbsp
of sugar”), that in reality wouldn’t be prohibitively difficult to address. In addition, there is no
doubt that with NLP at our disposal, we could further refine the extraction of modifying words
along with their respective ingredients. At the moment our tools have a hard time distinguishing
between additional words which add needed levels of specificity to an ingredient and adjectives
which are not intrinsic to the ingredient itself. We sometimes err on the side of too many tokens.

 In the realm of further work, there is also much to be done. A major feature that we had to
sacrifice was the ability of users to add their own recipes. We initially cut this feature due to the
inaccuracy of our ingredient extraction process, and while we significantly improved our
extraction, the improvement came too late in the project to reintegrate the missing feature. We
also left it out because of the complications introduced by user-controlled data. This wouldn’t
have been terribly difficult to implement in a naive way, but to do it with a compelling UI would
be very difficult.
 Once this feature was implemented, we’d be able to try some really interesting
classification experiments. For instance, given our user rating set and our existing recipes, as
well as our knowledge of ingredients, we could approach the problem of trying to pre-rate new
user-created recipes. This could involve a number of different approaches, including clustering
the new recipe and looking at the ratings of other recipes in its cluster. One potentially
worthwhile alternative would be to try to find patterns in the “compatibility” of ingredients. In
other words, across the whole set of recipes, are there ingredients that often appear together in
highly rated recipes? Perhaps there is a correlation between the worth of a recipe and the
ingredients it combines? As with most other problems we faced when dealing with food, there
are always a large number of uncertainties that arise from the many factors that determine
“deliciousness.” Method of preparation, for instance, a topic left unexplored, has a tremendous
power over the product of a recipe. While two ingredients might often coexist in popular recipes
(e.g. bread and cheese), it is conceivable that those same two ingredients could be prepared
together in a manner that is found atrocious to the tongue (e.g. bread and cheese soaked in sour
cream at room temperature until moldy).
 Another enhancement that would probably improve the user experience (and our
accuracy in several data-processing steps) would be to implement multiple-categorization. The
categories from our labeled data set overlap significantly. It would only make sense that recipes
falling into multiple categories would be classified as such. Again, this falls into the category
things that were perfectly feasible to implement, simply not in the alloted time. Due to the way in
which we classify, rather than simply taking the single best match, we could take all matches
above a threshold, for instance. While there could be a better approach, this one would certainly
work well and would be easy to put into practice.
 In retrospect, we’re very happy with the results of our efforts. We’ve all done many group
projects, and we know how many ways a perfectly diligent group can fail. We feel we set the bar
high from the start, and honestly, were pretty convinced that something would have to be
sacrificed in order to meet our various deadlines. In the original project goals statement we
projected two different levels of achievement for our data processing. The first was realistic, and
the latter was ideal. We blew the realistic numbers out of the water, and with the exception of
ingredient extraction, also far exceeded the ideal goals (ingredient extraction was ideally 100%).
The only dimension which we can’t accurately quantify is the accuracy of our recommendations.
The additional testing computations required to realistically evaluate these numbers didn’t fit in
the time allowed. The web application was created feature complete, and while it works well for
the most part, there may be a few bugs that come out of the woodwork. In any case, by any
measure, we consider this endeavor to be a resounding success. What remains to be seen is how

much of an opportunity we have to continue working on this project. With everything that we’ve
learned, it would be interesting to see how it could evolve.

Appendices

a. Distribution of work

NOTE: for a far more fine-grained look at everything done by each person, as well as our group
wiki and our timeline, check out http://trac.spacewalr.us.

Overall architecture design: Top-level design of architecture pipeline, interfaces between pieces,
broad algorithmic approaches. David, Daniel

Crawling for recipes: Selection of recipe sites from the list we aggregated, coding of crawlers
and parsers. David, Vjeko

Crawling for user ratings: Re-crawling the same sites, downloading their user rating data, parsing
it out and storing it. David, Felix

Preprocessing of data: Considerable amount of computation to get data into the formats required
by extraction, classification, and clustering jobs. David, Vjeko, Felix, Daniel

Quantity and unit extraction from ingredient lines: Discerning quantity and unit of a required
ingredient. Felix, Daniel

Ingredient extraction: Both design of our interface and implementation of the extraction method.
David, Vjeko, Daniel

Classification of recipes: Download of labeled data, design of classifiers. David, Vjeko

De-duplication of recipes: Research of de-duplication algorithmic possibilities, implementation
of algorithms. Vjeko, Daniel

User clustering for recommendations: Design and implementation of any of the tested user
clustering algorithms. David, Vjeko, Daniel

Web application design: Specification and design of features for the web front-end. David,
Daniel

Usability and feature work: Conducting usability surveys, aggregating and evaluating results,
helping gather user input on desired features. Felix

Web application implementation: Development of Ruby on Rails web app. David, Daniel

http://trac.spacewalr.us
http://trac.spacewalr.us

Project management, administrivia: scheduling, wiki creation and maintenance, task distribution,
problem resolution, report writing, etc. Daniel

Sleep: A restorative activity often performed by living creatures in order to maintain energy and
recuperative from exertion. Nobody

b. External libraries used

- Rails library for Ruby (web application framework)
- rSpec Behavior/Test-driven development package for Ruby
- MALLET (classification)
- Java API to WordNet NLP library and database

c. Instructions for code acquisition and application use

Attached separately.

