
A Crawler-based Study of Spyware on the Web

Alexander Moshchuk, Tanya Bragin, Steven D. Gribble, and Henry M. Levy
Department of Computer Science & Engineering

University of Washington
{anm, tbragin, gribble, levy}@cs.washington.edu

Abstract

Malicious spyware poses a significant threat to desktop
security and integrity. This paper examines that threat from
an Internet perspective. Using a crawler, we performed a
large-scale, longitudinal study of the Web, sampling both
executables and conventional Web pages for malicious ob-
jects. Our results show the extent of spyware content. For
example, in a May 2005 crawl of 18 million URLs, we found
spyware in 13.4% of the 21,200 executables we identified.
At the same time, we found scripted “drive-by download”
attacks in 5.9% of the Web pages we processed. Our analy-
sis quantifies the density of spyware, the types of of threats,
and the most dangerous Web zones in which spyware is
likely to be encountered. We also show the frequency with
which specific spyware programs were found in the content
we crawled. Finally, we measured changes in the density
of spyware over time; e.g., our October 2005 crawl saw a
substantial reduction in the presence of drive-by download
attacks, compared with those we detected in May.

1 Introduction

In the span of just a few years, spyware has become the
Internet’s most “popular” download. A recent scan per-
formed by AOL/NCSA of 329 customers’ computers found
that 80% were infected with spyware programs [2]. More
shocking, each infected computer contained an average of
93 spyware components. The consequences of spyware in-
fections can be severe, including inundating the victim with
pop-up ads, stealing the victim’s financial information or
passwords, or rendering the victim’s computer useless.

Despite the severity of the problem, little is known about
the nature or extent of spyware in the Internet. Previous
studies have taken a desktop- or user-centric view. For
example, in an earlier study, we measured the presence
of a small set of spyware programs at the University of
Washington by sniffing the university’s Internet connection
for communication between client desktops and spyware

servers [16]. The AOL scan mentioned above has provided
simple summary statistics by directly examining desktop in-
fections [2], while a recent set of papers have considered
user knowledge of spyware and its behavior [6, 29].

In this paper we change perspective, examining the na-
ture of the spyware threat not on the desktop but from an
Internet point of view. To do this, we conduct a large-scale
outward-looking study by crawling the Web, downloading
content from a large number of sites, and then analyzing it
to determine whether it is malicious. In this way, we can
answer several important questions. For example:

• How much spyware is on the Internet?

• Where is that spyware located (e.g., game sites, chil-
dren’s sites, adult sites, etc.)?

• How likely is a user to encounter spyware through ran-
dom browsing?

• What kinds of threats does that spyware pose?

• What fraction of executables on the Internet are in-
fected with spyware?

• What fraction of Web pages infect victims through
scripted, drive-by download attacks?

• How is the spyware threat changing over time?

Overall, our goal is to provide a quantitative analysis of the
extent of spyware-laden content in the Web.

Spyware typically installs itself surreptitiously through
one of two methods. First, a user might choose to download
software to which piggy-backed spyware code has been at-
tached. Piggy-backed spyware is particularly common with
file-sharing software; the Kazaa system [10] alone has been
the source of hundreds of millions of spyware installations.
Second, a user might visit a Web page that invisibly per-
forms a “drive-by download” attack, exploiting a vulnera-
bility in the user’s browser to install software without the
user’s consent.

We have designed and implemented a scalable, cluster-
based analysis platform that uses virtual machines (VMs)
to sandbox and analyze potentially malicious content. By

1

installing and running executable files within a clean VM
image, we can use commercial anti-spyware tools to deter-
mine whether a specific executable file found by our Web
crawler contains piggy-backed spyware. By visiting a Web
page with an unmodified browser inside a clean VM, we can
use heuristic “triggers,” such as the installation of a new li-
brary or the creation of a new process, to determine whether
the Web page mounts a drive-by download attack. We de-
scribe our methodology in detail, including the heuristics
that make the approach practical and scalable.

We carried out our study by running multiple crawler-
based experiments, first in May of 2005, and then again in
October 2005. This allowed us to evaluate changes in the
spyware environment over that five-month period. Our re-
sults show that spyware is a significant threat in the Internet.
For example, we found piggy-backed executable spyware in
4.4% of the domains we crawled in October 2005. More-
over, more than 1 in 20 of the executable files we examined
contained spyware. We also saw significant changes, e.g.,
we found scripted drive-by download attacks in 3.4% of the
domains we examined in May, but in only 1.6% of domains
in October. While much of the spyware we identified is be-
nign adware, we also found a large number of Trojan down-
loaders and other more malicious threats.

The rest of this paper is organized as follows. Section 2
describes previous work that places our current study in
context. Section 3 presents both methodology and results
for our examination of Internet executables. The methodol-
ogy and results for our drive-by download study are detailed
in Section 4. Finally, Section 5 summarizes our results.

2 Related Work

In our previous work, we used passive network moni-
toring to measure the extent to which four specific adware
programs had spread through computers on the University
of Washington campus [16]. In this paper, we study the
spyware problem from a different perspective. Specifically,
we measure the extent to which: (1) executable Web con-
tent contains spyware and (2) Web pages contain embedded
drive-by download attacks. Both studies confirm the exis-
tence of a significant spyware problem.

The AOL/NCSA online safety study conducted a poll of
329 households and also examined their computers for the
presence of spyware [2]. Over half of the respondents be-
lieved their machines were spyware-free; in reality, 80% of
computers scanned were infected with spyware programs.
The AOL/NCSA study did not attempt to identify how these
computers became infected.

Both our work and the Strider HoneyMonkey
project [24] are inspired by honeypot techniques [15].
Strider HoneyMonkey uses a method that is similar to ours
to construct a tool to find Web sites that exploit browser

vulnerabilities. While there are some differences in our
methods, our study differs from theirs in several other
significant ways. First, we examined executable file content
for piggybacked spyware programs in addition to examin-
ing Web pages for drive-by download attacks. Second, we
provide a rich analysis of the spyware that we encountered,
including which areas of the Web are most infected, and
the fraction of spyware that contains malicious functions,
such as modem dialing or Trojan downloading. Third,
we examined how spyware on the Web has changed over
time. Fourth, we analyzed the susceptibility of the Firefox
browser to drive-by downloads, in addition to the Internet
Explorer browser.

Overall, at the time of the publication of their technical
report [24], HoneyMonkey had been more focused more on
the tool. In contrast, our study has focused on the analysis
of our results to understand the spyware threat from several
different points of view.

The Gatekeeper project [26] monitors extensibility
points in the Windows operating system and its applications
to detect spyware programs. This approach complements
signature-based detection schemes, and bears some similar-
ity to “trigger” mechanisms we use in our drive-by down-
load study. It can detect arbitrary spyware programs that
use monitored extension points and observe these programs
as they are being installed.

A recent edition of the Communications of the ACM con-
tained over a dozen articles on the spyware problem [3, 4,
6, 7, 8, 12, 14, 17, 18, 20, 23, 27, 29]. These articles discuss
issues such as the public perception of spyware, security
threats caused by spyware, and frameworks for assessing
and categorizing spyware programs.

Many projects have examined the detection, measure-
ment, and prevention of malware, such as worms and
viruses [11, 13, 19]. Some of their techniques may ulti-
mately be applicable to the detection and prevention of spy-
ware. A notable example is the semantics-aware malware
detection project [5], which uses an instruction-level se-
mantic analysis of programs to match their behavior against
high-level signature templates. Another example is Ghost-
buster [25], which detects OS rootkit installations by com-
paring the file-system of an OS using a program running on
the OS and scanning from an OS booted from a CD.

At least two commercial anti-spyware companies have
implemented automated crawlers to seek out new spy-
ware threats on the Web. Though we have not found de-
tailed technical descriptions of their architecture, Webroot’s
Phileas [28] system appears to use a cluster of computers
to scan Web content for known threats and patterns that are
suggestive of new browser exploits. Sunbelt Software has
announced that is is buildling a Web crawler to automate the
identification of new spyware outbreaks [22].

2

3 Spyware-Infected Executables in the Web

This section describes our study of spyware in exe-
cutable files on the Web. We first examine the tools and
infrastructure that we constructed to carry out the study.
We then discuss high-level results and answer the follow-
ing questions:

• Which spyware programs are most prevalent and
which sites distribute the most spyware?

• Are spyware executables uniformly spread on the Web
or concentrated in specific areas?

• What spyware functions are more common (e.g., ad-
ware vs. keylogging)?

• How is the density of spyware-laden executables
changing over time on the Web?

3.1 Study tools and infrastructure

This study required an automated solution to three prob-
lems: (1) determining whether a Web object contains exe-
cutable software, (2) downloading, installing, and execut-
ing that software within a virtual machine, and (3) analyz-
ing whether the installation and execution of the software
caused a spyware infection. In addition, we required a high-
performance infrastructure to solve these problems so that
we could analyze a large number of executables from a va-
riety of sources in a reasonable amount of time.

3.1.1 Finding executables

We assumed that a Web object was an executable if either:
(1) the Content-type HTTP header provided by the Web
server when downloading the object was associated with
an executable (e.g., application/octet-stream),
or (2) its URL contained an extension known to be associ-
ated with executables and installers (e.g., .exe, .cab,
or .msi). Once we downloaded a Web object, we also
looked for well-known signatures at the beginning of the
file to help us identify its type. If we could not identify the
file’s type, we assumed it was not an executable and did not
analyze it. While our approach may have missed some ex-
ecutables, it rarely produced false positives. Accordingly,
our study may underestimate the number of executable files
on the Web, but it is unlikely to overestimate it.

Some executable files on the Web are not immediately
obvious to a Web crawler. Two instances of this are executa-
bles embedded in archives (such as ZIP files), and executa-
bles whose URLs are hidden in JavaScript. To handle the
first case, we downloaded and extracted archive files, look-
ing for filenames with extensions associated with executa-
bles. To handle the second case, our Web crawler scanned
JavaScript content looking for URLs and added them to the

list of pages to crawl. Note that JavaScript programs can
dynamically construct URLs when interpreted. Since our
Web crawler does not execute JavaScript code, we missed
any such executables.

3.1.2 Running executables within a VM

Once we downloaded an executable, we installed and ran it
in a clean VM. This was challenging; while it is simple to
run a “naked” executable file, software is often distributed
using an installer framework, such as Windows Installer.
Unfortunately, installers typically interact with users, re-
quiring them to perform manual tasks such as agreeing to
a EULA, filling in demographic information, or pressing
buttons to begin the installation process.

To automate the execution of installer frameworks, we
developed a tool that uses heuristics to simulate common
user interactions. For example, some of our heuristics iden-
tify and click on permission-granting buttons such as next,
OK, run, install, or I agree. Other heuristics identify and se-
lect appropriate radio buttons or check-boxes by looking for
labels commonly associated with EULA agreements. The
tool also looks for type-in boxes that prompt the user for
information, such as their name or email address, and fills
them in with dummy information. While our tool cannot
handle all installation scenarios perfectly, we verified that it
successfully navigates all popular installer frameworks and
we have rarely seen it fail.

Our study focuses on Windows executables. Accord-
ingly, for each executable that we analyze, we first created
a VM that contained a clean Windows XP guest operating
system image. To do this, we used the “snapshot take” and
“snapshot revert” functions provided in VMware Worksta-
tion 5.0 [21] running on a Linux host operating system. For
each node within our cluster, we maintained a pool of VMs.
When we wished to analyze an executable, we allocated a
VM from this pool, rolled-back the VM to a clean check-
point, injected the executable or installer image into the
VM, and used our tool to install and execute the program.

3.1.3 Analyzing the installed executable

Once an executable was installed and run in a VM, our fi-
nal challenge was to determine whether that executable had
infected the VM with spyware. To do this, we ran the Lava-
soft AdAware anti-spyware tool [1] in the VM, using scripts
to launch the tool and collect the infection analysis from its
emitted logs. The log information we collected was rich
enough for us to identify which spyware programs were in-
stalled. Using online databases of spyware, we also man-
ually classified which functions those spyware programs
contained, such as keystroke logging, adware, Trojan back-
doors, or browser hijacking.

3

Of course, AdAware can detect only those spyware pro-
grams that have signatures within its detection database.
Accordingly, our analysis misses spyware programs that
AdAware does not find. Also note that we only collected in-
formation about spyware software that is installed. Though
many anti-spyware tools such as AdAware also identify ma-
licious cookies or registry entries as spyware threats, we ex-
cluded these, focusing only on spyware software.

To speed up the AdAware sweep, we pruned the Win-
dows/XP image installed in our VM so that it contained as
few files and ran as few components as possible. We also
disabled the host firewall and automatic updates, so as not
to interfere with our analysis.

3.1.4 Performance

Our executable analysis infrastructure was hosted on a 10-
node cluster consisting of dual-processor, 2.8 GHz Pentium
4 machines, each with 4GB of RAM and single 80 GB 7200
RPM disks. On average, it took 92 seconds to create a clean
VM, install an executable, run it, and perform an AdAware
sweep. Of this time, we spent around 1-2 seconds creating
the VM, 55 seconds installing and running the executable
in the VM, and 35 seconds performing the AdAware sweep.
By parallelizing our analysis to run one VM per processor
in our cluster, we could analyze 18,782 executables per day.
In practice, we found that the bottleneck of our system was
crawling the Web for executables, rather than analyzing the
executables once found.

3.2 Web crawling

We used the Heritrix public domain Web crawler [9] to
gather a crawl of over 2,500 Internet Web sites. To under-
stand how spyware had penetrated different regions of the
Web, we crawled sites from eight different categories: adult
entertainment sites, celebrity-oriented sites, games-oriented
sites, kids’ sites, music sites, online news sites, pirate/warez
sites, and screensaver or “wallpaper” sites. In addition, we
crawled c|net’s download.com shareware site, which pro-
vides a large number of downloadable executables.

Within each category, we selected sites using both
the Google directory and the results of category-specific
Google keyword searches. For each selected Web site, we
used the top-level page as a seed and then crawled to a depth
of three links away, restricting ourselves to pages hosted on
the same domain. We chose a depth of three in order to
balance thorough coverage of individual sites with breadth
across many sites. With a depth of three, we crawled an
average of 6,577 pages per site.

Many Web sites host downloadable executables on sepa-
rate Web servers or outsource their distribution to third par-
ties. Because we wanted to attribute these executables to

the owner site, we allowed our crawler to fetch executable
content linked to from the seed site but hosted on a different
Web server.

For comparison with our chosen categories, we also
crawled a number of “randomly selected” Web sites. For
this study, we used a random walk of the link structure of the
Web. We first scraped keywords from Metaspy, which lists
in-progress searches occurring on the Metacrawler search
engine. Next, we performed Google searches using those
keywords and selected several results at random rankings
from each search. Starting from the results’ Web pages, we
followed hyperlinks at random to a distance of 8 links away
and considered the resulting sites to be “random.”

3.3 Examining the changing spyware
environment

To evaluate the way in which the spyware threat is chang-
ing over time, we used our methodology to conduct exe-
cutable program crawls on two occasions: in May 2005, and
then again 5 months later, in October 2005. In each case, we
began from scratch, generating lists of crawling seeds from
the Google directory and the results of category-specific
Google keyword searches, as described above. Therefore,
each crawl represents a partial view of the Web, informed
in part by Google’s page rankings at that moment in time.
This allows us follow time-based trends of executable spy-
ware in the Internet.

Note that when analyzing the May crawl, we used the
most recent version of the AdAware anti-spyware tool
that was available at that time (signature database version
SE1R42, released on April 28, 2005). For the October
crawl, we used an updated version of AdAware (signature
database version SE1R70, released on October 12, 2005)
that contained more recent spyware signatures.

3.4 Limitations

Our study has several limitations due to our measure-
ment method and the nature of the Web itself. First, we did
not crawl the entire Web – our results are based on a directed
sampling of Web pages and executables. While our sam-
pling explores what we believe are interesting parts of the
Web, such as Google-selected domains and URLs in vari-
ous categories, we cannot prove that this is representative
of what people actually encounter while browsing the Web
or those categories as a whole. Second, our goal is to study
the presence or density of spyware on the Web; we cannot
extrapolate any relationship between that density and the
presence of threats on the desktop, since the latter is based
on the behavior of real users. As previously noted, we and
others have measured the desktop threat separately. Finally,
because we ultimately determine the existence of spyware

4

crawl date
URLs

crawled
domains
crawled

executables
found

domains w/
executables

infected
executables

infected
domains

unique spyware
programs

May 2005 18,237,103 2,773 21,200 529 (19.1%) 2,834 (13.4%) 106 (3.8%) 82

October 2005 21,855,363 2,532 23,694 497 (19.6%) 1,294 (5.5%) 111 (4.4%) 89

 Table 1: Executable file results. The number of pages crawled, domains crawled, executables analyzed, and infected executables found

during our study of executable files on the Web.

by running a scan of an anti-spyware tool (AdAware), we
are limited by what AdAware is able to detect as a threat.

Despite these limitations, we believe that our study is a
significant step forward in understanding and quantifying
the spyware threat from an Internet point of view.

3.5 High-level results

Table 1 shows the high-level results from our executable
file study. We crawled over 18 million URLs in May 2005
and nearly 22 million URLs in October 2005. In both
crawls, we found executable files in approximately 19%
of the crawled Web sites and spyware-infected executa-
bles in about 4% of the sites. While the absolute number
of spyware-infected executables dropped substantially be-
tween the crawls, this is due primarily to a single site whose
number of infected executables declined from 1,776 in May
to 503 in October. Except for that site, the amount of spy-
ware we found did not change appreciably over the five-
month period between our two crawls. Overall, we found
that as of October 2005, approximately 1 in 20 of the ex-
ecutable files we crawled contained spyware, an indication
of the extent of the spyware problem.

3.6 Who are the main culprits?

Table 1 shows that spyware appears on a small, but non-
negligible fraction of the Internet Web sites we crawled
(3.8% in May 2005, 4.4% in October 2005). However,
some sites are much more egregious than others in present-
ing infected content. Figure 1a plots, on a log/log scale, the
number of infected executables we found on each site that
we crawled during October 2005; the results from May are
similar. While some sites offer a large number of infected
executables, most just offer a handful.

Our crawl found a total of 2,834 infected executables in
May and 1,294 in October. However, those infected exe-
cutables contained only 82 (May) and 89 (October) differ-
ent spyware programs; the total number of distinct spyware
threats we encountered is relatively small. Figure 1b plots
the prevalence of each spyware program in the infected ex-
ecutables. The 10 that appear most frequently are shown

(b)

(a)

Figure 1: Spyware prevalence (October 2005). (a) The number
of spyware-infected executables found in crawled sites. The x-axis
is sorted by the number of executables found on that site. (b) The
number of times a given spyware program was found; the x-axis
shows the number of times the program was found. Both graphs’
axes are drawn on a log-scale.

in Table 2. (We removed data for the outlier site scenicre-
flections.com from the spyware program lists in Tables 2a
and 2b; this single site contained 1,776 instances of “Tur-
boDownload” and 1,354 of “WhenU” in May 2005).

Most spyware programs are rare; during our May 2005
crawl, only 15 spyware programs were found that were
present in more than twenty infected executables. How-
ever, the most prevalent programs appeared very frequently:
we detected 364 executables that contained WhenU in May,
and 340 such executables in October. This data suggests
that signature-based anti-spyware techniques should be ef-
fective, as relatively few spyware variants are commonly
encountered when Web browsing.

Looking at the change in these lists over time, six of
the top-ten offending sites in the May 2005 crawl also ap-
peared in October’s top-ten list. The remaining four sites

5

site
infected

executables

spyware program

times
observed

scenicreflections.com 1,776 WhenU 364

screensaver.com 191 180Solutions 236

celebrity-wallpaper.com 136 EzuLa 214

screensavershot.com 118 Marketscore 143

download.com 116 BroadCastPC 67

gamehouse.com 111 Claria 44

galttech.com 38 VX2 41

appzplanet.com 37 Favoriteman 36

megspace.com 36 Ebates MoneyMaker 31

download-game.com 30 NavExcel 24

(a) executable file study, May 2005 crawl

site
infected

executables

spyware program

times
observed

scenicreflections.com 503 WhenU 340

gamehouse.com 164 Marketscore 47

screensavershot.com 137 Claria 41

screensaver.com 107 BroadCastPC 37

hidownload.com 50 Aurora 36

games.aol.com 30 FOne 35

appzplanet.com 27 Zango 34

dailymp3.com 27 EzuLa 33

free-games.to 27 Web3000 32

galttech.com 23 180Solutions 25

(b) executable file study, October 2005 crawl

Table 2: Top 10 spyware programs and sites. The top 10
spyware-laden sites, and the top 10 spyware programs found, in
the (a) May and (b) October 2005 crawl. Programs and sites com-
mon across the two crawls’ top-ten lists are italicized. Note that
the top 10 spyware program lists exclude data from the outlier site
scenicreflections.com, which contained 1,776 instances of “Tur-
boDownload” and 1,354 of “WhenU” in the May crawl.

were still functioning and serving spyware, but three were
not encountered during our October crawl, and the fourth
(c|net) was serving far less spyware. Similarly, six of the
top-ten offending programs from May also appeared in Oc-
tober’s list. No offenders disappeared: all ten from the May
crawl were encountered at least once in the October crawl.
Interestingly, one of the “newcomers” in October’s top-ten
list, Aurora, was first released in April 2005, and has gained
significant “popularity” since then.

Overall, while the absolute rank of the top offenders
changed over time, we found that the list of the most egre-
gious sites and programs was fairly stable.

3.7 Are some Web categories more
dangerous than others?

Anecdotal evidence suggests that some zones of the Web
are more dangerous than others. For example, one might

expect to encounter more spyware on freeware and share-
ware sites than on commercial news-reporting sites. Table 3
shows the frequency with which we encountered spyware-
infected programs in ten different categories of Web sites,
as defined in Section 3.2, during our October 2005 crawl.
While all categories except “news” contained at least one
spyware executable, our results confirm that some Web site
categories do appear more spyware-laden than others.

Our data shows that the most high-risk category is
“games.” Approximately 60% of these sites contain exe-
cutable content, which presumably consists of free games
available for download. Though only a small fraction of
these executables contain spyware (5.6%), one in five game
sites include spyware programs. Another high-risk category
is “celebrity,” for which over one in seven executables are
infected with spyware.

We have not included a similar detailed breakdown for
the May 2005 crawl, since we saw few qualitative changes
between the May and October crawls. Two cells in Ta-
ble 3 did experience a substantial change, however: the frac-
tion of infected celebrity executables dropped from 73.5%
in May to 16.3% in October, and the number of infected
screensaver executables dropped from 2,256 in May to 789
in October. In both cases, the change is attributable to a
single Web site that offered an anomalously high number of
infected executables in May, but far fewer in October.

The c|net Web portal has a large number of free and
shareware programs available for download. In May, we
examined 2,370 executables at c|net and found spyware in
110 of them (4.6%). In October, we re-crawled the site and
examined 1,944 executables, but we found only 6 infected
with spyware (0.3%). Sometime in between our two crawl
dates, c|net had implemented a policy of scanning file sub-
missions to ensure they are adware and spyware free. While
a few programs seem to have slipped past their scans, they
have substantially reduced how much spyware is available
through their site.

3.8 What kinds of spyware do we find?

Adware may be an annoyance and can degrade perfor-
mance, but it typically poses no significant security threat.
In contrast, keylogging spyware is dangerous, since it puts
at risk a victim’s passwords, account numbers, and other
sensitive information. To understand the danger posed by
the spyware typically found on the Web, we categorized the
spyware-infected executables according to the kind of spy-
ware they installed.

In addition to adware and keyloggers, we categorized
Trojan downloaders, which download and install additional
software chosen by the attacker; browser hijackers, which
modify browser functions, such as search engine tools and
the user’s default home page, or redirect URLs to differ-

6

 adult celebrity games kids music news pirate wallpaper c|net random

URLs crawled 3,465,024 3,131,497 872,686 733,648 3,421,796 458,079 3,042,390 678,506 193,118 5,858,619

domains crawled 157 144 125 183 220 20 311 125 1 1,356

executables found 158 153 4,872 112 4,218 19 3,422 6,860 1,944 2,000

domains with executables
26

(16.6%)
28

(19.4%)
76

(60.8%)
24

(13.1%)
72

(33.2%)
7

(35.0%)
111

(36.0%)
51

(40.8%)
1

(100%)
102

(7.5%)

infected executables
18

(11.4%)
25

(16.3%)
272

(5.6%)
3

(2.7%)
149

(3.5%)
0

(0%)
74

(2.2%)
789

(11.5%)
6

(0.3%)
6

(0.3%)

infected domains
12

(7.5%)
11

(7.6%)
25

(20.0%)
3

(1.6%)
24

(11.4%)
0

(0%)
21

(7.1%)
12

(9.6%)
1

(100%)
5

(0.4%)

unique spyware programs 12 10 32 5 55 0 43 34 5 2

Table 3: Executable infections across Web categories. This table shows the percentage of executables and domains infected with
spyware across different Web categories, based on our October 2005 crawl.

spyware function May 2005 October 2005

keylogging 0.04% 0.15%

dialer 0.14% 0.9%

Trojan downloader 9.1% 13%

browser hijacker 60% 85%

adware 91% 75%

Table 4: Spyware functions. The fraction of spyware-infected
executables found that contain various spyware functions. Note
that since a given spyware-infected executable may have more
than one function, the columns in these tables do not sum to 100%.

ent sites; and dialers, which use a victim’s modem to call
expensive toll numbers. A given executable might contain
more than one function, either because it contains several
spyware programs or because it contains one spyware pro-
gram that has multiple functions.

Table 4 shows our results. In both the May and Octo-
ber crawls, most infected executables consisted of relatively
benign adware or browser hijackers. However, a significant
fraction of infected executables contained Trojan download-
ers, which do pose a serious threat.

Comparing the results from the two crawls, we see little
absolute change. Though the fraction of dangerous keylog-
gers and dialers went up by nearly an order of magnitude,
they both still remain rare relative to the more benign ad-
ware and browser hijacker functions.

Spyware-infected executables can cause a single spy-
ware program to be installed, or they can cause multiple
infections. To explore this, we counted the number of spy-
ware programs installed by each infected executable. Note
that some spyware programs download additional spyware

Figure 2: Number of programs installed. The number of
spyware programs installed per executable, for the October 2005
crawl data. Most infected executables install only one or two spy-
ware programs, but some install many.

at a later date. In this study, we waited 10 seconds after in-
stalling the original executable before running our AdAware
scan. As a result, our study primarily observed programs
installed directly, but we captured some of these cascaded
downloads as well. Figure 2 shows our results for the Oc-
tober crawl data; the May crawl data showed qualitatively
similar results. The majority of infected executables in-
stalled only one spyware program, as shown in the figure.
Some executables cause a larger number of infections; for
example, sixty of the spyware-infected executables installed
five or more spyware programs.

3.9 Can signature-based tools keep up?

One common defense against spyware is a signature-
based anti-spyware tool. By comparing a database of
spyware signatures to files and processes running on a
client computer or network traffic arriving at the computer,
signature-based tools can detect when the computer is in-
fected with known spyware programs. Because new spy-
ware programs and variants emerge over time, the ven-
dors of these tools are forced to compete in a perpetual

7

crawl date
URLs

crawled
domains
crawled

executables
found

domains w/
executables

infected
executables

infected
domains

unique spyware
programs

May 2005 14,441,999 6,272 5,534 823 (13.1%) 653 (11.8%) 279 (4.4%) 125

 Table 6: Executable file results (blacklisted sites). The number of pages crawled, domains crawled, executables analyzed, and infected

executables found during our study of executable files on blacklisted Web sites.

October 2005 executable pool
May 2005
AdAware

signature DB

October 2005
AdAware

signature DB

infected executables found 880 1,294

unique spyware programs found 80 89

(a) .

spyware program
times found
using October
AdAware DB

new program
or

new variant?

WhenU 398 new variant

WebHancer 6 new variant

Spyware.WebDir 2 new program

Lycos Sidesearch 2 new variant

AdBlaster 2 new variant

WinFixer 1 new program

BroadcastPC 1 new variant

Whazit 1 new variant

iDonate.BHO 1 new program

(b) .

Table 5: New spyware variants. (a) Infections detected within
the October 2005 executable pool, using either the May or October
AdAware signature databases. (b) Spyware programs detected by
AdAware’s October signature database that eluded its May signa-
ture database.

“arms race” with spyware purveyors to keep their signature
databases fresh.

To determine how rapidly new spyware programs and
variants surfaced over the period of our crawl, we re-
analyzed all of the spyware-infected executables we found
in October, but using the older AdAware signature database
that was available in May. If new spyware threats were
released between May and October, this older version of
AdAware might not have signatures that match them.

Table 5 shows our results. Of the 1,294 infected executa-
bles that the newer October AdAware signatures detected,
only 880 were detected by the older May signatures: 414 in-
fected executables contained new programs or variants that
required updated signatures. However, only nine spyware
programs were responsible, as shown in Table 5b. Of these

nine, three were newly introduced programs, and six were
new variants of older spyware programs.

While it is important to keep an anti-spyware signature
database up-to-date, the rate at which we found new spy-
ware threats piggybacked on Web executables was slightly
less than two per month. In contrast, the total rate at
which new spyware software is written must be significantly
faster, as confirmed by the fact that leading commercial
anti-spyware tools now add anywhere from a few dozen to
several thousand new signatures to their signature databases
per month.1 While many new spyware programs are created
per month, our results suggest that in practice only a small
number of them become wide-spread enough to be encoun-
tered by a typical Web user.

Because it may be difficult to predict in advance which
new spyware threats will actually be encountered by users,
signature-based anti-spyware tools must either use auto-
mated tools to find all new threats and generate signatures
for them, or use automated techniques to focus human at-
tention on the emerging “important” threats if manual sig-
nature generation is necessary. Without such automated
techniques, anti-spyware tool vendors might become over-
whelmed by the effort of ensuring their signature databases
have enough coverage to protect against the specific threats
that end up mattering in practice.

3.10 How effective is blacklisting?

Another defense against spyware is to construct black-
lists of URLs or domains that are suspected to contain spy-
ware. Given a blacklist, a firewall or proxy can block clients
from accessing listed sites. To evaluate the potential of
blacklists to block spyware infections, we crawled domains
listed in two third-party blacklists (“IE-SPYAD” and “meth-
labs,” both readily available on the Web), and repeated our
executable file analysis. We performed our blacklist crawl
in May 2005.

1For example, Webroot uses automated Web crawling to find new spy-
ware threats [28]. Fed by this, their “Spy Sweeper” tool currently contains
over 100,000 signatures, and added 3,863 new signatures between October
11th and November 11th of 2005. Note that any given spyware program
may have many signatures associated with it, so these numbers do not di-
rectly reflect how many distinct spyware programs are in their database.
In comparison, AdAware has added or updated signatures for only 70 spy-
ware programs per month, as they rely on manual detection.

8

spyware function
May 2005

blacklisted sites
May 2005

non-blacklisted sites

keylogging 0.1% 0.04%

dialer 7.2% 0.14%

Trojan downloader 30% 9.1%

browser hijacker 74% 60%

adware 72% 91%

Table 7: Spyware functions (blacklisted vs. non-blacklisted
sites). The fraction of spyware-infected executables found that
contain various spyware functions, for the May 2005 blacklist
crawl and the previously presented May 2005 non-blacklist crawl.
Note that since a given spyware-infected executable may have
more than one function, the columns in these tables do not sum
to 100%.

Table 6 shows the summary statistics from our black-
list crawl. Comparing these results to our May crawl of
other Web categories (Table 1), we see that a similar frac-
tion of blacklisted sites and URLs contain spyware-infected
executables as non-blacklisted sites. The overall conclusion
we can draw is that blacklists are ineffective in two ways:
many blacklisted sites contain no spyware, and many non-
blacklisted sites do contain spyware.

Table 2, presented earlier in the paper, showed that there
were a large number of sites that each provide a handful of
infected executables. This further suggests why blacklisting
is only partially useful: while a blacklists can find and block
egregious “heavy hitter” sites, it is difficult for them to find
and block the much larger number of sites that contain small
numbers of infected executables.

We were interested in understanding the kinds of spy-
ware on which blacklists focus attention. Table 7 shows the
fraction of blacklisted, spyware-infected executables found
to contain various spyware functions. Compared to what
we previously observed in the non-blacklisted crawl from
May 2005, blacklisted spyware programs tend to contain
a greater fraction of keyloggers, dialers, and Trojan down-
loaders. It appears as though blacklists tend to focus on
spyware that contains more dangerous functions.

3.11 Summary

To study the threat of executable-based spyware on the
Web, we examined approximately 20 million URLs in each
of two crawls in 2005. The crawls explored 2,773 and 2,532
domains in May and October of 2005, respectively. Our
results show that spyware piggybacked on executables is
a significant threat. While we found only a small num-
ber of distinct executable spyware programs (89 in October
2005), we discovered instances of those programs in ap-
proximately 4% of the domains we visited. Overall, 1 in 20

of the executables we identified were infected with spyware
in our October crawl – a surprisingly high fraction. We also
showed that some Internet zones, such as game or celebrity
sites, have a higher incidence of executable spyware than
others. While some changes have occurred in the time be-
tween our crawls, at a high level they show a similar level
of risk to Web users.

We examined potential issues facing two spyware de-
fenses: signature-based anti-spyware tools and spyware
blacklists. By comparing the threats found in our May and
October crawls, we found only nine spyware programs in
October that would not have been detected using a signa-
ture database from May, in spite of the fact that leading
commercial anti-spyware tools add thousands of signatures
per month. As well, we found that while blacklisted sites
often contain more dangerous variants of spyware, many
blacklisted sites do not contain any spyware at all, and many
non-blacklisted site do contain spyware.

4 Drive-by Downloads

This section measures and analyzes drive-by download
attacks on the Web. We begin by presenting the tools and
infrastructure we constructed to carry out our study. Next,
we present our results and answer specific questions about
the source and frequency of drive-by induced infections.

4.1 Study tools and infrastructure

This part of our research examined drive-by download
attacks, a common method for infecting victims with spy-
ware. A drive-by download attack occurs when a victim
visits a Web page that contains malicious content. An ex-
ample is JavaScript embedded in HTML that is designed to
exploit a vulnerability in the victim’s Web browser. A suc-
cessful drive-by download lets the attacker install and run
arbitrary software on the victim’s computer.

The primary challenge in detecting drive-by attacks is
performing an automated analysis of Web content to deter-
mine whether it contains attack code. Fortunately, we found
a simple solution: we assumed that a drive-by download at-
tack would attempt to break out of the security sandbox im-
plemented by the Web browser, e.g., modifying system files
or registry entries. To recognize such an attack, we ren-
dered the Web page using an unmodified browser and tried
to detect when the sandbox had been violated.

4.1.1 Detecting browser sandbox violations

Our method for detecting browser sandbox violations is
based on the notion of event triggers. A trigger fires when
an event matching a trigger condition occurs in the guest
OS or an application running on it. For example, if visiting

9

Trigger condition

Process creation: a new process is launched, excluding known browser helper processes.

File system activity: a file is created or modified, excluding those in “safe” folders such as the browser cache, browser cookies,
system event logs, and paths associated with helper processes.

A suspicious process writes to a file: a process besides the browser and its known helper processes creates or modifies any file.

Registry activity: sensitive registry entries are modified, such as those that control programs that are launched on reboot, browser

helper objects (BHOs) loaded when the browser runs, initialization scripts that are executed when certain programs are launched, etc.

Browser or OS crash: the browser or OS crash, or otherwise stop responding to events.

Table 8: Trigger conditions. If any of these trigger conditions occurs within the guest OS, we mark the associated URL as suspicious
and run a spyware scan.

a Web page causes file-system activity to occur outside of a
small set of prescribed folders associated with the browser
(such as its local cache), a trigger will fire. Table 8 describes
the trigger conditions that we defined and implemented for
detecting drive-by downloads.

In our VM environment, we have precise control over
the software that runs in our guest operating system. This
lets us reduce the number of trigger conditions that are gen-
erated by the base software. For example, we configured
the guest OS to disable all unnecessary background system
services. This increases the likelihood that a trigger firing is
the result of a drive-by download. However, some of our de-
fined trigger conditions can occur naturally, e.g., from back-
ground services that we failed to disable or from system or
browser crashes. In addition, not all drive-by downloads in-
stall spyware; some install benign software. Accordingly,
when a trigger fires, we consider the page to be suspicious
and perform an AdAware scan of the VM to detect installed
spyware.

As a performance optimization, we attempted to reduce
the number of new VMs that must be created. Therefore, as
we crawled Web pages to scan for drive-by downloads, we
continued loading pages within the same browser and VM
instance until a trigger fired or we visited 100 Web pages.
In either case, we then garbage collected the VM and cre-
ated a new one from our clean, checkpointed VM image. In
practice, we observed that triggers fire often enough that we
have rarely reached the 100-page limit.

4.1.2 Dealing with complex web content

Some Web pages contain scripted content that could con-
found our analysis. One example is a “time bomb” used
by some drive-by attacks; when a browser renders the page,
JavaScript within it causes the browser to set a timer that
will trigger some activity (such as a page load) at some de-
fined point in the future. As another example, some Web
pages contain JavaScript that is executed when the page
closes. As a third example, some Web pages cause pop-

up windows to open, which in turn may contain malicious
code. If we mishandle these complexities, we could poten-
tially attribute a trigger firing to the incorrect URL.

To deal with time bombs, we sped up the virtual time
on the guest OS by a factor of fifteen. Thus, each second
of wall-clock time that elapsed caused fifteen seconds to
appear to elapse on the guest OS and its applications. All
time-bombs that we have observed in drive-by downloads
had a fuse-length of less than fifteen seconds, so we ensured
that at least a second elapsed between fetching one URL and
beginning the analysis of the next URL in the same VM.

Coping with page-close code is straightforward. Before
concluding the analysis of a URL, we caused the browser
to fetch a known, clean Web page, thereby triggering the
page-close handlers of the previous Web page.

To correctly handle pop-up windows, we waited for all
pop-up windows to finish loading and then closed them in
order to trigger any page-close JavaScript handlers asso-
ciated with the pop-ups. Some pop-up windows caused
an endless sequence of additional pop-up windows to be
opened; in this case, we iterated through our pop-up clos-
ing procedures 10 times before halting the analysis for that
URL and resetting the VM image.

There are several additional complexities that we handle,
including dealing with browser dialog boxes that prompt the
user for input (e.g., when a Web page asks the user to ac-
cept a license agreement or to agree to change their default
home page). We developed a set of automated heuristic so-
lutions to this and other problems, but we omit a detailed
description here due to space constraints.

4.1.3 Browser configuration

We analyzed two different browser configurations, both
based on Microsoft’s Internet Explorer (IE) version 6.0,
running on Windows XP without either SP1 or SP2 in-
stalled. We deliberately chose to use unpatched versions
of XP, since the majority of existing exploits attack vulner-
abilities in such older system configurations. In addition,

10

 May 2005
October 2005

(recrawl May URLs)
October 2005
(new URLs)

URLs crawled 45,000 45,000 45,000

domains crawled 1,353 1,353 1,420

unique spyware
programs found

48 26 36

infectious
URLs

2,675 (5.9%) 1,548 (3.4%) 186 (0.4%) say yes to
prompts
(“cfg_y”) infectious

domains
46 (3.4%) 27 (2.0%) 23 (1.6%)

infectious
URLs

690 (1.5%) 37 (0.1%) 92 (0.2%) say no to
prompts
(“cfg_n”) infectious

domains
16 (1.2%) 5 (0.4%) 9 (0.6%)

Table 9: Drive-by download results. The number of infectious
pages and domains found by our drive-by download study. We
report results for two browser configurations: IE configured to au-
tomatically say “yes” to security dialog boxes (cfg y), and IE con-
figured to say “no” (cfg n). We also report on three traces: our
May 2005 crawl, the same URLs from the May trace re-crawled
in October 2005, and a new set of URLs gathered and crawled in
October 2005.

most (but not all) newly found exploits affect both patched
and unpatched systems.

For the first configuration (cfg y), the browser behaves
as though the user grants permission in all security-related
IE dialog boxes. For example, when a Web page tries to
download and run ActiveX controls, IE requests the user’s
approval for the action. Sometimes a Web page attempts
to “push” an executable file to the user’s computer, using
either inline JavaScript or pop-up windows. In this case as
well, IE asks for permission to install or run the executable.

For the second configuration (cfg n), the browser be-
haves as though the user refuses permission in security-
related dialog boxes. Spyware that installs itself despite
the user’s refusal typically exploits browser flaws, bypass-
ing IE’s security framework.

None of the URLs examined in this section link to exe-
cutable content. Accordingly, any spyware infections found
were the result of a drive-by download. Note that if an ex-
ecutable were installed in the cfg n configuration, the user
will not have the opportunity to refuse the installation, and,
in most cases, no notification will occur. This is the most
malicious form of a drive-by download: simply visiting a
Web page will cause an executable to be installed and run
on the victim’s system.

4.1.4 Performance

Using the same cluster of machines described in Sec-
tion 3.2, we found that analyzing a single Web page took on
average 6.3 seconds, including restarting the browser and
loading the page and its pop-ups. For those pages that fire
a trigger, performing an AdAware scan took on average an

additional 108 seconds. We observed that 5% of Web pages
caused a trigger to fire, leading to an average latency of 11.7
seconds per page. We could run two VMs per CPU without
loss of performance, and, accordingly, we analyzed approx-
imately 14,769 pages per CPU per day.

4.2 High-level results

Our drive-by download study examined Web pages se-
lected from the Website categories we described in Sec-
tion 3.2, using the same methodology based on Google key-
word searches. We performed three crawls overall. To
begin, in May 2005 we crawled 45,000 URLs from 1,353
domains and analyzed their content. In October 2005, we
performed two additional studies for comparison. First, we
re-crawled these same URLs to understand how their con-
tent had changed. Second, we generated a new list of 45,000
URLs from 1,420 domains, seeded by re-executing the orig-
inal Google keyword search. This second October crawl
accounts for the constant change in domains, pages, and
popularity on the Web.

Our high-level results are shown in Table 9.2 In our May
crawl, with IE configured to say “yes” to security prompts,
2,675 URLs in 46 domains caused spyware infections. With
IE configured to say “no,” we found 690 infectious URLs
in 16 domains. That is, 1.5% of the URLs we crawled in
May exploited IE security flaws to install spyware without
prompting the user. While this may seem like a small per-
centage, consider that 1 in 67 Web pages that we examined
contained malicious content targeting browser flaws.

Our examination of the same URLs in October saw a
reduction in the number of drive-by attacks, with the drop
significantly more pronounced for the cfg n configuration.
Many of the pages and domains that previously exploited
browser vulnerabilities no longer did so: e.g., of the 690
cfg n infectious URLs we found in May, only 37 were still
infectious in October. Through manual examination, we
found that some of the formerly infectious sites had been
removed, some were still functioning but had substantially
changed in content, and some had the same user-perceived
content but no longer performed drive-by download attacks.

For comparison, we also crawled and examined the new
set of 45,000 URLs that we generated in October. During
this crawl, both browser configurations observed a signifi-
cantly lower number of drive-by download attacks than we
found in May. For example, in May, 5.9% of the crawled
URLs performed cfg y attacks and 1.2% of sites performed
cfg n attacks; in October, these percentages dropped to
0.4% and 0.6%, respectively.

2We repeated our drive-by study for blacklisted domains, similar what
we presented in Section 3.10 for executable files. Blacklisted domains had
drive-by results that are qualitatively similar to non-blacklisted domains,
so we have chosen not to present them for the sake of brevity.

11

adult celebrity games kids music news pirate wallpaper random

category

cfg_y cfg_n cfg_y cfg_n cfg_y cfg_n cfg_y cfg_n cfg_y cfg_n cfg_y cfg_n cfg_y cfg_n cfg_y cfg_n cfg_y cfg_n

 URLs
crawled

5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000

domains
crawled

67 67 99 99 105 105 125 125 145 145 21 21 78 78 83 83 716 716

infectious
URLs

35
0.7%

30
0.6%

182
3.6%

18
0.4%

493
9.9%

500
10%

0
0%

0
0%

439
8.8%

127
2.5%

0
0%

0
0%

1451
29%

2
0.04%

30
0.6%

7
0.1%

45
0.9%

6
0.1%

M
a
y
 2

0
0
5

infectious
domains

3
4.5%

3
4.5%

10
10%

1
1.0%

4
3.8%

3
2.9%

0
0%

0
0%

10
6.9%

5
3.4%

0
0%

0
0%

11
14%

2
2.6%

3
3.6%

1
1.2%

7
1.0%

4
0.6%

domains
crawled

101 101 103 103 93 93 164 164 116 116 17 17 185 185 92 92 621 621

infectious
URLs

2
0.04%

0
0%

24
0.5%

16
0.3%

14
0.3%

5
0.1%

1
0.02%

0
0%

0
0%

0
0%

0
0%

0
0%

139
2.8%

68
1.4%

1
0.02%

0
0%

5
0.1%

3
0.1%

O
c
to

b
e
r

2
0
0
5

(n
e
w

 U
R

L
s
)

infectious
domains

2
2.0%

0
0%

4
3.9%

1
1.0%

2
2.2%

1
1.1%

1
0.06%

0
0%

0
0%

0
0%

0
0%

0
0%

8
4.3%

4
2.2%

1
1.1%

0
0%

5
0.8%

3
0.5%

Table 10: Drive-by downloads across Web categories. Drive-by download attacks that cause spyware infections across Web categories,
for both the May 2005 and October 2005 crawls. Note that the number of infectious “games” URLs in May 2005 is higher for cfg n than
cfg y. In “games,” many of the examined URLs non-deterministically send different content on subsequent downloads.

Overall, our summary statistics suggest that the density
of drive-by download attacks on the Web has declined over
the five-month period of our study.

4.3 From where do drive-by downloads
originate?

To understand whether certain Web categories are more
likely to perform drive-by download attacks than others, we
examined URLs from eight different Web categories and
calculated the fraction of URLs and domains that were in-
fectious in each. Table 10 shows our results for the May
crawl and the October crawl of new URLs.3

Focusing on the fraction of May domains that are infec-
tious, we saw a blend of high-risk and no-risk categories. At
the high end, 14% of “pirate” sites installed drive-by infec-
tions when the user responded “yes” to prompts. At the low
end, we found no drive-by download attacks in either the
“kids” or the “news” sites. The “random” category gives us
an approximate view of the state of Web pages reachable
through a Web crawl. Only 1% of “random” Web sites con-
tained drive-by download attacks in May (0.8% in October),
confirming that these attacks are focused on specific por-
tions of the Web rather than being spread more uniformly
throughout it.

It is common for infectious sites to attempt drive-by
downloads on a large fraction of their Web pages. For
each infectious domain we found using the cfg y browser

3The remainder of this paper presents data for these two crawls and
ignores the October re-crawl of the May URLs. The re-crawl told us what
changed in sites that were infectious in May; however, we believe that
the new October crawl is more representative of the state of the Web in
October, since it was generated with new seeds.

0

20

40

60

80

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

domain

%
 o

f
U

R
L

s
 i

n
 d

o
m

a
in

 w
it

h

d
ri

v
e

-b
y

 a
tt

a
c

k
s

Figure 3: Fraction of URLs in infectious domains that contain
drive-by attacks (May 2005 crawl). For each infectious domain,
this graph shows the fraction of URLs within that domain that in-
stall spyware when the user responds “yes” to security prompts.

configuration, Figure 3 shows the fraction of pages in that
domain that performed drive-by downloads, for the May
crawl. This fraction ranges between 0.29% and 100%, how-
ever, approximately half of the infectious domains installed
spyware through 50% or more of their URLs.

The “games” zone shows an interesting anomaly: in our
May crawl, we observed slightly more cfg n drive-by down-
loads occurring in this category than cfg y drive-bys. In
principle, the cfg n drive-bys should be a subset of the cfg y
drive-bys, since exploits that affect a cfg n browser should
work equally well on a cfg y browser. In practice, however,
some URLs behave non-deterministically, serving different
content each time the URL is visited. Their infectiousness
depends on chance, and there were enough of these in the
“games” category to visibly affect our overall results.

12

spyware program
times

observed
(cfg_y)

 spyware program
times

observed
(cfg_n)

DyFuCA 1,176 IEHijacker.Hotoffers 250

PeopleOnPage 1,132 Win32.TrojanDownloader.Agent.jq 43

Adintelligence 1,114 CoolWebSearch 28

istbar 1,008 Security iGuard 22

Hijacker.TopConverting 905 AdRotator 12

BargainBuddy 889 Aurora 10

SideFind 805 VX2 6

WindUpdates 628 TIB Browser 5

IEHijacker.Hotoffers 556 Dialer.WSV 5

ZyncosMark 421 Win32.Trojan.Delprot.a 2

(a) drive-by download study, May 2005 crawl

spyware program
times

observed
(cfg_y)

 spyware program
times

observed
(cfg_n)

Aurora 63 Aurora 63

EffectiveBrandToolbar 61 EffectiveBrandToolbar 53

WindUpdates 56 VirtualBouncer 14

WinAD 55 AdDestroyer 12

ImlServer IEPlugin 33 VX2 12

Roings 27 CasinoClient 9

DyFuCA 20 CoolWebSearch 8

Win32.TD.TSUpdate 15 BookedSpace 4

istbar 14 BroadCastPC 4

CoolWebSearch 9 Virtumonde 4

(b) drive-by download study, October 2005 crawl (new URLs)

Table 11: Top 10 spyware programs. Top 10 drive-by download
infections for (a) the May 2005 crawl, and (b) the October 2005
crawl (new URLs). Programs that were found in the top-ten lists
of both crawls are shown italicized.

We now turn our attention to the change in drive-by
downloads over time. In nearly all categories, the density of
drive-by download attacks we found in October was lower
than in May. In many categories, the density had dropped
substantially. For example, in the May crawl, a noticeable
fraction of music sites and URLs performed drive-by at-
tacks in both browser configurations, while in October, no
music sites or URLs performed attacks.

It is difficult to attribute this decline to a specific cause,
but there are several recent trends that we believe may be
partially responsible. The adoption of anti-spyware tools
has increased, shrinking the potential market reach of spy-
ware programs. Automated patch installation tools such as
Windows Update have made it simpler for typical users to
administer security updates, reducing the number of Inter-
net Explorer installations susceptible to known browser vul-
nerabilities. Finally, a recent set of civil lawsuits brought
against spyware distributors or affiliates that use drive-by
download mechanisms might have discouraged some po-
tential attackers.

spyware function May 2005
October 2005
(new URLs)

keylogging 0% 0%

dialer 0.02% 0%

Trojan downloader 51% 37%

browser hijacker 84% 60%

adware 75% 55%

(a) cfg_y .

spyware function May 2005
October 2005
(new URLs)

keylogging 0% 0%

dialer 2.4% 0%

Trojan downloader 22% 12%

browser hijacker 83% 78%

adware 73% 37%

(b) cfg_n .

Table 12: Spyware functions. The fraction of drive-by down-
loads that cause various spyware functions to be installed. Note
that a given drive-by download can install more than one function,
so columns do not sum to 100%.

4.4 What kinds of infections do drive-by
downloads cause?

Table 11 shows the spyware programs installed most fre-
quently during drive-by download attacks for both the May
and October crawls. There is little overlap between these
lists and the executable file study (Figure 2) – in fact, only
VX2, BroadCastPC, and Aurora appear in both. The set
of spyware programs that tend to be piggybacked with ex-
ecutables are largely disjoint from those that tend to be in-
stalled via drive-by downloads.

Table 12 shows the spyware functions that are present
in drive-by downloads. The results are similar to the ex-
ecutable study: keylogging and dialer functions are rarely
observed, and the more benign adware and browser hijack-
ing functions are much more common. Adware functions
declined noticeably between May and October, dropping
from 75% to 55% for cfg y, and from 73% to 37% for
cfg n. While promising at first blush, in practice many Tro-
jan downloaders retrieve and install adware over a long pe-
riod of time. Our results may therefore underestimate the
ultimate number of adware installs.

In Figure 4, we show histograms of the number of spy-
ware programs installed by drive-by downloads using each
of the cfg y and cfg n browser configurations, for both the
May and October crawls. Most drive-by downloads in-
stalled only a few spyware programs, though a few caused

13

(a) cfg_y, May 2005 (b) cfg_n, May 2005

(a) cfg_y, October 2005 (new URLs) (b) cfg_n, October 2005 (new URLs)

Figure 4: Number of programs installed. The number of spyware programs installed per drive-by download for cfg y and cfg n, and for
the May 2005 and October 2005 (new URLs) crawls. Most drive-by downloads install only a few programs, but some install many.

many to be installed. Interestingly, in May, most drive-by
downloads installed only a single program, while the trend
was towards the installation of several programs in October.

The May data shows a cluster of cfg y drive-by attacks
that installed many spyware programs per attack. For exam-
ple, 307 of May cfg y drive-by attacks installed nine pro-
grams. These incidents can be attributed to a set of Web
sites within the “pirate” category that installed similar bun-
dles of spyware. The spyware programs that these sites in-
stall dominate our May cfg y top-ten spyware program list
in Table 11a.

4.5 Is the Firefox browser susceptible?

Thus far, we have focused on the susceptibility of the In-
ternet Explorer browser to drive-by download attacks. We
now turn our attention to the Firefox browser, which is cur-
rently the second-most popular browser in use. 4 A common
perception about Firefox is that it is more secure against
drive-by download attacks, in part because it does not sup-
port ActiveX components, a common contributing factor to
IE browser vulnerabilities.

To explore this issue, we modified our experimental in-
frastructure, creating a virtual machine instance that con-
tains Firefox version 1.0.6 on Windows XP with no service
packs installed. We replicated all of the heuristics we previ-
ously built for IE, such as those that handle JavaScript “time

4MSIE currently has an 83% market share, while Firefox has an 8%
market share, according to http://www.thecounter.com.

bombs.” Finally, we created both cfg y and cfg n Firefox
configurations.

In October 2005, we gathered a new crawl of the same
Web site categories that we explored for the IE drive-by
download study. Our methodology for selecting seed do-
mains to crawl was identical to our other crawls, except we
tuned the crawler to favor breadth across sites rather than
depth within a site. We did this in anticipation of there being
far fewer malicious domains that target Firefox, and accord-
ingly we wanted exposure to a larger number of domains.

Table 13 shows the results of our study. Out of the
45,000 URLs we examined, we found 36 (0.08%) that per-
formed drive-by spyware installs on Firefox. These spy-
ware installs affected only the cfg y browser configuration.
We found no cfg n attacks, i.e., we did not observe any Web
pages that exploit Firefox vulnerabilities to install spyware
without the user’s consent.

The few cfg y Firefox drive-by downloads that we ob-
served were based on a Java applet created and distributed
by Integrated Search Technologies (IST), a developer of
several advertising and browser search redirection software
products. The Java applet attempts to install a bundle con-
taining several spyware and adware programs, including
DyFuCA and SideFind. An applet is normally prevented
from installing new software by Java’s security sandbox.
Sun’s Java Runtime Environment will allow digitally signed
applets to run outside the sandbox in some circumstances.
In particular, if the applet contains a previously unknown
signature, the user is prompted whether or not to trust the

14

URLs

crawled
domains
crawled

infectious
URLs

infectious
domains

cfg_y 5,000 744 0 0
adult

cfg_n 5,000 744 0 0

cfg_y 5,000 319 4 (0.08%) 1 (0.3%)
celebrity

cfg_n 5,000 319 0 0

cfg_y 5,000 659 0 0
games

cfg_n 5,000 659 0 0

cfg_y 5,000 164 0 0
kids

cfg_n 5,000 164 0 0

cfg_y 5,000 392 7 (0.14%) 1 (0.26%)
music

cfg_n 5,000 392 0 0

cfg_y 5,000 136 0 0
news

cfg_n 5,000 136 0 0

cfg_y 5,000 300 25 (0.5%) 5 (1.6%)
pirate

cfg_n 5,000 300 0 0

cfg_y 5,000 272 0 0
wallpaper

cfg_n 5,000 272 0 0

cfg_y 5,000 4,494 0 0
random

cfg_n 5,000 4,494 0 0

Table 13: Drive-by downloads with the Firefox browser.
Drive-by download attacks that cause spyware infections with the
Firefox browser in the October 2005 crawl. The few successful
drive-by attacks we found used Java applets to attempt to down-
load executables, but required a user to consent to the download.

applet. If the user says yes, the applet is granted permission
to execute outside the sandbox. In this particular example,
granting permission results in the installation of spyware.

Interestingly, the URLs that perform this drive-by down-
load attack use JavaScript to customize the attack based on
the browser that is retrieving the URL. If IE is used, an
Active-X based attack is attempted. Otherwise, the Java
applet-based attack is used. The applet-based attack appar-
ently works on several different browsers, including Fire-
fox, Mozilla, Netscape, and Avant.5

4.6 Summary

To study drive-by installations of spyware using the In-
ternet Explorer browser on Windows, we performed a crawl
of 45,000 URLs in May and two crawls of 45,000 URLs
in October 2005. Our study found a reduction in the frac-
tion of domains hosting drive-by downloads across the cat-
egories we examined. In general, a small number of infec-
tious domains are responsible for the majority of infectious
links. Once a user browses an infectious domain, they are

5This particular attack has been well-documented. See, for example,
the description at http://www.vitalsecurity.org/2005/03/
firefox-spyware-infects-ie.html.

very likely to be hit with a spyware infection, often whether
or not they respond “yes” to a security prompt. Overall,
in our most recent crawl, we found drive-by downloads at-
tempted in 0.4% of the URLs we examined and drive-by
attacks that exploit browser vulnerabilities in 0.2% of the
examined URLs.

We also examined whether the Firefox browser was sus-
ceptible to drive-by installations. We found that only 0.08%
of examined URLs performed a drive-by download instal-
lation, but all of these required user consent in order to suc-
ceed. We found no drive-by attacks that exploited vulnera-
bilities in Firefox.

5 Conclusions

The goal of this research is to quantify the nature of the
spyware threat from a Web-centric point of view. To do
this, we conducted a crawler-based examination of both ex-
ecutable content and scripted page content in the Web over
a five-month period in 2005.

In the first part of our study, we crawled approximately
20 million URLs in May and again in October of 2005,
looking for executable content. Our crawls found exe-
cutable programs in 19% of the domains we examined. In
October, approximately 5.5% of executables and 4.4% of
the domains we crawled contained piggy-backed spyware.
While the largest portion of that spyware is adware, we
found that 14% of the spyware contained potentially ma-
licious functions, such as Trojan downloaders and dialers.
We also showed that some Web categories, such as games
and wallpaper sites, have a higher concentration of exe-
cutable spyware than others.

In the second part of our study, we performed three
crawls of 45,000 URLs in eight Web categories to exam-
ine drive-by download attacks over a period of 5 months.
Our results showed a 93% reduction in pages carrying drive-
by attacks between May and October, from 5.9% to 0.4%.
Approximately 0.2% of the pages crawled in October ex-
ploited browser vulnerabilities to install spyware even when
the user denied permission for a download or script execu-
tion. In the most recent crawl, we found that pirate sites
have the greatest risk of drive-by attacks (4.3% of pirate do-
mains), with celebrity sites following close behind (3.9% of
domains). For some of the most dangerous sites, we found
that the majority of URLs in the domain pose a risk.

Overall, our results show that even with some of the re-
ductions we have seen, the density of spyware on the Web
is still substantial. It is difficult to generalize from a single
study, but in the zones that we crawled, over one in twenty
executables contained piggy-backed spyware. In our Web
page crawl, on average, 1 in 62 domains contained at least
one scripted drive-by download attack. If these numbers
are even close to representative for Web areas frequented

15

by users, it is not surprising that spyware on the desktop
continues to be of major concern.

6 Acknowledgements

We would like to thank the Computer Science and En-
gineering support staff and the Computing and Communi-
cations staff at the University of Washington for enabling
our research. In particular, we want to thank Erik Lund-
berg and Warren Jessop for fielding the countless security
alarms that our crawling generated, and David Sinn and
David Richardson for helping set up elements of our crawler
infrastructure. This research was supported in part by the
National Science Foundation under grants CNS-0430477,
CCR-0326546, and ANI-0132817, by an Alfred P. Sloan
Foundation Fellowship, by the Wissner-Slivka Chair, and
by gifts from Intel Corporation and Nortel Networks.

References

[1] Ad-Aware. http://www.lavasoftusa.com/
software/adaware/.

[2] America Online and the National Cyber Secu-
rity Alliance. AOL/NCSA online safety study.
www.staysafeonline.info/news/safety_
study_v04.pdf, October 2004.

[3] Kirk P. Arnett and Mark B. Schmidt. Busting the ghost in the
machine. Communications of the ACM, 48(8):92–95, 2005.

[4] Neveen Farag Awad and Kristina Fitzgerald. The deceptive
behaviors that offend us most about spyware. Communica-
tions of the ACM, 48(8):55–60, 2005.

[5] Mihai Christodorescu, Somesh Jha, Sanjit A. Seshia, Dawn
Song, and Randal E. Bryant. Semantics-aware malware de-
tection. In Proceedings of the 2005 IEEE Symposium on Se-
curity and Privacy, Oakland, CA, May 2005.

[6] Lee A. Freeman and Andrew Urbaczewski. Why do people
hate spyware? Communications of the ACM, 48(8):50–53,
2005.

[7] Steve Gibson. Spyware was inevitable. Communications of
the ACM, 48(8):37–39, 2005.

[8] Qing Hu and Tamara Dinev. Is spyware an internet nuisance
or public menace? Communications of the ACM, 48(8):61–
66, 2005.

[9] Internet Archive. The Heritrix web crawler project. http:
//crawler.archive.org/.

[10] Kazaa. http://www.kazaa.com.

[11] Darrell M. Kienzle and Matthew C. Elder. Recent worms: A
survey and trends. In Proceedings of the 2003 ACM Work-
shop on Rapid Malcode, Washington, DC, October 2003.

[12] Younghwa Lee and Kenneth A. Kozar. Investigating factors
affecting the adoption of anti-spyware systems. Communi-
cations of the ACM, 48(8):72–77, 2005.

[13] David Moore, Vern Paxson, Stefan Savage, Colleen Shan-
non an d Stuart Staniford, and Nicholas Weaver. Inside the
slammer worm. IEEE Security and Privacy, 1(4):33–39, July
2003.

[14] Robin Poston, Thomas F. Stafford, and Amy Hennington.
Spyware: a view from the (online) street. Communications
of the ACM, 48(8):96–99, 2005.

[15] Niels Provos. A virtual honeypot framework. In Proceedings
of the 13th USENIX Security Symposium, San Diego, CA,
August 2004.

[16] Stefan Saroiu, Steven D. Gribble, and Henry M. Levy. Mea-
surement and analysis of spyware in a university environ-
ment. In Proceedings of the First Symposium on Networked
Systems Design and Implementation (NSDI ’04), San Fran-
cisco, CA, March 2004.

[17] Mark B. Schmidt and Kirk P. Arnett. Spyware: a little knowl-
edge is a wonderful thing. Communications of the ACM,
48(8):67–70, 2005.

[18] Sudhindra Shukla and Fiona Fui-Hoon Nah. Web brows-
ing and spyware intrusion. Communications of the ACM,
48(8):85–90, 2005.

[19] Prabhat K. Singh and Arun Lakhotia. Analysis and detection
of computer viruses and worms: An annotated bibliography.
ACM SIGPLAN Notices, 37(2):29–35, February 2002.

[20] Thomas F. Stafford. Introduction to the special issue on spy-
ware. Communications of the ACM, 48(8):34–36, 2005.

[21] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-Hong
Lim. Virtualizing I/O devices on VMware workstation’s
hosted virtual machine monitor. In Proceedings of the 2001
Annual USENIX Technical Conference, Boston, MA, June
2001.

[22] Sunbelt Software, Inc. Sunbelt Software Aquires Web
Spidering Technology. Available at http://www.
sunbelt-software.com/Press.cfm?id=114,
April 2005.

[23] Roger Thompson. Why spyware poses multiple threats to
security. Communications of the ACM, 48(8):41–43, 2005.

[24] Yi-Min Wang, Doug Beck, Xuxian Jiang, and Roussi Rous-
sev. Automated web patrol with strider honeymonkeys:
Finding web sites that exploit browser vulnerabilities. Tech-
nical Report MSR-TR-2005-72, Microsoft Research, August
2005.

[25] Yi-Min Wang, Doug Beck, Binh Vo, Roussi Roussev, Chad
Verbowski, and Aaron Johnson. Detecting stealth soft-
ware with Strider GhostBuster. Technical report, Yokohama,
Japan, July 2005.

[26] Yi-Min Wang, Roussi Roussev, Chad Verbowski, Aaron
Johnson, Ming-Wei Wu, Yennun Huang, and Sy-Yen
Kuo. Gatekeeper: Monitoring auto-start extensibility points
(ASEPs) for spyware management. In Proceedings of the
18th Large Installation System Administration Conference
(LISA ’04), Atlanta, GA, November 2004.

[27] Merrill Warkentin, Xin Luo, and Gary F. Templeton. A
framework for spyware assessment. Communications of the
ACM, 48(8):79–84, 2005.

16

[28] Webroot Software, Inc. Automated threat research.
Described at http://research.spysweeper.com/
automated_research.html.

[29] Xiaoni Zhang. What do consumers really know about spy-
ware? Communications of the ACM, 48(8):44–48, 2005.

17

