
Information Extraction with
HMM Structures Learned by Stochastic Optimization

Dayne Freitag and Andrew McCallum
Just Research

4616 Henry Street
Pittsburgh, PA 15213

�dayne,mccallum�@justresearch.com

Abstract

Recent research has demonstrated the strong performance
of hidden Markov models applied to information extrac-
tion—the task of populating database slots with correspond-
ing phrases from text documents. A remaining problem,
however, is the selection of state-transition structure for the
model. This paper demonstrates that extraction accuracy
strongly depends on the selection of structure, and presents
an algorithm for automatically finding good structures by
stochastic optimization. Our algorithm begins with a simple
model and then performs hill-climbing in the space of pos-
sible structures by splitting states and gauging performance
on a validation set. Experimental results show that this tech-
nique finds HMM models that almost always out-perform a
fixed model, and have superior average performance across
tasks.

Introduction
The Internet makes available a tremendous amount of text
that has been generated for human consumption; unfortu-
nately, this information is not easily manipulated or analyzed
by computers. Information extraction (IE) is the process of
filling fields in a database by automatically extracting frag-
ments of human-readable text. Examples include extract-
ing the location of a meeting from an email message, or the
name of a corporate takeover target.

Recent research has demonstrated the effectiveness of
hidden Markov models (HMMs) for information extraction.
HMMs have been applied successfully to many sub-domains
of information extraction: the named entity extraction task
(Bikel et al. 1997); to the task of recovering the sequence of
a set of entities occurring in close proximity (dense extrac-
tion) (Seymore et al. 1999); as well as the sparse extrac-
tion task, in which the object is to extract relevant phrases
from documents containing much irrelevant text (Leek 1997;
Freitag and McCallum 1999). In many cases, the accuracy
of HMMs applied to these tasks is state-of-the-art and often
significantly better than alternative learning approaches.

We address the sparse extraction task. We assume that for
every document in a corpus there is a corresponding rela-
tional record (template), each slot of which is either empty
or is filled with a fragment of text from the document. For

Copyright c� 2001, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

example, an electronic seminar announcement might con-
tain the title of the talk, the name of the speaker, the starting
time, etc. These typed relevant fragments are called fields.

For each field we train a separate HMM. In performing
extraction on a particular file, the model must account for
all tokens in the document. Special states (called “target
states”) are trained to emit only those tokens that are part
of the phrases to be extracted. Other states (“background
states”) are designated to emit non-target tokens. By vary-
ing the number and connection among states, we can design
models that account for a wide range of text patterns, in-
cluding patterns of language in the neighborhood of target
phrases and the structure of the phrases themselves.

A significant problem when applying HMMs to informa-
tion extraction is the selection of state-transition structure.
Certain structures better capture the observed phenomena in
the prefix, target and suffix sequences around certain targets.
For example, if we know that we want to extract names, we
might set aside a single target state for honorifics, one for
first names, and one for last names, and connect these states
in a way that matches our intuitions. Unfortunately the ap-
proach of building structures by hand does not scale to large
corpora and is difficult to follow in practice. Furthermore,
human intuitions do not always correspond to structures that
make the best use of HMM potential.

This paper shows that the selection of state-transition
structure effects tremendously the accuracy of the HMM
extractor, and presents a stochastic-optimization approach
for learning good task-specific structures automatically. Our
method begins with a minimal number of states, explores
various state splitting operations, selects the operation that
gives best performance on a labeled validation set, and recur-
sively explores further splitting operations. The final model
is then chosen by cross-validation from those generated.

The idea of automatic structure selection for HMMs is not
new (Stolcke and Omohundro 1994; Carrasco and Oncina
1994; Vasko et al. 1997; Lockwood and Blanchet 1993),
and it has been applied to the problem of dense extraction
(Seymore et al. 1999). Unlike this and much of the other
work—which typically uses goodness of statistical fit to the
data—our structure selection process at each step dicrimi-
natively optimizes performance on the task at hand. It also
shows much greater improvements due to structure learning.
Whether this improvement is possible only in the context of



sparse extraction is a question for future research.
We present experimental results on four different data

sets. The learned structures give higher accuracy than pre-
viously attained using hand-built models, and also outper-
form SRV and Rapier, two state-of-the-art information ex-
traction systems that employ ILP methods (Freitag 1998;
Califf 1998).

HMMs for Information Extraction
Like many tasks involving discrete sequences, good perfor-
mance on information extraction (IE) tasks relies on power-
ful modeling of context as well as the current observations.
Finite state machines, such as hidden Markov models, of-
fer a good balance between simplicity and expressiveness of
context.

Hidden Markov Models
A HMM is a finite state automaton with stochastic state tran-
sitions and symbol emissions (Rabiner 1989). The automa-
ton models a probabilistic generative processes whereby a
sequence of symbols is produced by starting in some state,
transitioning to a new state, emitting a symbol selected by
that state, transitioning again, emitting another symbol—
and so on until a designated final state is reached. Asso-
ciated with each of a set of states, � � ���� � � � � ���, is
a probability distribution over the symbols in the emission
vocabulary � � ���� ��� � � ����. The probability that
state �� will emit the vocabulary item � is written �������.
Similarly, associated with each state is a distribution over
its outgoing transitions. The probability of moving from
state �� to state �� is written ���� ����. There is also a prior
state distribution �����. Training data consists of several
sequences of observed emissions, one of which would be
written ���� ��� � � � ���.

Information Extraction with HMMs
Given a model and all its parameters, IE is performed by
determining the sequence of states that was most likely to
have generated the entire document, and extracting the sym-
bols that were associated with certain designated “target”
states. Determining this sequence is efficiently performed
by dynamic programming with the Viterbi algorithm (Ra-
biner 1989).

The models we use for IE have the following characteris-
tics:

� Each HMM extracts just one type of field (such as “sem-
inar speaker”). When multiple fields are to be extracted
from the same document (such as “seminar speaker” and
“seminar location”), a separate HMM is constructed for
each field.

� They model the entire document, and thus do not require
pre-processing to segment document into sentences or
other pieces. The entire text of each training document
is used to train transition and emission probabilities.

� They contain two kinds of states, target states and non-
target states. Target states are intended to produce the to-
kens we want to extract.

� They are not fully connected. The restricted transition
structure captures context that helps improve extraction
accuracy.

For IE, in addition to the traditional HMM parameters and
training data, we have labels indicating which are the “tar-
get” states and observations. Let ���� be a binary value in-
dicating whether state � is among the target states. Each
training instance is also labeled to indicate which observa-
tions are among the target observations for this task, repre-
sented by a sequence of binary labels for each observation
sequence, written ���� ��� � � � ���.

Parameter Estimation
Once the state-transition structure is determined, the remain-
ing parameters of the model are the transition and emission
probabilities. For IE both are estimated using labeled train-
ing data—that is, sequences of words with the target words
already identified.

In some HMM structures, the labels determine a unique
path through the states. If a unique path does not exist, then
we use EM (in the form of Baum-Welch) to iteratively esti-
mate parameters and fill in the missing path. In the E-step
we estimate the expected path exactly as in Rabiner 1989,
except that we also obey the target label constraints. Hence,
for example, the iteration step of the forward procedure be-
comes:

	������ �

�
� if ���� �� �����

�� 	���������
����������� otherwise

(1)
and the backward procedure is modified analogously.

Transition probabilities are low-degree multinomials,
which we estimate by maximum likelihood with ratios of
counts, as is traditional. Emission probabilities on the other
hand are very high-degree multinomials and require smooth-
ing with a prior because training data is extremely sparse
relative to the number of parameters.

Rather than smoothing simply against the uniform dis-
tribution, the results in this paper build on work in using
shrinkage with HMMs for information extraction (Freitag
and McCallum 1999). In many machine learning tasks
there is a tension between constructing complex models with
many states and constructing simple models with only a
few states. The complex model is able to represent intri-
cate structure of the task, but often results in poor (high
variance) parameter estimation because the training data is
highly fragmented. The simple model results in robust pa-
rameter estimates, but performs poorly because it is not suf-
ficiently expressive to model the data (too much bias).

Shrinkage (a general term that includes “hierarchical
Bayes” or “empirical Bayes”) is a family of statistical tech-
niques that balance these competing concerns. In our HMMs
shrinkage is used to “shrink” parameter estimates from data-
sparse states of the complex model toward the estimates in
related data-rich states of the simpler models. The com-
bination of the estimates is provably optimal under the
appropriate conditions. We employ a form of shrinkage
that combines the estimates with a weighted average, and



Figure 1: Two example HMM structures. Circle nodes
represent non-target states; hexagon nodes represent target
states.

learns the weights with Expectation-Maximization. Thus,
the smoothed, shrinkage-based emission probability of word
� being emitted by state � is


������� � 
���������� � 
����� (2)

where the last term represents the uniform distribution,

� � 
� � 
� � �, and ���� is the “parent” of state � in
the shrinkage hierachy, (i.e. the data-rich abstract state in the
simpler model). In our implementation all target states share
a parent, and all non-target state share another parent. Space
limitations prevent a full description of our shrinkage im-
plementation here; see Freitag and McCallum (Freitag and
McCallum 1999) for the details.

Learning State-Transition Structure by
Stochastic Optimization

The class of structures we consider for information extrac-
tion reflects our intuition that successful extraction requires
a learner to model both the typical contents of a field and its
context to either side. We distinguish four types of states:

� Target States required to model the content of target
phrases.

� Prefix A prefix is a set of one or more states connected
as a string. A prefix state transitions only to the next state
in the string or, if it is the last state in the string, to one
or more target states. Models are designed in such a way
that, if a state sequence (such as that returned by Viterbi)
passes through any target state, it must first pass through
a prefix.

� Suffix A suffix is similar in structure to a prefix. Any state
sequence must pass through a suffix upon leaving the set
of target states.

� Background Background states model any text not mod-
eled by other kinds of states. A background state has out-
going transitions only to itself and to the beginnings of all
prefixes, and it has incoming transitions only from itself
and the ends of all suffixes.

Figure 1 shows two HMM structures that meet our criteria.
The bottom model has a single background state, a prefix

and suffix of length four, and four fully interconnected tar-
get states. This model performs quite well on a range of
information extraction tasks. The top model is the simplest
we consider and serves as the starting point for our method’s
search in structure space.

Beginning with the simple model in Figure 1 we perform
hill-climbing in the space of possible structures, at each step
applying each of a set of operations to the current model and
selecting one of the resulting structures as the next model.
For the experiments reported here we define seven opera-
tions:

� Lengthen a prefix A single state is added to the end of a
prefix. The penultimate state now transitions only to the
new state; the new state transitions to any target states to
which the penultimate state previously transitioned.

� Split a prefix A duplicate is made of some prefix. Tran-
sitions are duplicated so that the first and last states of the
new prefix have the same connectivity to the rest of the
network as the old prefix.

� Lengthen a suffix The dual of the prefix-lengthening op-
eration.

� Split a suffix Identical to the prefix-splitting operation,
except applied to a suffix.

� Lengthen a target string Similar to the prefix-
lengthening operation, except that all target states, in con-
trast with prefix and suffix states, have self-transitions.
The single target state in the simple model in Figure 1
is a target string of length one.

� Split a target string Identical to the prefix-splitting oper-
ation, except applied to a target string.

� Add a background state Add a new background state to
the model, with the same connectivity, with respect to the
non-background states, as all other background states: the
new state has outgoing transitions only to prefix states and
incoming transitions only from suffix states.

Note that some of these operations may be applied in sev-
eral ways, resulting in distinct structures, depending on the
model. The result of applying any operation is the set of all
topologically distinct models it can generate.

In our experiments, for efficiency, all structures have the
same shrinkage configuration, as described in the previous
section. Note that the shrinkage configuration can also be
determined through optimization, in at least two ways: (1)
The two states created in a splitting operation might share a
local shrinkage distribution, as well as the distributions cre-
ated as part of previous splits. The resulting hierarchical
configuration would thereby reflect the sequence of opera-
tions that led to its construction. (2) We might include an
additional set of shrinkage modification operators indepen-
dently in the stochastic optimization.

Table 1 presents our method for selecting structure. It
consists of two loops: one in which a set of structures is
generated using one-step look-ahead hill-climbing and F1
performance on a hold-out set;1 and one in which the mod-
els from this set are re-scored using 3-fold cross-validation

1See the next section for a description of the F1 metric.



procedure LearnStructure(LabeledSet, Ops)
ValidSet� ��� of LabeledSet
TrainSet� LabeledSet� ValidSet
CurModel� the simple model
Keepers� �CurModel�
� � �
while � � �� and CurModel has fewer than 25 states

Candidates� �� �� � op�CurModel� � op � Ops�
for � � Candidates

score(� ) � average of 3 runs trained on
TrainSet and scored for F1 on ValidSet

CurModel�� � Candidates with highest score
Keepers� Keepers � �CurModel�
� � � � �

for � � Keepers
score(� ) � average F1 from

3-fold cross-validation on LabeledSet
return � � Keepers with highest score

Table 1: The optimization procedure used to select HMM
structure.

on the training set. At any given step in the first loop, Learn-
Structure selects as the next model the single candidate that
scores the best average F1 from several training/testing runs.
We average several runs in this way, seeding the model in
a different way each time, because Baum-Welch settles into
different local optima depending on the initial parameter set-
tings. The model returned by LearnStructure is the one
from the series of generated structures that scores the best F1
in separate runs of three-fold cross-validation on the training
set.

Experimental Results
We tested our approach on eight information extraction tasks
defined over 4 document collections: (1) SA: A collection of
485 seminar announcements posted electronically at a large
university. Fields include speaker, the name of the speaker
at the seminar, and location the location (e.g., room number)
of the seminar. (2) Acq: A collection of 600 Reuters articles
detailing coporate acquisitions. Fields include acquired, the
name of the company to be purchased, and dlramt, the pur-
chase or estimated price of the sale. (3) Jobs: A collection
of 298 Usenet job announcements. Fields include company,
the name of the company seeking to hire, and title, the job
title.) (4) CFP: A collection of 363 Internet “Call for Pa-
per” announcements in ASCII format. Fields include conf,
the name of the conference, and deadline, the full-paper sub-
mission deadline. Except for the CFP collection, all of these
corpora have been used in previously published research.

For each of our experiments we adopt the same basic pro-
cedure: The document collection is partitioned several times
into a training set and a testing set. We train a learner using
the training set and measure its performance using the test-
ing set. In the case of the approach described in this paper,
we use the training set both to select a model structure and to
set its parameters. With the exception of the Jobs partitions,
the training and testing sets are of roughly equal size. The
Jobs partitions—exactly those used in Califf (Califf 1998)—

contain 90% training and 10% testing. Results from ex-
periments we ran represent average performance over three
training/testing splits. Rapier’s scores are those reported
in Califf (Califf 1998); they represent average performance
over ten training/testing splits.

In the extraction problems we consider here, there is a sin-
gle correct filler (which may occur several times in a docu-
ment, with slight variations) for each slot in the answer tem-
plate. Given a test document, a learner must identify a target
fragment or, if none is present, decline to perform an extrac-
tion. In order for an extraction to be counted as correct, the
precise boundaries of a target fragment must be identified. If
a learner issues multiple predictions for a document, we take
only the one with highest confidence. Two metrics charac-
terize the performance of a learner: precision, the number
of correct extractions divided by the number of documents
for which the learner issued any prediction; and recall, the
number of correct extractions divided by the number of doc-
uments containing one or more target fragments. We report
F1, the harmonic mean of precision and recall.

We compare structure learning with four other ap-
proaches, two rule-learning approaches previously reported
in the literature—SRV (Freitag 1998) and Rapier (Califf
1998)—and two static HMM models. Both SRV and Rapier
are relational rule learners that have been shown to perform
well on a variety of tasks. SRV induces rules “top down,”
beginning with a most general rule and specializing. Rapier
induces rules bottom up, successively generalizing to cover
target phrases. Rows labeled “Simple HMM” and “Com-
plex HMM” show the performance of the two static mod-
els shown in Figure 1. Note that the “Simple HMM” is the
model with which structure selection begins.

Table 2 shows the F1 performance of the HMM with
learned structure on eight tasks and, for each of the four
competing approaches, lists the difference in F1 score be-
tween the “Grown HMM” and the respective approach. It
is clear from these results that, on balance, HMMs are to
be preferred over the rule learners mentioned here. They
achieve superior performance on almost all tasks, sometimes
by substantial margins. Even the “Simple HMM” occasion-
ally out-performs the symbolic methods.

Of course, in order for an HMM to realize its potential,
some structure selection is required, as the “vs. Simple
HMM” row in Table 2 indicates. The average performance
difference with the simple model constitutes an improve-
ment of 24%. A well-designed static model (row “Complex
HMM” in Table 2) can achieve good performance, but on
average its performance lags behind a dynamically selected
model. Note that the complex model was selected based on
considerable manual interaction with the SA domain, partic-
ularly the speaker task. It is in some sense optimized for
this task, so it comes as no surprise that this is one of the
few tasks on which structure learning yields worse results
than the static model.

Figure 2 shows parts of the structures of HMMs de-
signed to extract seminar locations and speakers, respec-
tively. Transitions are labeled with the probability assigned
to them by Baum-Welch; only transitions with probability
greather than 0.1 are shown. Each node in the location graph



speaker location acquired dlramt title company conf deadline Average
Grown HMM 76.9 87.5 41.3 54.4 58.3 65.4 27.2 46.5 57.2
vs. SRV +19.8 +16.0 +1.1 -1.6 — — — — +8.8
vs. Rapier +23.9 +14.8 +12.5 +15.1 -11.7 +24.9 — — +13.3
vs. Simple HMM +24.3 +5.6 +14.3 +5.6 +5.7 +11.1 +15.7 +6.7 +11.1
vs. Complex HMM -2.1 +6.7 +7.5 -0.3 -0.3 +19.1 +0.0 -6.8 +3.0

Table 2: Difference in F1 performance between the HMM using a learned structure and other methods. The � numbers indicate
how much better our Grown HMM did than the alternative method.

,
room
in
auditorium
<CR>

hall
wing
<CR>
room
baker

adamson
baker
mellon
carnegie
<UNK>

hall
conference
wing
institute
room

wean
weh
doherty
5409
hall

hall
5409
4623
auditorium
8220

1.0 1.0

<CR>
:
30
00
,

place
pm
in
where
<CR>

:
<CR>
in
,
the

seminar
reminder
theater
artist
additionally

that
by
speakers
/
here

porter
hall
<UNK>
of
room

hall
<UNK>
room
<
<CR>

0.49

0.46 0.56

dr
professor
robert
michael
mr

w
cavalier
stevens
christel
l

who
speaker
speak
5409
appointment

will
(
received
has
is

0.53

0.30

0.42

0.91

0.11

0.89

0.85

0.54 0.56

0.13 0.28

1.0

1.0

0.99

0.76

0.24

0.99

0.44

0.56

:
with
;
about
how

Figure 2: Part of two learned structures designed to extract
locations (top) and speakers (bottom).

displays the top 5 most probable tokens emitted by that state,
in order from top to bottom; the nodes in the speaker graph
show the top 5 tokens according to an odds-ratio metric. The
token <CR> stands for a carriage return; the token <UNK>
stands for the “unknown” token, in our experiments any to-
ken occurring fewer than three times in the training set. Both
of these models were the best found in their respective splits.
The location model was found after 8 states of state splitting,
the speaker model after 3 steps.

The figure suggests that, in order to extract seminar lo-
cations, a single, relatively short prefix context is needed.
The fact that the model retains only a single prefix points to
the unambiguity and length invariance of the kinds of lan-
guage leading up to a location. Phrases like “Place:”,
“Where:”, “in the”, and “00 pm,” are encoded by the
prefix. This last phrase is an indication that locations are
often preceded by times.

The target states are partitioned into three parallel paths.
The top path, accounting for about half of location phrases,
captures many common location phrases consisting of two
or three tokens, phrases such as “Weh 5409” and “Wean
Hall 5409”. Wean and Doherty are buildings on the
CMU campus and common meeting places for the talks
announced in the SA corpus. The middle path, of length
four, appears dedicated to modeling longer location phrases,
particularly a very popular meeting place which appears

in a variety of formats: “Adamson Wing Audito-
rium in Baker Hall”, “Baker Hall, Adamson
Wing”, “Adamson Wing, Baker Hall”. Finally, the
bottom path appears to be a “garbage” path, dedicated to
modeling locations that are not easily modeled by the other
two paths. The high probability of the unknown token in
these two states supports this interpretation.

The first target state in the speaker model appears dedi-
cated to emitting honorifics and first names, while the other
target state emits middle initials and last names. The use
of two prefixes suggests that seminar speakers occur in two
contexts. The top prefix seems dedicated to accounting for
the initial formal presentation, in which phrases like “Who:”
and “Speaker:” are common, followed by use of the
speaker’s full name, including honorific. The bottom pre-
fix seems to be used in the body of the announcement in less
formal contexts. It accounts for phrases like “reminder
that” and “seminar by”. Interestingly, a significant
fraction of contexts in which this prefix is used skip to the
second target state, apparently because an honorific or first
name has been omitted.

Related Work
HMMs have been applied to various versions of the infor-
mation extraction problem in recent years. The approach
described in Freitag and McCallum (Freitag and McCallum
1999) addresses the same problem as in this work—training
one HMM per extraction task—but involves manually con-
structed models. Seymore et al. (Seymore et al. 1999)
describe experiments in structure learning, but use HMMs
that model all fields simultaneously, and address problems
in which an ordering of fields is sought, rather than the lo-
cation of a single field in a large body of background text.
Bikel et al. (Bikel et al. 1997) applies HMMs to the named
entity recognition problem, the problem of identifying text
fragments that signify particular types of entities, such as
people or organizations, without regard to their role in the
document. They describe manually designed HMMs with
one state per type of entity and use n-gram statistics, rather
than HMM structure, to exploit context. The HMMs in Leek
(Leek 1997) are carefully designed—both state-transition
structure and emission distributions—to model the syntac-
tic constraints of the particular extraction problem.

The problem of learning HMM structure for tasks other
than information extraction has seen a fair amount of work.
Stolcke and Omohundro (Stolcke and Omohundro 1994)
propose a state-merging approach which begins with a large,



maximally specific topology and iteratively merges pairs of
states. The merging criterion is not performance on any par-
ticular task, as in this work, but a Bayesian combination of
prior expectations regarding suitable topologies and good-
ness of fit to the data. Seymore et al. (Seymore et al.
1999) apply the same approach to their extraction problem.
Closely related are the state merging algorithms that have
been investigated for some years in the field of grammat-
ical inference, particularly those involving stochastic regu-
lar grammars (Carrasco and Oncina 1994). State splitting
appears better suited than state merging to the sparse ex-
traction problem. Much of the work in state merging pre-
supposes problems that resemble formal language modeling.
The problem of dense extraction is much closer in character
to formal language identification than is sparse extraction.

Alternatives to state merging/splitting exist. Vasko et
al. (Vasko et al. 1997) describe a method which begins
with a fully-connected structure and iteratively deletes tran-
sitions. Lockwood and Blanchet (Lockwood and Blanchet
1993) propose a method that applies incremental patches to
a circuit-free model for speech processing.

Conclusions
Previous work has shown that hidden Markov models are
the state-of-the-art method for information extraction. This
paper has shown that task-specific state-transition structure
of these models is tremendously important to their perfor-
mance, and has further pushed the state-of-the-art by show-
ing that discriminative stochastic optimization can automat-
ically discover good structures. We hope that these initial
investigations will lead to improved methods in the future.

References
Daniel M. Bikel, Scott Miller, Richard Schwartz, and
Ralph Weischedel. Nymble: a high-performance learning
name-finder. In Proceedings of ANLP-97, pages 194–201,
1997.

Mary Elaine Califf. Relational Learning Techniques for
Natural Language Information Extraction. PhD thesis,
University of Texas at Austin, August 1998.

Rafael C. Carrasco and Jose Oncina. Learning stochastic
regular grammars by means of a state merging method. In
Rafael C. Carrasco and Jose Oncina, editors, Grammatical
Inference and Applications: Second International Collo-
quium, ICGI-94. Springer-Verlag, September 1994.

Dayne Freitag and Andrew Kachites McCallum. Informa-
tion extraction using hmms and shrinkage. In Papers from
the AAAI-99 Workshop on Machine Learning for Informa-
tion Extration, pages 31–36, July 1999. AAAI Technical
Report WS-99-11.

Dayne Freitag. Information extraction from HTML: Ap-
plication of a general machine learning approach. In Pro-
ceedings of the Fifteenth National Conference on Artificial
Intelligence (AAAI-98), 1998.

Timothy R. Leek. Information extraction using hidden
Markov models. Master’s thesis, UC San Diego, 1997.

Philip Lockwood and Marc Blanchet. An algorithm for the
dynamic inference of hidden Markov models (DIHMM). In
1993 IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP-93), 1993.
L.R. Rabiner. A tutorial on hidden Markov models and
selected applications in speech recognition. Proceedings
of the IEEE, 77(2), February 1989.
Kristie Seymore, Andrew McCallum, and Ronald Rosen-
feld. Learning hidden Markov model structure for infor-
mation extraction. In Papers from the AAAI-99 Workshop
on Machine Learning for Information Extration, pages 37–
42, July 1999. AAAI Technical Report WS-99-11.
Andreas Stolcke and Stephen M. Omohundro. Best-first
model merging for hidden Markov induction. Technical
Report TR-94-003, International Computer Science Insti-
tute, Berkeley, California, January 1994.
Raymond C. Vasko, Jr., Amro El-Jaroudi, J.R. Boston, and
Thomas E. Rudy. Hidden Markov model topology estima-
tion to characterize the dynamic structure of repetitive lift-
ing data. In Proceedings of the 19th Annual International
Conference of the IEEE Engineering in Medicine and Bi-
ology Society, 1997.


